JP2006292733A - 水晶マイクロバランスセンサー装置 - Google Patents

水晶マイクロバランスセンサー装置 Download PDF

Info

Publication number
JP2006292733A
JP2006292733A JP2006069013A JP2006069013A JP2006292733A JP 2006292733 A JP2006292733 A JP 2006292733A JP 2006069013 A JP2006069013 A JP 2006069013A JP 2006069013 A JP2006069013 A JP 2006069013A JP 2006292733 A JP2006292733 A JP 2006292733A
Authority
JP
Japan
Prior art keywords
cut
vibrator
frequency
quartz crystal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006069013A
Other languages
English (en)
Inventor
Yoshinori Kanno
善則 管野
Hirokazu Tanaka
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006069013A priority Critical patent/JP2006292733A/ja
Publication of JP2006292733A publication Critical patent/JP2006292733A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

【課題】 外部要因が発振周波数に与える影響が少なく、また温度補償が容易な振動子を使用し高い精度のQCM測定を可能とする水晶マイクロバランスセンサー装置を提供する。
【解決手段】 水晶振動子の電極表面に吸着膜を設け、同膜に吸着する物質の質量を同振動子の発振周波数の変化として検出する水晶マイクロバランス(QCM=Quartz Crystal Microbalance)センサー装置において、同振動子にSC-Cut水晶振動子を用いる。水晶マイクロバランスセンサーにSC-Cut振動子を使用することにより、熱衝撃等の外部ストレスによる周波数変化が少なく、また周波数情報を与えるC-Mode発振と温度情報を与えるB-Mode発振を切り替えて発振できる。これにより精度の高い微小質量測定が可能になる。これによりQCM(=水晶マイクロバランス)測定の高精度化と応用分野が広がることが予測できる。
【選択図】 図1

Description

本発明は、水晶振動子を用いて気相中あるいは液相中に含まれる微量物質を検出する技術に関わり、特にその分析が高精度に行われるようにした分析技術に関わるものである。
図4に電極の蒸着膜厚を実時間モニター可能な真空蒸着装置の断面図を示す。
図4に示す真空蒸着装置100はベルジャー101、オーバートーン発振器102、蒸着ボード103、オーバートーンAT−Cut水晶振動子104、膜厚モニター本体105、及び拡散真空ポンプ106から構成されている。
真空蒸着装置100は、拡散真空ポンプ106により真空状態に保たれているベルジャー1内部において、蒸着ボード103に設置した金を蒸発させ、オーバートーン発振器102によりオーバートーン発振している水晶振動子104の表面に金を蒸着させる。真空蒸着装置100は、高感度QCM法(Quartz Crystal Microbalance method、水晶マイクロバランス法)として水晶振動子4をオーバートーン発振させ、検出周波数を高くすることにより感度を上げている。ここでは直径9mm、厚み0.083mmのAT-Cut水晶板の両面にクロム/金(厚さ500Å)の電極を蒸着したものを用いている。
QCMの理論的裏付けは1959年Sauerberyにより行われ、水晶振動子の厚みに対し十分に薄く均一な皮膜によって質量変化:Δm[g]が生じた場合、共振周波数の変化:ΔF[Hz]は(1)式で与えられるとしている。

ここで、F0[MHz]は基本周波数、N[Hz・cm]は振動周波数、A[cm2]は電極面積、ρ[g・cm-3]は水晶の密度を表わす。
(1)式に示されるように、基本周波数F0が高いほどその周波数変化が大きくなる、即ち検出感度が高くなる。基本周波数と振動子の厚みの関係は(2)式で示される。

ここで、nはオーバートーン次数、K[MHz・mm]は振動子のカットアングルによって決まる定数、t[mm]は振動子板の厚みを表わす。
ここでオーバートーン次数:nは1、3、5、・・の奇数が可能であり、一般には5次までは容易に発振可能である、周波数によっては9次まで可能である。一般に良く使用されるAT-CutのK定数は(3)式で示される。
(3)式より10MHzをオーバートーン次数:n=1即ち原発振で発振させた場合の厚みはt=0.166mmとなり、5次オーバートーン発振(n=5)では同一の厚みで≒50MHzを得ることができ、質量変化に対する周波数変化量は(1)式より25倍となり、検出感度も25倍となることを示している。
ここではAT-Cut振動子を用いてオーバートーン発振を行い検出感度=0.023ng/cm2Hzを得たことを示している。
特許第3003811号公報
また、(2)式で示されるSC-Cut振動子のK定数は(4)式で示される。即ち10MHzの基本波発振 SC-Cut振動子の厚みは t=0.18mmとなる。

ちなみに、他のカットのK定数を(5)式に示す。
図7水晶板の切断方位の概念図である。SC-Cut(=Stress Compensated Cut)振動子CUT1はθ≒34°、φ≒22°で2回転切断した振動子である。AT-Cut振動子CUT2はθ≒34°で切断した振動子である。
以下にSC-Cut振動子およびAT-Cut振動子の意味を説明する。
1) SC-Cut振動子
Z板人工水晶のX軸に平行でX軸回りに θ回転した位置で切断、更にZ軸回りにφ回転した位置で切断したものをY-Cut素板という。特にθ≒34°、φ≒22°のものをSC−Cut、この素板を振動子にしたものをSC-Cut振動子という。
2) AT-Cut振動子
同じくY-Cut素板で、θ≒35°15′で切断したものをAT-Cutという。
図8はAT-Cut及びSC-Cutの温度特性を示すグラフである。図5AT-Cut振動子の温度特性を示すグラフである。図6(a)AT-Cut振動子の熱衝撃(サーマルショック)特性を示すグラフである。図6(b)SC-Cut振動子の熱衝撃(サーマルショック)特性を示すグラフである。図9はSC-Cutの重力感度特性評価方法を示す概念図である。図10(a)はAT-Cut振動子の重力感度特性を示すグラフである。図10(b)はSC-Cut振動子の重力感度特性を示すグラフである。図11はSC-Cut 振動子振動モードによる周波数の違いを示すグラフである。図12はSC-Cut B-mode温度特性を示すグラフである。
以下にSC-Cut振動子の特徴を以下に述べる。
(a)高温温度特性に優れる
図8に示す様にAT-Cut振動子が常温25℃近傍に変極点を持つことに対し、SC-Cut振動子は95℃近傍に変極点を持つ。このことは高温動作させる環境に適している。

(b)熱衝撃特性に優れる
図6に示すようにAT-Cut振動子が熱衝撃特性をもつことに対しSC-Cut振動子は熱衝撃特性を持たない、あるいは非常に少ない。同図よりAT-Cut振動子では0.5℃の温度の急変に対し1.85×10-7Δf/f の変化、それに対しSC‐Cut振動子では0.75×10-9 Δf/fの変化、即ちSC-Cut振動子はAT-Cut振動子の熱衝撃に対し≒1/200の周波数変化を示している。
(c)重力感度に優れる
図10(a)および図10(b)に示す様にSC-Cut振動子はAT-Cut振動子に比べ振動子の姿勢による重力の影響が少ない。
(d)温度センサとして動作可能
図11に示すようにSC-Cut振動子は主振動のC-mode(厚み滑り振動)と近傍にB-mode(厚みねじれ振動)とA-mode(厚み縦振動)がある。さらに図12に示す様に、特にB-modeは温度に対する感度が大きく≒−30ppm/℃で周波数が直線的に変化する。このB-modeで発振させることで温度センサとして使用できる。
近年、室温環境中において比較的簡易に測定が可能である高感度ガスセンサとして、QCM (Quartz Crystal Microbalance)方式センサが注目されている。このセンサは、水晶振動子などの周波数変換素子表面に形成された電極と、前述電極上に於いて有機材料などをガス物質捕捉膜として形成した構造を有しており、ガス物質捕捉膜に捕捉したガスの質量変化を水晶振動子など周波数変換素子の共振周波数変化として検出するものである。
特許公開2004−294356号において、QCMセンサ装置の圧電振動子上に金属薄膜パターンからなる測温素子を形成して4端子法等を用いて金属材料の抵抗を求めることで振動子の温度を求め、同時に圧電振動子の駆動電極と兼ね合わせることで水晶振動子の共振周波数変化を求め、さらに温度変化による周波数変動の補償を行う装置の提案がある。
よって、本発明はSC-Cut振動子を使用することで振動子の熱衝撃などのストレスを抑圧できると共に、振動子そのものを感温素子センサとして使用可能であり、より高精度の測定ができる。
従来より水晶発振器はコンピューターのクロック信号源として、また携帯電話等の無線機の周波数基準として使用されており高い安定度を得ている。同発振器に使用されている振動子は温度変化に対して最も高い安定度を得ることができるとされているAT-Cut水晶振動子(板面とZ軸との角度を35°15′で切断)である。AT-Cut振動子の温度特性は図5に示す様に27.5℃を変極点とする3次関数曲線に近似した温度特性を示す。またAT-Cut振動子は図6(a)に示す様に熱衝撃(サーマルショック)特性を示し時間に対する温度変化量に関係し大きな周波数変化を示すことが知られている。
QCM法による高い精度で質量の測定を行うためにはこれらの周波数変化を齎す外部要因を取り除く必要がある。
本発明ではこれらの外部要因が発振周波数に与える影響が少なく、また温度補償が容易な振動子を使用し高い精度のQCM測定を可能とする水晶マイクロバランスセンサー装置を提供する。
また、特許公開2004−294356号記載のQCMセンサ装置においては、水晶振動子上に金属薄膜パターンからなる測温素子を形成して振動子の温度を求め、温度変化による周波数変動の補償を行うとしているが、この方法では直接的には金属薄膜の温度を求めていることになり、正確な振動子の温度情報を得られてない。さらに、いかなる金属であっても腐食等による劣化が発生するため、金属薄膜パターン自体の金属抵抗は温度変化以外の要因によっても変動する。よって金属抵抗から正確な振動子の温度情報は得られない。
これらを解決するため本発明の水晶マイクロバランスセンサー装置は、吸着した物質の質量を検出する水晶マイクロバランスセンサー装置において、発振のための電圧を供給する電極を有し、センサーとして機能するSC−Cut水晶振動子と、前記電極の表面に設けられ、有機物および無機物のうち少なくともいずれか一方から形成される吸着膜と、を備え、前記吸着膜に吸着される物質の質量を前記SC−Cut水晶振動子の発振周波数の変化として検出することを特徴としている。
QCM測定用振動子としてSC-Cut水晶振動子を使用することにより熱衝撃に強く、特に高温での気相雰囲気中での温度特性に優れ、振動子の設置条件に影響を受けない測定が可能となる。
また、通常の発振器に使用する振動子はケース内に密封され使用するが、QCMでは振動子を裸のまま気相雰囲気中に設置し発振させるため、通常の発振器のように温度センサをケースに密着させることにより振動子温度を検出することができない、即ち近傍に温度センサを設置し温度を検出する方法では振動子温度を正確に知ることができない。よって振動子温度を振動子から知る方法が最良である。ここではB-mode発振によるB-mode周波数を測定することにより温度測定が容易に可能となる。
水晶マイクロバランスセンサー装置にSC-Cut水晶振動子を使用することにより、熱衝撃等の外部ストレスによる周波数変化が少なく、周波数情報を与えるC-Mode発振と温度情報を与えるB-Mode発振を切り替えて発振できる。これにより、精度の高い微小質量測定が可能になりQCM(=水晶マイクロバランス)測定の高精度化と応用分野への展開が可能となる。また、B-Mode発振を測定することでSC-Cut水晶振動子自体の温度を知ることもできる。
図1はSC-Cut水晶振動子を使用する水晶マイクロバランスセンサー装置10の構成を示す概念図である。図1に示すSC-Cut水晶振動子を使用する水晶マイクロバランスセンサー装置10はSC-Cut水晶振動子E1、B-Mode抑圧・C-Mode発振回路E2、B-Mode発振・C-Mode抑圧回路E3、SC-Cut発振回路ユニットE4、発振周波数測定用の周波数カウンターE5、原子発振器E6、および周波数情報処理ユニットE7から構成されている。SC-Cut水晶振動子E1は、発振のための電圧を供給する電極(図示せず)を有している。電極の表面には、有機物および無機物のうち少なくともいずれか一方から形成される吸着膜(図示せず)が設けられている。たとえば、吸着膜は、人工の脂質により形成されることが好ましい。その他の材料として、吸着膜は、ハイドロキシアパタイト(HAP)や光触媒材料により形成されていることも好ましい。なお、上記の振動子や回路を囲う恒温槽を設けてもよい。恒温槽を設けることにより、周囲の温度による発振の乱れを防止することができる。
測定雰囲気中に挿入されたSC-Cut水晶振動子E1は、SC-Cut発振回路ユニットE4に接続されている。図2は、SC-Cut水晶振動子E1およびSC-Cut発振ユニットE4の回路の一例を示す回路図である。図2において、XtalはSC-Cut水晶振動子を表し、L1〜L2はインダクタンス、C1〜C6は、キャパシタンス、R1〜R4は抵抗を表している。また、同図においてTR1はトランジスタ、VCCは電源電圧、GNDは接地を示している。なお、以下の説明において、たとえばキャパシタンスC7の容量をC7=20pF、抵抗R1の抵抗値をR1=330Ωと記載する。図2に示す回路では、SC-Cut発振ユニットE4として、B-Mode抑圧・C-Mode発振回路E2、またはB-Mode発振・C-Mode抑圧回路E3のいずれか一方が選択されている。SC-Cut発振回路ユニットE4は図2に示す一例の発振回路を2回路内蔵していて発振回路を選択可能にしてもよい。
微小質量測定にはB-Mode抑圧・C-Mode発振回路E2(C7=20pF)を使用し、振動子の温度測定にはB-Mode発振・C-Mode抑圧回路E3(C7=5pF)を用い、周波数情報処理ユニットE7において必要に応じ上記の2回路の切り替え制御を行う。
発振回路出力は発振周波数測定用の周波数カウンターE5に接続される。周波数カウンターE5の基準周波数にはRb-OSC(ルビジュウム発振器)等の原子発振器E6を使用する。
周波数カウンターE5からの周波数情報より、SC-Cut水晶振動子E1の電極表面に吸着した物質の微小質量を測定する。測定に当っては、SC-Cut水晶振動子E1のB-Mode発振周波数から得られるSC-Cut水晶振動子E1の温度情報より、C-Modeの温度変化による周波数変化量を補正し質量変化による周波数変化のみを検出する。これにより非常に高い感度測定を可能にする。なお、C-Modeの周波数は、温度に対して安定しているが、B-Mode発振周波数は温度に対して影響を受けやすいため、B-Mode発振周波数からSC-Cut水晶振動子E1の温度情報を得ることが可能となっている。
SC-Cut水晶振動子Xtal1はSC−Cut10MHzの振動子を使用する。C-Mode発振周波数が10MHz、B-Mode発振周波数が10.8MHzである。設定定数はC1=47pF、C2=75pF、C3=150pF、C4=180pF、C5=20pF、C6=1000pF、C7=20pF(B-Mode抑圧・C-Mode発振回路E2のとき)、C7=5pF(B-Mode発振・C-Mode抑圧発振回路E3のとき)、R1=330Ω、R2=220Ω、R3=10kΩ、R4=10kΩ、TR1:2SC3732、Zxt(Xtal):SC−Cut10MHz、VCC=5V(4.9mA)とする。
図3はSC-Cut振動子発振回路(たとえば、B-Mode抑圧・C-Mode発振回路E2、B-Mode発振・C-Mode抑圧回路E3)の負性抵抗特性を示すグラフである。回路負性抵抗は発振の可否の重要なパラメータであり、振動子の直列共振抵抗値と比較して、発振回路の負性抵抗の方が小さい値であると発振する。水晶振動子はカットアングルにより決まる共振周波数により発振するが、SC-Cut水晶振動子のように複数のモード(共振周波数)を持つ振動子もある。複数の振動モードを持つ場合はより負性抵抗の小さい共振周波数で発振する。図3によれば、C7=20pFでC-Mode(=10MHz)の回路負性抵抗≒‐300Ω、B-Mode(=10.8MHz)の回路負性抵抗≒+30Ω、C7=5pFで C-Mode(=10MHz)の回路負性抵抗≒‐90Ω、B-Mode(=10.8MHz)の回路負性抵抗≒‐280Ωとなる。即ち、C7=20pFではC-Mode(=10MHz)で発振し、C7=5pFではB-Mode(=10.8MHz)で発振する。従ってB-Mode抑圧・C-Mode発振回路E2ではC7=20pFとし微少量測定用として使用し、B-Mode発振・C-Mode発振回路E3ではC7=5pFとし振動子の温度測定に使用する。
SC-Cut水晶振動子を使用する水晶マイクロバランスセンサーの構造を示す概念図である。 SC-Cut振動子発振回路の回路図である。 SC-Cut振動子発振回路の負性抵抗特性を示すグラフである。 電極の蒸着膜厚を実時間モニター可能な真空蒸着装置の断面図である。 AT-Cut振動子の温度特性を示すグラフである。 AT-Cut振動子またはSC-Cut振動子の熱衝撃(サーマルショック)特性を示すグラフである。 水晶板の切断方位の概念図である。 AT-Cut振動子及びSC-Cut振動子の温度特性を示すグラフである。 SC-Cut振動子の重力感度特性評価方法を示す概念図である。 AT-Cut水晶振動子またはSC-Cut水晶振動子の重力感度特性を示すグラフである。 SC-Cut 振動子振動モードによる周波数の違いを示すグラフである。 SC-Cut振動子の B-mode温度特性を示すグラフである。
符号の説明
10 水晶マイクロバランスセンサー装置
E1 SC-Cut水晶振動子
E2 B-Mode抑圧・C-Mode発振回路
E3 B-Mode発振・C-Mode抑圧回路
E4 SC-Cut発振回路ユニット
E5 発振周波数測定用周波数カウンター
E6 原子発振器
E7 周波数情報処理ユニット
OUTPUT1 質量変化出力
OUTPUT2 温度変化出力
Xtal1 振動子
100 真空蒸着装置
101 ベルジャー
102 オーバートーン発振器
103 蒸着ボード
104 オーバートーンAT−Cut水晶振動子
105 膜厚モニター本体
106 拡散真空ポンプ
CUT1 AT-Cut水晶振動子
CUT2 SC-Cut水晶振動子
T1 AT-Cut振動子の変極点(27.5℃)
T2 SC-Cut振動子の変極点(95℃)

Claims (3)

  1. 吸着した物質の質量を検出する水晶マイクロバランスセンサー装置において、
    発振のための電圧を供給する電極を有し、センサーとして機能するSC−Cut水晶振動子と、
    前記電極の表面に設けられ、有機物および無機物のうち少なくともいずれか一方から形成される吸着膜と、を備え、
    前記吸着膜に吸着される物質の質量を前記SC−Cut水晶振動子の発振周波数の変化として検出することを特徴とする水晶マイクロバランスセンサー装置。
  2. 前記SC−Cut水晶振動子をB−mode発振させることにより、前記SC−Cut水晶振動子の温度を計測し温度センサーとして使用することを特徴とする請求項1に記載の水晶マイクロバランスセンサー装置。
  3. 前記SC−Cut水晶振動子、吸着膜および前記SC−Cut水晶振動子に接続された発振回路ユニットを収容する恒温槽を更に備えることを特徴とする請求項1または請求項2に記載の水晶マイクロバランスセンサー装置。
JP2006069013A 2005-03-15 2006-03-14 水晶マイクロバランスセンサー装置 Pending JP2006292733A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006069013A JP2006292733A (ja) 2005-03-15 2006-03-14 水晶マイクロバランスセンサー装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005072883 2005-03-15
JP2006069013A JP2006292733A (ja) 2005-03-15 2006-03-14 水晶マイクロバランスセンサー装置

Publications (1)

Publication Number Publication Date
JP2006292733A true JP2006292733A (ja) 2006-10-26

Family

ID=37413435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069013A Pending JP2006292733A (ja) 2005-03-15 2006-03-14 水晶マイクロバランスセンサー装置

Country Status (1)

Country Link
JP (1) JP2006292733A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246744A (ja) * 2008-03-31 2009-10-22 Fujitsu Ltd クロック発生機能付き装置、基準周波数等設定方法、および基準周波数等調整方法
JP2016066909A (ja) * 2014-09-25 2016-04-28 株式会社アルバック 水晶振動子、この水晶振動子を有するセンサヘッド、成膜制御装置、および成膜制御装置の製造方法
WO2016140321A1 (ja) * 2015-03-03 2016-09-09 株式会社アルバック 膜厚監視装置用センサ、それを備えた膜厚監視装置、および膜厚監視装置用センサの製造方法
CN106596317A (zh) * 2016-12-29 2017-04-26 杭州先仪传感科技有限公司 一种环境空气质量综合监测装置
CN110376253A (zh) * 2019-07-26 2019-10-25 华中科技大学 一种湿度传感器、制备方法及湿敏型开关触发器
CN114323215A (zh) * 2021-12-28 2022-04-12 上海裕达实业有限公司 石英晶体微量天平测控装置及测量方法
CN114674917A (zh) * 2022-03-25 2022-06-28 兰州空间技术物理研究所 一种月面尘埃沉积质量原位探测器及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268442A (ja) * 1993-03-16 1994-09-22 Seiko Instr Inc 温度補償型水晶発振回路
JPH1093346A (ja) * 1996-08-23 1998-04-10 Hewlett Packard Co <Hp> 発振器用オーブン組立体
JP2004048686A (ja) * 2003-04-21 2004-02-12 Toyo Commun Equip Co Ltd 高安定圧電発振器
JP2004294356A (ja) * 2003-03-28 2004-10-21 Citizen Watch Co Ltd Qcmセンサー装置
JP2004304766A (ja) * 2003-03-17 2004-10-28 Seiko Epson Corp 発振回路およびその調整方法並びにそれを用いた質量測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268442A (ja) * 1993-03-16 1994-09-22 Seiko Instr Inc 温度補償型水晶発振回路
JPH1093346A (ja) * 1996-08-23 1998-04-10 Hewlett Packard Co <Hp> 発振器用オーブン組立体
JP2004304766A (ja) * 2003-03-17 2004-10-28 Seiko Epson Corp 発振回路およびその調整方法並びにそれを用いた質量測定装置
JP2004294356A (ja) * 2003-03-28 2004-10-21 Citizen Watch Co Ltd Qcmセンサー装置
JP2004048686A (ja) * 2003-04-21 2004-02-12 Toyo Commun Equip Co Ltd 高安定圧電発振器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246744A (ja) * 2008-03-31 2009-10-22 Fujitsu Ltd クロック発生機能付き装置、基準周波数等設定方法、および基準周波数等調整方法
JP4628440B2 (ja) * 2008-03-31 2011-02-09 富士通株式会社 クロック発生機能付き装置、基準周波数等設定方法、および基準周波数等調整方法
CN101552665B (zh) * 2008-03-31 2013-05-29 富士通株式会社 带时钟生成功能的设备、基准频率设定方法及调整方法
JP2016066909A (ja) * 2014-09-25 2016-04-28 株式会社アルバック 水晶振動子、この水晶振動子を有するセンサヘッド、成膜制御装置、および成膜制御装置の製造方法
CN106104251A (zh) * 2015-03-03 2016-11-09 株式会社爱发科 膜厚监视装置用传感器、具备该膜厚监视装置用传感器的膜厚监视装置以及膜厚监视装置用传感器的制造方法
KR20160124170A (ko) 2015-03-03 2016-10-26 가부시키가이샤 알박 막 두께 감시장치용 센서, 그것을 구비한 막 두께 감시장치, 및 막 두께 감시장치용 센서의 제조방법
WO2016140321A1 (ja) * 2015-03-03 2016-09-09 株式会社アルバック 膜厚監視装置用センサ、それを備えた膜厚監視装置、および膜厚監視装置用センサの製造方法
JPWO2016140321A1 (ja) * 2015-03-03 2017-04-27 株式会社アルバック 膜厚監視装置用センサ、それを備えた膜厚監視装置、および膜厚監視装置用センサの製造方法
CN106596317A (zh) * 2016-12-29 2017-04-26 杭州先仪传感科技有限公司 一种环境空气质量综合监测装置
CN110376253A (zh) * 2019-07-26 2019-10-25 华中科技大学 一种湿度传感器、制备方法及湿敏型开关触发器
CN110376253B (zh) * 2019-07-26 2020-11-24 华中科技大学 一种湿度传感器、制备方法及湿敏型开关触发器
CN114323215A (zh) * 2021-12-28 2022-04-12 上海裕达实业有限公司 石英晶体微量天平测控装置及测量方法
CN114674917A (zh) * 2022-03-25 2022-06-28 兰州空间技术物理研究所 一种月面尘埃沉积质量原位探测器及其制造方法

Similar Documents

Publication Publication Date Title
JP2006292733A (ja) 水晶マイクロバランスセンサー装置
EP0775295B1 (en) A piezoelectric crystal microbalance device
US7219536B2 (en) System and method to determine oil quality utilizing a single multi-function surface acoustic wave sensor
TWI430571B (zh) 水晶振盪器
JP4897408B2 (ja) 水晶発振器
Vig Temperature-insensitive dual-mode resonant sensors-a review
JP4222513B2 (ja) 質量測定装置および方法
KR20070120602A (ko) 무선 음파 오일 필터 센서
Vig Dual-mode oscillators for clocks and sensors
JP3729181B2 (ja) 測定方法及び測定信号出力回路並びに測定装置
JP2006033195A (ja) 水晶発振器及び感知装置
JP2006189312A (ja) Scカット水晶マイクロバランス
JP4646813B2 (ja) バイオセンサ計測システム、粘性率測定方法、および微量質量測定方法
JP2004184256A (ja) Qcmセンサー装置および物質の測定方法
JP2006078181A (ja) Qcmセンサおよびqcmセンサによる測定方法
JP2008102118A (ja) Qcm分析装置
JP2004294356A (ja) Qcmセンサー装置
JP4194935B2 (ja) 測定装置
JP2006322887A (ja) センシング装置。
KR102258668B1 (ko) 레조네이터 검증 방법
Wu et al. The study on temperature characteristics of a monolithic fused silica cylindrical resonator
JPH10332504A (ja) 圧力センサ
Xu et al. High-precision low-power quartz tuning fork temperature sensor with optimized resonance excitation
JP2001304945A (ja) 高周波数水晶振動子を用いた超微量質量の検出装置及びその校正方法
JPH04289438A (ja) 微量測定用センサー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Effective date: 20110223

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108