JP2006278735A - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
JP2006278735A
JP2006278735A JP2005095778A JP2005095778A JP2006278735A JP 2006278735 A JP2006278735 A JP 2006278735A JP 2005095778 A JP2005095778 A JP 2005095778A JP 2005095778 A JP2005095778 A JP 2005095778A JP 2006278735 A JP2006278735 A JP 2006278735A
Authority
JP
Japan
Prior art keywords
cooling
flow
fin
fins
cooling fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005095778A
Other languages
English (en)
Inventor
Yuji Shibata
裕司 柴田
Kimimasa Murayama
公正 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005095778A priority Critical patent/JP2006278735A/ja
Publication of JP2006278735A publication Critical patent/JP2006278735A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

【課題】 従来のパワーモジュールの冷却装置においては、冷却効率を高めることが可能であるが、冷却体内での冷却流体の流れの圧力損失が大きくなるという問題があった。
【解決手段】 冷却液の流れに対する低抵抗領域である平行面12aと、高抵抗領域である傾斜面12bとで、冷却液の流れの上流側に向って凸形状を形成する冷却フィン12を備えた冷却装置であって、複数の前記冷却フィン12が、冷却液の流れ方向に沿って略同一直線状に配置され、冷却液の流れ方向において隣接する冷却フィン12の前記傾斜面12bが、互いに反対側に位置している。
【選択図】 図1

Description

本発明は、モータを制御しているインバータの発熱素子等といった発熱体を冷却するための冷却装置の構成に関する。
ハイブリッド(HV)車の駆動モータを制御しているインバータのパワーモジュールにはIGBT素子等の発熱素子が実装されており、この発熱素子の動作時における発熱を放熱するために、該パワーモジュールには冷却装置が設けられている。
冷却装置としては、例えば、パワーモジュールに密着される冷却体内に、冷却液等の冷却流体を流すことで、放熱を行うように構成したものがある。
このような冷却装置においては、冷却体表面と冷却流体との接触面積を大きくして放熱効率を高めるために、冷却体内に複数のフィンを形成したものがある。例えば、図10に示す冷却体101では、冷却流体の流れ方向に沿って直線状に形成されたフィン102が複数設けられている。
しかし、近年のハイブリッド(HV)車に用いられるインバータでは高効率化を図るために大電流を流す必要があり、発熱素子の発熱も高くなるため、素子破壊防止等の観点から、さらなる冷却効率を高めることが求められている。
また、冷却体内を流れる冷却流体は、所定の能力のポンプを用いて循環させているが、冷却体内部における圧力損失が大きくなると、必要となるポンプの能力が高くなってしまうため、冷却体内部の圧力損失をできるだけ抑えることが求められている。
一般的に、冷却体内部に冷却液等の冷却流体を流す場合、層流状態で流れる冷却流体よりも、乱流状態で流れる冷却流体の方が、冷却能力が高くなることが知られている。
そこで、特許文献1に記載されているように、冷却体内に設けられるフィンを、鋸歯状に形成したり三角柱状に形成したりして、流れる冷却流体の流れを乱流として冷却効率を高めることが行われている。
特開2002−164487号公報
前述のように、冷却体内のフィンを、鋸歯状に形成したり三角柱状に形成したりして、流れる冷却流体の流れを乱流とした場合、フィンにおける、冷却流体の流れの方向に対して傾斜している面に該冷却流体が当たることにより乱流が生じるため、冷却効率を高めることが可能となっている。
しかし、特許文献1における鋸歯状に形成した場合(特許文献1の図6)、フィンにおける冷却流体の流れ方向に対して垂直な面に冷却流体が当たるため冷却体内での圧力損失が大きくなっていた。
また、フィンを三角柱状に形成した場合(特許文献1の図7)、各フィンが千鳥配置されているので、冷却流体に乱流が発生し易くはなっているが、同様に冷却体内での冷却流体の流れの圧力損失が大きくなる。
一方、冷却体内のフィンを、図10に示すような一直線状のフィンに構成した場合は、冷却体内での圧力損失は減少するが、冷却効率の向上を図ることができない。
つまり、従来の構成では、冷却効率の向上と圧力損失の低減とを両立することが困難であった。
上記課題を解決する冷却装置は、以下の特徴を有する。
即ち、請求項1記載の如く、冷却流体の流れに対する低抵抗領域と、高抵抗領域とで、冷却流体の流れの上流側に向って凸形状を形成する冷却フィンを備えた冷却装置であって、複数の前記冷却フィンが、冷却流体の流れ方向に沿って略同一直線状に配置され、冷却流体の流れ方向において隣接する冷却フィンの前記傾斜した面が、互いに反対側に位置している。
これにより、冷却体内を流れる冷却液が冷却フィンに衝突した場合の圧力損失を抑えながら、冷却液の流れ方向において隣接する冷却フィンにおける、上流側の冷却フィンの後端部にて発生したカルマン渦を、下流側の冷却フィンの高抵抗領域に接触させることができ、冷却体全体を均一に冷却して冷却装置の冷却能力を向上させ、冷却効率の向上を図ることが可能となる。
また、請求項2記載の如く、前記低抵抗領域は、冷却流体の流れに対する略平行面であり、前記高抵抗領域は、冷却流体の流れに対する傾斜面である。
これにより、冷却体内を流れる冷却液が冷却フィンに衝突した場合の圧力損失を僅かに抑えることが可能となり、冷却フィンの形成も容易に行うことができる。
また、請求項3記載の如く、冷却流体の流れ方向で隣接する、上流側の冷却フィンと下流側の冷却フィンとの配置間隔が、上流側の冷却フィンにより発生した冷却流体の渦の消失距離と略同一、または渦の消失距離よりも短く設定される。
これにより、上流側の冷却フィンの後端部で発生したカルマン渦を、下流側に隣接する冷却フィンの傾斜面の全面にわたって接触させることができ、さらに効率良く放熱することが可能となる。
本発明によれば、冷却体内を流れる冷却液が冷却フィンに衝突した場合の圧力損失を抑えながら、冷却装置の冷却能力を向上させ、冷却効率の向上を図ることが可能となる。
次に、本発明を実施するための形態を、添付の図面を用いて説明する。
図1に示すように、例えば、冷却装置7は、ハイブリッド(HV)車の駆動モータを制御しているインバータのパワーモジュール1に設けられるものであり、該パワーモジュール1においては、IGBT素子やダイオード等の発熱素子5・5・・・が実装される基板3が放熱板6の一面に接合されており、該放熱板6の他面に冷却装置7が接合されている。
そして、発熱素子5・5・・・からの発熱が、放熱板6を通じて冷却装置7へ放熱されるように構成されている。
冷却装置7は、冷却流体である冷却液が流れる冷却体11の内部に複数の冷却フィン12・12・・・を形成して構成しており、該冷却体11の一端側(図1における右端側)に冷却液の入口11aが形成され、他端側(図1における左端側)に冷却液の出口11bが形成されている。
冷却フィン12は、冷却液の流れに対して略平行な平行面12aと、冷却液の流れに対して傾斜した傾斜面12bとで、該冷却液の流れ方向の上流側に向って凸形状を形成する、三角柱形状に形成されている。
冷却フィン12の傾斜面12bは、冷却液の流れ方向に対して傾斜しており、冷却液が傾斜面12bに衝突するため、該冷却液に対する高抵抗領域となっている。平行面12aは、冷却液の流れ方向と平行であって、冷却液は平行面12aに沿って流れるため、冷却液に対する抵抗が傾斜面12bよりも小さく、該冷却液に対する低抵抗領域となっている。
また、冷却体11内においては、複数の冷却フィン12が、冷却液の流れ方向に沿って、所定の間隔を持って、略同一直線状に配置されている。この冷却液の流れ方向に沿って直線状に配置される複数の冷却フィン12・12・・・により、冷却フィン列FLが構成されている。冷却フィン列FLは、冷却液の流れの方向に対する直角方向に複数列が配列されている。
同じ冷却フィン列FLに配置され、冷却液の流れ方向にて隣接する冷却フィン12・12においては、前記平行面12aおよび傾斜面12bが、互いに反対側に位置している。
例えば、図3において冷却液の流れ方向における上流側端に位置する冷却フィン121では、図3における下面が平行面12aに形成され、上面が傾斜面12bに形成されている。また、冷却フィン121よりも一つ下流側に配置されている冷却フィン122では、図3における下面が傾斜面12bに形成され、上面が平行面12aに形成されている。
さらには、冷却フィン122よりも一つ下流側に配置されている冷却フィン123では、図3における下面が平行面12aに形成され、上面が傾斜面12bに形成されている。
このように、冷却フィン列FLにおける各冷却フィン12は、平行面12aおよび傾斜面12bの、冷却液の流れ方向と直交する方向における配置位置を、交互に換えて配置されている。
なお、冷却フィン12の形状は三角柱に限定するものではなく、冷却液の流れ方向に対して低抵抗領域と高抵抗領域とを有しており、その配置が上記した交互配置となるような、他の多角柱であってもよい。
ここで、冷却体11内の一端側から他端側へ冷却液を流した場合、冷却液が有する熱は、該冷却液と接触する冷却体11内の壁面や冷却フィン12の表面を通じて放熱される。
この場合、層流状態で流れる冷却液が冷却フィン12の表面等に接触するよりも、乱流状態で流れる冷却液が冷却フィン12の表面等に接触した場合の方が、放熱効果が高い、すなわち冷却能力が高くなることが知られている。
また、図4に示すように、冷却体11内の一端側から他端側へ冷却液を流した場合、各冷却フィン12の下流側端部で冷却液の流れが乱れてカルマン渦が発生する。このカルマン渦は、冷却液の流れの中にある冷却フィン12の表面で冷却液が引きずられ、冷却フィン12の後端部近傍と、その後方部分とに圧力差が生じることにより発生し、冷却液の流れに伴って下流側へ流れることとなる。
従って、本冷却装置1においては、この下流側へ流れるカルマン渦を、カルマン渦が発生した冷却フィン12よりも一つ下流側の冷却フィン12に効率的に接触させて、放熱効果を向上させるようにしている。
つまり、同じ冷却フィン列FL内の冷却フィン12は、冷却液の流れに沿って一直線状に配置されており、前記平行面12aと傾斜面12bとで冷却液の流れの上流側に向って凸形状を形成しているので、上流側の冷却フィン12の後端部にて発生したカルマン渦は、下流側に位置する冷却フィン12の傾斜面12bに接触して、効率良く放熱されることとなる。
このように、冷却液の流れ方向において隣接する冷却フィンにおける、上流側の冷却フィン12の後端部にて発生したカルマン渦を、下流側の冷却フィン12の傾斜面12bに接触させることで、冷却能力の向上を図っている。
また、本冷却フィン12においては、該冷却フィン12の高抵抗領域を傾斜面12bにて構成し、低抵抗領域を平行面12aにて構成して、該平行面12aと傾斜面12bとで冷却液の流れの上流側に向って凸形状を形成している。
そして、この平行面12aと傾斜面12bとが成す角度は鋭角であるので、冷却体11内を流れる冷却液が冷却フィン12に衝突した場合でも、その衝突による圧力損失を僅かに抑えることが可能となっている。
さらに、冷却フィン12は、傾斜面12bと平行面12aとを含んだ、単純な三角柱形状に形成されているので、該冷却フィン12の形成が容易となっている。
また、冷却液の流れ方向へ一直線状に配置される冷却フィン12の形状および配置間隔は、上流側に配置される冷却フィン12の後端部にて発生したカルマン渦が存在している乱流状態の冷却液ができるたけ多く、下流側に配置される冷却フィン12に接触するように設定されている。
具体的には、三角柱状に形成される冷却フィン12の形状および配置間隔は、図5に示すように、冷却フィン12の長さ寸法(上流側端から下流側端までの寸法)L1、該冷却フィン12の幅寸法(冷却液の流れ方向と直交する方向の寸法)L2、および隣接する冷却フィン12同士の配置ピッチ寸法L3により設定されている。
また、冷却フィン12の後端部で発生したカルマン渦は、冷却液が下流側へ流れていくに従って減少していき、ある寸法だけ流れた時点で消失するが、発生してから消失するまでの寸法は冷却体11内を流れる冷却液のレイノルズ数、および冷却フィン12の形状によって変化する。
例えば、図6に示すように、長さ寸法がL1a、幅寸法がL2aに設定された冷却フィンの場合、冷却体11内を流れる冷却液のレイノルズ数Reと発生したカルマン渦の消失寸法Dとの関係は、グラフGaのような関係となっている。
この場合、例えば冷却液のレイノルズ数がRe1であったとすると、カルマン渦の消失寸法はD1となる。
また、冷却フィン12の長さ寸法がL1b、幅寸法がL2b(L2a<L2b)に設定されていた場合の、冷却体11内を流れる冷却液のレイノルズ数Reと発生したカルマン渦の消失寸法Dとの関係は、グラフGbのような関係となっており、例えば冷却液のレイノルズ数がRe1であったとすると、カルマン渦の消失寸法はD2(D1<D2)となる。
従って、例えば冷却フィン12が、長さ寸法がL1a、幅寸法がL2aとなる形状に設定されており、冷却液のレイノルズ数がRe1であった場合は、隣接する冷却フィン12同士の配置ピッチ寸法L3を、カルマン渦の消失寸法である寸法D1と同じ寸法か、それよりも短い寸法に設定するようにしている。
同様に、冷却液のレイノルズ数がRe1である場合に、冷却フィン12の長さ寸法をL1b、幅寸法をL2bに設定したときは、前記配置ピッチ寸法L3を、カルマン渦の消失寸法となる寸法D2と同じ寸法か、それよりも短い寸法に設定する。
このように設定することで、上流側の冷却フィン12の後端部で発生したカルマン渦を、下流側に隣接する冷却フィン12の傾斜面12bの全面にわたって接触させることができ、効率良く放熱することが可能となっている。
さらに、前記各寸法L1・L2・L3の関係については、(L3−L1)≧0.25×L1となるとともに、冷却フィン12の上流側端部の角度θ(図5図示)が3°〜5°の範囲となるような関係にあるのが好ましい。
例えば、冷却フィン12は、寸法L1が16mm、寸法L2が1.4mmとなるように構成するのが好ましく、冷却フィン12をこのような寸法に構成して、冷却液のレイノルズ数Reを2200とした場合には、カルマン渦の消失寸法Dが20mmとなるため、冷却フィン12の配置ピッチ寸法L3は20mmに設定するのが好ましい。
また、図7に示すように、冷却液のレイノルズ数の小さな領域では、該冷却液の流れが層流となり、冷却液のレイノルズ数が大きな領域では該冷却液の流れが乱流となって、レイノルズ数の小さな領域よりも大きな領域の方が高い冷却性能を発揮することができるため、粘性が低くてレイノルズ数を大きくすることができる冷却液を選択することが好ましい。
また、冷却体11内を流れる冷却液にとっては、冷却フィン12の平行面12aは、該冷却液の流れと平行に配置される低抵抗領域であり、冷却フィン12の傾斜面12bは、該冷却液の流れに対して傾斜していて、冷却液が衝突しながら流れる高抵抗領域である。さらに、傾斜面12bには乱流状態の冷却液が接触するため、冷却フィン12においては平行面12a側よりも、傾斜面12b側の方が冷却効果が大きくなっている。
そこで、冷却装置7においては、冷却フィン12が冷却液の流れ方向に沿って略同一直線状に配置される冷却フィン列FL内における、隣接する冷却フィン12の平行面12aと傾斜面12bとの位置が反対側に位置するように、該冷却フィン12を配置して、冷却装置7全体としての冷却効率を高めている。
つまり、図8に示すように、まず、冷却液の流れ方向におけるポイントPaに位置する冷却フィン12では、図8における下側(平行面12a側)を流れる冷却液の冷却度合いが小さく、図8における上側(傾斜面12b側)を流れる冷却液の冷却度合いが大きくなっており、下側を流れる冷却液の温度の方が上側を流れる冷却液の温度よりも高くなっている。
ポイントPaから下流側へ流れた冷却液は、次にポイントPbに位置する冷却フィン12により冷却される。冷却フィン12の下側を流れる冷却液は、ポイントPaでは冷却フィン12の平行面12a側を通過し、ポイントPbでは傾斜面12b側を通過し、冷却フィン12の上側を流れる冷却液は、ポイントPaでは冷却フィン12の傾斜面12b側を通過し、ポイントPbでは平行面12a側を通過する。
従って、ポイントPaで冷却度合いが小さく温度が高かった、冷却フィン12の下側を流れる冷却液は、ポイントPbで冷却フィン12の傾斜面12bに接触して効率良く冷却され温度が低下する。逆に、ポイントPaで冷却度合いが大きく温度が低かった、冷却フィン12の上側を流れる冷却液は、ポイントPbで冷却フィン12の平行面12aに沿って流れるため、さほど効率良くは冷却されない。
さらに、ポイントPbにて効率良く冷却され低温になった、冷却フィン12の下側を流れる冷却液は、ポイントPcまで流れると、冷却フィン12の平行面12aに沿って流れ、冷却される。また、ポイントPbにてさほど効率良くは冷却されずに高温な、冷却フィン12の上側を流れる冷却液は、傾斜面12bに接触して効率良く冷却される。
このように、隣接する冷却フィン12の平行面12aと傾斜面12bとの位置が反対側に位置するように、該冷却フィン12を配置することで、冷却フィン12の下側を流れる冷却液、および上側を流れる冷却液が、交互に傾斜面12bにて効率的に冷却されることとなる。その結果、冷却フィン列FLの上側の冷却液と下側の冷却液とが、それぞれ同等に冷却されることとなり、冷却体11全体を均一に冷却することができ、冷却装置7の冷却効率を向上することが可能となっている。
これに対し、仮に、図9に示すように、隣接する冷却フィン12の平行面12aと傾斜面12bとの位置が同じ側に位置するように、該冷却フィン12を配置した場合は、図9における冷却フィン12の下側を流れる冷却液はポイントPa・Pb・Pcを通じて冷却フィン12の平行面12aに沿って流れ、図9における冷却フィン12の上側を流れる冷却液はポイントPa・Pb・Pcを通じて冷却フィン12の傾斜面12bに接触しながら流れることとなる。
従って、ポイントPa・Pb・Pcを通じて、冷却フィン12の上側を流れる冷却液のみが傾斜面により効率良く冷却されて、冷却フィン12の下側を流れる冷却液はさほど冷却されないこととなり、冷却装置7全体としては、冷却液の温度分布に偏りが生じて効率良い冷却を行うことができない。
以上の如く、本冷却装置7においては、複数の冷却フィン12が、冷却流体の流れ方向に沿って略同一直線状に配置され、冷却流体の流れ方向において隣接する冷却フィン12の傾斜面12bが、互いに反対側に位置するように、該冷却フィン12を配置しているので、冷却液の流れの圧力損失を低減しながら冷却液の冷却効果を高めることができ、冷却効率の向上を図ることが可能となっている。
本発明にかかる冷却装置を備えたパワーモジュールを示す側面断面図である。 同じく冷却装置を備えたパワーモジュールを示す正面図である。 冷却装置の冷却体内部を示す平面図である。 冷却液の流れにより、冷却フィンの後端部に発生するカルマン渦を示す平面図である。 冷却フィンの寸法、および隣接する冷却フィンの配置ピッチ寸法を示す図である。 冷却体内を流れる冷却液のレイノルズ数と発生したカルマン渦の消失寸法との関係を示す図である。 冷却液のレイノルズ数と冷却性能との関係を示す図である。 冷却液の流れ方向に隣接する冷却フィンの傾斜面の位置が反対側に位置するように、該冷却フィンを配置した場合の、冷却液の冷却状態を示す図である。 冷却液の流れ方向に隣接する冷却フィンの傾斜面の位置が同じ側に位置するように、該冷却フィンを配置した場合の、冷却液の冷却状態を示す図である。 従来の冷却装置における冷却フィンを示す平面図である。
符号の説明
1 パワーモジュール
5 発熱素子
6 放熱板
7 冷却装置
11 冷却体
12 冷却フィン
12a 平行面
12b 傾斜面

Claims (3)

  1. 冷却流体の流れに対する低抵抗領域と、高抵抗領域とで、冷却流体の流れの上流側に向って凸形状を形成する冷却フィンを備えた冷却装置であって、
    複数の前記冷却フィンが、冷却流体の流れ方向に沿って略同一直線状に配置され、
    冷却流体の流れ方向において隣接する冷却フィンの前記高抵抗領域が、互いに反対側に位置していることを特徴とする冷却装置。
  2. 前記低抵抗領域は、冷却流体の流れに対する略平行面であり、前記高抵抗領域は、冷却流体の流れに対する傾斜面であることを特徴とする請求項1に記載の冷却装置。
  3. 冷却流体の流れ方向で隣接する、上流側の冷却フィンと下流側の冷却フィンとの配置間隔が、上流側の冷却フィンにより発生した冷却流体の渦の消失距離と略同一、または渦の消失距離よりも短く設定されることを特徴とする請求項1または請求項2に記載の冷却装置。
JP2005095778A 2005-03-29 2005-03-29 冷却装置 Pending JP2006278735A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005095778A JP2006278735A (ja) 2005-03-29 2005-03-29 冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005095778A JP2006278735A (ja) 2005-03-29 2005-03-29 冷却装置

Publications (1)

Publication Number Publication Date
JP2006278735A true JP2006278735A (ja) 2006-10-12

Family

ID=37213178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005095778A Pending JP2006278735A (ja) 2005-03-29 2005-03-29 冷却装置

Country Status (1)

Country Link
JP (1) JP2006278735A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090855A1 (ja) * 2007-01-26 2008-07-31 Aisin Aw Co., Ltd. 発熱体冷却構造及び駆動装置
JP2009224557A (ja) * 2008-03-17 2009-10-01 Toyota Central R&D Labs Inc 冷却装置
WO2018150911A1 (ja) * 2017-02-17 2018-08-23 エドワーズ株式会社 コントローラ及び真空ポンプ装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296854U (ja) * 1985-12-05 1987-06-20
JPH07312493A (ja) * 1994-05-18 1995-11-28 Pfu Ltd ヒートシンクおよびファン付きヒートシンク装置
JPH11103183A (ja) * 1997-09-26 1999-04-13 Pfu Ltd ヒートシンク装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296854U (ja) * 1985-12-05 1987-06-20
JPH07312493A (ja) * 1994-05-18 1995-11-28 Pfu Ltd ヒートシンクおよびファン付きヒートシンク装置
JPH11103183A (ja) * 1997-09-26 1999-04-13 Pfu Ltd ヒートシンク装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090855A1 (ja) * 2007-01-26 2008-07-31 Aisin Aw Co., Ltd. 発熱体冷却構造及び駆動装置
JP2008186820A (ja) * 2007-01-26 2008-08-14 Aisin Aw Co Ltd 発熱体冷却構造及び駆動装置
US7728467B2 (en) 2007-01-26 2010-06-01 Aisin Aw Co., Ltd. Heat generating member cooling structure and drive unit
JP2009224557A (ja) * 2008-03-17 2009-10-01 Toyota Central R&D Labs Inc 冷却装置
WO2018150911A1 (ja) * 2017-02-17 2018-08-23 エドワーズ株式会社 コントローラ及び真空ポンプ装置

Similar Documents

Publication Publication Date Title
JP4861840B2 (ja) 発熱体冷却構造及び駆動装置
JP5608187B2 (ja) ヒートシンク
JP4985382B2 (ja) 半導体冷却構造
JP6349161B2 (ja) 液冷式冷却装置
JP2019179832A (ja) 冷却装置
JP5129942B2 (ja) 半導体装置
JP2008288330A (ja) 半導体装置
JP6279980B2 (ja) 液冷式冷却装置
JP2016004805A (ja) 液冷式冷却装置
JP2017108045A (ja) 液冷式冷却装置
JP2009176881A (ja) 冷却装置
JP6932632B2 (ja) 液冷式冷却装置
JP2006278735A (ja) 冷却装置
JP2007150203A (ja) ヒートシンク
JP2019021825A (ja) 放熱器およびこれを用いた液冷式冷却装置
JP2012182411A (ja) 発熱体冷却装置および発熱体冷却方法
JP5705570B2 (ja) 電子部品冷却装置
JP2010093034A (ja) 電子部品の冷却装置
JP5251916B2 (ja) 電子機器の冷却器
US20100018684A1 (en) Water pillow for heat radiation
KR102034649B1 (ko) 공냉식 냉각장치
JP2008218828A (ja) 冷却装置及び冷却装置付半導体装置
JP6636397B2 (ja) 冷却フィン構造
JP2006237366A (ja) ヒートシンク
JP7230333B2 (ja) コールドプレート

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019