WO2018150911A1 - コントローラ及び真空ポンプ装置 - Google Patents

コントローラ及び真空ポンプ装置 Download PDF

Info

Publication number
WO2018150911A1
WO2018150911A1 PCT/JP2018/003628 JP2018003628W WO2018150911A1 WO 2018150911 A1 WO2018150911 A1 WO 2018150911A1 JP 2018003628 W JP2018003628 W JP 2018003628W WO 2018150911 A1 WO2018150911 A1 WO 2018150911A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
fin
vacuum pump
fins
pump device
Prior art date
Application number
PCT/JP2018/003628
Other languages
English (en)
French (fr)
Inventor
泰 舘野
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Priority to US16/486,317 priority Critical patent/US20200232469A1/en
Priority to KR1020197021456A priority patent/KR20190113783A/ko
Priority to CN201880010098.5A priority patent/CN110249129A/zh
Priority to EP18754175.0A priority patent/EP3584442B1/en
Publication of WO2018150911A1 publication Critical patent/WO2018150911A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5813Cooling the control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • H05K7/20418Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing the radiating structures being additional and fastened onto the housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the present invention relates to a controller and a vacuum pump device used in devices such as a semiconductor manufacturing apparatus, an electron microscope, and a mass spectrometer, for example.
  • a vacuum pump device has been used to make the inside of the vacuum chamber a high vacuum.
  • This type of vacuum pump apparatus includes a pump body attached to a vacuum chamber and a controller that controls the operation thereof.
  • a turbo molecular pump As a pump body, a turbo molecular pump is generally known.
  • a rotor In this turbo molecular pump, a rotor is rotatably supported in a pump case, and a plurality of stages of rotor blades are provided radially on the outer wall surface of the rotor. A plurality of stages of stator blades are arranged on each other.
  • the rotor controlled by the controller is rotated at a high speed after the vacuum chamber is decompressed to some extent, the gas molecules colliding with the rotating rotor blades and the fixed stator blades are given momentum and exhausted.
  • gas molecules sucked into the pump body from the vacuum chamber are exhausted while being compressed, and a predetermined high degree of vacuum is formed in the vacuum chamber.
  • a control circuit board for mainly controlling the rotational operation of the rotor is built in the controller.
  • Elements constituting an electronic circuit are mounted on the control circuit board.
  • these elements there are elements that generate heat during operation, such as transistors and resistors, and during operation of the pump body, these heats cause the control circuit board to become very hot.
  • the control circuit board heated to a high temperature by the element that generates heat, the life of the element will be significantly reduced due to the heat, and it will lead to the failure of the controller.
  • the main unit cannot be operated normally. Therefore, in the vacuum pump device, it is essential to remove the heat of the control circuit board built in the controller.
  • a cooling fan is installed inside the controller and the air from the cooling fan is directly applied to the control circuit board for forced air cooling, or the hot air in the enclosure is exhausted to the outside for cooling.
  • the air cooling system using these cooling fans has the following problems.
  • a magnetic bearing is employed as a structure for supporting a rotating rotor that is a source of vibration, and mechanical vibration is eliminated to reduce the vibration of the pump body.
  • Patent Document 1 discloses a method for cooling a controller without using a cooling fan.
  • the method is to connect the pump body and the controller with a connection connector and to install a cooling jacket closely attached to both. And a cooling water is poured into piping in a cooling jacket, and a controller is water-cooled via a cooling jacket.
  • piping equipment for flowing cooling water is required separately, which increases the size of the vacuum pump device and worsens its handling.
  • the running cost increases because the cooling water must be continuously supplied during operation of the pump body.
  • Patent Document 2 discloses a method in which a heat sink is covered with a heat sink without using a cooling fan and a cooling jacket, and its heat dissipation is enhanced by natural air cooling.
  • a heat sink is fixed to the outer surface of the controller with screws to conduct heat
  • the heat sink is a plate type in which a plurality of fins are aligned on the outer wall surface to dissipate heat to the outside air. ing.
  • the present invention has been made in view of such circumstances, and the object of the present invention is to solve the problems of conventional forced air cooling, water cooling method and natural air cooling method, with less vibration, and small size. It is an object of the present invention to provide a controller and a vacuum pump device that can be realized and can efficiently remove heat from a control circuit built in the controller at low cost.
  • the present invention has been proposed to achieve the above object, and the invention according to claim 1 is a controller including a control circuit for controlling the operation of the pump body of the vacuum pump device, wherein the control circuit is housed.
  • a controller comprising a controller housing, and a heat sink having a plurality of fins formed integrally with the controller housing and formed outward from an outer peripheral surface of the controller housing.
  • the control circuit housed in the controller casing is heated to a high temperature by a heat generating element such as a transistor or a resistor, but the heat is formed integrally with the controller casing. Is transferred to the fin, and is naturally radiated into the atmosphere to be removed from the control circuit. Therefore, a sufficient air cooling effect can be obtained without installing a cooling fan or the like inside the controller as in the conventional forced air cooling or water cooling method.
  • the heat sink is formed integrally with the control housing, the heat conduction effect is good and the heat exchange efficiency with the outside air is enhanced.
  • controller housing is made of a casting, and both side surfaces of the fin are tapered surfaces inclined in a die-cutting direction.
  • the controller housing that is integrally provided with the heat sink can be more easily manufactured by casting. Further, by making the tapered surfaces of the fins aligned with the mold drawing direction, it is possible to further facilitate the production with a casting.
  • the controller according to the first or second aspect, wherein the fin is formed in a substantially trapezoidal shape when viewed from the front.
  • the fin has a substantially trapezoidal shape when viewed from the front. Therefore, if the fins are provided in an inverted trapezoidal shape with respect to the air passage formed between the fins, the opening area of the outlet portion of the air passage formed between the fins is the opening area of the inlet portion. Smaller than that. Therefore, the warm air that enters the air passage between the fins and travels toward the opening of the outlet portion is gradually compressed as it proceeds to the opening of the outlet portion, and after passing through the opening of the outlet portion, it is released from the compression and rapidly. Flowing.
  • the air in the air passage is drawn by the rapid flow of the air that has passed through the opening of the outlet portion, and flows to the opening side of the outlet portion, and the air flow in the air passage is smoothed and dissipated. Increase the effect.
  • the controller according to the first or second aspect, wherein the fin is formed in a substantially rhombus shape when viewed from the front.
  • the opening area of the intermediate portion of the air passage is the opening area of the inlet portion. It is smaller than Therefore, the warm air that enters the air passage between the fins and toward the opening side of the outlet part is gradually compressed as it proceeds to the opening of the intermediate part, and after passing through the opening of the intermediate part, it is released from the compression and rapidly Flowing. As a result, the air in the air passage is drawn by the rapid flow of the air that has passed through the opening of the intermediate portion and is directed to the opening side of the intermediate portion. And the flow of air in the air passage is smoothed to further enhance the heat dissipation effect.
  • the controller according to the first or second aspect, wherein the fin is formed in a substantially polygonal shape including a triangle when viewed from the front.
  • the opening area of the outlet portion of the air passage is the inlet in the air passage formed between the fins. It is smaller than the opening area of the part. Therefore, the warm air that enters the air passage between the fins and toward the opening side of the outlet portion is gradually compressed as it proceeds to the opening of the outlet portion, and after passing through the opening of the outlet portion, it is released from the compression and rapidly Flowing. As a result, the air in the air passage is drawn by the rapid flow of the air that has passed through the opening of the outlet portion and is caused to flow toward the opening side of the outlet portion, thereby smoothing the air flow in the air passage. Increase the heat dissipation effect.
  • the tapered surface of the fin is formed so that an opening area of an air passage formed by the adjacent fin is reduced on the pump body side.
  • the tapered surface is formed so that the opening area of the air passage formed by the adjacent fins becomes smaller on the pump main body side, the fin is between the adjacent fins.
  • the opening area of the outlet portion of the air passage formed in the above is smaller than the opening area of the inlet portion. Therefore, the warm air that enters the air passage between the fins and toward the opening side of the outlet portion is gradually compressed as it proceeds to the opening of the outlet portion, and after passing through the opening of the outlet portion, it is released from the compression and rapidly Flowing.
  • the air in the air passage is drawn by the rapid flow of the air that has passed through the opening of the outlet portion and is caused to flow toward the opening side of the outlet portion, thereby smoothing the air flow in the air passage. Increase the heat dissipation effect.
  • a seventh aspect of the present invention is the configuration according to any one of the first to sixth aspects, wherein the controller casing is formed in a substantially square shape in a plan view, and each corner portion or the outer peripheral surface is formed. A controller for forming the fin is provided.
  • an indicator is provided on the front peripheral surface portion of the controller casing, and a wiring is provided on the rear peripheral surface portion. Therefore, if the fins of the heat sink are provided on the front and rear peripheral surface portions, the fins may interfere with the wiring.
  • the fins can be formed without interfering with wiring or the like by forming the controller in a substantially rectangular shape in plan view and providing the fins on the corners or the outer peripheral surface. In addition, when the corners are rounded, a large space for forming the fins can be secured.
  • the invention according to claim 8 is the configuration according to claim 7, wherein the controller casing is formed on the corner portion or the outer peripheral surface, and the fins have the same die cutting direction. Provide a controller that has a uniform taper surface on both sides.
  • the invention according to claim 9 provides the controller according to the structure according to claim 8, wherein the controller casing has a direction in which the die is removed along the central axis of the vacuum pump device.
  • the controller casing can be manufactured with two molds in the direction along the central axis, for example, because the direction in which the fins are punched is along the central axis of the vacuum pump device. .
  • the invention according to claim 10 provides a vacuum pump device comprising the controller according to any one of claims 1 to 9.
  • the heat generated in the control circuit housed in the controller housing is naturally radiated into the atmosphere through the fins of the heat sink formed integrally with the controller housing, and is removed from the control circuit. Therefore, unlike the conventional forced air cooling or water cooling method, a sufficient air cooling effect can be obtained without installing a cooling fan or the like inside the controller, so there is no vibration due to machine operation, and a vacuum pump device that requires low vibration performance Application to is possible. Further, in the case of the conventional forced air cooling or water cooling method, a separate cooling fan or piping equipment is required. However, this is not necessary, and the handling workability is excellent and the running cost can be suppressed.
  • the heat sink is formed separately from the controller housing and fixed with screws, so it is necessary to fix the heat sink during assembly, which increases the number of work steps and increases costs. There was a problem of becoming.
  • the heat sink is formed integrally with the control housing, the number of assembly steps can be reduced, the heat conduction effect is good, the heat exchange efficiency with the outside air is increased, and at the same time, the controller is compact. Can also be achieved.
  • the present invention achieves an object of providing a controller and a vacuum pump device that are less susceptible to vibration, can be reduced in size, and can efficiently remove heat from a control circuit built into the controller at low cost.
  • the controller housing in which the control circuit is housed is formed integrally with the controller housing.
  • a heat sink having a plurality of fins formed outward from the outer peripheral surface.
  • FIG. 1 is an external perspective view of a vacuum pump device 10 including a controller 12 according to the first embodiment of the present invention
  • FIG. 2 is a front view of the vacuum pump device 10
  • FIG. 3 is a plan view of the vacuum pump device 10.
  • the vacuum pump device 10 of the first embodiment is used as a means for making a high vacuum in a vacuum chamber (not shown) of a target device such as a semiconductor manufacturing apparatus, an electron microscope, or a mass spectrometer.
  • a vacuum pump device 10 shown in FIGS. 1 to 3 includes a pump main body 11 that sucks and exhausts gas molecules from the vacuum chamber, and a controller 12 that controls the operation of the pump main body 11.
  • the pump body 11 and the controller 12 are integrated.
  • the pump body 11 is a turbo molecular pump that is covered with a cylindrical pump case 13 on the outside, and is provided with a rotor and a stator (not shown).
  • the bottom surface of the pump body 11 is closed with a disk-shaped bottom lid 14.
  • the controller 12 is covered with a controller housing 15, and a control circuit board for mainly controlling the rotation operation of the rotor (not shown) is accommodated in the controller housing 15.
  • Elements that generate heat during operation, such as transistors and resistors, are mounted on the control circuit board, and the control circuit board and the control unit in the pump body 11 are electrically connected via a harness, a connector, and the like (not shown). Connected.
  • well-known means disclosed in Patent Document 2 can be used, and since it is not related to the sheet of the present invention, detailed description thereof is omitted.
  • the controller housing 15 is made of a casting such as aluminum die cast, for example, and is formed in a substantially rectangular shape in plan view as shown in FIG.
  • Each of the four corners 12a of the controller housing 15 is cut out along a circumference (not shown) drawn with the central axis O of the controller 12 as a reference, and the corners 12a are rounded.
  • a heat sink 16 is provided at each corner 12a.
  • an indicator 18 is provided on a peripheral surface portion between the corner portion 12 a and the corner portion 12 a on the front side of the controller housing 15.
  • an electrical wiring for electrically connecting the pump body 11 and the controller 12 is provided on the peripheral surface portion on the rear side of the control housing 15.
  • the heat sink 16 is formed in a radial manner outward from the outer peripheral surface of the controller casing 15 at each corner 12a of the controller casing 15, and a plurality of heat sinks 16 are formed integrally with the controller casing 15. In the embodiment, six fins 17 are provided.
  • the heat sink 16 in the first embodiment has the fins 17 on both sides as shown in FIGS. 2 and 4 from the viewpoint of further improving the heat dissipation performance and from the viewpoint of facilitating mold release.
  • this is referred to as a “taper surface” 17 a and 17 b are aligned so that the inclination ⁇ is in the mold drawing direction.
  • each of the fins 17 is aligned in a direction along the central axis O and in a shape of “C” in which the tapered surfaces 17a and 17b of the adjacent fins 17 spread toward each other. It is formed in a substantially inverted trapezoidal shape when viewed from the front.
  • the casting can be easily manufactured and the cost can be reduced. That is, by aligning the taper surfaces 17a and 17b of the fins 17 in the heat sink 16 with the mold drawing direction, the casting direction of the casting becomes the same, so the number of molds forming each fin can be reduced. For example, it is possible to manufacture with two molds in the drawing direction along the central axis O.
  • each fin 17 in the heat sink 16 is formed in a substantially inverted trapezoidal shape when viewed from the front with respect to the air passage 19 formed between the fins 17, and the tapered surfaces 17 a and 17 b of the adjacent fins 17 are arranged.
  • the heat dissipation can be further improved by arranging them in the shape of “C” that spreads toward each other. The effect of improving the heat dissipation will be described with reference to FIG.
  • each fin 17 When the shape of each fin 17 is formed in a substantially inverted trapezoid when viewed from the front, the "C" -shaped air passage 19 formed by the tapered surfaces 17a and 17b of the adjacent fins 17 is shown in FIG.
  • the area S1 of the opening of the outlet portion of the air passage 19 (hereinafter simply referred to as “exit portion opening S1”) is larger than the area S2 of the inlet portion opening (hereinafter simply referred to as “inlet portion opening S2”). Get smaller. Therefore, the air entering the air passages 19 formed between the fins 17 and traveling toward the opening S1 of the outlet portion (the flow is indicated by an arrow 20 in FIG.
  • the control circuit board built in the controller housing 15 becomes high temperature due to heat generating elements such as transistors and resistors.
  • the heat of the control circuit board is transmitted to the heat sink 16 through the controller housing 15 and further dissipated by heat exchange through the fins 17 of the heat sink 16 and is removed by natural air cooling.
  • the opening S1 at the outlet portion of the air passage 19 is smaller than the opening S2 at the inlet portion, the air passing through the air passage 19 is smoothly flowed, and the heat dissipation effect by heat exchange can be further enhanced.
  • the heat dissipation effect of the controller 12 is greatly improved.
  • the heat sink 16 is formed on each of the four corners 12 a and the indicator 18 that is the front side of the controller housing 15 is provided.
  • an indicator 18 is provided, and the fin 21 of the heat sink 16 is also provided on the peripheral surface portion so as to surround the indicator 18. It may be formed integrally with the body 15.
  • the heat sink 16 in this case is provided with the fins 21 formed in a stripe shape so as to extend in the vertical direction along the central axis O, but the shape is not limited to this.
  • FIG. 6 is an external perspective view of the vacuum pump device 30 including the controller 12 according to the second embodiment of the present invention
  • FIG. 7 is a partially enlarged perspective view of the heat sink 16 in the controller 12.
  • the configuration of the second embodiment is obtained by changing the shape of the fins 33 in the heat sink 16 to a configuration in which the fin 33 is formed in a substantially rhombus shape when viewed from the front, and the other configurations are the same as the configurations shown in FIGS. Therefore, the same components are denoted by the same reference numerals, and redundant description is omitted.
  • the heat sink 16 of the controller 12 shown in FIG. 6 is formed integrally with the controller casing 15 so that each corner 12a of the controller casing 15 is formed radially outward from the outer peripheral surface of the controller casing 15.
  • the plurality of fins 33 (six in this embodiment) are provided.
  • each fin 33 is substantially diamond-shaped in front view as shown in FIGS. 6 and 7 from the viewpoint of further improving the heat dissipation performance and facilitating the mold release. It is formed into a shape. That is, both side surfaces (hereinafter referred to as “taper surfaces”) 33a and 33b are aligned so that the inclination ⁇ is in the mold drawing direction. That is, each fin 33 has a substantially “V” shape in which the tapered surfaces 33a and 33b of the fins 33 adjacent to each other extend in the direction along the central axis O and the upper half side of the rhombus expands upward. The lower half of the rhombus is aligned in the shape of a letter “C” in which the tapered surfaces 33c and 33d of the adjacent fins 33 spread toward each other, forming a substantially rhombus shape in front view. Has been.
  • the taper surfaces 33a and 33b, 33c and 33d of the fins 33 in the heat sink 16 are aligned in the mold drawing direction, thereby facilitating the production with a casting and reducing the cost. Can do.
  • the heat sink 16 is formed in a substantially rhombic shape when viewed from the front, and the taper surfaces 33c and 33d of the adjacent fins 33 are aligned in a shape of a "C" that spreads toward each other, heat dissipation.
  • the sex can be increased. The effect of improving the heat dissipation will be described with reference to FIG.
  • each fin 33 When the shape of each fin 33 is formed in a substantially rhombus shape when viewed from the front, the "C" -shaped air passage 39 formed by the tapered surfaces 33c and 33d of adjacent fins 33 is shown in FIG.
  • the area S3 of the intermediate outlet portion of the air passage 39 (hereinafter simply referred to as “intermediate portion opening S1”) is larger than the area S2 of the inlet portion opening (hereinafter simply referred to as “inlet portion opening S2”).
  • inlet portion opening S2 Become smaller. Therefore, the air entering the air passage 39 formed between the fins 33 and heading toward the opening S2 in the intermediate portion has a smaller opening S3 in the intermediate outlet portion of the air passage 39 than the opening S2 in the lower inlet portion.
  • the upper side of the opening S3 spreads in a substantially V shape. It is released and flows rapidly.
  • the air 20 in the air passage 39 is drawn by the rapid flow of the air that has passed through the opening S1 of the outlet portion, and flows toward the opening S1 of the outlet portion, and the air flow in the air passage 19 To improve the heat dissipation effect.
  • the control circuit board built in the controller housing 15 when the power of the controller 12 is turned on and the pump body 11 is operated, the control circuit board built in the controller housing 15 generates elements such as transistors and resistors. However, the heat of the control circuit board is transmitted to the heat sink 16 through the controller housing 15, and further radiated by heat exchange through the fins 33 of the heat sink 16 to be removed by natural air cooling. In this case, since the opening S3 of the intermediate outlet portion of the air passage 39 is smaller than the opening S2 of the inlet portion, the air passing through the air passage 39 (the flow is indicated by the arrow 20 in the figure) flows smoothly. Thus, the heat dissipation effect by heat exchange can be further increased, and the heat dissipation effect of the controller 12 is greatly improved.
  • each corner 12 a is displaced by approximately 90 degrees in order.
  • controller casing 15 in the first and second embodiments has been disclosed to be formed in a substantially rectangular shape in plan view, but is not limited to a rectangular shape, for example, a triangular shape, a pentagonal shape, a hexagonal shape, or the like.
  • the fins 17 and 33 of the heat sink 16 may be provided corresponding to the corners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

【課題】振動が少なく、また小型化が実現できるとともに、安価でコントローラに内蔵された制御回路の熱を効率よく除去できるようにしたコントローラ及び真空ポンプ装置を提供する。【解決手段】真空ポンプ装置(10)のポンプ本体(11)の動作を制御する制御回路を備えるコントローラ(12)において、前記制御回路が収納されたコントローラ筐体(15)と、コントローラ筐体(15)と一体に形成されているとともに、コントローラ筐体(15)の外周面から外側へ放射状に形成された複数枚のフィン(17)を有するヒートシンク(16)と、を備える。

Description

コントローラ及び真空ポンプ装置
 本発明は、例えば半導体製造装置、電子顕微鏡、質量分析装置等の機器において使用されるコントローラ及び真空ポンプ装置に関するものである。
 従来、上記のような各種機器において、真空チャンバ内を高真空にするために、真空ポンプ装置が利用されている。この種の真空ポンプ装置は、真空チャンバに取り付けられるポンプ本体とその動作を制御するコントローラとを備えて構成されている。
 ポンプ本体としては、一般に、ターボ分子ポンプが知られている。このターボ分子ポンプは、ポンプケース内にロータが回転可能に支持されており、ロータの外壁面に放射状、かつ複数段のロータ翼が設けられ、これと対面するポンプケースの内壁面にロータ翼間に位置決めした複数段のステータ翼が配置されている。そして、真空チャンバ内をある程度減圧した後、コントローラで制御したロータを高速回転させると、回転するロータ翼と固定のステータ翼に衝突したガス分子が運動量を付与され排気される。この排気動作により真空チャンバからポンプ本体内に吸引されたガス分子を圧縮しながら排気して、真空チャンバ内に所定の高真空度が形成される。
 ところで、このような真空ポンプ装置において、コントローラの内部には、主にロータの回転動作を制御するための制御回路基板が内蔵されている。制御回路基板には、電子回路を構成する素子が実装されている。また、その素子の中には、トランジスタや抵抗のように動作時に熱を発生する素子があり、ポンプ本体の運転中に、これらの熱により制御回路基板が非常に高温になる。このように、発熱する素子によって高温化した制御回路基板をそのままにしてポンプ本体の運転を続けると、その熱が原因で素子の寿命を著しく低下させることになるうえ、コントローラの故障に繋がり、ポンプ本体を正常に動作させることができなくなる。したがって、真空ポンプ装置ではコントローラに内蔵された制御回路基板の熱を取り除くことが不可欠である。
 その方法として、コントローラの内部に冷却ファンを設置し、冷却ファンからの風を制御回路基板に直接当てて強制空冷する方法や、筐体内の高温化した熱気を外部に排気して冷却する方法等が知られている。しかしながら、これら冷却ファンを用いた空冷方式によると、次のような問題がある。例えば、上記の真空ポンプ装置を電子顕微鏡のような防振環境を要する測定機器の真空チャンバに取り付ける場合、振動は大敵であるのでポンプ本体の振動を極力抑えなければならない。そこで、振動の発生源である回転するロータを支持する構造として、磁気軸受を採用し、機械的な接触をなくしてポンプ本体の低振動化を図っている。ところが、上記のようにコントローラの内部に冷却ファンを設置すると、その冷却ファンを駆動するモータの振動がコントローラを介してポンプ本体に伝わり、ポンプ本体の振動が測定機器に伝播してしまう。したがって、特に低振動性が求められる真空ポンプ装置においては、振動の要因となる冷却ファンによる強制空冷方式を採用するのはあまり望ましくない。
 一方、下記の特許文献1には、冷却ファンを使用せずにコントローラを冷却する方法が開示されている。その方法は、ポンプ本体とコントローラを接続コネクタで連結するとともに、両者に密着させた冷却ジャケットを設置するというものである。そして、冷却ジャケット内の配管に冷却水を流し、冷却ジャケットを介してコントローラを水冷するようになっている。しかし、この冷却ジャケットを用いた水冷方式によると、冷却水を流すための配管設備が別途必要になり、真空ポンプ装置が大型化するとともに、その取り回しが悪くなってしまう。しかも、ポンプ本体の運転中に冷却水を流し続けなければならず、ランニングコストが高くなるという欠点もある。
 また、下記の特許文献2には、冷却ファン及び冷却ジャケットを使用せずに、コントローラケースの周囲をヒートシンクによって覆い、自然空冷によりその放熱性を高めるようにした方法が開示されている。その方法は、コントローラの外面にヒートシンクをネジで固定して熱伝導させるようにしており、そのヒートシンクは熱を外気に放熱させるために、外壁面に複数枚のフィンを整列させたプレート型になっている。このような複数枚のフィンは、放熱性の観点からコントローラケースの複数の面や角部に付けることが望ましいが、コントローラケースを鋳物で製作しようした場合、各面や各角部における各フィンの形状に合わせた鋳型が必要となったり、作業工程が複雑になってしまったり、作業工数が増加したりして、コントローラケースのコストアップになる問題点があった。そこで、このヒートシンクをコントローラの外面にネジで固定した冷却方式にすると、ヒートシンクを固定するための作業が必要となる。このため、作業工数が増加し、コストアップになる問題点があった。また、コントローラとヒートシンクとが別体となっているので熱伝導性が悪く、またヒートシンクが大型になるという欠点もある。
特開平11-173293号公報 特許第4796795号公報
 そこで、本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、従来の強制空冷や水冷方式及び自然空冷方式の問題点を解決し、振動が少なく、また小型化が実現できるとともに、安価でコントローラに内蔵された制御回路の熱を効率よく除去できるようにした、コントローラ及び真空ポンプ装置を提供することにある。
 本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、真空ポンプ装置のポンプ本体の動作を制御する制御回路を備えるコントローラにおいて、前記制御回路が収納されたコントローラ筐体と、前記コントローラ筐体と一体に形成されているとともに、前記コントローラ筐体の外周面から外側へ向かって形成された複数枚のフィンを有するヒートシンクと、を備えるコントローラを提供する。
 この構成によれば、前記コントローラ筐体に収納されている前記制御回路は、トランジスタや抵抗等の発熱する素子によって高温になるが、その熱は前記コントローラ筐体と一体に形成されている前記ヒートシンクの前記フィンに伝えられ、大気中に自然放熱されて前記制御回路から取り除かれる。したがって、従来の強制空冷や水冷方式のようにコントローラの内部に冷却ファン等を設置しなくても十分な空冷効果が得られる。また、前記ヒートシンクは前記コントロール筐体と一体に形成されているので、熱伝導効果がよく、外気との熱交換効率も高まる。
 請求項2記載の発明は、請求項1記載の構成において、前記コントローラ筐体は鋳物製であるとともに、前記フィンの両側面が型抜き方向に傾斜しているテーパー面としてなる、コントローラを提供する。
 この構成によれば、前記ヒートシンクを一体に備える前記コントローラ筐体を鋳物でより簡単に製作することができる。また、前記フィンのテーパー面を鋳型の抜き方向に揃えることにより、鋳物での製作を更に容易にすることができる。
 請求項3記載の発明は、請求項1又は2に記載の構成において、前記フィンは、正面視で略台形状に形成されている、コントローラを提供する
 この構成によれば、前記フィンの形状が正面視で略台形状に形成されている。したがって、フィン間で形成される空気通路に対してフィンが逆台形状となるように設けておくと、フィンとの間に形成される空気通路の出口部分の開口面積は入口部分の開口面積に比べて小さくなる。そのため、前記フィン間の空気通路に入って出口部分の開口に向かう温まった空気は、出口部分の開口に進むに従って徐々に圧縮され、出口部分の開口を通過し終えると圧縮から解き放されて急速に流れる。これにより、空気通路内の空気は、出口部分の開口を通過し終えた空気の急速な流れに引かれて出口部分の開口側へ流され、空気通路内での空気の流れをスムーズにして放熱効果をより高める。
 請求項4記載の発明は、請求項1又は2に記載の構成において、前記フィンは、正面視で略菱形状に形成されている、コントローラを提供する。
 この構成によれば、前記フィンの形状が正面視で略菱形状に形成されているので、フィンとの間に形成される空気通路において、空気通路の中間部分の開口面積は入口部分の開口面積に比べて小さくなっている。そのため、フィン間の空気通路に入って出口部分の開口側に向う温まった空気は、中間部分の開口に進むに従って徐々に圧縮され、中間部分の開口を通過し終えると圧縮から解き放されて急速に流れる。これにより、空気通路内の空気は、中間部分の開口を通過し終えた空気の急速な流れに引かれて中間部分の開口側に向かい、その中間部分の開口を通って更に出口部分の開口側へ流され、前記空気通路内での空気の流れをスムーズにして放熱効果をより高める。
 請求項5記載の発明は、請求項1又は2に記載の構成において、前記フィンは、正面視で三角形を含む略多角形状に形成されている、コントローラを提供する。
 この構成によれば、前記フィンの形状が正面視で略三角形を含む略多角形に形成されているので、フィンとの間に形成される空気通路において、空気通路の出口部分の開口面積は入口部分の開口面積に比べて小さくなっている。そのため、フィン間の空気通路に入って出口部分の開口側に向う温まった空気は、出口部分の開口に進むに従って徐々に圧縮され、出口部分の開口を通過し終えると圧縮から解き放されて急速に流れる。これにより、空気通路内の空気は、出口部分の開口を通過し終えた空気の急速な流れに引かれて出口部分の開口側へ流され、前記空気通路内での空気の流れをスムーズにして放熱効果をより高める。
 請求項6記載の発明は、請求項2に記載の構成において、前記フィンは、隣り合う前記フィンとで形成される空気通路の開口面積が前記ポンプ本体側で小さくなるように前記テーパー面が形成されている、コントローラを提供する。
 この構成によれば、前記フィンは、隣り合う前記フィンとで形成される空気通路の開口面積が前記ポンプ本体側で小さくなるように前記テーパー面が形成されているので、隣り合うフィンとの間に形成される空気通路の出口部分の開口面積は入口部分の開口面積に比べて小さくなっている。そのため、フィン間の空気通路に入って出口部分の開口側に向う温まった空気は、出口部分の開口に進むに従って徐々に圧縮され、出口部分の開口を通過し終えると圧縮から解き放されて急速に流れる。これにより、空気通路内の空気は、出口部分の開口を通過し終えた空気の急速な流れに引かれて出口部分の開口側へ流され、前記空気通路内での空気の流れをスムーズにして放熱効果をより高める。
 請求項7記載の発明は、請求項1から請求項6のいずれか1項に記載の構成において、前記コントローラ筐体は、平面視で略角形状に形成され、前記各角部又は前記外周面に前記フィンを形成している、コントローラを提供する。
 この構成によれば、一般に、前記コントローラ筐体における前面側の周面部分にはインジケータが設けられ、後側の周面部分には配線が設けられる。そのため、前側や後側の各周面部分に前記ヒートシンクの前記フィンが設けられると、前記フィンが配線の邪魔をする場合がある。しかし、前記コントローラを平面視で略角形状に形成するとともに、その前記角部又は前記外周面に前記フィンを各々設けることにより、配線等の邪魔をすることなく前記フィンを形成することができる。また、前記各角部に丸味を設けると、前記フィンを形成するためのスペースを大きく確保することが可能となる。
 請求項8記載の発明は、請求項7に記載の構成において、前記コントローラ筐体は、前記角部又は前記外周面に形成された、前記フィンの型抜き方向が同一となるように、前記フィンの両側面のテーパー面が統一されている、コントローラを提供する。
 この構成によれば、前記ヒートシンクにおける前記フィンの前記テーパー面を鋳型の抜き方向に揃えることにより、鋳物の型抜き方向が同一となるため、前記フィンを形成する鋳型の個数を削減することができる。
 請求項9記載の発明は、請求項8に記載の構成において、前記コントローラ筐体は、前記フィンの前記型抜き方向が前記真空ポンプ装置の中心軸に沿う方向である、コントローラを提供する。
 この構成によれば、前記コントローラ筐体は、前記フィンの前記型抜き方向が前記真空ポンプ装置の中心軸に沿う方向であるので、例えば中心軸に沿う方向の2つの鋳型で製作が可能となる。
 請求項10記載の発明は、請求項1から請求項9のうちのいずれか1項に記載のコントローラを備える、真空ポンプ装置を提供する。
 この構成によれば、振動が少なく、また、小型化が実現でき、かつ安価で前記コントローラに内蔵された制御回路の熱を効率よく除去することが可能な真空ポンプ装置が得られる。
 本発明によれば、コントローラ筐体に収納されている制御回路で発生する熱は、コントローラ筐体と一体に形成されているヒートシンクのフィンを通して大気中に自然放熱されて、制御回路から取り除かれる。したがって、従来の強制空冷や水冷方式のようにコントローラの内部に冷却ファン等を設置しなくても十分な空冷効果が得られるので、機械動作による振動がなくなり、低振動性が求められる真空ポンプ装置への適用が可能になる。また、従来の強制空冷や水冷方式の場合では、別途冷却ファンや配管設備を必要としたが、それも必要がなくなり、取り扱い作業性が優れるとともに、ランニングコストを抑えることもできる。
 さらに、従来のヒートシンク式の場合では、ヒートシンクをコントローラ筐体と別体で形成してネジで固定していたので、組立時にヒートシンクを固定する作業が必要となり、作業工数が増加してコストアップになるという問題点があった。しかし、本発明の場合では、ヒートシンクはコントロール筐体と一体に形成されているので、組立工数の削減が図れ、また熱伝導効果がよく、外気との熱交換効率も高まるとともに、同時にコントローラの小型化も図れる。
本発明の第1実施形態に係るコントローラを備える真空ポンプ装置の外観斜視図である。 同上第1実施形態に係る真空ポンプ装置の正面図である。 同上第1実施形態に係る真空ポンプ装置の平面図である。 同上第1実施形態のコントローラにおけるヒートシンクの部分拡大斜視図である。 同上第1実施形態に係るコントローラの一変形例を示す正面図である。 本発明の第2実施形態に係るコントローラを備える真空ポンプ装置の外観斜視図である。 同上第2実施形態のコントローラにおけるヒートシンクの部分拡大斜視図である。 同上第1及び第2実施形態のコントローラにおけるヒートシンク部分の一変形例を説明するための平面図である。
 本発明は、振動が少なく、また小型化が実現できるとともに、安価でコントローラに内蔵された制御回路の熱を効率よく除去できるようにした、コントローラ及び真空ポンプ装置を提供するという目的を達成するために、真空ポンプ装置のポンプ本体の動作を制御する制御回路を備えるコントローラにおいて、前記制御回路が収納されたコントローラ筐体と、前記コントローラ筐体と一体に形成されているとともに、前記コントローラ筐体の外周面から外側へ向かって形成された複数枚のフィンを有するヒートシンクと、を備えることにより実現した。
 以下、本発明を実施するための形態を添付図面に基づいて詳細に説明する。なお、以下の説明では、実施形態の説明の全体を通じて同じ要素には同じ符号を付している。また、以下の説明において、上下や左右等の方向を示す表現は、絶対的なものではなく、本発明のコントローラ及び真空ポンプ装置の各部が描かれている姿勢である場合に適切であるが、その姿勢が変化した場合には姿勢の変化に応じて変更して解釈されるべきものである。
 図1は本発明の第1実施形態に係るコントローラ12を備える真空ポンプ装置10の外観斜視図、図2は真空ポンプ装置10の正面図、図3は真空ポンプ装置10の平面図である。
 第1実施形態の真空ポンプ装置10は、その用途として半導体製造装置、電子顕微鏡、質量分析装置等の対象機器の図示しない真空チャンバ内を高真空にする手段として利用される。
 図1から図3に示す真空ポンプ装置10は、真空チャンバ内からガス分子を吸引して排気するポンプ本体11と、ポンプ本体11の動作を制御するコントローラ12とを備え、ポンプ本体11をコントローラ12の上面に載置し、ポンプ本体11とコントローラ12を一体化して構成されている。
 ポンプ本体11は、外側が円筒状のポンプケース13で覆われ、その内部に図示しないロータ及びステータが設けられターボ分子ポンプである。また、ポンプ本体11の底面は、円盤状の底蓋14で塞いだ構造になっている。一方、コントローラ12は、コントローラ筐体15で覆われ、コントローラ筐体15の内部に図示しない主にロータの回転動作を制御するための制御回路基板が収納されている。この制御回路基板には、トランジスタや抵抗等、動作時に熱を発生する素子が実装されており、その制御回路基板とポンプ本体11内の制御部とは、図示しないハーネス及びコネクタ等を介して電気的に接続されている。なお、ポンプ本体11及びコントローラ12の各内部構造については、例えば特許文献2に開示した周知の手段が使用でき、本発明の用紙とは関係ないのでその詳細な説明は省略する。
 コントローラ筐体15は、例えばアルミダイキャスト等の鋳物製であり、図3に示すように平面視で略四角形に形成されている。また、コントローラ筐体15の4つの角部12aはそれぞれ、コントローラ12の中心軸Oを基準として描かれる円周(図示せず)に倣って切欠され、その角部12aに丸味が持たされている。さらに、各角部12aにはそれぞれ、ヒートシンク16が設けられている。なお、コントローラ筐体15の正面側における角部12aと角部12aとの間の周面部分にはインジケータ18が設けられている。また、図示しないが、コントロール筐体15の後側の周面部分には、ポンプ本体11とコントローラ12を電気的に接続している電気配線が設けられている。
 ヒートシンク16は、コントローラ筐体15の各角部12aにおいて、コントローラ筐体15の外周面から外側へ放射状に形成された状態にして、このコントローラ筐体15と一体に形成されている複数枚(本実施形態では6枚)のフィン17を有している。
 また、本第1実施形態におけるヒートシンク16は、放熱性能をより向上させる観点、及び、鋳型の型抜きを容易にする観点から、各フィン17は、図2及び図4に示すように、両側面(以下、これを「テーパー面」という)17a、17bの傾斜θがそれぞれ鋳型の抜き方向となるように揃えられている。より具体的には、各フィン17はそれぞれ、中心軸Oに沿う方向で、かつ隣接し合うフィン17のテーパー面17a、17b同志が互いに末広がりとなる「ハ」の字となる形に揃えられて、正面視で略逆台形状に形成されている。
 このように本第1実施形態では、ヒートシンク16における各フィン17のテーパー面17a、17bを鋳型の抜き方向に揃えることにより、鋳物での製作を容易にし、コストダウンを図ることができる。つまり、ヒートシンク16における各フィン17のテーパー面17a、17bを鋳型の抜き方向に揃えることにより、鋳物の型抜き方向が同一となるため、各フィンを形成する鋳型の個数を削減することができる。例えば、中心軸Oに沿う抜き方向の2つの鋳型での製作が可能となる。また、ヒートシンク16における各フィン17の形状を、各フィン17間で形成される空気通路19に対して正面視で略逆台形状に形成し、隣接し合うフィン17のテーパー面17a、17b同志が互いに末広がりとなる「ハ」の字となる形に揃えておくと、放熱性をより高めることができる。図4を用いてその放熱性を高める効果を説明する。
 各フィン17の形状が正面視で略逆台形に形成されていると、隣接し合うフィン17のテーパー面17a、17b同志で作られる「ハ」の字状の空気通路19は、図4に示すように空気通路19の出口部分の開口の面積S1(以下、単に「出口部分の開口S1」という)が入口部分の開口の面積S2(以下、単に「入口部分の開口S2」という)に比べて小さくなる。そのため、各フィン17との間に形成された空気通路19に入って出口部分の開口S1に向かう空気(図4中に流れを矢印20で示す)は、空気通路19の出口部分の開口S1が下側の入口部分の開口S2に比べて小さくなっているので、出口部分の開口S1に向かうに従って徐々に圧縮され、出口部分の開口S1を通過し終えると圧縮から解き放されて急速に流れる。これにより、空気通路19内の空気20は、出口部分の開口S1を通過し終えた空気の急速な流れに引かれて出口部分の開口S1側へ流され、空気通路19内での空気の流れをスムーズにして放熱効果をより高める。
 以上が第1実施形態に係る真空ポンプ装置10の構成である。この真空ポンプ装置10は、コントローラ12の電源を入れてポンプ本体11を作動させると、コントローラ筐体15に内蔵された制御回路基板はトランジスタや抵抗等の発熱する素子によって高温になる。しかしながら、その制御回路基板の熱はコントローラ筐体15を介してヒートシンク16に伝えられ、更にヒートシンク16のフィン17を介した熱交換により放熱されて自然空冷して取り除かれる。この場合、空気通路19の出口部分の開口S1が入口部分の開口S2に比べて小さくなっているので、空気通路19内を通る空気はスムーズに流され、熱交換による放熱効果をより高めることができて、コントローラ12の放熱効果が大幅に向上する。
 なお、図1から図4に示した第1実施形態に係る真空ポンプ装置10では、ヒートシンク16を4つの角部12aに各々形成し、かつ、コントローラ筐体15の正面側となるインジケータ18を設けている周面部分には形成してない構造を開示したが、例えば図5に示すように、インジケータ18が設けられ周面部分にも、そのインジケータ18を囲むようにしてヒートシンク16のフィン21をコントローラ筐体15と一体に形成してもよいものである。この場合のヒートシンク16は、中心軸Oに沿って上下方向に延びるようにしてストライプ状に形成されたフィン21を設けているが、形状はこれに限定されるものではない。
 図6は本発明の第2実施形態に係るコントローラ12を備える真空ポンプ装置30の外観斜視図、図7はコントローラ12におけるヒートシンク16の部分拡大斜視図である。なお、第2実施形態の構成は、ヒートシンク16におけるフィン33の形状を正面視で略菱形状に形成した構成に変更したものであり、他の構成は図1~図3に示した構成と同一であるから、同一の構成部分は同一符号を付して重複説明を省略する。
 図6に示すコントローラ12のヒートシンク16は、コントローラ筐体15の各角部12aにおいて、コントローラ筐体15の外周面から外側へ放射状に形成された状態にして、このコントローラ筐体15と一体に形成している複数枚(本実施形態では6枚)のフィン33を有している。
 また、第2実施形態におけるヒートシンク16も、放熱性能をより向上させる観点及び鋳型の型抜きを容易にする観点から、各フィン33は、図6及び図7に示すように、正面視で略菱形状に形成されている。すなわち、両側面(以下、これを「テーパー面」という)33a、33bの傾斜θがそれぞれ鋳型の抜き方向となるように揃えられている。すなわち、各フィン33はそれぞれ、中心軸Oに沿う方向で、かつ菱形の上半分側は隣接し合うフィン33のテーパー面33a、33b同志が互いに上へ向かって広がる略「V」の字となる形にそれぞれ揃えられ、菱形の下半分側は隣接し合うフィン33のテーパー面33c、33d同志が互いに末広がりとなる「ハ」の字となる形にそれぞれ揃えて、正面視で略菱形状に形成されている。
 このように本第2実施形態でも、ヒートシンク16における各フィン33のテーパー面33aと33b、33cと33dをそれぞれ鋳型の抜き方向に揃えることにより、鋳物での製作を容易にし、コストダウンを図ることができる。また、ヒートシンク16の形状を正面視で略菱形状に形成して、隣接し合うフィン33のテーパー面33c、33d同志が互いに末広がりとなる「ハ」の字となる形に揃えておくと、放熱性をより高めることができる。図7を用いてその放熱性を高める効果を説明する。
 各フィン33の形状が正面視で略菱形状に形成されていると、隣接し合うフィン33のテーパー面33c、33d同志で作られる「ハ」の字状の空気通路39は、図7に示すように空気通路39の中間出口部分の開口の面積S3(以下、単に「中間部分の開口S1」という)が入口部分の開口の面積S2(以下、単に「入口部分の開口S2」という)に比べて小さくなる。そのため、各フィン33との間に形成された空気通路39に入って中間部分の開口S2向かう空気は、空気通路39の中間出口部分の開口S3が下側の入口部分
の開口S2に比べて小さくなっているので、中間出口部分の開口S3に向かって徐々に圧縮され、中間出口部分の開口S3を通過し終えると、その開口S3の上側は略Vの字状に広がっているので、圧縮から解き放されて急速に流れる。これにより、空気通路39内の空気20は、出口部分の開口S1を通過し終えた空気の急速な流れに引かれて出口部分の開口S1側へ流され、空気通路19内での空気の流れをスムーズにして放熱効果をより高める。
 したがって、第2実施形態に係る真空ポンプ装置30においても、コントローラ12の電源を入れてポンプ本体11を作動させると、コントローラ筐体15に内蔵された制御回路基板はトランジスタや抵抗等の発熱する素子によって高温になるが、その制御回路基板の熱はコントローラ筐体15を介してヒートシンク16に伝えられ、更にヒートシンク16のフィン33を介した熱交換により放熱されて自然空冷して取り除かれる。この場合、空気通路39の中間出口部分の開口S3が入口部分の開口S2に比べて小さくなっているので、空気通路39内を通る空気(図中に流れを矢印20で示す)はスムーズに流され、熱交換による放熱効果をより高めることができて、コントローラ12の放熱効果が大幅に向上する。
 なお、第1の実施形態におけるヒートシンク16のフィン17及び第2の実施形態におけるヒートシンク16のフィン33は、コントローラ12の中心軸Oから外側へ放射された状態にして設けている構造を開示したが、例えば図8に示すように、角部12a毎に略90度ずつ順に変位させて設けた構造にしてもよいものである。
 また、第1、第2の実施形態におけるコントローラ筐体15は、平面視で略四角形に形成している構成を開示したが、四角形に限ることなく、例えば三角形、五角形、六角形等に形成して、その角部にそれぞれ対応させてヒートシンク16のフィン17、33等を設けてもよい。
 また、上述した変形例以外にも本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。
10   真空ポンプ装置
11   ポンプ本体
12   コントローラ
12a  角部
13   ポンプケース
14   底蓋
15   コントローラ筐体
16   ヒートシンク
17   フィン
17a、17b テーパー面
18   インジケータ
19   空気通路
20   空気の流れ
21   フィン
30   真空ポンプ装置
33   フィン
33a、33b、33c、33d テーパー面
39   空気通路
O    コントローラの中心軸
S1   出口部分の開口
S2   入口部分の開口
S3   中間部分の開口

Claims (10)

  1.  真空ポンプ装置のポンプ本体の動作を制御する制御回路を備えるコントローラにおいて、
     前記制御回路が収納されたコントローラ筐体と、
     前記コントローラ筐体と一体に形成されているとともに、前記コントローラ筐体の外周面から外側へ向かって形成された複数枚のフィンを有するヒートシンクと、を備える、
     ことを特徴とするコントローラ。
  2.  前記コントローラ筐体は鋳物製であるとともに、前記フィンの両側面が型抜き方向に傾斜しているテーパー面としてなる、ことを特徴とする請求項1に記載のコントローラ。
  3.  前記フィンは、正面視で略台形状に形成されている、ことを特徴とする請求項1又は2に記載のコントローラ。
  4.  前記フィンは、正面視で略菱形状に形成されている、ことを特徴とする請求項1又は2に記載のコントローラ。
  5.  前記フィンは、正面視で三角形を含む略多角形状に形成されている、ことを特徴とする請求項1又は2に記載のコントローラ。
  6.  前記フィンは、隣り合う前記フィンとで形成される空気通路の開口面積が前記ポンプ本体側で小さくなるように前記テーパー面が形成されている、ことを特徴とする請求項2に記載のコントローラ。
  7.  前記コントローラ筐体は、平面視で略角形状に形成され、各角部又は前記外周面に前記フィンを形成している、ことを特徴とする請求項1から6のいずれか1項に記載のコントローラ。
  8.  前記コントローラ筐体は、前記角部又は前記外周面に形成された、前記フィンの型抜き方向が同一となるように、前記フィンの両側面のテーパー面が統一されている、ことを特徴とする請求項7に記載のコントローラ。
  9.  前記コントローラ筐体は、前記フィンの前記型抜き方向が前記真空ポンプ装置の中心軸に沿う方向である、ことを特徴とする請求項8に記載のコントローラ。
  10.  請求項1から請求項9のうちのいずれか1項に記載のコントローラを備える、ことを特徴とする真空ポンプ装置。 
PCT/JP2018/003628 2017-02-17 2018-02-02 コントローラ及び真空ポンプ装置 WO2018150911A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/486,317 US20200232469A1 (en) 2017-02-17 2018-02-02 Controller and vacuum pump device
KR1020197021456A KR20190113783A (ko) 2017-02-17 2018-02-02 컨트롤러 및 진공 펌프 장치
CN201880010098.5A CN110249129A (zh) 2017-02-17 2018-02-02 控制器及真空泵装置
EP18754175.0A EP3584442B1 (en) 2017-02-17 2018-02-02 Controller and vacuum pump device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-027822 2017-02-17
JP2017027822A JP2018132024A (ja) 2017-02-17 2017-02-17 コントローラ及び真空ポンプ装置

Publications (1)

Publication Number Publication Date
WO2018150911A1 true WO2018150911A1 (ja) 2018-08-23

Family

ID=63170709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003628 WO2018150911A1 (ja) 2017-02-17 2018-02-02 コントローラ及び真空ポンプ装置

Country Status (6)

Country Link
US (1) US20200232469A1 (ja)
EP (1) EP3584442B1 (ja)
JP (1) JP2018132024A (ja)
KR (1) KR20190113783A (ja)
CN (1) CN110249129A (ja)
WO (1) WO2018150911A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021000931A1 (de) * 2021-02-22 2022-08-25 KSB SE & Co. KGaA Pumpe mit einem Elektronikgehäuse und wenigstens einem Kühlkörper
EP4206474A1 (de) * 2021-12-30 2023-07-05 Pfeiffer Vacuum Technology AG Vakuumpumpe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS476795U (ja) 1971-02-12 1972-09-22
JPH07312493A (ja) * 1994-05-18 1995-11-28 Pfu Ltd ヒートシンクおよびファン付きヒートシンク装置
JPH11173293A (ja) 1997-12-10 1999-06-29 Ebara Corp ターボ分子ポンプ装置
JP2003060135A (ja) * 2001-08-21 2003-02-28 Mitsubishi Alum Co Ltd 放熱フィン
JP2004197687A (ja) * 2002-12-20 2004-07-15 Calsonic Compressor Seizo Kk 電動圧縮機
JP2004251133A (ja) * 2003-02-18 2004-09-09 Matsushita Electric Ind Co Ltd 回転型圧縮機
JP2004281079A (ja) * 2003-03-12 2004-10-07 Sony Corp セパレータ、燃料電池装置及び燃料電池装置の温度調整方法
JP2006278735A (ja) * 2005-03-29 2006-10-12 Toyota Motor Corp 冷却装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA490167A (en) * 1953-02-03 Aktiengesellschaft Brown, Boveri And Cie Combustion chambers
US20060105213A1 (en) * 2003-03-05 2006-05-18 Kazuhiko Otsuka Separator, fuel cell device, and temperature control method for fuel cell device
DE20309856U1 (de) * 2003-06-24 2004-10-28 Autokühler GmbH & Co. KG Kühlkörper für Bauelemente
JP4796795B2 (ja) * 2005-07-29 2011-10-19 エドワーズ株式会社 真空ポンプ装置とそのコントローラ
JP5156640B2 (ja) * 2006-11-22 2013-03-06 エドワーズ株式会社 真空ポンプ
US7765917B2 (en) * 2007-01-12 2010-08-03 Black & Decker Inc. Air compressor
US20130209272A1 (en) * 2010-10-07 2013-08-15 Edwards Limited Vacuum pump control device and vacuum pump
JP5797034B2 (ja) * 2011-07-07 2015-10-21 三菱電機株式会社 リニアモータ
JP6102222B2 (ja) * 2012-11-30 2017-03-29 株式会社島津製作所 真空ポンプ
JP6126421B2 (ja) * 2013-03-21 2017-05-10 三菱重工オートモーティブサーマルシステムズ株式会社 モータファン
CN203353025U (zh) * 2013-06-29 2013-12-18 中山大洋电机股份有限公司 一种电机控制器及其应用的风机系统
CN204180466U (zh) * 2014-11-28 2015-02-25 宁波华盛汽车部件有限公司 控制器壳体总成的散热结构
JP6402646B2 (ja) * 2015-02-19 2018-10-10 株式会社豊田自動織機 電動過給器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS476795U (ja) 1971-02-12 1972-09-22
JPH07312493A (ja) * 1994-05-18 1995-11-28 Pfu Ltd ヒートシンクおよびファン付きヒートシンク装置
JPH11173293A (ja) 1997-12-10 1999-06-29 Ebara Corp ターボ分子ポンプ装置
JP2003060135A (ja) * 2001-08-21 2003-02-28 Mitsubishi Alum Co Ltd 放熱フィン
JP2004197687A (ja) * 2002-12-20 2004-07-15 Calsonic Compressor Seizo Kk 電動圧縮機
JP2004251133A (ja) * 2003-02-18 2004-09-09 Matsushita Electric Ind Co Ltd 回転型圧縮機
JP2004281079A (ja) * 2003-03-12 2004-10-07 Sony Corp セパレータ、燃料電池装置及び燃料電池装置の温度調整方法
JP2006278735A (ja) * 2005-03-29 2006-10-12 Toyota Motor Corp 冷却装置

Also Published As

Publication number Publication date
JP2018132024A (ja) 2018-08-23
US20200232469A1 (en) 2020-07-23
CN110249129A (zh) 2019-09-17
EP3584442A4 (en) 2020-09-16
KR20190113783A (ko) 2019-10-08
EP3584442B1 (en) 2023-11-01
EP3584442A1 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP5673497B2 (ja) 一体型ターボ分子ポンプ
US20060021735A1 (en) Integrated cooler for electronic devices
JP4796795B2 (ja) 真空ポンプ装置とそのコントローラ
US20040190261A1 (en) Cooler with blower between two heatsinks
US6903928B2 (en) Integrated crossflow cooler for electronic components
JP2004316625A (ja) 放熱装置とそのファンハウジング
US20120201704A1 (en) Fan assembly
TWI526621B (zh) 風扇
JP2007234957A (ja) 遠心ファン付ヒートシンク
JP6102222B2 (ja) 真空ポンプ
JP2006174541A (ja) 回転電機
TW202007055A (zh) 變頻器整合馬達
JP2019078233A (ja) 真空ポンプ
JP2009156187A (ja) 遠心ファン装置を備えた電子機器
WO2018150911A1 (ja) コントローラ及び真空ポンプ装置
JP2017147919A (ja) インバータ一体形回転電機およびインバータ一体形回転電機の製造方法
JP7096006B2 (ja) 真空ポンプと真空ポンプの制御装置
JP2009216030A (ja) 送風ファン
JP2580507Y2 (ja) 電子機器の冷却装置
JP5532156B2 (ja) 送風装置
US20080055853A1 (en) Heat dissipating module and assembly of the heat dissipating module and a computer housing
TW201120320A (en) Fan module and heat disspation device incorporating the same
WO2021237931A1 (zh) 一种外转子无刷电机及其罩壳
TWI711367B (zh) 散熱系統
JP2000104951A (ja) 空気調和機の室外ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197021456

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018754175

Country of ref document: EP

Effective date: 20190917