JP2006260883A - 密閉型蓄電装置及びその製造方法 - Google Patents

密閉型蓄電装置及びその製造方法 Download PDF

Info

Publication number
JP2006260883A
JP2006260883A JP2005074837A JP2005074837A JP2006260883A JP 2006260883 A JP2006260883 A JP 2006260883A JP 2005074837 A JP2005074837 A JP 2005074837A JP 2005074837 A JP2005074837 A JP 2005074837A JP 2006260883 A JP2006260883 A JP 2006260883A
Authority
JP
Japan
Prior art keywords
opening
case
side wall
sealing member
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005074837A
Other languages
English (en)
Other versions
JP4929606B2 (ja
Inventor
Yuugo Nakagawa
有吾 中川
Tomoaki Yamamoto
智章 山本
Takashi Maruyama
貴志 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005074837A priority Critical patent/JP4929606B2/ja
Priority to US11/376,314 priority patent/US20060207085A1/en
Publication of JP2006260883A publication Critical patent/JP2006260883A/ja
Application granted granted Critical
Publication of JP4929606B2 publication Critical patent/JP4929606B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/06Mounting in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

【課題】 高い応力が加わる部位の溶接が充分な密閉型蓄電装置を効率よく製造する方法を提供すること。
【解決手段】 本発明の密閉型蓄電装置製造方法は、電極体ユニットを内部に収容するための開口部の周縁を構成する側壁24の開口部断面24aの外面側が直線状であり且つその開口部の周縁を構成する側壁のなかで少なくとも前記直線状外面の長さが最長である側壁の開口部断面において該断面の中央部分の厚みがその両端よりも厚いことを特徴とする角形ケースを用意する工程と、前記開口部を封口する位置に該開口部を塞ぎ得る大きさの封口部材を配置する工程と、前記封口部材と前記開口部周縁の側壁との境界部に前記ケースの側方から高密度エネルギーを照射することにより、該側壁の厚みに対応させて該側壁厚み方向の溶け込み深さを変化させつつ該ケースに封口部材を溶接する工程とを包含する。
【選択図】 図4

Description

本発明は、電極体ユニットを角形ケースに収容して密閉するタイプの蓄電装置とその製造方法に関する。また、レーザ溶接等の高密度エネルギー溶接によって該ケースを側方から溶接する方法に関する。
種々の電池(例えばニッケル水素二次電池、リチウムイオン二次電池)やキャパシタ(例えば電気二重層キャパシタ)のような蓄電装置は、電気を駆動源とする車両、パソコンその他の電気製品等に搭載される電源として利用される。
かかる蓄電装置の典型的な一形態として、所定の電極体ユニット及び電解質が金属製のケース(筐体)内部に密閉されたいわゆる密閉型蓄電装置がある。この種の蓄電装置は、所定の電極体ユニット(蓄電要素)をケースに収容した後に該ケースの開口部(即ち電極体ユニット等を収容するための収容口)に所定の封口部材(即ち当該ケース開口部を塞ぐ蓋に相当する部材をいう。以下同じ。)を配置し、次いで該開口部の周縁と封口部材とを溶接して該ケースを密閉することによって構築される。かかる構成上、ケースの高度な密閉性を確保するためには、封口部材とケース本体との溶接方法及び程度には充分に配慮する必要がある。
密閉型蓄電装置のケースには種々の形状があり得るが、そのうちの典型的なものとして、外面がフラットであり多角形状(典型的には矩形状)のケース開口部を囲む複数の側壁と底壁とから成るいわゆる角形ケース(典型的には直方体形状)が挙げられる。例えばケース開口部の周囲(側壁)が矩形の枠状に形成される箱型の角形ケースがよく用いられている。このような角形ケースでは、多角形状(例えば矩形状)開口部が密閉(溶接)された後に内圧が何らかの原因(例えば電解質分解によるガス発生)によって上昇した際、その応力はケースと封口部材との溶接部分の全体にほぼ均等に加わるのではなく、側壁のほぼ中央部分にあたる溶接部位に局部的に高い応力が加わる傾向がある。例えば、矩形状開口部(即ち該開口部周囲の側壁が矩形状枠を構成する開口部)を有する直方体形状ケースの場合、内圧上昇によって幅広な一対の側壁が樽状に中央部分が外方に張り出した変形を来す虞がある。そして、当該変形とともに当該側壁と封口部材との溶接部位のほぼ中央部分に応力が集中し、当該溶接部位に破壊等の欠陥が生じる虞がある。このため、角形ケース本体と封口部材(ケース蓋)とをレーザ等の高密度エネルギー溶接によって溶接する場合、かかる高い応力が加わる部位の溶接を特に慎重且つ十分に行う必要がある。
例えば特許文献1及び2には、密閉型蓄電装置(ニッケル水素二次電池、リチウムイオン二次電池等)の角形ケースの矩形状開口部に所定の封口部材を嵌め込み装着し、その嵌め込まれた封口部材と矩形状開口部周囲の側壁との境界に対して封口部材の上方から該封口部材厚み方向(即ち封口部材の外側から内側への方向)にレーザ(パルスレーザ)を照射するとともに、該レーザ照射部位をその境界線に沿っていわば一筆書きで矩形状に移動させることによって封口部材とケース本体とをレーザ溶接する方法(ケース密閉方法)が記載されている。また、特許文献3には、角形ケース内の開口部近傍に金属製補強板をレーザ溶接し、次いで当該開口部に封口部材(蓋板)を嵌め込んでかしめる方法が記載されている。
特開平9−7560号公報 特開平11−90657号公報 特開2002−289153号公報 特開2002−224868号公報
ところで、溶接により角形ケースの開口部を密閉する方法としては、上記特許文献1〜2に記載されるようなケース開口部に適当なサイズの封口部材を嵌め込んで該封口部材の上方(即ちケース開口部の上方)から高密度エネルギーを照射する形態の他に、ケース開口部上に当該ケース外径とほぼ同じ外径の封口部材を配置し、その境界をケースの側方(ケース開口部の上下(内外)方向に対してほぼ水平の方向をいう。以下同じ。)から側壁厚み方向(即ち側壁の外側から内側への方向)にレーザを照射して溶接する形態がある(特許文献4)。
かかる形態によって角形ケースを溶接・密閉する場合においても、高い応力が加わる部位(典型的には多角形状開口部周囲の長辺にあたる側壁のほぼ中央部分)の溶接を充分に、さらには効率よく行える方法が求められている。
そこで本発明は、かかる要求に応えるべく創出されたものであり、角形ケースの側方から高密度エネルギーを照射して該ケースと封口部材とを溶接する方法及びそのような溶接法によって蓄電装置の角形ケースを密閉する方法を提供することを目的とする。また、そのような溶接法(密閉法)を適用し、二次電池(ニッケル水素電池、リチウムイオン電池等)その他の密閉型蓄電装置を製造する方法ならびにそのような製造方法によって製造された二次電池(ニッケル水素電池、リチウムイオン電池等)その他の密閉型蓄電装置を提供することを他の目的とする。
本発明によって提供される方法は電極体ユニットが内部に収容された角形ケースの開口部を封口部材で封口することにより密閉する密閉型蓄電装置を製造する方法である。
この方法は、電極体ユニットが内部に収容された角形ケースであって前記開口部の周縁を構成する側壁の開口部断面の外面側が直線状である角形ケースを用意する工程、前記ケース開口部を封口する位置に該開口部を塞ぎ得る大きさの封口部材を配置する工程、および、前記封口部材と前記開口部周縁の側壁との境界部(即ち被溶接部)に前記ケースの側方から高密度エネルギーを照射することにより、該ケースに封口部材を溶接する工程を包含する。ここで、該溶接は少なくとも前記直線状外面の長さが最長である側壁と封口部材との境界部(被溶接部)においてその中央部分における側壁厚み方向への溶け込み深さが該境界部の両端付近における同方向への溶け込み深さよりも深くなるように行われることを特徴とする。
本明細書において「蓄電装置」とは、所定の電気エネルギーを取り出し得る蓄電素子(典型的には電池(セル)或いはキャパシタ)を備える装置をいい、特定の蓄電機構に限定されない。ニッケル水素二次電池、リチウムイオン二次電池その他の二次電池或いは電気二重層キャパシタ等のキャパシタ(物理電池)は、ここでいう蓄電装置に包含される典型例である。また、これら蓄電素子を電気的に接続した状態で複数配列させた集合体、即ち、蓄電モジュール(組電池)もまた本蓄電装置に包含され得る。
また、本明細書において「電極体ユニット」とは、少なくとも一つずつの正極及び負極を含み、電池又はキャパシタ(蓄電素子)の主体を成す構造体をいう。
また、本明細書において「角形ケース」とは、ここで開示される蓄電装置を構成する一部材であって一又は複数の電極体ユニットを収容し、該ユニットの収容口(本明細書にいう開口部)を適当な封口部材との溶接により密閉可能な筐体をいう。矩形又は方形状の開口部を備えた直方体形状又は立方体形状の金属製ケースはここでいう角形ケースの典型的な形状(外形)である。
かかる構成の本発明の蓄電装置製造方法では、ケース開口部を封口する位置に配置された封口部材(典型的にはケース開口部の周縁を構成する側壁の外周形状と封口部材の外周形状とが一致する(即ち等面積の)蓋部材)と当該ケースとの境界部をケース側方から溶接する際、少なくとも前記直線状外面の長さが最長である側壁と封口部材との境界部(被溶接部)においては、その中央部分における側壁厚み方向への溶け込み深さが該境界部の両端付近における同方向への溶け込み深さよりも深くなるように溶接する。これにより、溶接部位の中央部分の耐圧性をより向上させることができる。
従って、本製造方法によると、ケース内圧が上昇した際に応力が集中し得る部位の溶接強度を向上させ、耐圧性に優れる角形ケースを備えた密閉型蓄電装置を製造することができる。
ここで開示される密閉型蓄電装置製造方法の好ましい一態様では、以下の特徴:
(1)前記開口部の周縁を構成する側壁の開口部断面の外面側は直線状である;及び
(2)その開口部の周縁を構成する側壁のなかで少なくとも前記直線状外面の長さが最長である側壁(以下「長辺側壁」ともいう。)の開口部断面は、該断面の中央部分の厚みがその両端よりも厚い;
を備えた角形ケースを用意する工程と、前記開口部を封口する位置に該開口部を塞ぎ得る大きさの封口部材を配置する工程と、前記封口部材と前記開口部周縁の側壁との境界部に、前記ケースの側方から高密度エネルギーを照射することにより、該側壁の厚みに対応させて該側壁厚み方向の溶け込み深さを変化させつつ該ケースに封口部材を溶接する工程とを包含する。
上述したように、密閉された角形ケースでは内圧上昇時に特に長辺側壁の中央部分に応力が集中しがちであるところ、本態様の方法では、少なくとも長辺側壁の開口部断面における中央部分の厚みをその両端よりも厚くしたケース(以下「中央部肉厚型ケース」ともいう。)を使用する。これにより、ケース内圧上昇時の長辺側壁の変形を防ぎ、延いては溶接部位の破壊等を防止することができる。
また、そのような中央部肉厚型ケース(典型的には長辺側壁の開口部端面からみて中央部分がもっとも肉厚で、両端にいくほど厚みがなだらかに減少していくケース)を使用するとともに、本態様の方法では、開口部周縁の側壁の厚みに対応させて該側壁厚み方向の溶け込み深さを変化させつつ溶接が行われる。換言すれば、側壁の厚い部分(即ち中央部分)の溶け込み深さを深く、薄い部分(両端部分)の溶け込み深さを浅くする。これにより、本態様の方法では、内圧上昇時の応力集中に対応した耐圧性をケース溶接部位に付与し得るとともに、高密度エネルギー溶接時に被溶接材(ケース本体及び封口部材)に与える熱効率を側壁の厚みの変化に拘わらず溶接部位の全体に亘ってほぼ均等に保ち、局所的な溶接不良の発生(例えばブローホール、ピット、ポロシティ等の欠陥発生)を抑えることができる。
また、ここで開示される密閉型蓄電装置製造方法の好ましい他の一態様では、前記溶接工程において、前記封口部材が前記封口位置に配置された状態の角形ケースを少なくとも水平方向に移動可能な試料台上に固定し、前記試料台を動かして前記境界部の一方の端部から他方の端部へ高密度エネルギー照射位置をほぼ一定の速度で直線的に移動させることを各側壁について繰り返す溶接が行われる。
また、好ましくは、前記溶接工程において、前記開口部の周縁を構成する側壁のなかで少なくとも前記直線状外面の長さが最長である側壁と封口部材との境界部においては該側壁の厚みに対応させてエネルギー出力を変化させる溶接が行われる。
このように、高密度エネルギー照射位置の移動速度(即ち高密度エネルギー走査速度)を一定にすることによって、或いは、ケース側壁の厚みに対応したパワーコントロール(エネルギー変化)を行うことによって、ケース本体と封口部材との溶接を効率よく行うことができる。即ち、蓄電装置の製造効率を低下させることなくケース内圧上昇時に加わる応力の偏りに対応した耐圧性に優れる蓄電装置を製造することができる。
好ましくは、高密度エネルギー照射は、パルス波レーザと連続波レーザとを組み合わせたハイブリッドレーザを用いて行う。これにより、ケース本体と封口部材との溶接をさらに効率よく行うことができる。
また、本発明は、ここで開示される方法を適用して好適に製造される密閉型蓄電装置を提供する。
即ち、ここで開示される蓄電装置は、電極体ユニットが内部に収容された角形ケースの開口部を封口部材で封口することにより密閉された密閉型蓄電装置であって、前記開口部の周縁を構成する側壁の開口部断面の外面側が直線状である角形ケースと、前記開口部を封口する位置に配置された封口部材と、前記封口部材と前記開口部周縁の側壁との境界部に形成された溶接部であって、前記ケースの側方から高密度エネルギーが照射されたときに形成された溶け込み領域を有する溶接部とを備える。ここで少なくとも長辺側壁と封口部材との境界部に相当する溶接部において、該溶接部の中央部分における溶け込み領域の側壁厚み方向への深さが該境界の両端付近における同方向への深さよりも深くなっていることを特徴とする。
かかる構成の二次電池その他の蓄電装置によると、ケース内圧が上昇した際の応力が集中し得る部位の溶接強度が保たれ、高い耐圧性を実現することができる。
ここで開示される蓄電装置の好ましい一態様は、以下の特徴:
(1)前記開口部の周縁を構成する側壁の開口部断面の外面側は直線状である;及び
(2)その開口部の周縁を構成する側壁のなかで少なくとも前記直線状外面の長さが最長である側壁の開口部断面は、該断面の中央部分の厚みがその両端よりも厚い;
を備えた角形ケースと、前記開口部を封口する位置に配置された封口部材と、前記封口部材と前記開口部周縁の側壁との境界部に形成された溶接部であって、前記ケースの側方から高密度エネルギーが照射されたときに形成された溶け込み領域を有する溶接部とを備えており、ここで前記溶け込み領域の前記側壁厚み方向への深さが前記側壁の厚みに対応して変化していることを特徴とする。
かかる構成の二次電池その他の蓄電装置では、ケース側方からの溶接でケースが密閉されているとともにケース内圧が上昇した際に特に高い耐圧性を実現することができる。
以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば、高密度エネルギー溶接方法、使用する角形ケースの形状)以外の事柄であって本発明の実施に必要な事柄(例えば、電極体ユニット、電解質等の蓄電要素の構成、角形ケースの溶接以外の蓄電装置構築のための種々のプロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
本発明の蓄電装置製造方法は、少なくとも一つの電極体ユニットを収容する角形ケースの開口部(電極体ユニット収容口)を封口する位置に該開口部を塞ぎ得る大きさの封口部材を配置し、それらの境界部(被溶接部)をここで開示される溶接方法を適用してケース側方から溶接することにより特徴付けられる方法であり、その他の構成(例えば使用する材料、他のプロセス)については、従来の蓄電装置の製造方法と同様でよく、特に制限はない。
従って、本製造方法で製造される蓄電装置の種類、構成は、密閉タイプの溶接可能な角形ケースを備えたものであれば、特に制限はない。電気自動車、ハイブリッド自動車等の車両やコンピュータ、通信機器等の電気製品の電源に利用される二次電池(ニッケル水素電池、リチウムイオン電池等)或いは電気二重層キャパシタ等のキャパシタは本製造方法で製造し得る蓄電装置の典型例である。
角形ケースは、少なくとも封口部材と近接する部分が溶接可能であればよく、ケースの材質は特に限定されないが、典型的には種々の金属又は合金製ケースである。例えば、ニッケル等のメッキが施された鋼材、ステンレス鋼材、アルミニウム材等から成るケースが挙げられる。他方、封口部材(蓋部材)は、上記のような材質のケースと溶接可能であればよく、その材質は限定されない。ケースと同質の封口部材の採用が好ましい。
また、ケース(本体)の開口部に封口部材を配置する形態は、ケース側方から側壁厚み方向に高密度エネルギー溶接を行えればよく、種々の形態があり得る。典型的には、図5に模式的に示すように、ケース側壁4の平面的な端面上にケース外径と同じ外径の蓋状の封口部材2を載置する。これにより、封口部材2とケース側壁4(即ち開口部周囲を構成する端面)との間にケース側方から容易に溶接可能な平面的な境界部6が形成される。なお、図中の符号1の矢印は該境界部6に照射する高密度エネルギー(レーザ等)を示しており、符号8の点線は該エネルギー照射によって境界部分6に形成される溶接ビード(溶け込み領域)を模式的に示している。
或いは、図6に模式的に示すように、封口部材3の下面外周部に段部3aを形成し、該段部3aにケース側壁4の端部を係合させつつ封口部材2をケース側壁4上に載置してもよい。この形態によっても、封口部材3とケース側壁4との間に平面的な境界部7が形成される。また、この形態では、段部3aの形成によって封口部材3を配置する際の位置決めが容易となる。
また、ケース側壁4の平面的な端面上に、溶接可能な程度にわずかにケース外形より大きな外径の蓋状の封口部材2を載置してもよい。
ここで開示される方法に適用される高密度エネルギー溶接手段としては、照射エネルギーの出力量(パワー)を容易に調節し得る手段が好ましい。種々のレーザ溶接法、電子ビーム溶接法が挙げられる。特に、大気中で溶接可能である、固定冶具が簡単である、等の観点から、YAGレーザ、COレーザ等を熱源とするレーザ溶接が好ましい。これらレーザ溶接によると、レーザ発振器の出力(電源部からの電力)をコントロールすることによって容易に照射エネルギー(パワー)の出力調節を行うことができる。使用するレーザとしては、パルス波レーザ(PWレーザ)が一般的であるが、深い溶け込みを実現するために、パルス波レーザと連続波レーザ(CWレーザ、例えば半導体レーザ)とを組み合わせたいわゆるハイブリッドレーザ溶接を採用することが好ましい。
角形ケースと封口部材との溶接は、高密度エネルギー溶接に一般的に使用される溶接装置を用いて行うことができる。例えば、レーザ溶接を行う場合、適当な電源と、YAGレーザ等を出力するレーザ発振器と、ミラー、光ファイバー等から成る光路と、該光路を介してレーザ発振器から供給されたレーザ光を集光するレンズ等を備えた集光器(レーザ発射端末)とを備えたレーザ発射装置と、該発射端末から放射されたレーザを被溶接材料(ワーク)の所定部位に照射するための試料台(典型的には水平方向及び/又は鉛直方向に可動し得る試料台であるXYステージ又はXYZステージ)とを備えるレーザ溶接装置が使用される。
具体的には、試料台上に設けてある適当なワーク固定用冶具によって、封口部材がケース開口部上に正しく配置された状態の角形ケースをケース側方からレーザが照射されるように試料台上に固定する。そして、該ケース側壁と封口部材との境界部分に焦点を合わせつつレーザを照射して溶接を行う。このとき、試料台及び/又は集光器(レーザ発射端末)を適宜移動させることによって、焦点を合わせつつレーザ照射位置を境界線に沿って移動させ、ケース全周に亘って溶接することができる。ここで開示される方法では、少なくとも長辺側壁と封口部材との境界部のほぼ中央部分における溶け込み深さが相対的に深く、該境界線の両端付近(即ちケースの角部付近)における溶け込み深さが相対的に浅くなるようにレーザ出力を調節する。中央部肉厚型ケースを用いる場合、側壁の厚みに対応させて該側壁厚み方向の溶け込み深さを変化させつつ角形ケース本体に封口部材を溶接する。これにより、耐圧性に優れる密閉ケース(蓄電装置)を製造することができる。
好ましくは、試料台又は集光器(レーザ射出端末)を直線的に動かして、ケース開口部周囲の側壁ごと(即ち角形ケースの一側面ごと)に一方の端部(角部)から他方の端部(角部)へとほぼ一定の速度で高密度エネルギー照射位置(例えばレーザ照射位置)を直線的に移動させながら溶接を行うと効率がよい。この場合、レーザ照射位置の移動距離(即ちレーザ集光器又は試料台(ステージ)の移動距離)に応じてレーザ出力をコントロールするとよい。これにより、効率よく、ケース全周に亘るケース本体と封口部材との溶接が行われるとともに、部位毎に溶け込み深さを異ならせることを容易に行うことができる。
以下、本発明に関する好適な実施例を図面を参照しつつ説明するが、本発明をかかる図面に示すものに限定することを意図したものではない。
図1は、本実施例に係る蓄電装置である密閉型ニッケル水素二次電池10の外観を模式的に示したものである。この電池10は、大まかにいって、電極体ユニット30を収容するための開口部26が形成された角形ケース20(Niメッキ鋼板)と、該ケース20に収容される電極体ユニット30と、該ケース24の開口部26上に載置される直方体蓋状の封口部材12(Niメッキ鋼板)とを備えている。電極体ユニット30は、一般的なニッケル水素電池と同様の蓄電要素であり、ニッケル水酸化物等から成る正極、水素吸蔵合金等から成る負極及びセパレータを備えている。また、典型的には、ケース20内には電極体ユニット30とともに適当な電解質(本実施例では水酸化カリウムを主体とするアルカリ水溶液)が注入される。
角形ケース20は、外面がフラットな直方体形状のケースであり、矩形状のケース開口部26の周縁を計4つの側壁22,24が構成している。即ち、開口部26周縁の長辺に対応する横幅の長い一対の側壁(長辺側壁)24と開口部26周縁の短辺に対応する横幅の短い一対の側壁(短辺側壁)22とを有する。一例にすぎないが本実施例の角形ケース20は、長辺側壁24の横幅が85mm、短辺側壁22の横幅が30mm、ケース底面から開口部までの高さが100mmの直方体形状のケースである。
図1及び後述する図4に示すように、このケース20は上述した中央部肉厚型ケースである。即ち、長辺側壁24の開口部断面の厚みは一定ではなく、開口部26の上方からみて、中央部分が厚く両端にいくほど薄くなる丘陵状に肉厚が変化している。本実施例では、0.3〜0.4mmの範囲で肉厚が異なる。例えば、側壁24の開口部断面の中央部分が0.36〜0.37mmの肉厚であり、もっとも薄い角部(コーナー部)及びその近傍の肉厚が0.34〜0.35mmである。このような肉厚変化により、本実施例に係るケース20は、開口部26が密閉された後の内圧上昇時にも長辺側壁24の幅方向中央部分が変形し難い高耐圧性のケースである。なお、図1では、本ケース20が中央部肉厚型ケースであることを模式的に示すために側壁22,24の肉厚及びその変化を誇張して描いているが実際にはこのように肉眼で判別できるものではない。なお、短辺側壁22の厚みはほぼ一定(約0.35mm)である。
他方、上記ケース20に対応する封口部材12は、ケース20の外径と同じ外径及び形状の直方体形状(概ね85mm×30mm×2mm)の蓋部材であり、図1に示すように角部を揃えてケース開口部26の周縁の側面22,24の平面的な端面(開口部断面)22a,24a上に配置される。なお、図示されるように、この封口部材12には、電極体ユニット30の正極(図示せず)と電気的に接続する正極端子11が封口部材12本体とは絶縁した状態で設けられている。なお、ケース20本体は本実施例に係る電池10の負極端子を構成する。
而して、かかる構成のケース20と封口部材12とを、図2に模式的に示すような一般的な構成のレーザ溶接装置50を用いて溶接することによって密閉型蓄電装置(ここではニッケル水素電池)を製造することができる。
即ち、図2に示す溶接装置50は、熱源としてパルス発振式のYAGレーザ発振器及びCW半導体レーザ発振器を備えたいわゆるハイブリッドレーザを被溶接材料に照射する装置であり、大まかにいって、該レーザ発振器と適当な光路及び集光器を備えたレーザ発射装置52と、被溶接材料(ワーク)を固定する試料台であるXYZステージ54と、該レーザ発振器の出力及びXYZステージ54の移動を共に制御し得る制御部(マイコン部)51とを備えている。
具体的には、角形ケース20の開口部26上に封口部材12を配置した状態の被溶接材料をXYZステージ54上の図示しない固定冶具に固定し、該固定された状態のケース20の一側面(図2では一方の長辺側壁24)と封口部材12との境界部分にレーザ焦点が合うようにしてYAGパルスレーザとCWレーザとのハイブリッドレーザLを照射する。このとき、図2及び図3の1に示すように、制御部51からの駆動信号によってXYZステージ54を所定の一方向のみ(例えばX軸方向のみ)に直線的に等速で移動させ、当該長辺側面24と封口部材12との境界線に沿ってレーザ照射位置(即ち溶接部位)を一方の端部(角部)から他方の端部(角部)まで等速で移動させる。レーザ照射が一方の端部(角部)から他方の端部(角部)までその照射位置が等速で移動しながら行われる限り、かかるレーザ照射の開始点及び停止点をケース20から外れた場所に設定しておいてもよい。以上の操作により、当該長辺側面24と封口部材12との境界についての溶接が完了する。
次に、図3の2に示すように、XYZステージ54上でケース20及び封口部材12の向きを90°変えて固定し直し、新たにレーザ照射面とされた一側面(ここでは一方の短辺側壁22)と封口部材12との境界部分にレーザ照射位置及びレーザ焦点が合うようにXYZステージ54を適宜移動させ、次いで上述のようにして、当該短辺側面22と封口部材12との境界線に沿ってレーザ照射位置(溶接部位)を一方の端部(角部)から他方の端部(角部)まで移動させ、当該短辺側面22と封口部材12との境界についての溶接を行う。
以下、同様に、XYZステージ54上でケース20及び封口部材12の向きを90°変えることと、レーザ照射位置及びレーザ焦点を合わせるためにXYZステージ54を適宜移動させることとを行いながら、図3の3及び4に示すように、他の二つの側面(即ち残りの長辺側壁24及び短辺側壁22)についても封口部材12との境界線に沿ってレーザ照射位置(溶接部位)を一方の端部(角部)から他方の端部(角部)まで等速で移動させて溶接を行う。以上のようにして、直方体形状のケース20及び封口部材12の4つの側面全ての溶接即ちケース20全周に亘る溶接が完了する。
以上のように、本実施例では、XYZステージ54を一方向(X軸方向)に作動させてレーザ照射位置(溶接部位)を一方の端部(角部)から他方の端部(角部)まで移動させている。これにより、ケース側方からのレーザ照射に拘わらず、レーザ焦点の調節及びレーザ照射位置の移動を正確に且つ簡便に行うことができる。
なお、XYZステージ54の移動と共に或いは移動に代えて、レーザ発射装置をステージ54上で移動させてレーザ焦点の調節及びレーザ照射位置の移動を行ってもよい。
上述した溶接プロセスの過程において、本実施例では一対の長辺側壁24の中央部分の溶け込み深さがその両端付近における溶け込み深さよりも深くなるようにエネルギー出力(ここではレーザ出力)を調節する。具体的には、長辺側壁24における厚みの増減に対応させて、当該厚みがもっとも薄い部分である一方の角部からもっとも厚い部分である中央部分までは段階的に又は連続的にレーザ出力を増大させながらレーザ溶接を行う。反対に、中央部分から他方の角部までは段階的に又は連続的にレーザ出力を減少させながらレーザ溶接を行う。このことを図4を参照しつつ説明する。
図2及び図3の1に示すように、ステージ54の所定の位置に長辺側壁24をレーザ発射装置52側に向けて配置し、該側壁24と封口部材12との境界線(以下「被溶接線」ともいう。)に沿って一方の端部(角部)から他方の端部(角部)まで所定の速度(例えば45mm/秒)でレーザ照射位置が移動するようにステージ54を所定方向(例えばX軸方向)に移動させる。このとき、長辺側壁24の肉厚の変化に対応させて予め制御部51にインプットしておいた出力プログラムに基づいて、レーザ照射位置の移動距離(即ちケース長辺側壁24の一方の角部を距離D0としたときの被溶接線に沿った移動距離Dx)に応じてレーザ出力値をコントロールする。
即ち、本レーザ溶接装置50における最大出力値をE(例えば440W)としたとき、レーザ照射位置が一方の端部D0から角部(コーナー部)を通過したあたりの点D1(例えば端部D0から距離5mmの地点)に至るまでは出力値を0.91×E(W)から0.94×E(W)まで連続的に増大させつつレーザ照射を行う。次いで、端部付近の点D1から肉厚にほとんど変化のない点D2(例えば端部D0から距離15mmの地点)までは出力値を0.94×E(W)に維持しつつレーザ照射を行う。次いで、点D2から徐々に肉厚が増していく点D3(例えば端部D0から距離30mmの地点)までは出力値を0.94×E(W)から0.99×E(W)まで連続的に増大させつつレーザ照射を行う。次いで、D3から肉厚にほとんど変化のない点D4(例えば端部D0から距離36mmの地点)までは出力値を0.99×E(W)に維持しつつレーザ照射を行う。次いで、点D4からさらに肉厚が増していく点D5(例えば端部D0から距離40mmの地点)までは出力値を0.99×E(W)から1.00×E(W)まで連続的に増大させつつレーザ照射を行う。次いで、被溶接線において肉厚がもっとも厚い中央部分である点D5から点D6(例えば端部D0から距離45mmの地点)に至るまでは出力値を1.00×E(W)に維持しつつレーザ照射を行う。次いで、点D6から徐々に肉厚が減っていく点D7(例えば端部D0から距離49mmの地点)までは出力値を1.00×E(W)から0.99×E(W)まで連続的に減少させつつレーザ照射を行う。次いで、点D7から肉厚にほとんど変化のない点D8(例えば端部D0から距離55mmの地点)までは出力値を0.99×E(W)に維持しつつレーザ照射を行う。次いで、点D8から徐々に肉厚が減っていく点D9(例えば端部D0から距離70mmの地点)までは出力値を0.99×E(W)から0.94×E(W)まで連続的に減少させつつレーザ照射を行う。次いで、点D9から端部付近の肉厚にほとんど変化のない点D10(例えば端部D0から距離80mmの地点)までは出力値を0.94×E(W)に維持しつつレーザ照射を行う。最後に、点D10から角部(コーナー部)を経て他方の端部D11に至るまでは出力値を0.94×E(W)から0.91×E(W)まで連続的に減少させつつレーザ照射を行う。
かかるレーザ出力値の調節によって、図4の下段に示すように、側壁24の肉厚の増減に対応して溶け込み深さが増減された溶接ビード(溶け込み領域)40,42,44,46が該側壁24と封口部材12との境界に形成される。本実施例では、溶接ビード40,42,44,46の全体に亘って側壁24の表面(レーザ照射面)から肉厚幅の約70〜90%に至る溶け込み深さが実現されている。
本実施例では、上述のとおり、レーザ出力値の調節によって溶け込み深さを異ならせており、YAGレーザのパルスの発射間隔は一定である。このため、図4に示すように、本実施例の方法によって製造される蓄電装置の密閉ケースは、その溶接部の断面からみてパルス間隔が一定であることを反映した波形の溶接ビード40,42,44,46が認められることを特徴とする。
以上のように、長辺側壁24の厚みの増減に対応させてレーザ出力(エネルギー)値を増減させることによって、密閉された後の内圧上昇時におけるケース20(特に溶接部)の耐圧性を向上させることができる。また、本実施例のようにレーザ照射位置を被溶接線に沿って直線的に移動させると共に所定位置でレーザ出力を適宜増減して溶接強度(即ち溶け込み深さ)を調節する手段によると、特別な装置を用いずに上記耐圧性向上に寄与する高密度エネルギー溶接を容易且つ効率的に行うことができる。
また、長辺側壁24の厚みの増減に対応させてレーザ出力(エネルギー)値を増減させることによって、厚みの増減に拘わらず長辺側壁の全体に亘って熱効率を同等に保ち、溶接不良の発生を低減又は防止することができる。
また、本実施例のように、特に角部(即ち図4に示すD0からD1までの区間及びD10からD11迄の区間)においてレーザ出力を下げることによって、長辺側壁24面からのレーザ照射と短辺側壁22面からのレーザ照射とが重なり合う角部(コーナー部)における溶接不良の発生を低減又は防止することができる。
なお、本実施例では、短辺側壁22の厚みは一定であるが、上記角部(コーナー部)における溶接不良の発生を低減又は防止するという観点から、短辺側壁22中央部分よりも角部におけるレーザ出力値を長辺側壁24の場合と同様に下げることが好ましい。例えば、上述の図4に示すD0からD1に至る出力コントロール、次いでD1(D9)からD2(D10)に至る出力コントロール、次いでD10からD11に至る出力コントロールを、短辺側壁22と封口部材12との境界の溶接プロセスについても適用するとよい。
以上、本発明の好適な実施形態を実施例を中心に詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した態様を様々に変形、変更したものが含まれる。例えば、上記実施例の角形ケースは直方体形状のものであるが、少なくとも多角形ケース開口部の周縁を構成する側壁の開口部断面の外面側が直線状であり、該開口部の周囲を枠状に構成する複数の側壁を有する角形ケースであればよく、直方体や立方体形状のケースに限定されない。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
本発明の一実施例に係る蓄電装置(ニッケル水素二次電池)の構成を模式的に示す斜視図である。 本発明の実施に好適なレーザ溶接装置の一例を模式的に示すブロック図である。 本発明の一実施例に係る溶接プロセスを模式的に示す説明図である。 本発明の一実施例に係る溶接プロセスで採用されたレーザ出力(エネルギー量)調節の態様を示すグラフ及び該コントロールによって形成される溶接ビードの形態を模式的に示す説明図である。 ケース上に封口部材を配置する一形態を説明する部分断面図である。 ケース上に封口部材を配置する他の一形態を説明する部分断面図である。
符号の説明
2,3,12 封口部材(蓋部材)
4,22,24 側壁
8,40,42,44,46 溶接ビード
10 蓄電装置(ニッケル水素二次電池)
20 角形ケース
26 開口部
30 電極体ユニット
50 レーザ溶接装置
51 制御部
52 レーザ発射装置
54 XYZステージ

Claims (5)

  1. 電極体ユニットが内部に収容された角形ケースの開口部を封口部材で封口することにより密閉する密閉型蓄電装置を製造する方法であって、
    以下の特徴:
    (1)前記開口部の周縁を構成する側壁の開口部断面の外面側は直線状である;及び
    (2)その開口部の周縁を構成する側壁のなかで少なくとも前記直線状外面の長さが最長である側壁の開口部断面は、該断面の中央部分の厚みがその両端よりも厚い;
    を備えた角形ケースを用意する工程と、
    前記開口部を封口する位置に該開口部を塞ぎ得る大きさの封口部材を配置する工程と、
    前記封口部材と前記開口部周縁の側壁との境界部に、前記ケースの側方から高密度エネルギーを照射することにより、該側壁の厚みに対応させて該側壁厚み方向の溶け込み深さを変化させつつ該ケースに封口部材を溶接する工程と、
    を包含する密閉型蓄電装置製造方法。
  2. 前記溶接工程において、前記封口部材が前記封口位置に配置された状態の角形ケースを少なくとも水平方向に移動可能な試料台上に固定し、前記試料台を動かして前記境界部の一方の端部から他方の端部へ高密度エネルギー照射位置をほぼ一定の速度で直線的に移動させることを各側壁について繰り返す溶接が行われる、請求項1に記載の製造方法。
  3. 前記溶接工程において、前記開口部の周縁を構成する側壁のなかで少なくとも前記直線状外面の長さが最長である側壁と封口部材との境界部においては、該側壁の厚みに対応させてエネルギー出力を変化させる溶接が行われる、請求項1又は2に記載の製造方法。
  4. 前記高密度エネルギー照射は、パルス波レーザと連続波レーザとを組み合わせたハイブリッドレーザを用いて行う、請求項1〜3のいずれかに記載の製造方法。
  5. 電極体ユニットが内部に収容された角形ケースの開口部を封口部材で封口することにより密閉された密閉型蓄電装置であって、
    以下の特徴:
    (1)前記開口部の周縁を構成する側壁の開口部断面の外面側は直線状である;及び
    (2)その開口部の周縁を構成する側壁のなかで少なくとも前記直線状外面の長さが最長である側壁の開口部断面は、該断面の中央部分の厚みがその両端よりも厚い;
    を備えた角形ケースと、
    前記開口部を封口する位置に配置された封口部材と、
    前記封口部材と前記開口部周縁の側壁との境界部に形成された溶接部であって、前記ケースの側方から高密度エネルギーが照射されたときに形成された溶け込み領域を有する溶接部と、
    を備えており、
    前記溶け込み領域の前記側壁厚み方向への深さが前記側壁の厚みに対応して変化していることを特徴とする、密閉型蓄電装置。
JP2005074837A 2005-03-16 2005-03-16 密閉型蓄電装置及びその製造方法 Active JP4929606B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005074837A JP4929606B2 (ja) 2005-03-16 2005-03-16 密閉型蓄電装置及びその製造方法
US11/376,314 US20060207085A1 (en) 2005-03-16 2006-03-16 Battery and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074837A JP4929606B2 (ja) 2005-03-16 2005-03-16 密閉型蓄電装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2006260883A true JP2006260883A (ja) 2006-09-28
JP4929606B2 JP4929606B2 (ja) 2012-05-09

Family

ID=37008778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074837A Active JP4929606B2 (ja) 2005-03-16 2005-03-16 密閉型蓄電装置及びその製造方法

Country Status (2)

Country Link
US (1) US20060207085A1 (ja)
JP (1) JP4929606B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014068A1 (ja) * 2007-07-23 2009-01-29 Toyota Jidosha Kabushiki Kaisha 電池ケース及び封口板を備える電池
JP2010027521A (ja) * 2008-07-23 2010-02-04 Toyota Motor Corp 密閉型電池
WO2010146700A1 (ja) * 2009-06-19 2010-12-23 トヨタ自動車株式会社 密閉型電池及びその電池ケース
JP2010287457A (ja) * 2009-06-12 2010-12-24 Toyota Motor Corp 密閉型電池
JP2012146433A (ja) * 2011-01-11 2012-08-02 Toyota Motor Corp 電池及び電池の製造方法
US8304106B2 (en) 2006-12-27 2012-11-06 Sanyo Electric Co., Ltd. Hermetic cell and method for producing same
JP2012234626A (ja) * 2011-04-28 2012-11-29 Mitsubishi Heavy Ind Ltd 電池
JP2013143332A (ja) * 2012-01-12 2013-07-22 Toyota Motor Corp 電池
JP2015138701A (ja) * 2014-01-23 2015-07-30 株式会社東芝 電池及び電池の製造方法
JP2016009560A (ja) * 2014-06-24 2016-01-18 株式会社豊田自動織機 電池用ケース
JP2016143515A (ja) * 2015-01-30 2016-08-08 株式会社豊田自動織機 蓄電装置及び蓄電装置モジュール
JP2017054823A (ja) * 2016-11-14 2017-03-16 三菱自動車工業株式会社 二次電池
US9608239B2 (en) 2012-06-28 2017-03-28 Toyota Jidosha Kabushiki Kaisha Battery and method for producing the battery
US11407064B2 (en) 2016-07-14 2022-08-09 Gs Yuasa International Ltd. Energy storage device and method of manufacturing energy storage device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259558B2 (ja) 2006-09-26 2009-04-30 トヨタ自動車株式会社 電池及び電池の製造方法
JP5105944B2 (ja) * 2007-04-16 2012-12-26 パナソニック株式会社 レーザ装置
WO2013132673A1 (ja) * 2012-03-05 2013-09-12 新日鉄住金マテリアルズ株式会社 樹脂金属複合シール容器及びその製造方法
US20150183058A1 (en) * 2012-06-12 2015-07-02 Toyota Jidosha Kabushiki Kaisha Welding device, welding method, and method for producing battery (as amended)
JP2014010916A (ja) * 2012-06-27 2014-01-20 Sharp Corp 二次電池
CN114552098B (zh) * 2020-11-24 2024-05-07 比亚迪股份有限公司 电池壳及其制备方法
CN113346167B (zh) * 2021-06-04 2024-02-02 中创新航科技股份有限公司 电池盖板的焊接方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315788A (ja) * 1995-03-15 1996-11-29 Nippondenso Co Ltd 角形電池の製造方法
JPH10156565A (ja) * 1996-11-22 1998-06-16 Toshiba Corp 溶接方法、電池容器の製造方法及び電池容器
JPH10202380A (ja) * 1997-01-20 1998-08-04 Toshiba Corp レ−ザ溶接方法および二次電池容器の製法
JPH1190657A (ja) * 1997-09-24 1999-04-06 Denso Corp 角形耐圧ケ−ス及びその溶接方法
JP2004337881A (ja) * 2003-05-13 2004-12-02 Matsushita Electric Ind Co Ltd レーザ加工方法およびレーザ加工装置
JP2005026040A (ja) * 2003-07-01 2005-01-27 Matsushita Electric Ind Co Ltd 角形電池とその製造方法
JP2005040853A (ja) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd レーザ溶接方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372897A (en) * 1992-07-24 1994-12-13 Toshiba Battery Co., Ltd. Rectangular nickel-metal hydride secondary cell
US5879416A (en) * 1995-03-13 1999-03-09 Nippondenso Co., Ltd. Method of manufacturing battery having polygonal case
US6451474B1 (en) * 1998-09-11 2002-09-17 Matsushita Electric Industrial Co., Ltd. Resiliently deformable battery pack
US7435395B2 (en) * 2003-01-03 2008-10-14 The Gillette Company Alkaline cell with flat housing and nickel oxyhydroxide cathode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315788A (ja) * 1995-03-15 1996-11-29 Nippondenso Co Ltd 角形電池の製造方法
JPH10156565A (ja) * 1996-11-22 1998-06-16 Toshiba Corp 溶接方法、電池容器の製造方法及び電池容器
JPH10202380A (ja) * 1997-01-20 1998-08-04 Toshiba Corp レ−ザ溶接方法および二次電池容器の製法
JPH1190657A (ja) * 1997-09-24 1999-04-06 Denso Corp 角形耐圧ケ−ス及びその溶接方法
JP2004337881A (ja) * 2003-05-13 2004-12-02 Matsushita Electric Ind Co Ltd レーザ加工方法およびレーザ加工装置
JP2005026040A (ja) * 2003-07-01 2005-01-27 Matsushita Electric Ind Co Ltd 角形電池とその製造方法
JP2005040853A (ja) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd レーザ溶接方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304106B2 (en) 2006-12-27 2012-11-06 Sanyo Electric Co., Ltd. Hermetic cell and method for producing same
JP2009026707A (ja) * 2007-07-23 2009-02-05 Toyota Motor Corp 電池ケース及び封口板を備える電池
US8431269B2 (en) 2007-07-23 2013-04-30 Toyota Jidosha Kabushiki Kaisha Battery including battery case and sealing plate
WO2009014068A1 (ja) * 2007-07-23 2009-01-29 Toyota Jidosha Kabushiki Kaisha 電池ケース及び封口板を備える電池
JP2010027521A (ja) * 2008-07-23 2010-02-04 Toyota Motor Corp 密閉型電池
JP2010287457A (ja) * 2009-06-12 2010-12-24 Toyota Motor Corp 密閉型電池
WO2010146700A1 (ja) * 2009-06-19 2010-12-23 トヨタ自動車株式会社 密閉型電池及びその電池ケース
JP2012146433A (ja) * 2011-01-11 2012-08-02 Toyota Motor Corp 電池及び電池の製造方法
JP2012234626A (ja) * 2011-04-28 2012-11-29 Mitsubishi Heavy Ind Ltd 電池
JP2013143332A (ja) * 2012-01-12 2013-07-22 Toyota Motor Corp 電池
US9608239B2 (en) 2012-06-28 2017-03-28 Toyota Jidosha Kabushiki Kaisha Battery and method for producing the battery
JP2015138701A (ja) * 2014-01-23 2015-07-30 株式会社東芝 電池及び電池の製造方法
JP2016009560A (ja) * 2014-06-24 2016-01-18 株式会社豊田自動織機 電池用ケース
JP2016143515A (ja) * 2015-01-30 2016-08-08 株式会社豊田自動織機 蓄電装置及び蓄電装置モジュール
US11407064B2 (en) 2016-07-14 2022-08-09 Gs Yuasa International Ltd. Energy storage device and method of manufacturing energy storage device
JP2017054823A (ja) * 2016-11-14 2017-03-16 三菱自動車工業株式会社 二次電池

Also Published As

Publication number Publication date
JP4929606B2 (ja) 2012-05-09
US20060207085A1 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4929606B2 (ja) 密閉型蓄電装置及びその製造方法
KR100300499B1 (ko) 각형밀폐전지및그제조방법
JP6264431B2 (ja) 蓄電デバイス
CN101952997B (zh) 密闭型二次电池及其制造方法
KR101930995B1 (ko) 바닥이 있는 각형의 전지 용기의 제조 방법
JP3594555B2 (ja) 密閉式電池の製造方法及び密閉式電池
EP2859986A1 (en) Welding device, welding method, and method for producing cell
JP6024092B2 (ja) 金属容器の製造方法、金属容器、蓄電素子及び蓄電モジュール
JP2000268781A (ja) 密閉式電池用封口板、密閉式電池及びその製造方法
JP2015030011A (ja) レーザ接合方法、密閉電池の製造方法、レーザ接合装置および密閉電池
US11338389B2 (en) Battery case sealing method and a sealed battery manufacturing method
JP2012094358A (ja) 金属製の有底又は密閉容器の製造方法
EP0969534A1 (en) Method of manufacturing a rectangular battery
JP2010097770A (ja) 電池筐体、二次電池及び二次電池の製造方法
JP2008084803A (ja) 密閉型電池の製造方法
JP2011077501A (ja) 電気化学セル及びその製造方法
JPH08315788A (ja) 角形電池の製造方法
JPH1190657A (ja) 角形耐圧ケ−ス及びその溶接方法
JP2017191689A (ja) 蓄電素子の製造方法及び製造装置
KR20180065206A (ko) 레이저 용접성이 향상된 레이저 용접 지그
WO2017122572A1 (ja) 蓄電デバイス及びその製造方法
JP6683066B2 (ja) 電極溶接方法
JP2018037296A (ja) 二次電池用電極の製造方法、及び二次電池の製造方法
JP2024516692A (ja) レーザー溶接が適用された円筒形二次電池とその製造方法、このような二次電池を含むバッテリーパック及び自動車
KR20240048210A (ko) 이차전지 제조장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R151 Written notification of patent or utility model registration

Ref document number: 4929606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3