JP2006210236A - 酸化物超電導線材の製造方法及び製造装置 - Google Patents

酸化物超電導線材の製造方法及び製造装置 Download PDF

Info

Publication number
JP2006210236A
JP2006210236A JP2005022962A JP2005022962A JP2006210236A JP 2006210236 A JP2006210236 A JP 2006210236A JP 2005022962 A JP2005022962 A JP 2005022962A JP 2005022962 A JP2005022962 A JP 2005022962A JP 2006210236 A JP2006210236 A JP 2006210236A
Authority
JP
Japan
Prior art keywords
target
window hole
oxide superconductor
base material
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005022962A
Other languages
English (en)
Other versions
JP4593300B2 (ja
Inventor
Yasunori Sudo
泰範 須藤
Kazutomi Kakimoto
一臣 柿本
Yasuhiro Iijima
康裕 飯島
Takashi Saito
隆 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005022962A priority Critical patent/JP4593300B2/ja
Publication of JP2006210236A publication Critical patent/JP2006210236A/ja
Application granted granted Critical
Publication of JP4593300B2 publication Critical patent/JP4593300B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

【課題】 超電導特性に優れた酸化物超電導線材を安定して製造可能な製造方法及び製造装置の提供。
【解決手段】 レーザ光25が入射される透明窓24を有する処理容器10と、該処理容器の蒸着処理室10a内に設けられた酸化物超電導体または酸化物超電導体と近似組成のターゲット12と、蒸着処理室内にターゲットと対向して設けられたテープ基材加熱用の熱板28と、該熱板上にテープ基材11をその長手方向に沿って移動させる送出装置18及び巻取装置19と、熱板とターゲットの間に窓孔が位置するように設けられたスリット板27と、透明窓を通してターゲットに向けてレーザ光を照射するレーザ発光装置とを備え、スリット板の窓孔周縁部に、窓孔周縁部により覆われる熱板の局部昇温を防いでテープ基材の表面温度分布を均一に維持する冷却手段を設けたことを特徴とする酸化物超電導体の製造装置。
【選択図】 図1

Description

本発明は、酸化物超電導線材の製造方法及び製造装置に関する。
近年になって発見されたY系の酸化物超電導体は、ピン止め力が高温まで持続し、液体窒素温度(77K)での磁場中での応用に有効であることが知られているが、現在、この種の酸化物超電導体を実用的な超電導体として使用するためには、種々の解決するべき問題点が存在している。その問題点の1つが、強磁場中で酸化物超電導体の臨界電流密度が減少するという問題である。
前記強磁場中で酸化物超電導体の臨界電流密度が減少するという問題は、酸化物超電導体の結晶自体に電気的な異方性が存在することが大きな原因となっており、特に酸化物超電導体はその結晶軸のa軸方向とb軸方向には電気を流し易いが、c軸方向には電気を流しにくいことが知られている。このような観点から酸化物超電導体を基材上に形成してこれを超電導体として使用するためには、基材上に結晶配向性の良好な状態の酸化物超電導体を形成し、しかも、電気を流そうとする方向に酸化物超電導体の結晶のa軸あるいはb軸を配向させ、その他の方向に酸化物超電導体のc軸を配向させる必要がある。
ところで、酸化物超電導体を導電体として使用するためには、テープ状などの長尺の基材上に結晶配向性の良好な超電導層を形成する必要がある。ところが、金属テープなどの基材上に超電導層を直接形成すると、金属テープ自体が多結晶体でその結晶構造も酸化物超電導体と大きく異なるために、結晶配向性の良好な超電導層は到底形成できないものである。しかも、超電導層を形成する際に行なう熱処理によって金属テープと超電導層との間で拡散反応が生じるために、超電導層の結晶構造が崩れ、超電導特性が劣化する問題がある。
そこで本発明者らは、図4に示すようなNi基耐熱合金ハステロイテープなどの金属テープからなる長尺のテープ状の基材1の上にイットリア安定化ジルコニア(YSZ)などの多結晶中間薄膜2を形成し、この多結晶中間薄膜2上に、酸化物超電導体の中でも臨界温度が約90Kであり、液体窒素(77K)中で用いることができる安定性に優れたYBaCuO系の超電導層3を形成することで超電導特性の優れた酸化物超電導線材5を製造する試みを種々行なっている(例えば、特許文献1〜4参照。)。
これらの従来技術によれば、ハステロイテープなどの金属テープの基材上にスパッタ装置により多結晶中間薄膜を形成する際に、スパッタリングと同時に基材成膜面の斜め方向からイオンビームを照射しながら多結晶中間薄膜を成膜するイオンビームアシスト法(以下、IBAD法と記す。)により、結晶配向性に優れた多結晶中間薄膜を形成することができるものである。このIBAD法によれば、多結晶中間薄膜を形成する多数の結晶粒のそれぞれの結晶格子のa軸あるいはb軸で形成する粒界傾角を30度以下に揃えることができ、結晶配向性に優れた多結晶中間薄膜を形成することができる。そして更に、この配向性に優れた中間薄膜上にYBaCuO系の超電導層をスパッタリング法、あるいはレーザ蒸着法などの物理蒸着法などの成膜法により成膜するならば、超電導層の結晶配向性も良好なものになり、これにより、臨界電流密度が高い酸化物超電導線材を形成することができる。
図5に、従来のレーザ蒸着装置の一例を示した。このレーザ蒸着装置は、内部を真空排気自在に構成された処理容器10を有し、この処理容器10の内部の蒸着処理室10aの下部側に長尺のテープ状の基材表面に多結晶中間薄膜を成膜してなる超電導層形成用の基材11(以下、テープ基材と記す。)が設けられ、該テープ基材11の上方側には酸化物超電導体または酸化物超電導体と近似組成のターゲット12が設けられる一方、処理容器10の外部には前記ターゲット12表面にレーザ光25を照射して粒子の噴流(以下、プルームと記す。)13を発生させるためのレーザ発光装置14が設けられている。
前記処理容器10は排気孔10bを介して図示略の真空排気装置に接続されて内部を真空排気できるようになっている。前記ターゲット12は、板状のものであり、その下面がテープ基材11上面と平行に向き合うようにターゲットホルダ12aによって支持されている。また、テープ基材11とターゲット12の間には、窓孔15aを有するスリット板15が配設され、ターゲット12からテープ基材11に向けて移動する粒子のうち窓孔15aを通過した粒子のみを選択的にテープ基材11上に堆積させることができるようになっている。このスリット板15の横幅(テープ状の基材1の幅方向に沿うスリット板15の幅)は、図6に示すように、ターゲット12側からテープ基材11を隠すことができるようにテープ基材11の幅よりも大きく形成されている。窓孔15aの横幅(テープ状の基材1の幅方向に沿う窓孔15aの幅)は、基材1の幅と同程度あるいは若干広い程度であり、縦幅W1(テープ基材11の長さ方向に沿う窓孔15aの幅)は、約20〜80mm程度である。
例えば縦幅W1が35mmの場合、このような窓孔15aを有するスリット板15は、図6に示すように、ターゲット12からテープ基材11に向けて移動するプルーム13の中心線Gが窓孔15aの中心を通るように、すなわちプルーム13の中心線Gと窓孔15のテープ基材11の移動方向に対して上流側の端面16との距離Lが17.5mm程度、かつプルーム13の中心線Gと前記窓孔15aのテープ基材11の移動方向に対して下流側の端面17との距離Lが17.5mm程度となるようにテープ基材11とターゲット12との間に配設される。
前記テープ基材11の下方側には、送出装置18と、巻取装置19がそれぞれ離間して設けられ、送出装置18からテープ基材11を送り出し、巻取装置19で巻き取ることができるとともに、テープ基材11をターゲット12の下方で水平移動できるようになっている。これら送出装置18と、巻取装置19との間にはテープ基材11を加熱するための加熱ヒータ20が設けられている。前記レーザ発光装置14と処理容器10との間には、第1反射鏡21と集光レンズ22と第2反射鏡23が設けられ、レーザ発光装置14が発生させたレーザ光25を処理容器10の側壁に取り付けられた透明窓24を介してターゲット12に集光照射できるようになっている。また、従来のレーザ蒸着装置においては、テープ基材11上に粒子を堆積させる際、テープ基材11の表面温度を一定にするために、前記加熱ヒータ20に一定出力が投入されるようになっているか、あるいは加熱ヒータ20とテープ基材11との間の隙間部Aの温度を測定するための熱電対(T.C.)20aが隙間部Aに配設され、さらに熱電対(T.C.)20aで測定された測定値に基づいて隙間部Aの温度が一定となるように前記加熱ヒータ20に投入する出力を変更する制御部(図示略)が備えられている。
前記構成のレーザ蒸着装置を用いてテープ基材11上に超電導層を形成するには、レーザ発光装置14からレーザ光25を射出し、第1反射鏡21と集光レンズ22と第2反射鏡23と透明窓24を介してレーザ光25をターゲット12に照射する。一方、多結晶中間薄膜2が形成されたテープ基材11を多結晶中間薄膜側の面を上にして送出装置18から所定速度で順次送り出して巻取装置19に巻取り、テープ基材11をターゲット12の下方を水平移動させるとともに加熱ヒータ20を作動させてテープ基材11を加熱する。ここでの加熱の際、加熱ヒータ20に一定出力を投入するか、あるいは前記熱電対20aで隙間部Aの温度を測定し、この測定値に基づいて前記制御部で加熱ヒータ20の出力を変更する。
このようにすると、レーザ光25が照射されたターゲット12は表面部分がえぐり取られるか蒸発されて構成粒子が叩き出され、その粒子のうち窓孔15aを通過した粒子がテープ基材11の多結晶中間薄膜2上に堆積されると同時に加熱ヒータ20により熱処理される。以上の操作によってテープ基材11の上面に順次粒子を堆積させ、テープ基材11上にYBaCu系(YBCO)などの酸化物超電導体からなる超電導層を形成することで、図4に示すような酸化物超電導線材5を得ることができる。
YBCOなどの銅酸化物超電導体は、銅−酸素平面に超電導電流が流れるため、銅−酸素平面がつながるようにc軸配向した膜を形成する必要がある。c軸配向したYBCO層を形成するには、膜形成時のテープ基材表面温度が800℃程度必要である。それ以下の温度になるとa軸配向したYBCOが形成されてしまい超電導電流のパスが途切れてしまう。また、成膜時のテープ基材表面温度が高くなりすぎると、YBCO超電導体そのものが形成できなくなってしまう。
前述した従来方法において成膜時のテープ基材表面温度を制御するために、図7(a)に示すように、スリット板15の窓孔15aに向けて膨出した曲面26aを有する熱板26をスリット板15に隣接配置し、この曲面26a上に沿わせてテープ基材11を移動させ、熱板26に内蔵された加熱ヒータによって加熱温度を調節することによって、成膜時のテープ基材表面温度を正確に制御できるようにしている。
特許第2614948号公報 特許第2721595号公報 特許第3251034号公報 特許第2996568号公報
しかしながら、図7(a)に示すように、熱板26の曲面26aにテープ基材11を接触させて成膜を行う場合、テープ基材11の表面温度が図7(b)に示すように曲面26aの両側部が中央部よりも高温になってしまうことが判明した。すなわち、図7(a)に示すように、熱板26の曲面26a側には、テープ基材11が加熱されていない部分に蒸着粒子が付着しないようにスリット板15が設けられ、その窓孔15aは熱板26の中央部に位置しており、熱板26の両側部はスリット板15によって覆われた構造になっている。この熱板26の両側部は、スリット板15で覆われているために、スリット板15により保温され、テープ基材11の表面温度が図7(b)に示すように曲面26aの両側部のほうが中央部よりも30〜40℃程度高くなってしまう。そのため、スリット板15の窓孔15aでテープ基材11上に良好な膜が形成できても、温度が高くなる部分を通過することにより、多結晶中間薄膜とYBCOからなる超電導層との界面で反応層が形成されやすくなり、得られる酸化物超電導線材の超電導特性が低下してしまう問題がある。
本発明は前記事情に鑑みてなされ、超電導特性に優れた酸化物超電導線材を安定して製造可能な製造方法及び製造装置の提供を目的とする。
前記目的を達成するため、本発明は、蒸着処理室内に設けた酸化物超電導体または酸化物超電導体と近似組成のターゲットにレーザ光を照射して前記ターゲットから発生させた粒子をスリット板の窓孔を通して、前記スリット板に隣接配置した熱板に沿わせて加熱しながら移動中のテープ基材上に順次堆積させて超電導層を形成する酸化物超電導線材の製造方法において、前記スリット板の窓孔周縁部に冷却手段を設け、前記窓孔周縁部により覆われる熱板の局部昇温を防いでテープ基材の表面温度分布を均一に維持しながら超電導層を形成することを特徴とする酸化物超電導線材の製造方法を提供する。
本発明の酸化物超電導線材の製造方法において、前記冷却手段は、前記窓孔周縁部に設けられた冷却管路に冷却媒体を流す冷却装置であることが好ましい。
また本発明は、レーザ光が入射される透明窓を有する処理容器と、該処理容器の蒸着処理室内に設けられた酸化物超電導体または酸化物超電導体と近似組成のターゲットと、前記蒸着処理室内に前記ターゲットと対向して設けられたテープ基材加熱用の熱板と、該熱板上にテープ基材をその長手方向に沿って移動させる送出装置及び巻取装置と、前記熱板と前記ターゲットの間に窓孔が位置するように設けられたスリット板と、前記透明窓を通して前記ターゲットに向けてレーザ光を照射するレーザ発光装置とを備えた酸化物超電導体の製造装置において、前記スリット板の窓孔周縁部に、該窓孔周縁部により覆われる熱板の局部昇温を防いでテープ基材の表面温度分布を均一に維持する冷却手段を設けたことを特徴とする酸化物超電導体の製造装置を提供する。
本発明の酸化物超電導体の製造装置において、前記冷却手段は、前記窓孔周縁部に設けられた冷却管路に冷却媒体を流す冷却装置であることが好ましい。
本発明によれば、スリット板の窓孔周縁部に冷却手段を設け、該周縁部に覆われる熱板の局部昇温を防いでテープ基材の表面温度分布を均一に維持しながら超電導層を形成することにより、テープ基材の表面温度分布が均一な状態で超電導層を成膜できるので、テープ基材加熱用の熱板が局部昇温することによる超電導特性の劣化を防止することができ、超電導特性が優れた均一な超電導層を有する酸化物超電導線材を製造することができる。
以下、図面を参照して本発明の実施の形態を説明する。
図1〜図3は、本発明に係る酸化物超電導体の製造装置の一実施形態であるレーザ蒸着装置を示し、図1はこのレーザ蒸着装置の構成図、図2はその要部拡大図、図3は同じレーザ蒸着装置に用いられているスリット板27の平面図である。なお、本実施形態は、図4に示すように、金属製の基材1上にIBAD法によって多結晶中間薄膜2が形成されているテープ基材11にレーザ蒸着法(パルスレーザ蒸着(PLD)法)によって酸化物超電導体からなる超電導層3を形成し、長尺テープ状の酸化物超電導線材5を製造する場合を例示している。
テープ基材11に用いられる基材1の構成材料としては、ステンレス鋼、または、ハステロイやインコネルなどのニッケル合金などの合金各種金属材料から適宜選択される長尺の金属テープ等が挙げられる。この基材1の厚みは、0.01〜0.5mm、好ましくは0.02〜0.15mmとされる。基材1の厚みが0.5mm以上では、後述する酸化物超電導体の薄膜3の膜厚に比べて厚く、オーバーオール(酸化物超電導導体全断面積)あたりの臨界電流密度としては低下してしまう。一方、基材1の厚みが0.01mm未満では、著しく基材1の強度が低下し、酸化物超電導導体4の補強効果を消失してしまう。
この基材1上に形成された多結晶中間薄膜2は、立方晶系の結晶構造を有する結晶の集合した微細な結晶粒が多数相互に結晶粒界を介して接合一体化されてなるものであり、各結晶粒の結晶軸のc軸は基材1の上面(成膜面)に対してほぼ直角に向けられ、各結晶粒の結晶軸のa軸どうしおよびb軸どうしは、互いに同一方向に向けられて面内配向されている。多結晶中間薄膜2の厚みは、0.1〜1.0μmとされる。多結晶中間薄膜2の厚みを1.0μmを超えて厚くしてももはや効果の増大は期待できず、経済的にも不利となる。一方、多結晶中間薄膜2の厚みが0.1μm未満であると、薄すぎて超電導層3を十分支持できない恐れがある。この多結晶中間薄膜2の構成材料としてはGdZr、CeO、YSZの他に、MgO、SrTiO3等を用いることができる。
酸化物超電導体からなる超電導層3は、Y1Ba2Cu3x、Y2Ba4Cu8x、Y3Ba3Cu6x、GdBa2Cu3x、YbBa2Cu3x、HoBa2Cu3xなる組成、(Bi,Pb)2Ca2Sr2Cu3x、(Bi,Pb)2Ca2Sr3Cu4xなる組成、あるいはTl2Ba2Ca2Cu3x、Tl1Ba2Ca2Cu3x、Tl1Ba2Ca3Cu4xなる組成などに代表される臨界温度の高い酸化物超電導体からなるものである。この超電導層3の厚みは、0.5〜5μm程度で、かつ均一な厚みとなっている。また、超電導層3の膜質は均一となっており、超電導層3の結晶のc軸とa軸とb軸も多結晶中間薄膜2の結晶に整合するようにエピタキシャル成長して結晶化しており、結晶配向性が優れたものとなっている。
本実施形態のレーザ蒸着装置は、レーザ光25が入射される透明窓24を有し内部の蒸着処理室10aを真空排気自在に構成された処理容器10と、該処理容器10の蒸着処理室10a内に設けられた酸化物超電導体または酸化物超電導体と近似組成のターゲット12と、蒸着処理室10a内にターゲット12に対向して設けられたテープ基材11加熱用の熱板28と、該熱板28上にテープ基材11をその長手方向に沿って移動させる送出装置18及び巻取装置19と、熱板28とターゲット12の間に窓孔27aが位置するように設けられたスリット板27と、透明窓24を通してターゲット12に向けてレーザ光25を照射するレーザ発光装置14とを備え、スリット板27の窓孔周縁部に、該窓孔周縁部により覆われる熱板28の局部昇温を防いでテープ基材11の表面温度分布を均一に維持する冷却手段の冷却管路29を設けた構成になっている。
前記処理容器10は、排気孔10bを介して図示略の真空排気装置に接続されて内部を真空排気できるようになっている。処理容器10に設けられた透明窓24は、レーザ発光装置14からのレーザ光25が、第1反射鏡21,集光レンズ22及び第2反射鏡23を介して入射され、蒸着処理室10a内に配置されたターゲット12に照射できるようになっている。このレーザ発光装置22としては、ターゲット12から構成粒子を叩き出すことができるレーザ光25を発生するものであれば、Ar−F(193nm)、Kr−F(248nm)などのエキシマレーザ、YAGレーザ、CO2レーザなどのいずれのものを用いても良い。また、レーザ光5の照射出力の調整は、レーザ発光装置14に電力を供給する増幅装置(図示略)の出力を調整することにより行うことができる。また、レーザ光25の照射周波数は、1秒間当たりに間欠的に発振されるレーザのパルスの数を示すものであり、この調整は、レーザ発光装置14に電力を一定の周波数をもって間欠的に供給するか、レーザ光25が通過する経路のどこかに、回転セクタ等の機械的シャッタを設け、この機械的シャッタを一定の周波数をもって作動させることにより、調整することができる。
前記ターゲット12は、形成しようとする超電導層3と同等または近似した組成、あるいは、成膜中に逃避しやすい成分を多く含有させた複合酸化物の焼結体あるいは酸化物超電導体などの板体からなっている。従って、酸化物超電導体のターゲット12は、Y1Ba2Cu3x、Y2Ba4Cu8x、Y3Ba3Cu6x、GdBa2Cu3x、YbBa2Cu3x、HoBa2Cu3xなる組成、(Bi,Pb)2Ca2Sr2Cu3x、(Bi,Pb)2Ca2Sr3Cu4xなる組成、あるいはTl2Ba2Ca2Cu3x、Tl1Ba2Ca2Cu3x、Tl1Ba2Ca3Cu4xなる組成などに代表される臨界温度の高い超電導層3と同一の組成か近似した組成のものを用いることが好ましい。このターゲット12は、板状のものであり、その下面がテープ基材11上面と平行に向き合うようにターゲットホルダ12aによって支持されている。
前記熱板28は、両端側から中央に向けて漸次板厚を増す曲面28aが一面側に設けられ、この曲面28aの中央部がスリット板27の窓孔27aに向けて膨出するように蒸着処理室10a内に配置されている。この熱板28は、加熱ヒータを内蔵し、テープ基材11が移動しながら接触する曲面28aを蒸着適温(約800℃程度)に加熱維持できるようになっている。この温度調節は、熱板28に熱電対などの温度センサを内蔵させて曲面28aの表面温度が蒸着適温になるように加熱ヒータの出力を制御する方法などによって行うことができる。
前記スリット板27は、図3に示すように、ステンレス鋼板などからなる矩形板状をなしており、その中央に窓孔27aが穿設され、その周縁部に冷却管路29が設けられている。本実施形態では、長方形状に穿設された窓孔27aの長手方向両側部にそれぞれ冷却管路29が設けられた構造になっている。この冷却管路29は、図示しない冷却装置に接続され、その冷却装置から供給される冷却媒体を流通することで、窓孔27aの周縁部を冷却できるようになっている。この冷却媒体としては、水などの液体や不活性ガスなどの気体を用いることができる。
図1に示したレーザ蒸着装置を用いてテープ基材11の上にY1Ba2Cu3Xの超電導層3を形成するには、多結晶中間薄膜2が形成されたテープ基材11をこの多結晶中間薄膜2側を上にして熱板28の曲面28a上に設置し、酸化物超電導体のターゲット12としてY1Ba2Cu3Xからなる板状のターゲット12をターゲットホルダ12aに取り付け、蒸着処理室10aを真空排気装置で減圧する。ここで必要に応じて蒸着処理室10aに酸素ガスを導入して蒸着処理室10aを酸素雰囲気としても良い。
熱板28に内蔵した加熱ヒータを作動させ、熱板28上のテープ基材11の表面温度が蒸着適温になるように加熱し、またスリット板27に設けた冷却管路29に冷却媒体を流して窓孔27aの周縁部を冷却する。次いで、送出装置18からテープ基材11を送り出しつつ、レーザ発光装置14からレーザ光25を発生させ、透明窓24を通してレーザ光25を蒸着処理室10a内に導入し、ターゲット12に照射する。
図2(a)に超電導層3の成膜時の状態を示す。ターゲット12にレーザ光25が照射されると、ターゲット12の構成粒子が叩き出されるか蒸発し、噴出したプルーム13がスリット板27の窓孔27aを通して流れ、熱板28上にあるテープ基材11表面の多結晶中間薄膜2上に堆積され、超電導層3が形成される。テープ基材11を長手方向に沿って熱板28上を所定速度で移動させながら、レーザ蒸着を行ってテープ基材11上に酸化物超電導体からなる超電導層3を順次堆積し、超電導層3の形成を終えた酸化物超電導線材を巻取装置19に巻き取る蒸着処理を継続することで、長尺の酸化物超電導線材5を製造することができる。
本実施形態では、スリット板27の窓孔27aの両側部に冷却管路29を設け、冷却管路29に冷却媒体を流して窓孔27aの両側部を冷却することで、該両側部に覆われた熱板27の両側部が局部昇温するのを防ぐことができる。なお、本実施形態ではスリット板27の窓孔周縁部のうち、窓孔27aの両側部に冷却管路29を設けて冷却する構成としたが、熱板27の局部昇温を防止できればよく、窓孔周縁部の全域又は一部のみを冷却する構成とすることができる。以下、窓孔27aの両側部のみでなく周縁部全域を冷却する場合を含めて冷却管路29を設けて冷却する部分を「窓孔27aの周縁部」と言う。
このように、窓孔27aの周縁部を冷却することで、熱板28の曲面28aのうち、この窓孔27aの周縁部に覆われている領域が局部昇温することがなくなり、この熱板28上を移動するテープ基材の表面温度分布が均一となる。図2(b)は、窓孔27aの周縁部を冷却した状態で測定されたテープ基材表面温度分布を例示するグラフであり、窓孔27aの周縁部を冷却していない場合を示す図7(b)のグラフと比べ、図2(b)に示す本実施形態のテープ基材表面は局部昇温がなく、窓孔27aに相当する領域は均一な温度分布になっている。
図7(a)に示すようにスリット板の窓孔周縁部を冷却しない状態では、図7(b)に示すように曲面26aの両側部のほうが中央部よりも30〜40℃程度高くなる局部昇温が生じてしまう。そのため多結晶中間薄膜2とYBaCuO系などの酸化物超電導体からなる超電導層3との界面で反応層が形成されやすくなり、得られる酸化物超電導線材の超電導特性が低下し易い。一方、本実施形態では、図2(a)に示すように窓孔27aの周縁部を冷却することで、熱板28の曲面28aのうち、この窓孔27aの周縁部に覆われている領域が局部昇温することがなくなり、この熱板28上を移動するテープ基材の表面温度分布が均一となる。その結果、テープ基材11に超電導層3を形成後、超電導層3が余分な加熱を受けることがなくなり、多結晶中間薄膜2と超電導層3との界面で反応層が形成されないため、超電導特性が優れた均一な超電導層を有する酸化物超電導線材を製造することができる。
[実施例]
ハステロイテープ基材上にIBAD法により膜厚約1μm、配向性10度のGdZrからなる第一の多結晶中間薄膜を形成し、この第一の多結晶中間薄膜上に、PLD法により配向性5度のCeOからなる第二の多結晶中間薄膜を形成した、長さ100mのテープ基材を作製した。このテープ基材をその多結晶中間薄膜側を上にして図1に示すレーザ蒸着装置の熱板上に設置し、ターゲットとしてY1Ba2Cu3X系の円板状のターゲットを支持ホルダの支持部に取り付け、蒸着処理室を真空排気装置で減圧した。送出装置からテープ基材を1.0m/hで送り出しつつ、レーザ発光装置からレーザ光を発生させ、レーザ光をターゲットに照射した。レーザ光の強度は20W、照射周波数は100Hzとした。スリット板の窓孔両側部に設けた冷却管路に冷却水を流し、熱板の曲面上を通過するテープ基材の表面温度が約800℃になるように熱板に内蔵した加熱ヒータと冷却水をオン/オフ制御した。この状態で熱板の曲面に接するテープ基材の表面温度分布を測定したところ、図2(b)に示すように、加熱領域は約800℃で均一であり局部昇温は認められなかった。この条件でテープ基材に超電導層を成膜して長尺の酸化物超電導線材を製造した。得られた酸化物超電導線材は、超電導層の膜厚が約0.5μmであり、0.1m長の臨界電流密度(Jc)値は1.9MA/cmであった。
[比較例]
スリット板の冷却管路に冷却水を流さず、窓孔周縁部を冷却しない以外は、実施例と同様にしてテープ基材上に超電導層を成膜した。
この状態で熱板の曲面に接するテープ基材の表面温度分布を測定したところ、図7(b)に示すように、中央部は約800℃であったが、その両側部は30〜40℃昇温していた。この条件でテープ基材に超電導層を成膜して長尺の酸化物超電導線材を製造した。得られた酸化物超電導線材は、超電導層の膜厚が約0.5μmであり、0.1m長の臨界電流密度(Jc)値は1.6MA/cmであり、前記実施例で得られたものよりも臨界電流密度が低かった。
本発明の酸化物超電導線材の製造方法の一実施形態であるレーザ蒸着装置の構成図である。 レーザ蒸着装置の要部拡大図とテープ表面温度分布を示すグラフである。 同じレーザ蒸着装置に使用したスリット板の平面図である。 酸化物超電導線材の斜視図である。 従来のレーザ蒸着装置の構成図である。 従来のレーザ蒸着装置の要部拡大図である。 従来のレーザ蒸着装置の要部拡大図とテープ表面温度分布を示すグラフである。
符号の説明
1…基材、2…多結晶中間薄膜、3…超電導層、5…酸化物超電導線材、10…処理容器、10a…蒸着処理室、10b…排気孔、11…テープ基材、12…ターゲット、12a…ターゲットホルダ、13…プルーム、14…レーザ発光装置、18…送出装置、19…巻取装置、21…第1反射鏡、22…集光レンズ、23…第2反射鏡、24…透明窓、25…レーザ光、26,28…熱板、26a,28a…曲面、27…スリット板、27a窓孔、29…冷却管路。

Claims (4)

  1. 蒸着処理室内に設けた酸化物超電導体または酸化物超電導体と近似組成のターゲットにレーザ光を照射して前記ターゲットから発生させた粒子をスリット板の窓孔を通して、前記スリット板に隣接配置した熱板に沿わせて加熱しながら移動中のテープ基材上に順次堆積させて超電導層を形成する酸化物超電導線材の製造方法において、
    前記スリット板の窓孔周縁部に冷却手段を設け、前記窓孔周縁部により覆われる熱板の局部昇温を防いでテープ基材の表面温度分布を均一に維持しながら超電導層を形成することを特徴とする酸化物超電導線材の製造方法。
  2. 前記冷却手段が、前記窓孔周縁部に設けられた冷却管路に冷却媒体を流す冷却装置であることを特徴とする請求項1に記載の酸化物超電導線材の製造方法。
  3. レーザ光が入射される透明窓を有する処理容器と、該処理容器の蒸着処理室内に設けられた酸化物超電導体または酸化物超電導体と近似組成のターゲットと、前記蒸着処理室内に前記ターゲットと対向して設けられたテープ基材加熱用の熱板と、該熱板上にテープ基材をその長手方向に沿って移動させる送出装置及び巻取装置と、前記熱板と前記ターゲットの間に窓孔が位置するように設けられたスリット板と、前記透明窓を通して前記ターゲットに向けてレーザ光を照射するレーザ発光装置とを備えた酸化物超電導体の製造装置において、
    前記スリット板の窓孔周縁部に、該窓孔周縁部により覆われる熱板の局部昇温を防いでテープ基材の表面温度分布を均一に維持する冷却手段を設けたことを特徴とする酸化物超電導体の製造装置。
  4. 前記冷却手段が、前記窓孔周縁部に設けられた冷却管路に冷却媒体を流す冷却装置であることを特徴とする請求項3に記載の酸化物超電導線材の製造装置。
JP2005022962A 2005-01-31 2005-01-31 酸化物超電導線材の製造方法及び製造装置 Expired - Fee Related JP4593300B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022962A JP4593300B2 (ja) 2005-01-31 2005-01-31 酸化物超電導線材の製造方法及び製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022962A JP4593300B2 (ja) 2005-01-31 2005-01-31 酸化物超電導線材の製造方法及び製造装置

Publications (2)

Publication Number Publication Date
JP2006210236A true JP2006210236A (ja) 2006-08-10
JP4593300B2 JP4593300B2 (ja) 2010-12-08

Family

ID=36966821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022962A Expired - Fee Related JP4593300B2 (ja) 2005-01-31 2005-01-31 酸化物超電導線材の製造方法及び製造装置

Country Status (1)

Country Link
JP (1) JP4593300B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103021A (ja) * 2008-10-24 2010-05-06 Fujikura Ltd 薄膜積層体とその製造方法及び酸化物超電導導体とその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273228A (ja) * 1988-09-09 1990-03-13 Konica Corp 液晶配向膜の形成装置
JPH04175204A (ja) * 1990-11-09 1992-06-23 Fujikura Ltd 物理蒸着法による酸化物超電導導体の製造方法
JPH04175206A (ja) * 1990-11-09 1992-06-23 Fujikura Ltd 酸化物超電導薄膜の製造方法および製造装置
JPH0964430A (ja) * 1995-08-18 1997-03-07 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 酸化物超電導導体の製造方法及び製造装置
JP2004257798A (ja) * 2003-02-25 2004-09-16 Konica Minolta Holdings Inc 放射線画像変換パネル及び放射線画像変換パネルの作製方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273228A (ja) * 1988-09-09 1990-03-13 Konica Corp 液晶配向膜の形成装置
JPH04175204A (ja) * 1990-11-09 1992-06-23 Fujikura Ltd 物理蒸着法による酸化物超電導導体の製造方法
JPH04175206A (ja) * 1990-11-09 1992-06-23 Fujikura Ltd 酸化物超電導薄膜の製造方法および製造装置
JPH0964430A (ja) * 1995-08-18 1997-03-07 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 酸化物超電導導体の製造方法及び製造装置
JP2004257798A (ja) * 2003-02-25 2004-09-16 Konica Minolta Holdings Inc 放射線画像変換パネル及び放射線画像変換パネルの作製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103021A (ja) * 2008-10-24 2010-05-06 Fujikura Ltd 薄膜積層体とその製造方法及び酸化物超電導導体とその製造方法

Also Published As

Publication number Publication date
JP4593300B2 (ja) 2010-12-08

Similar Documents

Publication Publication Date Title
US7220315B2 (en) Method of producing polycrystalline thin film and method of producing an oxide superconducting element
JP2011060668A (ja) レーザー蒸着法による長尺酸化物超電導導体の製造方法
JP2006233266A (ja) 薄膜形成装置
JP3771012B2 (ja) 酸化物超電導導体
JP4131771B2 (ja) 多結晶薄膜とその製造方法および酸化物超電導導体
JP4593300B2 (ja) 酸化物超電導線材の製造方法及び製造装置
JP4059963B2 (ja) 酸化物超電導導体の製造方法
JP5544271B2 (ja) 酸化物超電導体薄膜の成膜方法および成膜装置
JP2011146234A (ja) 酸化物超電導膜の製造方法
JP4619697B2 (ja) 酸化物超電導導体とその製造方法
JP3901894B2 (ja) 多結晶薄膜とその製造方法およびこれを用いた酸化物超電導導体
JP3856995B2 (ja) 酸化物超電導薄膜の製造装置および酸化物超電導薄膜の製造方法
JP3522402B2 (ja) 酸化物超電導導体の製造方法及び製造装置
JP5658891B2 (ja) 酸化物超電導膜の製造方法
JP4519540B2 (ja) 酸化物超電導導体の製造方法及び酸化物超電導導体
JP3705874B2 (ja) 酸化物超電導導体の製造装置
JP4004598B2 (ja) 酸化物超電導体の薄膜の形成方法
JP2012021210A (ja) 成膜装置および成膜方法
JP3732780B2 (ja) 多結晶薄膜とその製造方法および酸化物超電導導体とその製造方法
JP2004362784A (ja) 酸化物超電導導体およびその製造方法
JP2000203836A (ja) 酸化物超電導導体の製造方法
JP2006233246A (ja) 薄膜形成装置
JP3995772B2 (ja) 酸化物超電導導体の製造装置
JP5216699B2 (ja) レーザー蒸着装置
JP2004124255A (ja) 多結晶薄膜の製造方法および酸化物超電導導体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees