JP2006173017A - 荷電粒子線装置と荷電粒子線顕微方法 - Google Patents

荷電粒子線装置と荷電粒子線顕微方法 Download PDF

Info

Publication number
JP2006173017A
JP2006173017A JP2004366607A JP2004366607A JP2006173017A JP 2006173017 A JP2006173017 A JP 2006173017A JP 2004366607 A JP2004366607 A JP 2004366607A JP 2004366607 A JP2004366607 A JP 2004366607A JP 2006173017 A JP2006173017 A JP 2006173017A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
sample
image
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004366607A
Other languages
English (en)
Other versions
JP4338627B2 (ja
Inventor
Hiromi Inada
博実 稲田
Mitsugi Sato
佐藤  貢
Atsushi Takane
高根  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2004366607A priority Critical patent/JP4338627B2/ja
Priority to US11/302,323 priority patent/US7435957B2/en
Publication of JP2006173017A publication Critical patent/JP2006173017A/ja
Priority to US12/234,096 priority patent/US8304722B2/en
Application granted granted Critical
Publication of JP4338627B2 publication Critical patent/JP4338627B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/221Image processing
    • H01J2237/223Fourier techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/282Determination of microscope properties
    • H01J2237/2826Calibration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30433System calibration
    • H01J2237/3045Deflection calibration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

【課題】標準寸法試料の最適観察倍率以外の倍率範囲においても倍率校正、測長値の校正が行える荷電粒子線装置を提供する。
【解決手段】倍率基準とする試料の試料拡大像を用いて倍率が校正された第1の倍率で試料像を取得する一画像内で前記偏向器によって荷電粒子線を所定量偏向させて記録した視野移動を含む第1の試料像から抽出した荷電粒子線偏向前後の視野の移動量と、第2の倍率で試料像を取得する一画像内で前記偏向器によって荷電粒子線を前記所定量偏向させて記録した視野移動を含む第2の試料像から抽出した荷電粒子線偏向前後の視野の移動量とをもとに、前記第2の倍率を校正する。
【選択図】 図6

Description

本発明は、試料上に荷電粒子線を走査し、荷電粒子線照射によって試料から発生する信号を用いて像を形成する荷電粒子線装置に関する。
従来、走査型電子顕微鏡や集束イオンビーム加工観察装置、透過型電子顕微鏡のような荷電粒子線装置において、画像の正確な倍率及び画像の測長値を校正するためには、寸法が既知のマイクロスケール試料や結晶格子の走査二次電子像や走査透過電子像を用いて試料の特徴を表す間隔寸法を測定していた。標準試料を用いて表示倍率を校正する従来の技術としては、特開2002−15691号公報がある。特開2002−15691号公報では、試料は特定していないが、走査電子顕微鏡において加速電圧やワーキングディスタンスが変わった際の倍率の変化を測定し、表示倍率やスケールバーを校正する。
図2(A)は一般的に市販されているピッチ間隔が0.24μmであるマイクロスケール試料の拡大図である。また、図2(B)は金単結晶薄膜試料の結晶格子像であり、結晶面間隔0.204nmの格子が交差した像を示している。例えば、金単結晶薄膜試料を寸法基準として用いるためには、金の結晶格子像が観察できる倍率で試料拡大像を撮影する必要があり、0.204nmの格子像を1mmの格子間隔に拡大するには拡大倍率5000×103倍を必要とする。実際の走査透過型電子顕微鏡において、この格子像を格子として認識できる拡大倍率としては、3000×103倍以上が必要である。結晶格子像を用いた観察倍率若しくは測長寸法の校正は、撮影した倍率において次のように行う。電子顕微鏡に表示された倍率(表示倍率)を3000×103倍として、結晶面間隔0.204nmの金単結晶試料を撮影したところ、表示された格子の間隔が0.62mmだったとする。このときの真の倍率は
0.62mm/0.204nm=3039.22×103
と求められる。すなわち表示倍率は1.31%の誤差を有している。この表示倍率で撮影した画像の2点間の寸法(測長値)は同様に1.31%大きく表示される。
特開2002−15691号公報
標準寸法試料を用いた従来の倍率校正及び測長寸法値の校正は、寸法基準となる試料拡大像が適切に撮影されなければならず、観察可能倍率に制約がある。また、試料拡大像が撮影された倍率においてのみ倍率校正、測長寸法値の校正が可能である。例えば、ピッチ間隔が0.24μmのマイクロスケール試料は、走査電子顕微鏡の全倍率範囲、特に高倍率の校正に使用することができない。同様に、寸法基準として結晶面間隔0.204nmの金単結晶薄膜試料の格子像を用いる場合でも、電子顕微鏡の観察倍率の全倍率範囲を網羅することはできない。
本発明の第一の目的は、標準寸法試料の最適観察倍率以外の倍率範囲においても倍率校正、測長値の校正が行える荷電粒子線装置を提供することである。
本発明の第二の目的は、標準寸法を与える試料として低観察倍率と高観察倍率で異なる試料を使用することなく、1種類の標準寸法試料で低観察倍率の寸法校正と高観察倍率の寸法校正を行うことのできる荷電粒子線装置を提供することである。
本発明の第三の目的は、倍率ステップ間並びに倍率レンジ間の倍率誤差及び寸法測長誤差のばらつきを一定に抑えた荷電粒子線装置を提供することである。本発明は、異なる倍率間でも同一の試料を用いて倍率間の寸法精度を保証し、異なる倍率レンジ間でも寸法精度を保証できるようにする。
本発明の第四の目的は、試料ドリフトに伴う倍率校正精度の低下を抑えることである。
本発明では、第1の倍率で試料像を取得する一画像内で偏向器によって荷電粒子線を所定量偏向させて記録した視野移動を含む第1の試料像から抽出した荷電粒子線偏向前後の視野の移動量と、第2の倍率で試料像を取得する一画像内で偏向器によって荷電粒子線を所定量偏向させて記録した視野移動を含む第2の試料像から抽出した荷電粒子線偏向前後の視野の移動量とをもとに、前記第2の倍率の倍率誤差の量を前記第1の倍率の倍率誤差の量と等しくする。また、倍率基準とする試料の試料拡大像を用いて第1の倍率を校正しておくことにより、同様の方法で第2の倍率を校正する。
本発明によると、試料ドリフトの影響を抑えて参照倍率と等しい倍率誤差で他の観察倍率の倍率誤差を校正することが可能となる。また、参照倍率の倍率校正に寸法基準試料を用い、寸法基準試料を用いることができない他の観察倍率における倍率誤差を校正することが可能となる。
以下、図面を参照して本発明の実施の形態を説明する。なお、本発明は、荷電粒子線がイオンビームの場合にも、電子線の場合にも適用できるが、以下では電子線の場合について説明する。また、レンズ系、偏向器、走査器は電場による方式、磁場による方式のいずれでもよいが、以下では磁場方式を用いた場合の例について説明する。試料下の投射レンズの存在及び段数は問わない。
図1は、本発明による荷電粒子線装置の一例の概略機能ブロック図である。
電子線源(荷電粒子線源)1から放出されて加速電極2で加速された電子線(荷電粒子線)3は、第一集束電磁レンズ4と第二集束電磁レンズ5及び対物電磁レンズ9の前磁場を経由して試料台10に保持された試料11に照射される。電子線3が試料11に照射されると試料11と電子線3との相互作用によって、試料の情報を有する二次電子8、試料前方散乱電子12、試料透過電子13が発生する。試料に照射される電子線3は電子線光軸に対し対称に配置された走査コイル6による磁場により試料上を走査する。電子線の走査と画面における走査の同期とを取ることにより表示部60上に試料拡大像を形成する。試料から発生した二次電子8は蛍光体16を発光させ光電子増倍管17で検出され、微小電流増幅器29で増幅しADC41によりデータバスに取り込まれる。二次電子の検出器として蛍光体と光電子増倍管を用いたが、マルチチャネルプレートなどの半導体検出器を用いてもよい。試料前方散乱電子12は前方散乱電子検出器14にて、試料透過電子13は試料透過電子検出器15にて検出される。検出器14及び15は蛍光体と光電子増倍管の組合せで構成しても、半導体検出器で構成してもよい。電子線源1、加速電極2の加速電圧や電子線の引き出し電圧、フィラメント電流などは、マイクロプロセッサ44からの指令がデータバスを経由してDAC32、33に入力され、そこでアナログ信号に変換されて電子線源電源18、加速用高圧電源19から設定される。第一集束電磁レンズ4、第二集束電磁レンズ5、対物電磁レンズ9は、マイクロプロセッサ44からの指令によってDAC34、35、39に各レンズの励磁電源が設定され、各電磁レンズに対して電流が与えられる。試料11の位置は、ロータリーエンコーダ56、57を用いてオペレータが操作し試料台10を駆動するか、予め記録された試料位置駆動パターンに従い、試料台10を駆動することによって制御される。
電子線の試料上における走査量は、走査機構によって電子線に作用させる電場あるいは磁場の大きさによって任意に変化することが可能である。例えば、二次電子による試料拡大像は走査コイル6に印加する電流の大きさを変化させ、試料上における電子線3の走査範囲を変えることで二次電子像の拡大倍率を変えることが可能である。試料上における電子線の走査領域を狭くすれば二次電子像の拡大倍率は大きくなり、広くすれば拡大倍率は小さくなる。
図3は、電子線の走査機構を示した原理図である。電子線3は電子線光軸62上に沿って移動する。電子線光軸上にX、Y対称に走査コイル63,64が配置される。試料に対して垂直に電子線を印加するため走査コイルは上下2段に配置される。上方走査コイル63と下方走査コイル64に鋸波形の印加をし、対物電磁レンズ9の光軸上の前焦点位置に電子線が到達することで、試料に垂直に電子線が入射され試料と相互作用し、二次電子8や試料前方散乱電子12、試料透過電子13が得られる。これら二次電子8、試料前方散乱電子12、試料透過電子13と走査波形とを同期させることで試料拡大像が形成される。試料拡大像の倍率は、X及びY走査コイルに印加する走査波形の電圧に依存する。
図4(B)は試料拡大倍率Mと走査波形電圧の最大値Vmaxの関係を示したグラフであり、走査波形電圧最大Vmaxは試料拡大倍率Mに対して反比例の関係を持つ。走査波形の電圧を可変抵抗器などを用いて連続的に変化させれば理論上は無限種類の倍率種類を確保することができるが、実使用においては連続的な倍率可変は不便であり不要である。一般的には段階状に電圧が切替えられる。また、103倍もの広範囲な観察倍率に対応するために、走査波形の基準電圧は図4(A)に示すようなレンジ毎に分離した電圧減衰器を通過させて走査コイルに入力される。倍率の段階切り替えは例えば試料拡大倍率1000倍、1500倍、2000倍、3000倍、…という具合で、レンジの例としては、レンジ1は1000倍から9000倍、レンジ2は10×103倍から90×103倍、レンジ3は100×103倍から900×103倍、レンジ4は1000×103倍から9000×103倍の拡大倍率として与えられる。
まず倍率ステップと拡大倍率の精度のばらつきについて説明する。夫々の試料拡大倍率の精度は、走査波形の電圧の精度で決定される。図3の例で示すようなデジタルアナログ変換器(DAC)37とコイル電源27により走査コイル63,64に走査電圧が印加される系においては、試料拡大倍率の精度は主にDAC37から出力される誤差やDACの最小ビット(LSB)の量子誤差に依存する。一方、図4(A)に示すように倍率レンジの切り替えとしての減衰器は固定抵抗器などが用いられる。倍率レンジ間における倍率誤差は固定抵抗器の製作誤差などの固有誤差に依存する。固定抵抗器はそれ自身の抵抗値の±0.1%程度の許容誤差が存在する。例としてレンジ1の拡大倍率1000倍で走査波形の電圧最大値として10Vが走査コイルに印加されるとし、レンジ2の拡大倍率10000倍では減衰器で1/10の1Vの電圧が走査コイルに印加される。レンジ1で+0.1%、レンジ2で−0.1%である場合、倍率誤差は1000倍では1001倍、10000倍では9990倍として像が記録される。このように、レンジ1とレンジ2それぞれでは誤差定数が異なる減衰器を用いることになり、結果として拡大倍率ごとに精度のばらつきを発生させる。
異なる倍率間において倍率精度校正若しくは測長寸法校正を行う場合、最初に標準寸法試料を用いて標準寸法試料の特徴的な構造が観察できる倍率で倍率校正を行う。次に当該倍率において任意の電圧を電子線偏向回路に入力し、画像の視差を与える。この視差を検出する際の試料ドリフトは倍率校正値に誤差を与えてしまう。そこで本発明の荷電粒子線装置は、電子線偏向回路を用いて視差を測定する場合にドリフトの影響を考慮した視差測定を行う。
図5に、電子線偏向回路を使用して視野を移動させた場合の画像例を示す。視野の移動量が純粋に電子線偏向回路に印加した電圧に比例した値となればよいが、実際の電子線装置の試料台は試料移動をやめた直後に停止せず勝手に移動したり、熱による試料ドリフトにより、視野移動量は、電子線偏向回路の駆動による視野移動量と試料ドリフト量の合計で表される。すなわち、電子線偏向回路の駆動による真の視野移動量LISFは、計測された視野移動量Ltotと試料ドリフトによる移動量Ldrifから式(1)で与えられる。
ISF(t)=Ltot(t)−Ldrift(t) (1)
なお、ドリフト量は通常1方向のみに選択的に発生するものではなく、2方向に発生するので、ベクトル量である。また、時間の経過と共にドリフト量は変化するので、時間の関数で与えられる。2枚の画像の視差を比較する際には、観察画像の倍率がドリフト量を無視し得る程度に十分低い場合には問題ないが、ドリフト量を観測し得る観察倍率では、1枚目の画像と別の時間に撮影した2枚目の画像ではドリフトの混入により純粋な電子線偏向回路による像視差を測定することは困難となる。
図6のフローチャートを用いて、電子線装置で試料拡大像の観察倍率ステップ毎の拡大倍率の精度のばらつきを校正する方法を説明する。
図6のフローは大きく2つのプロセスに分けることができる。第一番目のプロセスとして、参照倍率において電子線偏向器に任意の大きさの電圧を印加し、画像の視差を測定、また90°の像回転をした後に再度電子線偏向器に任意の大きさの電圧を印加し画像の視差を測定するプロセスを設ける(ステップ101からステップ116)。第二番目のプロセスは、目的とする倍率において参照倍率で与えた電子線偏向器に印加した電圧と同一の電圧を与え画像の視差を測定、また90°像回転した後に再度電子線偏向器に参照倍率で与えた電子線偏向器印加電圧と同一の電圧を与えて視差を測定し、目的倍率の校正を行うプロセスである(ステップ117からステップ121)。
ステップ101にて任意の構造の試料を試料台に搭載し、電子線装置に挿入する。
ステップ102で参照倍率を設定し、走査コイルに印加する電圧を決定する。ここで示す参照倍率は、倍率誤差の基準とする観察倍率で記号をM1とする。ステップ103で加速電圧の設定、電子線照射条件の設定をする。ステップ104において、ステップ101にて挿入した試料の拡大像の撮影を開始する。撮影の条件として、1画像を形成する時間を調節できることとする。また、画像のサイズは問わないが画像サイズも調節できることとする。例えば、図10の画像において横画素サイズA×縦画素サイズBとし、横640ピクセル×縦480ピクセルとして、画像取込時間は20秒というように決める。
試料ドリフトの問題を解決するために、画像取込を行っている最中に、ステップ105にて電子線偏向器にX方向の電圧Vxを印加する。X方向の偏向電圧Vxを印加すると、図10に示すように画像がシフトする。
図7を用いて電子線を偏向する原理を説明する。電子線3は電子源1から放出され、加速電極2で加速されて電子線光軸62上を沿って移動する。電子線光軸62上に、X、Y対称に偏向コイル71,72が配置される。偏向コイルは、例えば図1に示すように、第二集束電磁レンズ5と対物電磁レンズ9間で走査コイル6と同一の位置に配置される。電子線は上方偏向コイル67と下方偏向コイル68で力を受け、偏向を受けた電子線69のように傾斜される。対物電磁レンズ9を経由し、試料上で光軸から離軸するように直流電圧が上方、下方の偏向コイルに振り分けられて印加される。結果として、光軸上の電子線3は、試料上でシフトする。一例として、図7ではX偏向コイル71とY偏向コイル72に印加された電圧により電子線3は右下方向に偏向されている。電子線は偏向と同時に走査されており、視野も試料上の中心から右下方向に移動する。このようにして偏向コイルに電圧を印加することで、電子線を偏向し視野を移動させることが可能である。
電子線偏向コイルを用いた際、偏向コイルのDAC出力値と試料面上における電子線シフト量は、図8に示すように比例する。また、偏向コイルに透磁率1の空芯コイルを用いた場合、図9に示すように、磁場の強さBは巻き数Nと電流Iの積で(2)のような線形関係で表される。
B(T)=μ0NI(A) (2)
ここで、μ0は真空中の透磁率である。従って、試料面上における電子線のシフト量も偏向コイル電流に対し比例する。電子線偏向コイルは走査コイルに対して独立に動作するので、走査コイルに印加する走査波形電圧すなわち観察倍率また倍率レンジが変えられても試料上を電子線がシフトする量には影響しない。
ステップ105及び続くステップ106で電子線偏向器に印加する電圧を切替えるが、切替時の応答速度は高速であることが必要である。図10に示したように同一画像内において視野シフトさせる目的は、試料のドリフトの問題を取り除くためである。画像サイズ縦640×横480ピクセルで1画像取込時間を20sとすると、1ライン走査は約42msである。ある時点での電子線装置の試料ドリフト速度が0.1nm/sだとすれば1ラインあたりでの試料ドリフト量は0.004nmとなる。試料ドリフトによる視差が1ピクセル未満となる時間で電子線偏向器に印加する電圧を切替える。電子線偏向回路の印加電圧の切替は制御回路内において電子スイッチでオン/オフするため、100ms以下とみなす事ができる。
ステップ105で電子線偏向器を用いて視野シフトする量は、図10の画像において画像サイズを横Aピクセル×縦Bピクセルとしたとき、画像横サイズAの最大80%を超えない範囲で、目的とする視野が外れない任意の大きさとする。画像サイズ80%の限定は、試料拡大像の周辺歪の発生を考慮して、歪の影響がない視野を使用するためである。すなわち、視野中の構造が外周部10%の内部A×0.8のエリアにあり、視野シフト後もこの領域に含まれることが条件となる。本実施例では周辺歪を考慮する領域として全撮影画像サイズの80%としたが、使用する荷電粒子線装置によってこの値は変化するものであり、80%の数値にはこだわらない。
ステップ106にて電子線偏向器に印加する電圧を断し、元の視野位置に戻す。ステップ107ではステップ105からステップ106までの電子線偏向器に印加する電圧を印加・断する操作をN回繰り返す循環をさせる。繰返しの回数Nは1回でも、複数回でもよい。繰返し回数Nを増やすことで視野シフトに伴う視差量の測定回数を増やすことができる。視差量の測定回数を増やすことで平均値の導出及び測定値のばらつき、標準偏差を求めることができる。その結果、視差量と電子線偏向器の印加電圧との相関係数の精度を高めることが可能となる。
ステップ108において、図10のような視野シフトを与えた画像を保存し、ステップ109に移行し画像の視差を測定する。
図11及び、図12のフローチャートを用いて、同一画像内において視差を測定する方法を説明する。図11(A)は、同一画像内で視野シフトを2回行った画像例である。図11(A)において白枠部のような検出エリアを選択する。
ステップ201において、撮影した画像の平滑化を行い、画像ノイズを低減する。次に、ステップ202に移り、Y方向の切れ目位置Ycを検出する。切れ目位置は、電子線偏向器に電圧を印加して視野をシフトした位置に相当する。切れ目位置は、予め設定した位置で視野シフトする場合と、任意の位置で視野シフトする場合の2通りを考える。予め設定した位置で視野シフトした場合には、ステップ203に移行する。任意の位置で視野シフトした場合には、検出エリアから切れ目位置を検出するアルゴリズムを実行する。検出エリアから切れ目位置を検出するアルゴリズムの一例として、画像のY方向微分を行い、Y投影した一次元画像プロファイルでピーク検出を行う方法がある。ピーク位置が画像の切れ目Ycと判断され、ステップ203に移る。
ステップ203にて、図11(C)に示すようにX方向の画像微分を行い、検出エリア内における画像の微分プロファイルを出力する。次に、ステップ204にて切れ目Ycからのオフセット量Yδを設定する。ステップ205にて切れ目Yc位置に対してオフセット量Yδを加算した位置においてnライン分のX画像微分プロフィルを加算した結果を求める。このようにオフセット量Yδを設定する理由は電子線偏向コイルに電圧を印加、断する際に発生しうるノイズを考慮するためである。
ステップ206では、加算したX方向微分プロファイルから視差量を検出する。示唆量の検出方法として二通りの方法を説明する。1つは微分プロファイル間のピーク間隔を視差量として検出する方法、2つ目は微分プロファイル間の自己相関を取り、自己相関関数の最大値を作ったときの視差量とする方法である(図11(D)及び(E))。X方向微分プロファイルから視差量を検出する例は、図13に示す。図12あるいは図13に示す矢印の距離が画像内での視差量に相当する。測定された視差量dは、画素単位:ピクセルで求められる。現在の倍率(ここでは参照倍率M1)における試料上換算の、単位ピクセル当りの長さPM0(nm/ピクセル)を用いて、式(3)により距離dm(nm)にディメンジョン変換を行う。
m(nm)=d(ピクセル)×PM0(nm/ピクセル) (3)
シフト量と偏向コイルに出力するDAC値Vの関係は次式(4)にて単位シフト量DM0として得られる。
M0(nm/LSB) = dm(nm)/V(LSB) (4)
ここで、DAC出力値はV(LSB)(LSBはDACの最小ビット数を意味する)。DACからの出力値を10LSBとして10nmの視野シフトであれば、式(3)から1(nm/LSB)と得られる。
図6に戻って、ステップ109でX方向の電子線偏向器による画像視差量の測定完了後、ステップ110に移行して画像を90°像回転させ、Y方向の倍率校正を行うフローに移る。画像を90°像回転させる方法として、ラスターローテーション回路を用いる。ラスターローテーション回路は、X方向の走査信号とY方向の走査信号を加算して走査コイルに電流を印加することで観察画像の回転を行う方法である。90°の像回転を行うためには、X方向の走査信号をY方向の走査コイルに印加し、Y方向の走査信号をX方向の走査コイルに印加することで行う。
理想的にはX方向、Y方向の入れ替えを行った時の走査量は、入れ替えを行わなかった場合と等しくなければならないが、実際にはコイル製作誤差や取り付け誤差などから磁場分布が等価になるとは限らない。すなわち、この分布の違いがX方向とY方向の倍率の誤差になる。そこで予め、ラスターローテーション0°(オフ状態)とラスターローテーション90°の時の倍率誤差を計測しておく。
ステップ110にて像回転90°した後の画像視差測定の操作であるステップ111からステップ116までの処理は、X方向とY方向が入れ替わっただけで、ステップ104からステップ109までの処理と同じであるので、説明を省略する。
ステップ117以降のプロセスにおいて、目的とする観察倍率M2において倍率誤差を校正する方法を示す。まずステップ117において、目的の倍率に設定する。ステップ118はX方向において画像の視差測定するプロセスで、ステップ104からステップ109と同様のプロセスである。ただし、電子線偏向器に印加する電圧値はステップ105において印加した値と同一でなければならない。
ステップ119でラスターローテーションにより画像を90°回転させる。ステップ120はY方向における画像の視差測定を行うプロセスで、ステップ111からステップ11と同様のプロセスである。ただし、電子線偏向器に印加する電圧値はステップ112において印加した値と同一でなければならない。
ステップ121において、目的倍率M2の倍率校正を行う。倍率校正方法として、ここでは4種類の校正方法を示す。図14は、4種類の倍率校正方法(1)〜(4)の説明図である。図示するように、倍率校正方法には、(1)荷電粒子線装置上に表示される拡大倍率の表示値を校正する方法、(2)走査コイル電圧を校正する方法、(3)観察画像に含まれる構造の距離の測定結果を校正する方法、(4)観察画像に対して測定された倍率校正値を元に画像の拡大、縮小を画像処理して補正する方法がある。
次の方法によって、ステップ109で測定した画像視差とステップ116で測定した画像視差から目的倍率における倍率誤差εと計測倍率M0を求める。走査像ではX方向とY方向の倍率が異なる可能性があるが、ここではX方向の倍率について説明する。
ステップ109で測定された参照倍率M1のX方向の視差をdM1x、ステップ118で測定された倍率M2のX方向の視差をdM2xとする。倍率M2における真の視差dM2x0は、次式(5)のようになる。
M2x0=M2×(dM1x/M1) (5)
X方向の視差の誤差εx(%)は、式(6)のようになる。
εx=((dM2x−dM2x0)/dM2x0)×100 (%) (6)
倍率Mにおける校正倍率M20は、次式(7)で得られる。
20=M2×(1/(1+ε/100)) (7)
このようにして計算された倍率誤差を、図1に示した補正データテーブル52に、表示倍率に対してX方向の倍率誤差、Y方向の倍率誤差のテーブルとして保管しておく。図15は、補正データテーブルの例を示す図である。
倍率校正方法(1)として、荷電粒子線装置の表示部上に表示される拡大倍率の表示値を校正する方法を説明する。この方法は、式(7)で計算された校正倍率M20を、元の表示倍率Mに変えて表示する方法である。倍率だけではなく、表示されているスケールバーの表示値も校正することが可能である。
倍率校正方法(2)として、走査コイル電圧を校正する方法を説明する。この方法は、校正結果から走査コイルに印加する電圧波形の波高値を直接制御して走査領域を調節することで、観察している画像の倍率を校正する方法である。倍率M2における走査電圧の最大波高値をV2とする。式(6)の視差誤差εから校正電圧値V20は、次式(8) で得られる。
20=V2×(1/(1+ε/100)) (8)
倍率校正方法(3)として、観察画像に含まれる構造の距離の測定結果を校正する方法を説明する。例えば、特定構造の2点間の距離を測定した結果、L(nm)と求められたとする。校正寸法値L0は、式(6)の視差誤差から、式(9)のように求められる。
0=L×(1/(1+ε/100)) (9)
倍率校正方法(4)として、観察画像に対して測定された倍率校正値を元に画像の拡大、縮小を画像処理して補正する方法を説明する。表示倍率M2に対して校正倍率がM20であった場合に、X方向の視差誤差εX、Y方向の視差誤差εYに合致するように取得画像を画像演算にて拡大・縮小する。撮影した画像の倍率M2が校正倍率M20に対して小さい場合には、観察画像に対して拡大処理を行う。拡大を行う際は、線形補間法や3次補間法を用いる。一方、倍率M2が校正倍率M20に対して大きい場合には、観察画像に対して縮小処理を行う。縮小処理の際には、間引縮小法や平滑縮小法を用いる。
次に、図16のフローチャートを用いて、参照倍率の倍率を校正する方法を説明する。寸法が既知の倍率校正用の周期試料を挿入して観察し、周期情報を抽出し参照倍率の校正を行う。その後、図6のステップ101に移行することで、参照倍率以外の倍率においても倍率校正試料に従った倍率校正を行うことが可能である。
まずステップ301にて周期構造を有する倍率校正用の試料を挿入する。この試料としては、図2(A)に示すような1ピッチ0.24μmのマイクロスケール試料や、図2(B)に示すような1ピッチ0.204nmの金単結晶薄膜を用いる。ステップ302で、倍率の設定、電子線の照射条件などを設定する。参照倍率は試料特有の周期的な構造が満足に観察できる倍率に設定する。例えば金単結晶薄膜の場合には、参照倍率M1は300万倍以上に設定する。
次に、ステップ303にて画像を取得する。画像取得の際の走査速度は試料ドリフトを考慮するとできるだけ高速であることが望ましい。倍率校正用の試料拡大像を取得し、周期画像演算処理部47にデータを転送し、ステップ304にて画像演算を行い、ステップ305にて周期情報を抽出する。ステップ304では、図1に示したコントラスト変換装置61を用いて周期構造画像のヒストグラムを演算し、この演算結果からコントラストが低いと判断された場合に自動的にコントラストを補正する。コントラスト変換装置61は、取得した画像のヒストグラム演算部、比較器、電子線検出器及び微小電流増幅器のオフセット電圧調整部、増幅ゲイン調整部で構成され、最適ヒストグラムとの比較でオフセット電圧や増幅ゲインを自動調節する。コントラスト補正はソフトウェアによる画像演算によって行ってもよい。この場合、ヒストグラム演算部、比較部、ガンマ補正部、輝度補正部、明度補正部を備える。
ステップ305では、倍率構成用の周期構造を有する試料から周期情報を抽出する。図17(A)に周期構造試料の画像例を、図17(B)にその画像の高速フーリエ変換画像(FFT)を示す。図17(B)の周辺スポットの4点が周期情報を示している。周期構造試料の情報を抽出する方法として、ここではFFTを用いた例を示したが、自己相関によっても求めることが可能である。FFT処理の原理はここでは割愛し、面間隔の計算手法についてのみ言及する。FFT処理のために試料拡大像から2のn乗ピクセルの正方形領域を切り出す。例えば試料拡大像を画素サイズ640×480ピクセルで記録した場合、FFT処理領域は256×256ピクセル若しくは128×128ピクセルと28ピクセル領域や27ピクセル領域とする。1024×768ピクセルで記録した場合、512×512ピクセルでFFT処理を行う。周期情報は、周期の平均値に対応する空間周波数で最大強度の輝点となって現れる。ここでFFT画像中心の輝点は画像の直流成分を示したものであり、周期構造とは無関係の輝点である。有意な輝点は中心を取り囲む4つの輝点で、これらの空間周波数座標から周期構造の平均周期(ピッチ)を求めることができる。
平均ピッチは、FFT画像サイズが縦512ピクセル×横512ピクセルであったとして、Iは512ピクセルになるので、式(10)となる。
平均ピッチLp(ピクセル)=I(ピクセル)/N1(FFT輝点距離) (10)
図17(B)の例では、輝点間の距離Nは47.07ピクセルで、式(10)から平均ピッチLpとして10.88(ピクセル)を得る。実測ピッチ距離Ldは、式(11)で求められる。
実測ピッチ距離Ld(nm)=Lp×PM10 (11)
試料拡大像の倍率M1は500万倍で、この時の真の単位ピクセルの長さ、すなわち画素サイズPM10は2×10-11(m/ピクセル)であるので、実測ピッチ距離Ldは、式(11)より、次式のようになる。
10.88×2×10-11=0.2118(nm)
ステップ306において、実測ピッチ距離Lと金の面間隔(Lstd)である0.204nmとを比較することで、この倍率における倍率誤差εが求められる。
倍率誤差ε=(Ld−Lstd)/Lstd (12)
式(12)にLdとLstdの数値を当てはめると、(0.2118(nm)−0.204(nm))/0.204(nm)=0.038となり、0.038がこの参照倍率における倍率誤差になる。参照倍率における倍率校正値は、式(7)と同様に、式(13)で求められる。
10=M1×(1/(1+ε/100)) (13)
また、ステップ109及びステップ116で求められる参照倍率M1における視差量はX方向、Y方向それぞれで式(14)及び式(15)で与えられる。
M1x0=dM1x×(1/(1+ε/100)) (14)
M1Y0=dM1Y×(1/(1+ε/100)) (15)
次に図18のフローチャートを用いて、参照倍率において周期構造の試料を用いて倍率校正を行う場合の試料回転角度を表示する機能を説明する。
ステップ401からステップ404までのプロセスは図16のステップ301からステップ305と同様である。ステップ401では例えば金単結晶薄膜試料のような周期構造を有する試料を挿入し、ステップ402にて倍率M1設定、電子線の照射条件を設定する。ステップ403にて試料の拡大像を撮影し、ステップ404にて該拡大像の高速フーリエ変換を行う。
ステップ405では、高速フーリエ変換画像を試料拡大像と共にモニタ上に図19に示すように表示する。同時に、ステップ406にてFFT像の輝点の重心位置を検出する。重心位置検索は画像演算のブロブ法を用いて行う。ブロブ法では任意の面積以上の輝点に対して座標位置、重心位置を計算することができる。ステップ407にて、輝点位置を計算した結果、輝点位置と原点を結ぶ一次直線を計算する。必ずFFT画像の原点対称に輝点が配置されるので、ある輝点位置を(P1,P2)とすると、直線yは、式(16)で求めることができる。
y=(P2/P1)・x (16)
ステップ408にて、式(16)に基づく直線を図19(B)に示すように表示させる。また、ステップ410にて試料回転角度を表示させる。試料回転角度θは、式(17)で与えられる。
θ=tan-1(P2/P1) (17)
式(17)で与えられた試料回転角度θは図19に示すように、表示部上にFFT画像と共に常時表示される。
次にステップ411にて試料駆動装置20を用いて試料の回転を行う。式(17)で得られた試料回転角度が0°に設定されるように、試料駆動装置20を用いて試料を回転させる。
本発明の荷電粒子線装置の構成例を示す図。 荷電粒子線装置の寸法を校正する試料の例を示す図。 電子線の走査機構の原理を示す図。 走査機構の倍率レンジを変化する原理を示す図と拡大倍率と走査コイル印加電圧の関係を示す図。 偏向器を用いて視野を移動した画像の例を示す図。 倍率間での寸法誤差を抑える処理を説明するフローチャート。 電子線の偏向機構の原理を示す図。 偏向コイル印加電圧と試料面上での電子線ビームのシフト量の関係を示す図。 偏向コイルに印加する電流と試料面上での電子線ビームのシフト量の関係を示す図。 偏向器を用いて画像撮影中に視野移動を行った例を示す図。 偏向器を用いて視野シフトを行った画像において、視差量を検出するプロセスを示した図。 偏向器を用いて視野シフトを行った画像において、視差量を検出するプロセスを示したフローチャート。 視野シフトを行った前後のX方向微分プロファイルを示す図。 視差誤差の計算結果から倍率校正、走査電圧校正、測長寸法値校正、画像倍率校正の方法を示した図。 倍率データテーブルと補正データテーブルを示す図。 倍率基準を与える周期試料から参照倍率の校正を行う方法を示すフローチャート。 周期構造試料の例と、周期構造試料に対して高速フーリエ変換を実施して得られた画像の例を示した図。 倍率基準用の周期試料の試料回転角を計測してFFT像、試料回転角度表示、試料駆動装置により試料を回転させる方法を示したフローチャート。 倍率基準用の周期画像とFFT像、試料回転角度を表示部上に表示した例を示す図。
符号の説明
1:荷電粒子線源、2:加速電極、3:電子線、4:第一集束電磁レンズ、5:第二集束電磁レンズ、6:走査コイル、7:偏向コイル、8:試料二次電子、9:対物電磁レンズ、10:試料台、11:試料、12:試料前方散乱電子、13:試料透過電子、14:試料前方散乱電子検出器、15:試料透過電子検出器、16:蛍光体、17:光電子増倍管、18:電子線源電源、19:加速用高圧電源、20:試料駆動装置、21:電圧安定装置、22:電圧安定装置、23〜25:電磁レンズ電源、26〜28:コイル電源、29〜31:微小電流増幅器、32〜40:デジタル−アナログ変換器(DAC)、41〜43:アナログ−デジタル変換器(ADC)、44:マイクロプロセッサ、45:ランダムアクセスメモリ(RAM)、46:画像相関計算処理部、47:周期画像演算処理部、48:非周期画像演算処理部、49:倍率データテーブル、50:オフセット電圧計算部、51:偏向系制御部、52:補正データテーブル、53:像回転計算部、54〜55:インターフェース、56〜57:ロータリーエンコーダ、58:キーボード、59:表示部ドライバー、60:表示部、61:コントラスト変換装置、62:電子線光軸、63:上方走査コイル、64:下方走査コイル、65:X走査コイル、66:Y走査コイル、67:上方偏向コイル、68:下方偏向コイル、69:偏向を受けた電子線、70:偏向を受けない電子線、71: X方向偏向コイル、72:Y方向偏向コイル

Claims (25)

  1. 荷電粒子線を発生させる荷電粒子線源と、
    試料を保持し移動する試料台と、
    前記荷電粒子線を試料に集束させるレンズ系と、
    前記荷電粒子線を試料上に走査する走査器と、
    前記荷電粒子線を偏向する偏向器と、
    前記荷電粒子線の照射によって試料から発生した試料信号を検出する検出器と、
    画像演算を行う演算処理部と、
    試料像を表示する表示部とを備え、
    前記演算処理部は、試料像を取得する一画像内で前記偏向器によって荷電粒子線を偏向させて記録した視野移動を含む試料像から荷電粒子線偏向前後の視野移動量を抽出することを特徴とする荷電粒子線装置。
  2. 荷電粒子線を発生させる荷電粒子線源と、
    試料を保持し移動する試料台と、
    前記荷電粒子線を試料に集束させるレンズ系と、
    試料上に前記荷電粒子線を走査する走査器と、
    前記荷電粒子線を偏向する偏向器と、
    前記荷電粒子線の照射によって試料から発生した試料信号を検出する検出器と、
    画像演算を行う演算処理部と、
    試料像を表示する表示部とを備え、
    第1の倍率で試料像を取得する一画像内で前記偏向器によって荷電粒子線を所定量偏向させて記録した視野移動を含む第1の試料像から抽出した荷電粒子線偏向前後の視野の移動量と、第2の倍率で試料像を取得する一画像内で前記偏向器によって荷電粒子線を前記所定量偏向させて記録した視野移動を含む第2の試料像から抽出した荷電粒子線偏向前後の視野の移動量とをもとに、前記第2の倍率の倍率誤差の量を前記第1の倍率の倍率誤差の量と等しくすることを特徴とする荷電粒子線装置。
  3. 請求項2記載の荷電粒子線装置において、前記第1の試料像から抽出した荷電粒子線偏向前後の視野の移動量と前記第2の試料像から抽出した荷電粒子線偏向前後の視野の移動量とをもとに、前記第2の倍率で観察した試料の寸法測定値の誤差を前記第1の倍率で観察した試料の寸法測定誤差と等しくすることを特徴とする荷電粒子線装置。
  4. 請求項2記載の荷電粒子線装置において、前記第1の試料像から抽出した荷電粒子線偏向前後の視野の移動量と前記第2の試料像から抽出した荷電粒子線偏向前後の視野の移動量とをもとに、前記第2の倍率における前記走査器の走査信号の電圧値の誤差を前記第1の倍率における前記走査器の走査信号の電圧値の誤差と等しくすることを特徴とする荷電粒子線装置。
  5. 請求項2記載の荷電粒子線装置において、前記第1の試料像から抽出した荷電粒子線偏向前後の視野の移動量と前記第2の試料像から抽出した荷電粒子線偏向前後の視野の移動量とをもとに、前記第2の倍率で撮影した試料像の倍率誤差が前記第1の倍率で撮影した試料像の倍率誤差と等しくなるように、前記第2の倍率で撮影した試料像を前記演算処理部による画像の拡大、縮小によって調節することを特徴とする荷電粒子線装置。
  6. 荷電粒子線を発生させる荷電粒子線源と、
    試料を保持し移動する試料台と、
    前記荷電粒子線を試料に集束させるレンズ系と、
    試料上に前記荷電粒子線を走査する走査器と、
    前記荷電粒子線を偏向する偏向器と、
    前記荷電粒子線の照射によって試料から発生した試料信号を検出する検出器と、
    画像演算を行う演算処理部と、
    試料像を表示する表示部とを備え、
    倍率基準とする試料の試料拡大像を用いて倍率が校正された第1の倍率で試料像を取得する一画像内で前記偏向器によって荷電粒子線を所定量偏向させて記録した視野移動を含む第1の試料像から抽出した荷電粒子線偏向前後の視野の移動量と、第2の倍率で試料像を取得する一画像内で前記偏向器によって荷電粒子線を前記所定量偏向させて記録した視野移動を含む第2の試料像から抽出した荷電粒子線偏向前後の視野の移動量とをもとに、前記第2の倍率を校正することを特徴とする荷電粒子線装置。
  7. 請求項6記載の荷電粒子線装置において、前記第1の試料像から抽出した荷電粒子線偏向前後の視野の移動量と前記第2の試料像から抽出した荷電粒子線偏向前後の視野の移動量とをもとに、前記第2の倍率で観察した試料の寸法測定値を校正することを特徴とする荷電粒子線装置。
  8. 請求項6記載の荷電粒子線装置において、前記第1の試料像から抽出した荷電粒子線偏向前後の視野の移動量と前記第2の試料像から抽出した荷電粒子線偏向前後の視野の移動量とをもとに、前記第2の倍率における前記走査器の走査信号の電圧値を調整することを特徴とする荷電粒子線装置。
  9. 請求項6記載の荷電粒子線装置において、前記第1の試料像から抽出した荷電粒子線偏向前後の視野の移動量と前記第2の試料像から抽出した荷電粒子線偏向前後の視野の移動量とをもとに、前記第2の倍率で撮影した試料像を前記演算処理部による画像の拡大、縮小によって調節することを特徴とする荷電粒子線装置。
  10. 請求項6記載の荷電粒子線装置において、観察条件毎に倍率誤差を記録した補正データテーブルを有することを特徴とする荷電粒子線装置。
  11. 請求項6記載の荷電粒子線装置において、観察条件毎に画像面内のX方向及びY方向の倍率誤差を記録した補正データテーブルを有することを特徴とする荷電粒子線装置。
  12. 請求項6記載の荷電粒子線装置において、倍率基準とする試料として周期構造を有する試料を用いることを特徴とする荷電粒子線装置。
  13. 請求項6〜12のいずれか1項記載の荷電粒子線装置において、画像取得時間が可変であることを特徴とする荷電粒子線装置。
  14. 請求項6〜13のいずれか1項記載の荷電粒子線装置において、前記演算処理部により画像演算する領域を変えられることを特徴とする荷電粒子線装置。
  15. 請求項6〜14のいずれか1項記載の荷電粒子線装置において、前記偏向器による視野移動が一画像内に複数回含まれていることを特徴とする荷電粒子線装置。
  16. 請求項6〜15のいずれか1項記載の荷電粒子線装置において、前記視野の移動量を計測する際の試料としてラインパターンを有する試料を用いる特徴を有する荷電粒子線装置。
  17. 請求項6〜16のいずれか1項記載の荷電粒子線装置において、前記視野の移動位置を画像の一次微分によって検出することを特徴とする荷電粒子線装置。
  18. 請求項6〜17のいずれか1項記載の荷電粒子線装置において、前記演算処理部は画像の一次微分プロファイルによって前記荷電粒子線偏向前後の視野の移動量を検出することを特徴とする荷電粒子線装置。
  19. 請求項18記載の荷電粒子線装置において、前記演算処理部は、画像の一次微分プロファイルに対して自己相関関数を用いて前記荷電粒子線偏向前後の視野の移動量を検出することを特徴とする荷電粒子線装置。
  20. 請求項6〜19のいずれか1項記載の荷電粒子線装置において、コントラスト変換装置を備え、倍率基準試料の試料拡大像の画質を自動補正する機能を有することを特徴とする荷電粒子線装置。
  21. 請求項6記載の荷電粒子線装置において、直交方向に周期性を有する試料を用いて画像面内のX方向、Y方向の倍率校正を独立に行うことを特徴とする荷電粒子線装置。
  22. 請求項21記載の荷電粒子線装置において、試料拡大像の表示部と像回転計算部とを備え、直交方向に周期性を有する試料を用いて倍率校正を行う際に、前記試料の周期構造の回転角度を前記表示部上に表示することを特徴とする荷電粒子線装置。
  23. 請求項21記載の荷電粒子線装置において、試料拡大像の表示部と像回転計算部とを備え、直交方向に周期性を有する試料を用いて倍率校正を行う際に、前記試料の周期構造の方位を逆空間画像上に表示させることを特徴とする荷電粒子線装置。
  24. 請求項21記載の荷電粒子線装置において、試料拡大像の表示部と像回転計算部とを備え、直交方向に周期性を有する試料を用いて倍率校正を行う際に、前記試料の周期構造の方位を、直交方向に周期性を有する試料の拡大像上に表示させることを特徴とする荷電粒子線装置。
  25. 請求項21記載の荷電粒子線装置において、試料駆動装置を備え、直交方向に周期性を有する試料の周期構造方位を検出し、前記試料駆動装置によって試料回転を行い、X方向倍率、Y方向倍率を独立に倍率校正することを特徴とする荷電粒子線装置。
JP2004366607A 2004-12-17 2004-12-17 荷電粒子線装置と荷電粒子線顕微方法 Active JP4338627B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004366607A JP4338627B2 (ja) 2004-12-17 2004-12-17 荷電粒子線装置と荷電粒子線顕微方法
US11/302,323 US7435957B2 (en) 2004-12-17 2005-12-14 Charged particle beam equipment and charged particle microscopy
US12/234,096 US8304722B2 (en) 2004-12-17 2008-09-19 Charged particle beam equipment and charged particle microscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004366607A JP4338627B2 (ja) 2004-12-17 2004-12-17 荷電粒子線装置と荷電粒子線顕微方法

Publications (2)

Publication Number Publication Date
JP2006173017A true JP2006173017A (ja) 2006-06-29
JP4338627B2 JP4338627B2 (ja) 2009-10-07

Family

ID=36652360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004366607A Active JP4338627B2 (ja) 2004-12-17 2004-12-17 荷電粒子線装置と荷電粒子線顕微方法

Country Status (2)

Country Link
US (2) US7435957B2 (ja)
JP (1) JP4338627B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311053A (ja) * 2006-05-16 2007-11-29 Hitachi High-Technologies Corp 荷電粒子線装置
JP2008082927A (ja) * 2006-09-28 2008-04-10 Fujitsu Ltd 測長装置及び測長方法
JP2010181234A (ja) * 2009-02-04 2010-08-19 Hitachi High-Technologies Corp 自動分析装置
JP2011181393A (ja) * 2010-03-02 2011-09-15 Hitachi High-Technologies Corp 荷電粒子線装置及び荷電粒子線を用いた測長方法
JP2011220735A (ja) * 2010-04-06 2011-11-04 Hitachi High-Technologies Corp 走査電子顕微鏡

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4287671B2 (ja) * 2003-02-19 2009-07-01 株式会社日立ハイテクノロジーズ 測長用標準部材およびその作製方法、並びにそれを用いた電子ビーム測長装置
US7414243B2 (en) * 2005-06-07 2008-08-19 Alis Corporation Transmission ion microscope
JP4464857B2 (ja) * 2005-04-05 2010-05-19 株式会社日立ハイテクノロジーズ 荷電粒子線装置
US20080067370A1 (en) * 2006-07-01 2008-03-20 Mccaffrey John Patrick Electron microscope and scanning probe microscope calibration device
JP4801518B2 (ja) * 2006-07-07 2011-10-26 株式会社日立ハイテクノロジーズ 荷電粒子線顕微方法および荷電粒子線装置
JP4920370B2 (ja) * 2006-10-30 2012-04-18 株式会社日立製作所 透過型電子顕微鏡の情報伝達限界測定法およびこの測定法が適用された透過型電子顕微鏡
JP2008166137A (ja) * 2006-12-28 2008-07-17 Sii Nanotechnology Inc 集束イオンビーム装置
KR100846635B1 (ko) * 2007-03-26 2008-07-16 삼성전자주식회사 주사 전자 현미경의 초점 조절 방법
US20080296496A1 (en) * 2007-05-30 2008-12-04 Hermes Microvision, Inc. (Taiwan) Method and apparatus of wafer surface potential regulation
WO2010114117A1 (ja) * 2009-04-03 2010-10-07 株式会社日立ハイテクノロジーズ 合成画像作成方法及び装置
JP5542478B2 (ja) * 2010-03-02 2014-07-09 株式会社日立ハイテクノロジーズ 荷電粒子線顕微鏡
US10451766B2 (en) * 2014-12-19 2019-10-22 Schlumberger Technology Corporation Methods of elemental imaging of formations and systems for producing the same
DE102015210941B9 (de) * 2015-06-15 2019-09-19 Carl Zeiss Microscopy Gmbh Teilchenstrahlgerät und Verfahren zum Betrieb eines Teilchenstrahlgeräts
CN112505083B (zh) * 2020-11-20 2023-01-31 北京工业大学 扫描电镜内原位蠕变与疲劳测试点追踪定位方法及系统
WO2023232382A1 (en) * 2022-06-01 2023-12-07 Asml Netherlands B.V. System and method for distortion adjustment during inspection

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107637A (en) * 1997-08-11 2000-08-22 Hitachi, Ltd. Electron beam exposure or system inspection or measurement apparatus and its method and height detection apparatus
JP4069545B2 (ja) * 1999-05-19 2008-04-02 株式会社日立製作所 電子顕微方法及びそれを用いた電子顕微鏡並び生体試料検査方法及び生体検査装置
JP2002015691A (ja) 2000-06-30 2002-01-18 Jeol Ltd 走査電子顕微鏡
JP3951590B2 (ja) * 2000-10-27 2007-08-01 株式会社日立製作所 荷電粒子線装置
JP2003100246A (ja) * 2001-09-25 2003-04-04 Toshiba Corp 荷電ビーム装置並びにパターン測定方法およびパターン描画方法
JP3944373B2 (ja) 2001-10-12 2007-07-11 株式会社日立ハイテクノロジーズ 試料の測長方法、及び走査顕微鏡
JP4231798B2 (ja) * 2004-01-23 2009-03-04 株式会社日立ハイテクノロジーズ 荷電粒子線装置および倍率計測法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311053A (ja) * 2006-05-16 2007-11-29 Hitachi High-Technologies Corp 荷電粒子線装置
JP4504946B2 (ja) * 2006-05-16 2010-07-14 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP2008082927A (ja) * 2006-09-28 2008-04-10 Fujitsu Ltd 測長装置及び測長方法
JP2010181234A (ja) * 2009-02-04 2010-08-19 Hitachi High-Technologies Corp 自動分析装置
JP2011181393A (ja) * 2010-03-02 2011-09-15 Hitachi High-Technologies Corp 荷電粒子線装置及び荷電粒子線を用いた測長方法
JP2011220735A (ja) * 2010-04-06 2011-11-04 Hitachi High-Technologies Corp 走査電子顕微鏡

Also Published As

Publication number Publication date
US8304722B2 (en) 2012-11-06
US7435957B2 (en) 2008-10-14
JP4338627B2 (ja) 2009-10-07
US20090084955A1 (en) 2009-04-02
US20060151697A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4338627B2 (ja) 荷電粒子線装置と荷電粒子線顕微方法
JP4464857B2 (ja) 荷電粒子線装置
US7659508B2 (en) Method for measuring dimensions of sample and scanning electron microscope
JP4504946B2 (ja) 荷電粒子線装置
US10984981B2 (en) Charged particle beam device having inspection scan direction based on scan with smaller dose
JP4231798B2 (ja) 荷電粒子線装置および倍率計測法
US7288763B2 (en) Method of measurement accuracy improvement by control of pattern shrinkage
JP4194526B2 (ja) 荷電粒子線の調整方法、及び荷電粒子線装置
US8086022B2 (en) Electron beam inspection system and an image generation method for an electron beam inspection system
JP2006173038A (ja) 荷電粒子線装置、試料像表示方法及びイメージシフト感度計測方法
JP4537891B2 (ja) 回路パターンの検査装置および検査方法
JP4431624B2 (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JP2017199453A (ja) 荷電粒子線装置
JP4231891B2 (ja) 荷電粒子線の調整方法、及び荷電粒子線装置
JP2010015731A (ja) 走査型電子顕微鏡、および走査型電子顕微鏡における画像の改良方法
JP5287135B2 (ja) 画像形成方法及び荷電粒子線装置
JP5135116B2 (ja) 荷電粒子線を用いた検査方法および検査装置
JP2007287561A (ja) 荷電粒子線装置
JP2005207899A (ja) 荷電粒子線を用いた検査方法および検査装置
JP2521964B2 (ja) 電子顕微鏡の測長方法
JP2015138609A (ja) レシピ設定装置及びそれを有する荷電粒子線装置
JP2010016007A (ja) 荷電粒子線調整方法及び荷電粒子線装置
JP2017199452A (ja) 荷電粒子線装置
JP2017199451A (ja) 荷電粒子線装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

R150 Certificate of patent or registration of utility model

Ref document number: 4338627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350