JP2006169657A - ウォータジェットルームにおける緯入れ装置 - Google Patents

ウォータジェットルームにおける緯入れ装置 Download PDF

Info

Publication number
JP2006169657A
JP2006169657A JP2004361844A JP2004361844A JP2006169657A JP 2006169657 A JP2006169657 A JP 2006169657A JP 2004361844 A JP2004361844 A JP 2004361844A JP 2004361844 A JP2004361844 A JP 2004361844A JP 2006169657 A JP2006169657 A JP 2006169657A
Authority
JP
Japan
Prior art keywords
water
nozzle
weft insertion
injection port
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004361844A
Other languages
English (en)
Other versions
JP4658251B2 (ja
Inventor
Kazuya Shimizu
和也 清水
Wataru Kadowaki
渉 門脇
Kazunori Yoshida
一徳 吉田
Fujio Suzuki
藤雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Industries Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Central R&D Labs Inc filed Critical Toyota Industries Corp
Priority to JP2004361844A priority Critical patent/JP4658251B2/ja
Priority to CN 200510131473 priority patent/CN1789518B/zh
Publication of JP2006169657A publication Critical patent/JP2006169657A/ja
Application granted granted Critical
Publication of JP4658251B2 publication Critical patent/JP4658251B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Looms (AREA)

Abstract

【課題】噴射圧力の波形の悪化を抑制できるウォータジェットルームにおける緯入れ装置を提供する。
【解決手段】緯入れポンプ11と緯入れノズル20との間の吐出管19には分岐管35が接続されており、分岐管35の末端にはバイパスノズル36が接続されている。緯入れノズル20の噴射口における通過断面積は、変更可能であり、バイパスノズル36の噴射口における通過断面積は、変更可能である。緯入れノズル20の噴射口の高さ位置とバイパスノズル36の噴射口の高さ位置とは、同じにしてある。分岐部53から緯入れノズル20の噴射口に至る水路長と、分岐部53からバイパスノズル36の噴射口に至る水路長とは、揃えてある。
【選択図】 図1

Description

本発明は、緯入れポンプから供給される水を緯入れノズルから噴射して緯糸を緯入れするウォータジェットルームにおける緯入れ装置に関する。
ウォータジェットルームでは、プランジャ、シリンダ、レバー系等により構成されるポンプ、このポンプを駆動するカム機構、加圧用コイルバネ、配管、ならびに緯入れノズルにより構成される緯入れ装置が広く用いられている。緯入れ装置の動作は、シリンダ室前後に逆止弁を備えたプランジャ式ポンプによって、緯入れ毎に一定量の水を吸引・加圧して緯入れノズルから噴射するものであり、緯糸が緯入れノズルからの水噴射によって経糸開口内へ緯入れされる。
ウォータジェットルームにおいては、製織条件(具体的には織機回転数、糸種類、織り幅)に対応して、水ジェットの速度Vj、水ジェットの断面積Aj、及び水ジェットの長さLを調整する必要がある。プランジャ式ポンプにおいては、これらの3つの特性値Vj,Aj,Lは、プランジャ推力F、プランジャ断面積Ap、プランジャストロークs及び緯入れノズルの噴射口における通過断面積Anによって決定される。水ジェットを水柱と見なし、管路や緯入れノズルにおける損失を無視し、プランジャ推力Fを一定値と仮定すれば、特性値Vj,Aj,Lの間には以下のような関係がある。
[数1]
Vj=〔2×g×F/(Ap×γ)〕1/2・・・(1)
Aj=An ・・・(2)
L=s×Ap/An ・・・(3)
なお、gは、重力加速度、γは、水の比重量である。
タフタのような薄地織物の製織からエアバッグのような厚地織物の製織に変更する場合、糸の太さは、約10倍太くなる。このような太糸の場合には、糸の周囲を強力なジェットで包み込むようにして糸を飛走させる必要があることから、太く強力な水ジェットが得られる口径の大きい緯入れノズルが選択される(通過断面積Anが大きい緯入れノズルが選択される)。口径の大きい緯入れノズルに交換されると、プランジャ断面積Apがそのままであれば、式(3)によりジェット長さLが不足するので、これを補うためにプランジャストロークsを緯入れノズルにおける通過断面積Anに比例して増加する必要がある。プランジャストロークsの増加には機構上限界があるため、限界値以上に水量が必要である場合には、プランジャ断面積Apの大きいポンプに変更される。又、水ジェットの速度Vjを維持するには式(1)によりプランジャ推力Fを増す(緯入れノズルにおける噴射圧力を増す)必要があり、コイルバネの圧縮量を増すか、それでも不足する場合には、バネ定数の大きいコイルバネに取り替えられる。
特許文献1の多色緯入れ装置では、緯入れノズルとポンプとの間の管路の緯入れノズルの近くに絞り弁を設置し、この絞り弁の上流から分岐したバイパス管路上に可変式絞り弁を設けたバイパス構成が開示されている。ポンプから吐出された高圧水の一部は、バイパス管路及び可変式絞り弁を経由して水タンクに戻される。特許文献1では、可変式絞り弁の開度操作により緯入れノズルにおける噴射圧力を調整することが目的のように記載されている。
実公平1−24152号公報
特許文献1では、バイパス管路は、水タンクに直接に接続されている。このような構成は、以下のような問題をもたらす。
ポンプにおいては、カム機構を構成するカムレバーがカムの拘束を外れた瞬間に、コイルバネの推力が直接プランジャに作用し、その急激な推力上昇に対応してシリンダ内の水圧が急激に高まる。このとき、過渡的な圧力波が音速で管路を伝わってゆく。特許文献1に開示のバイパス構成では、圧力波は、分岐部において緯入れノズルに向かう方向と、可変式絞り弁に向かう方向とに別れ、可変式絞り弁に向かった圧力は、可変式絞り弁を通過して水タンクへと向かう。緯入れノズルに向かう圧力波が出口端に達すると反射波が発生し、可変式絞り弁に向かう圧力波が出口端に達すると反射波が発生する。これらの反射波は、管路を逆流してポンプへと戻り、さらに反射を繰り返す。こうして発生した圧力波が重畳し、噴射圧力の脈動が引き起こされる。
特許文献1の装置では、可変絞り弁の出口部は、水タンクよりも上方に位置しており、緯入れノズルから水が噴射されない期間においては可変絞り弁の出口部の圧力は、大気圧以下(負圧)となる。そのため、織機が長時間停止されると、管路内の水が落ち、管路内が空気で満たされる。織機を運転する際には、足踏みペダルを操作してポンプを作動させ、管路内に水を充満させる作業が必要である。緯入れノズル側の管路では、数回の水噴射で簡単に空気が抜けるが、可変絞り弁側のバイパス管路では、空気が浮力の影響によりバイパス管路内の上方にとどまろうとするため、バイパス管路側の空気が水タンク側に速やかに排出されることはない。空気がバイパス管路内に残留した状態から織機の運転を開始すると、時間経過と共に残留空気が押し流されてゆくが、噴射圧力の脈動波形は、残留している気泡量に対応して順次変化してゆき、最終的には安定状態に至る、しかし、その過程では水ジェットの噴射が不安定となり、緯入れ不良が生じやすい。
定常運転に至っても、気泡の問題は解消されない。水の中には多少なりとも空気が溶け込んでおり、可変絞り部の出口部では局所的な負圧が発生するため、水に溶け込んでいた空気が気泡化(エアレーション)、あるいは水が蒸発(キャビテーション)する現象が避けられない。可変絞り弁より下流側が大気圧以下(負圧)の状態であれば、発生した気泡が直ちに水に溶け込まずに細かく分散して管路内に混在する。気泡混入量が僅か(例えば1%)であっても、気泡の圧縮性のために流体としての体積弾性率は大きく低下し、圧力波の伝播速度も大きく低下する。圧力波の伝播速度の低下は、反射波の発生を遅らせ、脈動周期が長くなる。周期脈動の増加は、圧力波形の立ち上がり応答を低下させ、緯入れ不良を招く。
以上のように、特許文献1に開示の装置では、緯入れ装置にとって好ましくない現象である噴射開始直後の圧力波形の乱れや、水噴射期間中の脈動現象の増加が避けられない。
本発明は、噴射圧力の波形の悪化を抑制できるウォータジェットルームにおける緯入れ装置を提供することを目的とする。
本発明は、緯入れポンプから供給される水を緯入れノズルから噴射して緯糸を緯入れするウォータジェットルームにおける緯入れ装置を対象とし、請求項1の発明は、前記緯入れポンプから前記緯入れノズルに至る給水経路から水を分流可能な分流手段を備え、前記分流手段は、バイパスノズルを備え、前記バイパスノズルから噴射される水は、大気圧領域に向けて噴射されることを特徴とする。
バイパスノズルから噴射される水を大気圧領域に向けて噴射させる構成では、バイパスノズルの出口部が大気圧以下(負圧)になることはないため、管路内の気泡に起因する圧力波形の悪化が回避される。
好適な例では、前記分流手段は、前記給水経路から分岐する分岐水経路を備え、前記バイパスノズルは、前記分岐水経路の末端に接続されており、前記給水経路と前記分岐水経路との分岐部から前記緯入れノズルに至る水路長と、前記分岐部からバイパスノズルに至る水路長とが揃えられている。
分岐部から緯入れノズルに至る水路長と、分岐部からバイパスノズルに至る水路長との差が小さくなるほど、水噴射の圧力波形の悪化が抑制される。分岐部から緯入れノズルに至る水路長と、分岐部からバイパスノズルに至る水路長とが同一にした構成は、水噴射の圧力波形の悪化の抑制に特に好ましい。分岐部から緯入れノズルに至る水路長と、分岐部からバイパスノズルに至る水路長とを揃えた状態は、水噴射の圧力波形の悪化が許容される範囲において、これらの水路長に差をつけた場合も含む。
好適な例では、前記緯入れノズルと前記バイパスノズルとからの水落ちを防止する水落ち防止手段が設けられている。
織機の停止中に緯入れノズルあるいはバイパスノズルから水落ちがあると、管路内に空気が混入し、噴射圧力の波形の悪化がもたらされる。緯入れノズルとバイパスノズルとからの水落ちを防止した構成は、管路内への空気の混入を防止する。
好適な例では、前記水落ち防止手段は、前記緯入れノズルの噴射口の高さ位置と前記バイパスノズルの噴射口の高さ位置とが水落ちを生じない関係にあるように、前記緯入れノズルの噴射口と前記バイパスノズルの噴射口とを配置した構成である。
緯入れノズルの噴射口とバイパスノズルの噴射口との高さ位置に大きな差があると、両者の水位差により水落ちが生じて管路中に気泡が混入し、噴射圧力波形が悪くなる。緯入れノズルの噴射口とバイパスノズルの噴射口との高さ位置に大きな差がない場合には、水の表面張力のために水落ちが生じない。
好適な例では、前記水落ち防止手段は、前記緯入れノズルの噴射口と前記バイパスノズルの噴射口とを同一高さ位置に配置した構成である。
緯入れノズルの噴射口とバイパスノズルの噴射口とを同一高さ位置に配置した構成は、緯入れノズルの噴射口あるいはバイパスノズルの噴射口からの空気の吸い込みを回避する上で特に有効である。
好適な例では、前記バイパスノズルの噴射口の高さ位置は、前記緯入れノズルの噴射口の高さ位置よりも上にあり、前記水落ち防止手段は、前記バイパスノズルから噴射された水を前記緯入れノズルの噴射口の高さ位置よりも下方で貯水可能な排出主管と、前記緯入れノズルの噴射口の高さ位置で前記排出主管に接続された排出副管とを備え、前記バイパスノズルの噴射口に近い方の貯水面と、前記バイパスノズルの噴射口との間は、前記排出主管によって被覆された空気領域であり、前記バイパスノズルの噴射口から遠い方の貯水面は、大気圧領域に開放されており、前記排出主管と前記排出副管との接続部の高さ位置を越えた前記排出主管内の水は、前記接続部から前記排出副管へ流出する。
バイパスノズルの噴射口に近い方の貯水面と、バイパスノズルの噴射口との間における空気領域は、大気圧領域であり、バイパスノズルの噴射口から遠い方の貯水面の高さ位置は、緯入れノズルの噴射口の高さ位置と同じである。従って、緯入れノズルの噴射口の高さ位置よりも上にあるバイパスノズルの噴射口から空気が吸い込まれることはない。
好適な例では、前記バイパスノズルの噴射口の高さ位置は、前記緯入れノズルの噴射口の高さ位置よりも上にあり、前記水落ち防止手段は、バイパスノズルから噴射された水を受ける排出主管と、前記緯入れノズルの噴射口の高さ位置よりも上で前記排出主管に接続された排出副管と、前記排出主管と前記排出副管との接続部よりも上流側に設けられた逆止弁とを備え、前記接続部は、大気圧領域に開放されており、前記接続部の高さ位置を越えた前記排出主管内の水は、前記接続部から前記排出副管へ流出する。
逆止弁は、これより上流への空気の混入を防止する。従って、緯入れノズルの噴射口の高さ位置よりも上にあるバイパスノズルの噴射口から空気が吸い込まれることはない。
好適な例では、前記緯入れノズルの噴射口における通過断面積は、変更可能であり、前記バイパスノズルの噴射口における通過断面積は、変更可能である。
通過断面積を変更可能な緯入れノズルと通過断面積を変更可能なバイパスノズルとを組み合わせた構成は、製織条件の変更に対応した緯入れノズルにおける噴射水量の適切な調整を容易にする。例えば、織機回転数と織り幅とは変更されないで緯糸の太さが太くなった場合には、水ジェットの太さを増すように緯入れノズルにおける通過断面積を大きくし、緯入れノズルの噴射口における通過断面積を大きくした分に応じてバイパスノズルの噴射口における通過断面積を減らせばよい。つまり、緯入れノズルの噴射口における通過断面積とバイパスノズルの噴射口における通過断面積との和が一定値になるように調整すればよい。又、例えば、緯糸の太さと織機回転数とは変更されないで織り幅が大きくなった場合には、緯入れノズルの噴射口における通過断面積は変えないで、バイパスノズルの噴射口における通過断面積を小さくするように調整すればよい。これにより緯入れノズルに送られる水量が織り幅の増加に応じて増やされる。
好適な例では、前記緯入れノズルの噴射口における通過断面積は、第1の電気的駆動手段によって変更され、前記バイパスノズルの噴射口における通過断面積は、第2の電気的駆動手段によって変更される。
緯入れノズルの噴射口における通過断面積及びバイパスノズルの噴射口における通過断面積を電気的駆動手段によって変更する構成は、緯入れ装置の自動化に有利である。
前記緯入れノズルの噴射口における通過断面積の可変範囲は、好ましくは1.2mm2〜5mm2の範囲である。
前記バイパスノズルの噴射口における通過断面積の可変範囲は、好ましくは0mm2〜5mm2の範囲である。
好適な例では、前記緯入れポンプにおける水噴射圧発生用駆動源として、圧縮可能なガス状の流体の圧力をバネ力とした流体バネ手段を用いた。
緯入れノズルにおける噴射圧力は、プランジャに作用する推力Fとプランジャ断面積Apとにより定まる圧力(F/Ap)から、途中の管路壁の摩擦抵抗と緯入れノズルと直列に繋がる絞り弁における流動損失とによる圧力降下と、水の慣性効果による圧力降下とを引いた値となる。分流の結果として生じる流速の増加によって圧力降下量が増加し、これが水噴射圧力に影響を及ぼす。特許文献1に開示の装置では、緯入れノズルと直列に設けた絞り弁を調整することによって緯入れノズルに至る流動損失を変更し、これにより緯入れノズルにおける水噴射圧力を調整する構成を採用しているようである。しかし、可変絞り弁の絞り操作によって緯入れノズルにおける水噴射流量と水噴射圧との2つが同時に連動して変化することは原理的に避けることができない。つまり、特許文献1に開示の装置では、可変絞り弁には流れを分流させて緯入れノズルに送る水流量を減らす機能はあっても、水噴射圧力を積極的に調整する機能はない。
緯入れポンプにおける水噴射圧発生用駆動源として流体バネ手段を用いた構成は、圧縮可能なガス状の流体の圧力を調整して緯入れノズルにおける水噴射圧力を調整でき、このような調整は容易である。
本発明は、ウォータジェットルームにおける水噴射の圧力波形の悪化を抑制できるという優れた効果を奏する。
以下、本発明を具体化した第1の実施形態を図1〜図7に基づいて説明する。
図1(a)及び図4(a)は、ウォータジェットルームにおける緯入れ装置を示し、図4(b)は、緯入れ装置を構成する緯入れポンプ11の内部構造を示す。
図4(b)に示すように、緯入れポンプ11を構成するポンプハウジング12には貯水室形成シリンダ13が一体形成されており、貯水室形成シリンダ13内にはプランジャ14が摺動可能に収容されている。
ポンプハウジング12には吸入口121及び吐出口122が形成されており、吸入口121と吐出口122との間には貯水室123が形成されている。貯水室123と吸入口121との間、及び貯水室123と吐出口122との間には逆止弁15,16が介在されている。図1(a)に示すように、吸入口121に接続された吸入管17は、水タンク18に通じており、吐出口122に接続された吐出管19は、緯入れノズル20に接続されている。吐出管19は、緯入れポンプ11から圧送された水を緯入れノズル20へ供給するための給水経路である。
ベース21にはベローズ22が取り付けられている。ベローズ22には変位伝達体23が止着されており、プランジャ14に連結されたジョイント24には回転子25が回転可能に取り付けられている。変位伝達体23と回転子25とは当接しており、ベローズ22内の圧力室221〔図4(a)に図示〕の圧力が変位伝達体23、回転子25及びジョイント24を介してプランジャ14に伝達される。ベローズ22及び圧力室221は、圧縮可能なガス状の流体(空気)の圧力をバネ力とした流体バネ手段(緯入れポンプ11における水噴射圧発生用駆動源)を構成する。
プランジャ14は、ジョイント24を介してカムレバー26に連結されている。カムレバー26は、カムフォロア261を介してカム27に接離可能である。カムレバー26は、織機の回転に同期して一定の角速度で図1(a)及び図4(a)の矢印Zの方向へ回転するカム27とベローズ22内の圧力との協働によって往復揺動される。プランジャ14は、カムレバー26の往復揺動によって一体的に往復動する。
カムレバー26が支軸262を中心に左回動すると、プランジャ14が図4(b)の矢印Qで示す往動方向へ移動する。プランジャ14が矢印Qで示す往動方向へ移動すると、貯水室123の容積が増大し、水タンク18内の水が貯水室123内へ吸入される。プランジャ14が矢印Qで示す往動方向へ移動すると、圧力室221の容積が減少し、圧力室221内の圧力が上昇開始する。その後、圧力室221内の圧力は、プランジャ14が往動するにつれて上昇し、プランジャ14の往動が終了した時点で圧力室221内の圧力が最大になる。逆止弁15が開いて貯水室123内に吸水されている間、逆止弁16が閉じており、吐出管19内の水が貯水室123側へ逆流することはない。
カムフォロア261がカム27のカム面271の最大径位置Maを通過すると、カムレバー26が支軸262を中心に右回動し、プランジャ14が圧力室221内の空気の圧力によって図4(a)の矢印Rで示す復動方向へ移動する。プランジャ14が矢印Rで示す復動方向へ移動すると、貯水室123内の水が加圧される。貯水室123内の加圧された水は、緯入れノズル20へ圧送される。緯入れノズル20へ圧送された水は、緯入れノズル20から噴射され、緯糸Y〔図1(b)に図示〕が緯入れされる。カム27のカム面271から離れていたカムフォロア261がカム面271もしくは別途設けた噴射水量制限用のストッパ28に当接し、1サイクルの水噴射が終了する。
ストッパ28は、不動配置された雌ねじ体281と、雌ねじ体281に螺合された雄ねじ体282と、雄ねじ体282に螺合されたロックナット283とからなる。雄ねじ体282は、ロックナット283の締め付けによって雌ねじ体281に固定される。雌ねじ体281に対する雄ねじ体282の螺入位置を変更すると、カムレバー26の復動方向の最終端位置が変更される。この最終端位置を変更すれば、水噴射終了時期が変更される。雌ねじ体281に対する雄ねじ体282の螺入位置を深くすれば、水噴射終了時期が遅くなり、雌ねじ体281に対する雄ねじ体282の螺入位置を浅くすれば、水噴射終了時期が早くなる。
流体バネ手段を構成するベローズ22内の圧力室221は、エア管路29を介してエア圧力源30に接続されている。エア管路29上にはリリーフ機能を備えた圧力調整弁31及び逆止弁32が介在されている。圧力調整弁31と圧力室221との間には絞り通路34が逆止弁32と並列となるように設けられている。圧力調整弁31と逆止弁32との間のエア管路29には圧力計33が接続されている。圧力計33は、圧力調整弁31と逆止弁32との間のエア圧力を測るためのものである。圧力調整弁31と逆止弁32との間のエア圧力は、圧力計33を見ながら圧力調整弁31を調整操作することによって設定される。リリーフ機能を備えた圧力調整弁31は、圧力調整弁31と逆止弁32との間のエア圧力を圧力調整弁31によって設定された圧力に常に維持する。つまり、圧力調整弁31によって設定された圧力がベローズ22内の圧力室221へ波及する。
図1(b)に示すように、緯入れポンプ11と緯入れノズル20との間の吐出管19には分岐管35が接続されており、分岐管35の末端にはバイパスノズル36が接続されている。分岐管35は、給水経路としての吐出管19から分岐した分岐水経路である。分岐管35及びバイパスノズル36は、緯入れポンプ11から緯入れノズル20に至る吐出管19から水を分流可能な分流手段を構成する。
図2(a),(b)は、緯入れノズル20の内部構造を示す。ホルダ38の支持孔381には筒形状のノズル本体39が嵌入されている。ノズル本体39の先端側の外周面にはキャップ40が螺合されている。ホルダ38は、ノズル本体39の後端側に形成されたフランジ部391とキャップ40との間でキャップ40の締め付けにより挟み込まれてホルダ38に止着されている。ノズル本体39の周囲の支持孔381は、ホルダ38内の給水通路382に連なっており、ノズル本体39の外周面と支持孔381との間の環状室41は、給水通路382に連通している。
ノズル本体39の筒内には緯糸案内用ニードル42が嵌入されている。緯糸案内用ニードル42の後端部には調整ねじ43が圧入して固定されている。緯糸案内用ニードル42の一部となる調整ねじ43は、フランジ部391の内周に螺合されており、緯糸案内用ニードル42の大径部421は、ノズル本体39の内孔392に嵌合している。緯糸案内用ニードル42の小径部422とノズル本体39の内孔392の内周面との間の環状の水路44は、複数の流入口393を介して環状室41に連通している。流入口393は、緯糸案内用ニードル42の小径部422の周囲でノズル本体39に等間隔に配列して形成されている。小径部422の外周面は、僅かにテーパとなっている。
ノズル本体39の先端部の筒内には筒形状の噴射口形成体45が圧入して固定されている。ノズル本体39の一部となる噴射口形成体45の内周面にはテーパ孔451が形成されている。テーパ孔451は、噴射口形成体45の後端から先端に向かうにつれて縮径する形状であり、テーパ孔451の周囲は、噴射口形成体45の後端から噴射口形成体45の後端と先端との中間の段差452までである。緯糸案内用ニードル42の先端側の小径部422は、テーパ孔451の内側を通って段差452を越えるように噴射口形成体45に挿通されている。テーパ孔451の内周面と小径部422の外周面との間は、絞り通路453となる。絞り通路453の先端は、緯入れノズル20の噴射口201となっている。
環状の水路44内には複数の整流子46が配設されている。
ノズル本体39に対する調整ねじ43の螺合位置を変えると、緯糸案内用ニードル42がその軸方向に変位し、噴射口201における通過断面積が変更される。図2(a)は、調整ねじ43がノズル本体39に対して最も深く入り込んだ状態を示す。この状態では、調整ねじ43及び緯糸案内用ニードル42がノズル本体39に対して固定され、噴射口201における通過断面積が最小(>0)となっている。図2(b)は、噴射口201における通過断面積が最大となっている状態を示す。調整ねじ43とノズル本体39との間に介在されたリング形状のスペーサ37は、調整ねじ43の締め付けによってノズル本体39に固定され、調整ねじ43及びニードル42もノズル本体39に固定される。
噴射口201における通過断面積は、1.2mm2から5mm2の範囲で変更可能である。又、緯糸案内用ニードル42の内径Dは、1.3mm以上にしてある。内径Dの値1.3mmは、一般的に用いられる緯糸の最大の太さに対応できる値である。
緯入れポンプ11から圧送された水は、給水通路382、環状室41及び流入口393を経由して水路44に流入する。水路44に流入した水は、隣り合う整流子46間及び絞り通路453を通過して噴射口201から噴射される。緯糸案内用ニードル42内に通されている緯糸Yは、噴射口201からの水噴射によって経糸開口内へ緯入れされる。
図3(a),(b)は、バイパスノズル36の内部構造を示す。ノズル本体47内には室471、放水通路472及び噴射口473が形成されており、室471と放水通路472とが噴射口473によって接続されている。室471は、分岐管35に連通されている。ノズル本体47にはニードル48が嵌入されている。ニードル48の先端部481の外周面は、テーパとなっており、先端部481は、室471を通って噴射口473に入り込んでいる。
ニードル48の後端部には調整ねじ49が圧入して固定されている。ニードル48の一部となる調整ねじ49は、ノズル本体47に螺合されている。調整ねじ49にはロックナット52が螺合されている。調整ねじ49は、ロックナット52の締め付けによってノズル本体47に固定される。ノズル本体47に対する調整ねじ49の螺合位置を変えると、ニードル48がその軸方向に変位し、噴射口473における通過断面積が変更される。
ノズル本体47には指針54が取り付けられており、調整ねじ49の操作円板491には目盛り(図示略)が付けられている。指針54及び目盛りは、噴射口473における通過断面積を認識するためのものであり、指針54に一致する目盛りが噴射口473における実際の通過断面積を表している。
図3(a)は、調整ねじ49がノズル本体47に対して最も深く入り込んだ状態を示す。この状態では、噴射口473における通過断面積が零となっている。図3(b)は、噴射口473における通過断面積が最大となっている状態を示す。噴射口473における通過断面積は、零から5mm2の間で変更可能である。
放水通路472には筒形状の継ぎ手50が嵌入されており、継ぎ手50にはフレキシブルなホース51が接続されている。ホース51の末端は、水タンク18へ導かれている。ノズル本体47の側面の上部には通気孔474が放水通路472に連通するように形成されている。放水通路472内は、大気圧領域である。
バイパスノズル36の噴射口473における通過断面積が零ではない場合、緯入れポンプ11から分岐管35へ圧送された水は、室471に流入する。室471に流入した水は、噴射口473から放水通路472に向けて噴射される。放水通路472へ噴射された水は、ホース51を介して水タンク18へ還流される。
図1(b)に示すように、吐出管19と分岐管35との分岐部53から緯入れノズル20の噴射口201に至る水路長と、分岐部53からバイパスノズル36の噴射口473に至る水路長は、ほぼ同じにしてある(揃えられている)。そして、バイパスノズル36の噴射口473と緯入れノズル20の噴射口201とは、同じ高さ位置に配置されている。
第1の実施形態では以下の効果が得られる。
(1−1)バイパスノズル36から噴射される水は、放水通路472に向けて噴射される。放水通路472は、通気孔474を介して大気圧領域に連通しており、放水通路472は、大気圧領域である。バイパスノズル36から噴射される水を大気圧領域に向けて噴射させる構成では、バイパスノズル36の噴射口473が大気圧以下(負圧)になることはない。従って、バイパスノズル36の噴射口473が大気圧以下(負圧)になることに起因して、吐出管19内、分岐管35内、緯入れノズル20内部の水路内、及びバイパスノズル36内部の水路内に気泡が生じるという問題は、回避される。つまり、バイパスノズル36の噴射口473(出口部)が大気圧以下になることによって生じる気泡に起因する圧力波形の悪化が回避される。
図5(a),(b),(c)は、本実施形態の緯入れ装置のバイパスノズル36の噴射口473における通過断面積を変更した場合の緯入れノズル20の噴射口201における圧力波形を測定した実験例を示す。図5(a)における曲線G1は、バイパスノズル36の噴射口473における通過断面積が零の場合の圧力波形を示す。図5(b)における曲線G2は、バイパスノズル36の噴射口473における通過断面積が最大の通過断面積の20%の場合の圧力波形を示し、図5(c)における曲線G3は、バイパスノズル36の噴射口473における通過断面積が最大の通過断面積の50%の場合の圧力波形を示す。
図5(d),(e),(f)は、バイパスノズル36と水タンク18とを鋼管で接続し、バイパスノズル36の放水通路472を大気圧領域に連通していない緯入れ装置のバイパスノズル36の噴射口473における通過断面積を変更した場合の緯入れノズル20の噴射口201における圧力波形を測定した実験例を示す。図5(d)における曲線K1は、バイパスノズル36の噴射口473における通過断面積が零の場合の圧力波形を示す。図5(e)における曲線K2は、バイパスノズル36の噴射口473における通過断面積が最大の通過断面積の20%の場合の圧力波形を示し、図5(f)における曲線K3は、バイパスノズル36の噴射口473における通過断面積が最大の通過断面積の50%の場合の圧力波形を示す。図5(d),(e),(f)の実験は、管路内に気泡が混入していないことを確かめて行なっている。
圧力波形G1,G2,G3と圧力波形K1,K2,K3とを見比べると、バイパスノズル36の噴射口473における通過断面積が零の場合には、当然ながら圧力波形G1と圧力波形K1との間に差はない。しかし、バイパスノズル36と水タンク18とを鋼管で接続した緯入れ装置では、バイパスノズル36の噴射口473における通過断面積が増大するに従い、圧力波形の乱れが増加する。これに対し、本実施形態の緯入れ装置(バイパスノズル36が大気圧領域に水を噴射する構成)では、バイパスノズル36の噴射口473における通過断面積が増大するに従い、圧力波形は、水噴射開始直後の立ち上がり波形を維持したまま噴射期間が短縮されてゆき、圧力波形の乱れが少ない。
図6は、バイパスノズル36と水タンク18とを鋼管で接続し、バイパスノズル36の放水通路472を大気圧領域に連通していない緯入れ装置において管路内に気泡が入っている場合の緯入れノズル20の噴射口201における圧力波形を測定した実験例を示す。圧力波形Koは、激しい脈動の発生を表しており、このような圧力波形Koの発生の場合には、緯入れノズル20から噴射される水ジェットは、団子状になって拡散も激しくなり、安定した緯入れは望めない。
しかし、本実施形態によれば、バイパスノズル36の放水通路472が大気圧以下の圧力となることが防止されるため、管路内に気泡が発生せず、安定した緯入れを行うことができる。
(1−2)特許文献1の図面に開示されているように、バイパス管路の長さがポンプ−緯入れノズル間の管路長に比べてかなり長い(約2倍長い)構成では、周期の長い圧力脈動成分が増す。このような場合には、噴射圧力波形の立ち上がり応答が低下するという不具合が生じる。又、圧力波形の形自体も複雑になる。
本実施形態では、吐出管19と分岐管35との分岐部53から緯入れノズル20に至る水路長と、分岐部53からバイパスノズル36に至る水路長とが同等にされている(揃えられている)。このような水路長の同等化は、圧力波形の形の複雑化(圧力波形の悪化)の抑制に有効である。
(1−3)緯入れノズル20の噴射口201の高さ位置がバイパスノズル36の噴射口473の高さ位置よりも高い場合、両者の水位差により緯入れノズル20の噴射口201から空気が吸い込まれると共に、バイパスノズル36の噴射口473からは同じ容積の水が滴下する。緯入れノズル20の噴射口201の高さ位置がバイパスノズル36の噴射口473の高さ位置よりも低い場合、両者の水位差によりバイパスノズル36の噴射口から空気が吸い込まれると共に、緯入れノズルの噴射口からは同じ容積の水が滴下する。そうすると、水の管路中(吐出管19内、分岐管35内、緯入れノズル20内の水路、バイパスノズル36内の水路中等)に気泡が混入し、噴射圧力波形が悪くなる。緯入れノズル20の噴射口201とバイパスノズル36の噴射口473とを同一高さ位置に配置した構成は、水位差による緯入れノズル20の噴射口201あるいはバイパスノズル36の噴射口473からの空気の吸い込みを回避する上で有効である。
(1−4)図7は、緯糸Yの太さdと、織り幅と、緯入れ1回毎に緯入れノズル20から噴射される水量Wyと、緯入れ1回毎にバイパスノズル36から噴射される水量Wbとの関係を示すグラフである。横軸は、緯糸Yの太さdを表し、縦軸は、水量を表す。d1は、織機において使用される緯糸Yの最小太さを表し、d2は、織機において使用される緯糸Yの最大太さを表す。水量Wyと水量Wbとの和(Wy+Wb)は、緯入れ1回毎に緯入れポンプ11から圧送される供給水量Woに等しい。供給水量Woは、貯水室123内においてプランジャ14の復動〔図4(a)において矢印Rの方向への移動〕によって排除される容積に等しい。供給水量Woは、最大の織り幅H2と用いる緯糸Yの最大の太さd2とを想定して決定されている。
線E1は、織機において許容される最小の織り幅H1で製織される場合において、緯糸Yの太さdが〔d1,d2〕の範囲で変更されたときの水量Wyと水量Wbとの配分割合を表す。線E2は、織機において許容される最大の織り幅H2で製織される場合において、緯糸Yの太さdが〔d1,d2〕の範囲で変更されたときの水量Wyと水量Wbとの配分割合を表す。線E3は、最大の織り幅よりも小さく、かつ最小の織り幅よりも大きい織り幅H3で製織される場合において、緯糸Yの太さdが〔d1,d2〕の範囲で変更されたときの水量Wyと水量Wbとの配分割合を表す一例である。
織機回転数と織り幅(例えばH3)とは変更されないで、緯糸Y(例えばd1より太く、d2より細い太さd3の緯糸)がより太い緯糸(例えばd2より細い太さd4の緯糸)に変更されるとする。この場合には、図7に示すように、水量Wyと水量Wbとの配分割合は、点X1(配分割合Wy1:Wb1)からX2(配分割合Wy2:Wb2)へ変更される。この変更を行なうには、緯入れノズル20の噴射口201における通過断面積を大きくし、噴射口201における通過断面積を大きくした分だけ、バイパスノズル36の噴射口473における通過断面積を小さくする調整作業を行なう。この調整作業の前と後とでは、噴射口201における通過断面積と噴射口473における通過断面積との和は変わらないが、緯入れノズル20から噴射される水ジェットの太さが増す。
織機回転数と緯糸Yの太さ(例えばd4)とは変更されないで、例えば織り幅H3が最大の織り幅H2に変更されるとする。この場合には、図7に示すように、水量Wyと水量Wbとの配分割合は、点X2(配分割合Wy2:Wb2)から点X3(配分割合Wy3:Wb3)へ変更される。この変更を行なうには、緯入れノズル20の噴射口201における通過断面積はそのままとし、バイパスノズル36の噴射口473における通過断面積を小さくする調整作業を行なう。これにより、緯入れノズル20への水供給量が増す。
このように、噴射水量を変更可能な緯入れノズル20と噴射水量を変更可能なバイパスノズル36とを組み合わせた構成は、製織条件(具体的には織機回転数、糸種類、織り幅)の変更に対応した緯入れノズル20における噴射水量の適切な調整を容易にする。
(1−5)緯入れノズル20の噴射口201における通過断面積の可変範囲は、好ましくは1.2mm2〜5mm2の範囲である。又、バイパスノズル36の噴射口473における通過断面積の可変範囲は、好ましくは0mm2〜5mm2の範囲である。
(1−6)織機回転数が変更されないで織り幅が大きくなる場合には、緯入れノズル20から噴射される水の噴射速度を大きく必要がある。そのためには、ベローズ22の圧力室221における圧力を高めて緯入れノズル20における噴射圧力を高める調整作業を行なえばよい。前記した式(1)に従えば、例えば、織機回転数を1.2倍に高める場合には、ベローズ22の圧力室221における圧力を1.44倍(1.2の2乗)にすればよい。この圧力調整は、圧力調整弁31を調整操作することによって簡単に行える。
(1−7)従来のウォータジェットルームでは、緯糸の太さが50デニール〜900デニールの範囲で大幅に変更されるような場合には、緯入れポンプを構成するコイルバネの交換、緯入れポンプ全体の交換、緯入れノズルの交換等が不可避である。現状の生産工場では、大きな製織条件の変更が予想される場合には、変更に備えて、プランジャ径の異なる緯入れポンプや、バネ定数、自由長の異なるコイルバネや、口径の異なる緯入れノズル等の緯入れ用部品を在庫として準備しておく等の措置が講じられている。しかし、事情により交換する部品がない場合には、不経済と知りつつも必要以上の水量を用いて細い緯糸を緯入れする、あるいは、織物品質や稼働率の低下を招くのを覚悟の上で少ない水量で太い緯糸を緯入れする、あるいは、やむなく織機回転数を下げて運転する等の処置をとらざるを得ない。
本実施形態では、緯入れポンプ11における水噴射圧発生用駆動源として流体バネ手段を用い、吐出管19から分流した水を大気圧領域へ噴射するバイパスノズル36の噴射口473における通路断面積と、緯入れノズル20の噴射口201における通過断面積とを調整可能にしている。その結果、製織条件を大きく変更する際に水量及び水噴射圧力の調整のために余儀なくされていた部品交換という問題が解消される。
本実施形態では、新規の部品を新たに追加しているが、従来技術で製織条件の全ての範囲で製織するのに必要な部品数を考えると、本実施形態における部品数は、従来よりも大幅に減っている。多様な製織条件にスピーディに対処する多品種少量生産のための織機に本発明を利用すれば、機能増、調整時間短縮、在庫部品減少といった数々の効果が期待でき、そのコストパフォーマンスは、従来技術に比べて極めて高い。
次に、第1の実施形態におけるバイパスノズル36とは若干構造が異なる図8のバイパスノズル36Aについて説明する。第1の実施形態と同じ構成部には同じ符合が用いてある。
ニードル48Aは、調整ねじ49の操作円板491の回動操作によってノズル本体47Aに対して上下方向に移動可能である。噴射口473Aを通過した水は、ノズル本体47Aに対して上下に貫通する放水通路472Aに向けて噴射される。放水通路472Aは通気孔474により大気圧領域と連通されている。バイパスノズル36Aは、第1の実施形態におけるバイパスノズル36と同じ役割を果たす。
次に、図9に模式的に示す第2の実施形態を説明する。第1の実施形態と同じ構成部には同じ符合が用いてある。
バイパスノズル36Bの噴射口361の高さ位置は、緯入れノズル20の噴射口201の高さ位置よりも上にあり、噴射口361は、下方を指向している。バイパスノズル36BにはU字形状の排出主管55が接続されており、排出主管55の側面には排出副管56が接続されている。排出副管56と排出主管55との接続部は、緯入れノズル20の噴射口201の高さ位置にあり、排出主管55は、排出副管56と排出主管55との接続部まで貯水可能である。バイパスノズル36Bの噴射口361に近い方の貯水面h1とバイパスノズル36Bの噴射口361との間は、排出主管55によって被覆された空気領域である。バイパスノズル36Bの噴射口361から遠い方の貯水面h2は、通気孔474によって大気圧領域に開放されており、排出副管56と排出主管55との接続部の高さ位置を越えた排出主管55内の水は、前記接続部から排出副管56へ流出する。排出副管56へ流出した水は、ホース51を経由して水タンク18〔図1(a)参照〕へ還流する。
バイパスノズル36Bから前記接続部に至る排出主管55の長さは、圧力脈動に影響を与えない長さにしてある。排出主管55における流動抵抗が極めて小さい場合には、貯水面h1とバイパスノズル36Bの噴射口361との間の空気領域は、大気圧領域と見なすことができ、バイパスノズル36Bの噴射口361から噴射される水は、大気圧領域に噴射される。つまり、織機の運転停止中において緯入れノズル20の噴射口201あるいはバイパスノズル36Bの噴射口361から水が落ちることはなく、水落ちによる管路内への空気の混入は生じない。排出主管55と排出副管56とは、水落ち防止手段を構成する。
多色緯入れ装置に本発明を適用する場合には設置スペースの制約があり、緯入れノズル20とバイパスノズルとの高さ位置に関して理想的な配置(緯入れノズル20の噴射口201とバイパスノズルの噴射口とを同一高さに配置すること)が得られない場合がある。第2の実施形態の水落ち防止手段は、このような場合に有効である。
次に、図10に模式的に示す第3の実施形態を説明する。第1の実施形態と同じ構成部には同じ符合が用いてある。
バイパスノズル36Cの噴射口362の高さ位置は、緯入れノズル20の噴射口201の高さ位置よりも上にあり、噴射口362は、水平方向を指向している。バイパスノズル36Cには排出主管57が接続されている。バイパスノズル36Cからの噴射水を受ける排出主管57は、水平部分と垂直部分とからなり、垂直部分は、上方に延びている。排出主管57の垂直部分の側面には排出副管58が接続されている。排出主管57と排出副管58との接続部よりも上流側には逆止弁59が設けられている。逆止弁59は、弁体591の自重を利用して弁孔592を閉鎖する。排出副管58と排出主管57との接続部は、通気孔474により大気圧領域に開放されている。排出副管58と排出主管57との接続部の高さ位置を越えた排出主管57内の水は、前記接続部から排出副管58へ流出する。排出副管58へ流出した水は、ホース51を経由して水タンク18〔図1(a)参照〕へ還流する。
逆止弁59は、排出主管57内の水の逆流を防止する。従って、織機の運転停止中において緯入れノズル20の噴射口201あるいはバイパスノズル36Cの噴射口362から水が落ちることはなく、水落ちによる管路内への空気の混入は生じない。排出主管57、排出副管58及び逆止弁59は、水落ち防止手段を構成する。第3の実施形態の水落ち防止手段は、緯入れノズル20とバイパスノズルとの高さ位置に関して理想的な配置が得られない場合に、第2の実施形態と同様に有効である。
なお、逆止弁59の弁体591をバネ力によって弁孔592を閉じる方向へ付勢してもよい。この場合、バネ力は、極力小さくすることが望ましい。
次に、図11〜図14に示す第4の実施形態を説明する。第1の実施形態と同じ構成部には同じ符合が用いてある。
図11に示すサーボモータ型の第1の電気的駆動手段66は、緯入れノズル20の緯糸案内用ニードル42〔図2(a),(b)参照〕を駆動し、サーボモータ型の第2の電気的駆動手段67は、バイパスノズル36のニードル48〔図3(a),(b)参照〕を駆動する。第1の電気的駆動手段66は、調整ねじ43〔図2(a),(b)参照〕を回動して緯入れノズル20の噴射口201における通過断面積を変更する。第2の電気的駆動手段67は、調整ねじ49〔図3(a),(b)参照〕を回動してバイパスノズル36の噴射口473における通過断面積を変更する。
緯入れノズル20にはポテンショメータ77が組み付けられており、バイパスノズル36にはポテンショメータ78が組み付けられている。ポテンショメータ77は、緯糸案内用ニードル42〔図2(a),(b)参照〕の位置に応じた電気信号を出力し、ポテンショメータ78は、バイパスノズル36のニードル48〔図3(a),(b)参照〕の位置に応じた電気信号を出力する。
図12に示すように、緯入れノズル20の手前の緯糸経路上には歪み検出型の糸張力計60及びグリッパ61が配設されている。緯糸Yは、糸張力計60の糸ガイド孔(図示略)に通されてからグリッパ61の固定把持片(図示略)と可動把持片(図示略)との間を通される。緯糸Yの非緯入れ時には可動把持片が固定把持片に接合し、緯糸Yが固定把持片と可動把持片との間に把持される。緯糸Yの緯入れ時には可動把持片が固定把持片から離間して緯糸Yがグリッパ61の把持作用から解放される。グリッパ61の把持作用から解放された緯糸Yは、緯入れノズル20の水噴射によって緯入れされる。緯糸Yの張力による荷重は、糸張力計60に掛かり、糸張力計60は、緯糸Yの張力による荷重に応じた電気信号を出力する。
緯入れ末端側には歪み検出型のジェット先頭到達検出器62が配設されている。ジェット先頭到達検出器62は、緯入れノズル20から噴射される水の噴射経路上にある。緯入れノズル20から噴射された水ジェットは、ジェット先頭到達検出器62に衝突する。ジェット先頭到達検出器62は、水ジェットの衝突による荷重に応じた電気信号を出力する。
カムレバー26の復動方向の最終端位置を規定するストッパ28には荷重検出器63が取り付けられている。荷重検出器63は、カムレバー26がストッパ28の雄ねじ体282に衝突する際の衝撃振動加速度に対応した電気信号を出力する。荷重検出器63は、緯入れノズル20からの水の噴射終了を検出する。
ポテンショメータ77,78、糸張力計60、ジェット先頭到達検出器62及び荷重検出器63から出力される電気信号は、監視制御装置64に送られる。監視制御装置64は、信号処理部641と演算部642とを備えている。ポテンショメータ77,78、糸張力計60、ジェット先頭到達検出器62及び荷重検出器63は、信号処理部641に信号接続されており、信号処理部641には織機回転角度検出用のロータリエンコーダ65が信号接続されている。
信号処理部641は、ポテンショメータ77から送られてくる電気信号に基づいて、緯入れノズル20の噴射口201における通過断面積N1を検出する。信号処理部641は、ポテンショメータ78から送られてくる電気信号に基づいて、バイパスノズル36の噴射口473における通過断面積N2を検出する。信号処理部641は、糸張力計60から送られてくる電気信号及びロータリエンコーダ65から送られてくる織機回転角度検出情報に基づいて、緯糸Yの自由飛走が終了する自由飛走終了時期θp(飛走する緯糸Yが自由飛走状態から拘束飛走状態に変わるときの織機回転角度)を検出する。信号処理部641は、ジェット先頭到達検出器62から送られてくる電気信号及び前記織機回転角度検出情報に基づいて、緯入れノズル20から噴射される水ジェットの先頭がジェット先頭到達検出器62の位置に到達する時期を検出する。又、信号処理部641は、荷重検出器63から送られてくる電気信号及び前記織機回転角度検出情報に基づいて、緯入れノズル20から噴射される水の噴射終了時期θeを検出する。
そして、信号処理部641は、検出した自由飛走終了時期θp、及び検出したジェット先頭到達時期θjを演算部642に出力する。又、信号処理部641は、緯入れノズル20における検出した通過断面積N1、バイパスノズル36における検出した通過断面積N2、及び検出した水噴射終了時期θeを制御指令装置76に出力する。
信号処理部641を含む監視制御装置64は、糸張力計60及びロータリエンコーダ65と共に、緯糸Yの自由飛走が終了する自由飛走終了時期θpを検出する自由飛走終了時期検出手段を構成する。監視制御装置64は、ジェット先頭到達検出器62及びロータリエンコーダ65と共に、緯入れノズル20から噴射される水のジェットの先頭が所定の位置に到達するジェット先頭到達時期を検出するジェット先頭到達時期検出手段を構成する。監視制御装置64は、荷重検出器63及びロータリエンコーダ65と共に、水の噴射終了時期を検出する噴射終了時期検出手段を構成する。監視制御装置64は、ポテンショメータ77と共に緯入れノズル20の噴射口201における通過断面積を検出する第1の通過断面積検出手段を構成する。監視制御装置64は、ポテンショメータ78と共にバイパスノズル36の噴射口473における通過断面積を検出する第2の通過断面積検出手段を構成する。
演算部642は、信号処理部641における信号処理の結果に基づいて、自由飛走状態から拘束飛走状態への移行時を表す織機回転角度θpにおけるジェット先行長Lpを算出する。ジェット先行長Lpの算出は、本願出願人が特願2003−145355(特開2004-346457)において記載した算出方法(特願2003−145355の図5に基づく算出方法)による。演算部642を含む監視制御装置64は、ジェット先行長を算出するジェット先行長算出手段である。
水噴射発生用駆動源としての流体バネ手段を構成するベローズ22内の圧力室221は、エア管路29を介してエア圧力源30に接続されている。以下においては、圧力室221の圧力を空気バネ圧力ということもある。エア管路29上には噴射圧調整手段68が介在されている。噴射圧調整手段68は、電磁気的手段により絞り部を調整するいわゆる空電変換装置である。
噴射圧調整手段68とベローズ22との間のエア管路29には減圧勾配調整手段69が接続されている。減圧勾配調整手段69の構成を図13に基づいて説明する。
エア管路29には3個の電磁開閉弁70,71,72が並列に接続されており、各電磁開閉弁70,71,72にはアキュームレータ73,74,75が1対1に接続されている。電磁開閉弁70,71,72を励磁して開状態にすると、アキュームレータ73,74,75がエア管路29に連通する。電磁開閉弁70,71,72を消磁して閉状態にすると、アキュームレータ73,74,75とエア管路29との連通が遮断される。
アキュームレータ73の容積は、ベローズ22内の圧力室221の最小容積Sに等しくしてある。アキュームレータ74の容積は、アキュームレータ73の容積Sの2倍の容積2Sにしてあり、アキュームレータ75の容積は、アキュームレータ73の容積Sの3倍の容積3Sにしてある。エア管路29に連通するアキュームレータ73,74,75の総和の容積は、電磁開閉弁70,71,72の開閉の組み合わせにより、0〜7Sまでの8通り選択できる。以下においては、エア管路29に連通するアキュームレータ73,74,75の総和の容積のことを副室容積ということにする。
図14のグラフにおける曲線Paは、圧力室221の容積と圧力室221内の圧力との関係を示す。圧力Piは、圧力室221の容積が最大のときの圧力であり、圧力Pmは、圧力室221の容積が最小のときの圧力である。圧力室221の容積が増大すると、圧力室221内の圧力は、図13の矢印U2で示すように曲線Paを辿るように減圧してゆく。図13の矢印U2で示すように曲線Paを辿る圧力室221内の空気圧の減圧変化の度合いは、緯入れノズル20における水噴射圧の減圧変化の度合いに等しい。
曲線Paで示す圧力室221内の圧力の減圧変化の度合いは、副室容積が大きくなるにつれて小さくなる。以下においては、曲線Paで示すような圧力室221内の圧力の減圧変化の度合いを減圧勾配ということにする。減圧勾配は、電磁開閉弁70,71,72の開閉の組み合わせを変えることによって調整できる。
図11,12に示すように、噴射圧調整手段68、電気的駆動手段66,67は、コンピュータによって構成された制御指令装置76の制御を受ける。
監視制御装置64において得られた通過断面積N1,N2、ジェット先行長Lp、自由飛走終了時期θp、ジェット先頭到達時期θj及び水噴射終了時期θeの各情報N1,N2,Lp,θp,θj,θeは、制御指令装置76へ送られる。制御指令装置76には、通過断面積N1の目標値N1o、通過断面積N2の目標値N2o、ジェット先行長Lpの目標値Lpo、自由飛走終了時期θpの目標値θpo、ジェット先頭到達時期θjの目標値θjo、及び自由飛走終了時期θpのばらつきの目標値σoが予め入力設定されている。制御指令装置76は、各情報N1,N2,Lp,θp,θjの平均値及び自由飛走終了時期θpのばらつきと、各目標値N1o,N2o,Lpo,θpo,θjo,σoとの偏差に応じて、噴射圧調整手段68の調整状態、減圧勾配調整手段69の調整状態、及び電気的駆動手段66,67の調整状態をフィードバック制御する。各情報N1,N2,Lp,θp,θjの平均値及び自由飛走終了時期θpのばらつきは、一定期間、例えば1分間のサンプリングデータの平均値である。
噴射圧調整手段68の調整状態とは、噴射圧調整手段68が空気バネ圧力を或る圧力に調整している状態のことである。減圧勾配調整手段69の調整状態とは、減圧勾配調整手段69が副室容積を或る容積(0〜7Sの8通りの容積のうちの1つ)に調整している状態のことである。第1の電気的駆動手段66の調整状態とは、第1の電気的駆動手段66が緯入れノズル20の噴射口201における通過断面積を或る通過断面積に調整している状態のことである。第2の電気的駆動手段67の調整状態とは、第2の電気的駆動手段67がバイパスノズル36の噴射口473における通過断面積を或る通過断面積に調整している状態のことである。フィードバック制御の対象となるのは、緯入れノズル20の噴射口201における通過断面積N1、バイパスノズル36の噴射口473における通過断面積N2、ジェット先行長Lp、自由飛走終了時期θp、ジェット先頭到達時期θj及び水噴射終了時期θeである。これらの制御対象は、緯入れノズル20の緯糸案内用ニードル42の位置、バイパスノズル36のニードル48の位置、空気バネ圧力及び副室容積を調整して制御される。空気バネ圧力を変更すると、水噴射圧力が変わる。副室容積を変更すると、水噴射圧力の減圧勾配が変わる。水噴射圧力レベルや減圧勾配を変更したときの水噴射期間の変化は、水噴射終了時期θeを変更することによって補償できる。水噴射終了時期θeは、バイパスノズル36の噴射口473における通過断面積を変更することによって変えられる。
制御指令装置76は、一定期間、例えば1分間のジェット先行長データをサンプリングして逐次調整を繰り返すという制御を行なう。
第4の実施形態では以下の効果が得られる。
(4−1)緯糸Yの太さに応じた水ジェットの断面積は、緯入れノズル20の噴射口201における通過断面積を変更して変えることができる。緯入れノズル20の噴射口201における通過断面積は、第1の電気的駆動手段66の調整状態を変更することによって変えられる。第1の電気的駆動手段66は、緯入れノズル20の噴射口201における通過断面積を自動調整する上で有効な手段である。
(4−2)緯入れノズル20側へ供給される水量は、緯入れノズル20の噴射口201における通過断面積及びバイパスノズル36の噴射口473における通過断面積を変更して変えることができる。又、水噴射終了時期は、第2の電気的駆動手段67の調整状態を変更することによって変えられる。水噴射終了時期を変更すると、ジェット先行長を変更することができる。
バイパスノズル36の噴射口473における通過断面積は、第2の電気的駆動手段67の調整状態を変更することによって変えられる。第2の電気的駆動手段67は、バイパスノズル36の噴射口473における通過断面積を自動調整する上で有効な手段である。
(4−3)水ジェットの速度は、水噴射圧を変更して変えることができる。水噴射圧は、噴射圧調整手段68の調整状態を変更することによって変えられる。水ジェットの速度の調整は、ジェット先行長や自由飛走終了時期の調整に利用でき、噴射圧調整手段68は、ジェット先行長や自由飛走終了時期を自動調整する上で有効な手段である。
(4−4)緯入れ後期の水ジェットの速度は、水噴射圧の圧力波形の減圧勾配を変更して変えることができる。減圧勾配は、減圧勾配調整手段69の調整状態を変更することによって変えられる。減圧勾配を変更すると、水ジェットの後半の噴射速度が変わり、後半部の緯糸の飛走速度が変わることから、緯糸と噴射水との速度差が生じ、ジェット先行長を変更することができる。減圧勾配の調整は、ジェット先行長の調整に利用でき、減圧勾配調整手段69は、ジェット先行長を自動調整する上で有効な手段である。
(4−5)従来においては、装置の分解、部品取り替え、組み付け、ネジ締結等といった人手に頼らざるを得ない作業が必要であるため、ウォータジェットルームにおける緯入れ装置の自動化には限界があった。しかし、本実施形態では、全自動化のための緯入れ装置が構成されており、製織条件の全範囲をカバーした製織が前記した人手に頼った作業を行なうことなく遂行可能である。
本発明では以下のような実施形態も可能である。
(1)前記した第1の実施形態では、緯入れノズル20の噴射口201の高さ位置と、バイパスノズル36の噴射口473の高さ位置とを同じにしたが、緯入れノズル20の噴射口201の高さ位置と、バイパスノズル36の噴射口473の高さ位置とを異ならせても水落ちが生じない場合がある。これは、水の表面張力のために水落ちが生じない場合であり、緯入れノズル20の噴射口201の高さ位置と、バイパスノズル36の噴射口473の高さ位置との差が10cm以内であれば、殆ど水落ちが生じない。つまり、水落ちが生じない範囲において、緯入れノズル20の噴射口201の高さ位置と、バイパスノズル36の噴射口473の高さ位置とに差をつけてもよい。つまり、緯入れノズル20の噴射口201の高さ位置とバイパスノズル36の噴射口473の高さ位置とが水落ちを生じない関係にあるように、緯入れノズル20の噴射口201とバイパスノズル36の噴射口473とを配置すればよい。
(2)前記した第1の実施形態では、分岐部53から緯入れノズル20の噴射口201に至る水路長と、分岐部53からバイパスノズル36の噴射口473に至る水路長とを同じにしたが、水噴射の圧力波形の悪化が許容される範囲において、これらの水路長に差をつけてもよい。
(3)バイパスノズルとして緯入れノズル20と同じ構成のノズルを用いてもよい。
(4)吐出管19の内径と分岐管35の内径とを同じにすることが望ましい。このような内径の同一化は、圧力の脈動特性の向上に有効である。
(5)吐出管19の材質と分岐管35の材質とを同じにすることが望ましい。吐出管19と分岐管35との材質が異なると、吐出管19の膨張特性と分岐管35の膨張特性とが異なる。吐出管19と分岐管35との膨張特性の相違は、圧力の脈動特性の悪化をもたらす。吐出管19と分岐管35との材質の統一化は、圧力の脈動特性の抑制に有効である。
(6)緯入れノズル20のホルダ38にバイパスノズルを組み込んでもよい。つまり、ホルダ38内の給水通路382からバイパスノズルへ水を分流させてもよい。このようにすれば、緯入れノズル20とバイパスノズルとの間の管路長(水路長)が非常に短くなる。吐出管19と分岐管35との分岐部53から緯入れノズル20に至る水路長と、分岐部53からバイパスノズル36に至る水路長とをできるだけ短くすることは、周期の長い圧力脈動成分を抑制する上で望ましい。
(7)製織条件の全範囲をカバーしなくてもよい場合、例えば、織機回転数と織り幅との変更幅が少なく、緯糸種類(糸太さ)のみを変更すればよい場合もある。このような場合には、緯入れノズル20側への供給水量とバイパスノズル36側への供給水量との配分比が主たる調整対象となり、水噴射圧力を大きく変更する必要がない。従って、このような場合には、コイルバネを利用した緯入れポンプを用いてもよい。
(8)緯入れノズル20における緯糸案内用ニードル42の位置を変更する電気的駆動手段としてリニアソレノイドを用いてもよい。
(9)バイパスノズル36におけるニードル48の位置を変更する電気的駆動手段としてリニアソレノイドを用いてもよい。
第1の実施形態を示し、(a)は、全体図。(b)は、部分平面図。 (a),(b)は、緯入れノズル20を示す断面図。 (a),(b)は、バイパスノズル36を示す断面図。 (a)は、全体図。(b)は、緯入れポンプ11の断面図。 (a),(b),(c)は、第1の実施形態における圧力波形の例を示すグラフ。(d),(e),(f)は、バイパスノズル36と水タンク18とを鋼管接続した場合の圧力波形の例を示すグラフ。 バイパスノズル36と水タンク18とを鋼管接続した場合において気泡を混入したときの圧力波形の例を示すグラフ。 緯入れノズル20側への給水量とバイパスノズル36側への給水量との配分比を示すグラフ。 バイパスノズルの別例を示す断面図。 第2の実施形態を示す模式図。 第3実施形態を示す模式図。 第4の実施形態を示す全体図。 部分平面図。 減圧勾配調整手段69を示す模式図。 圧力室221の容積と圧力室221内の圧力との関係を示すグラフ。
符号の説明
11…緯入れポンプ。19…給水経路としての吐出管。20…緯入れノズル。201…緯入れノズルの噴射口。22…流体バネ手段を構成するベローズ。221…流体バネ手段を構成する圧力室。35…分岐水経路としての分岐管。36,36A,36B,36C…バイパスノズル。361,362,473…バイパスノズルの噴射口。53…分岐部。55…第2の実施形態における水落ち防止手段を構成する排出主管。56…第2の実施形態における水落ち防止手段を構成する排出副管。57…第3の実施形態における水落ち防止手段を構成する排出主管。58…第3の実施形態における水落ち防止手段を構成する排出副管。59…第3の実施形態における水落ち防止手段を構成する逆止弁。66…第1の電気的駆動手段。67…第2の電気的駆動手段。Y…緯糸。h1,h2…貯水面。

Claims (12)

  1. 緯入れポンプから供給される水を緯入れノズルから噴射して緯糸を緯入れするウォータジェットルームにおける緯入れ装置において、
    前記緯入れポンプから前記緯入れノズルに至る給水経路から水を分流可能な分流手段を備え、前記分流手段は、バイパスノズルを備え、前記バイパスノズルから噴射される水は、大気圧領域に向けて噴射されるウォータジェットルームにおける緯入れ装置。
  2. 前記分流手段は、前記給水経路から分岐する分岐水経路を備え、前記バイパスノズルは、前記分岐水経路の末端に接続されており、前記給水経路と前記分岐水経路との分岐部から前記緯入れノズルに至る水路長と、前記分岐部からバイパスノズルに至る水路長とが揃えられている請求項1に記載のウォータジェットルームにおける緯入れ装置。
  3. 前記緯入れノズルと前記バイパスノズルとからの水落ちを防止する水落ち防止手段が設けられている請求項1及び請求項2のいずれか1項に記載のウォータジェットルームにおける緯入れ装置。
  4. 前記水落ち防止手段は、前記緯入れノズルの噴射口の高さ位置と前記バイパスノズルの噴射口の高さ位置とが水落ちを生じない関係にあるように、前記緯入れノズルの噴射口と前記バイパスノズルの噴射口とを配置した構成である請求項3に記載のウォータジェットルームにおける緯入れ装置。
  5. 前記水落ち防止手段は、前記緯入れノズルの噴射口と前記バイパスノズルの噴射口とを同一高さ位置に配置した構成である請求項4に記載のウォータジェットルームにおける緯入れ装置。
  6. 前記バイパスノズルの噴射口の高さ位置は、前記緯入れノズルの噴射口の高さ位置よりも上にあり、前記水落ち防止手段は、前記バイパスノズルから噴射された水を前記緯入れノズルの噴射口の高さ位置よりも下方で貯水可能な排出主管と、前記緯入れノズルの噴射口の高さ位置で前記排出主管に接続された排出副管とを備え、前記バイパスノズルの噴射口に近い方の貯水面と、前記バイパスノズルの噴射口との間は、前記排出主管によって被覆された空気領域であり、前記バイパスノズルの噴射口から遠い方の貯水面は、大気圧領域に開放されており、前記排出主管と前記排出副管との接続部の高さ位置を越えた前記排出主管内の水は、前記接続部から前記排出副管へ流出する請求項3に記載のウォータジェットルームにおける緯入れ装置。
  7. 前記バイパスノズルの噴射口の高さ位置は、前記緯入れノズルの噴射口の高さ位置よりも上にあり、前記水落ち防止手段は、バイパスノズルから噴射された水を受ける排出主管と、前記緯入れノズルの噴射口の高さ位置よりも上で前記排出主管に接続された排出副管と、前記排出主管と前記排出副管との接続部よりも上流側に設けられた逆止弁とを備え、前記接続部は、大気圧領域に開放されており、前記接続部の高さ位置を越えた前記排出主管内の水は、前記接続部から前記排出副管へ流出する請求項3に記載のウォータジェットルームにおける緯入れ装置。
  8. 前記緯入れノズルの噴射口における通過断面積は、変更可能であり、前記バイパスノズルの噴射口における通過断面積は、変更可能である請求項1乃至請求項7のいずれか1項に記載のウォータジェットルームにおける緯入れ装置。
  9. 前記緯入れノズルの噴射口における通過断面積は、第1の電気的駆動手段によって変更され、前記バイパスノズルにおける通過断面積は、第2の電気的駆動手段によって変更される請求項8に記載のウォータジェットルームにおける緯入れ装置。
  10. 前記緯入れノズルの噴射口における通過断面積は、1.2mm2〜5mm2の範囲で可変である請求項8及び請求項9のいずれか1項に記載のウォータジェットルームにおける緯入れ装置。
  11. 前記バイパスノズルにおける通過断面積は、0mm2〜5mm2の範囲で可変である請求項8乃至請求項10のいずれか1項に記載のウォータジェットルームにおける緯入れ装置。
  12. 前記緯入れポンプにおける水噴射圧発生用駆動源として、圧縮可能なガス状の流体の圧力をバネ力とした流体バネ手段を用いた請求項1乃至請求項11のいずれか1項に記載のウォータジェットルームにおける緯入れ装置。
JP2004361844A 2004-12-14 2004-12-14 ウォータジェットルームにおける緯入れ装置 Expired - Fee Related JP4658251B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004361844A JP4658251B2 (ja) 2004-12-14 2004-12-14 ウォータジェットルームにおける緯入れ装置
CN 200510131473 CN1789518B (zh) 2004-12-14 2005-12-14 喷水织机中的入纬装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361844A JP4658251B2 (ja) 2004-12-14 2004-12-14 ウォータジェットルームにおける緯入れ装置

Publications (2)

Publication Number Publication Date
JP2006169657A true JP2006169657A (ja) 2006-06-29
JP4658251B2 JP4658251B2 (ja) 2011-03-23

Family

ID=36670704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361844A Expired - Fee Related JP4658251B2 (ja) 2004-12-14 2004-12-14 ウォータジェットルームにおける緯入れ装置

Country Status (2)

Country Link
JP (1) JP4658251B2 (ja)
CN (1) CN1789518B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116811088A (zh) * 2023-08-31 2023-09-29 成都永益泵业股份有限公司 一种碳纤维复合材料、成型工艺及泵过流部件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505287B (zh) * 2011-11-03 2014-01-22 宁波宏大纺织仪器有限公司 一种喷水织机的自动补水装置及方法
JP5969900B2 (ja) * 2012-11-19 2016-08-17 津田駒工業株式会社 水噴射式織機における主軸の回転数制御方法及び装置
JP6248839B2 (ja) * 2014-07-15 2017-12-20 株式会社豊田自動織機 水噴射式織機における水噴射装置
JP7303059B2 (ja) * 2019-07-30 2023-07-04 津田駒工業株式会社 水噴射式織機における緯入れ装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324285U (ja) * 1986-07-30 1988-02-17
JPS63270841A (ja) * 1987-04-28 1988-11-08 津田駒工業株式会社 ウオ−タジエツトル−ムの多色緯入れ装置
JP2003313752A (ja) * 2002-04-22 2003-11-06 Tsudakoma Corp 水噴射式織機の圧力水供給装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313753A (ja) * 2002-04-22 2003-11-06 Tsudakoma Corp 水噴射式織機の圧力水供給方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324285U (ja) * 1986-07-30 1988-02-17
JPS63270841A (ja) * 1987-04-28 1988-11-08 津田駒工業株式会社 ウオ−タジエツトル−ムの多色緯入れ装置
JP2003313752A (ja) * 2002-04-22 2003-11-06 Tsudakoma Corp 水噴射式織機の圧力水供給装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116811088A (zh) * 2023-08-31 2023-09-29 成都永益泵业股份有限公司 一种碳纤维复合材料、成型工艺及泵过流部件
CN116811088B (zh) * 2023-08-31 2023-11-17 成都永益泵业股份有限公司 一种碳纤维复合材料、成型工艺及泵过流部件

Also Published As

Publication number Publication date
CN1789518B (zh) 2012-07-11
JP4658251B2 (ja) 2011-03-23
CN1789518A (zh) 2006-06-21

Similar Documents

Publication Publication Date Title
JP5033921B2 (ja) 噴水装置
EP2388470B1 (en) Fuel pump for a direct injection system
JP5599596B2 (ja) 流体インジェクションシステム用のインジェクタ
EP2826568B1 (en) Liquid material discharge mechanism and liquid material discharge device
JP4658251B2 (ja) ウォータジェットルームにおける緯入れ装置
EP1790848A3 (en) Fuel injection device
EP1731645A2 (en) Air feeding and control device for the pneumatic transporting of the weft in air-jet weaving machines
JP5276262B2 (ja) ウォータジェットルームにおける緯入れ方法及び緯入れ装置
JPH05209342A (ja) ジェットルームにおける緯入れ方法
EP2610378B1 (en) Auxiliary nozzle of air jet loom
KR100505543B1 (ko) 워터젯룸에서의 수분사장치
CN102146606B (zh) 一种织机辅助喷嘴的气流调节方法及调节装置
JP7154770B2 (ja) ウォータージェット織機の水噴射装置
KR102314545B1 (ko) 압축공기 분사장치
US4466468A (en) Strand delivery system
CN102444743B (zh) 具有降噪内件的增压器
JPH06185499A (ja) 真空発生装置
EP1991495A1 (en) Method and apparatus for dispensing liquid with precise control
JPH0813285A (ja) ウォータージェットルームの緯入れ水加圧ポンプの圧力調整装置
CA1152865A (en) Strand delivery and storage system
CN208562691U (zh) 一种用于织布机的喷纱装置
JPH0654074B2 (ja) ジェットポンプ装置
CA1152864A (en) Strand delivery and storage system
JP4694780B2 (ja) 気液混合吸引圧送装置
JP2004105968A (ja) 液体吐出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4658251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees