JP2006098990A - 透過型光変調素子の製造方法 - Google Patents

透過型光変調素子の製造方法 Download PDF

Info

Publication number
JP2006098990A
JP2006098990A JP2004287895A JP2004287895A JP2006098990A JP 2006098990 A JP2006098990 A JP 2006098990A JP 2004287895 A JP2004287895 A JP 2004287895A JP 2004287895 A JP2004287895 A JP 2004287895A JP 2006098990 A JP2006098990 A JP 2006098990A
Authority
JP
Japan
Prior art keywords
substrate
light modulation
manufacturing
light
transmissive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004287895A
Other languages
English (en)
Other versions
JP4414855B2 (ja
Inventor
Koichi Kimura
宏一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004287895A priority Critical patent/JP4414855B2/ja
Publication of JP2006098990A publication Critical patent/JP2006098990A/ja
Application granted granted Critical
Publication of JP4414855B2 publication Critical patent/JP4414855B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】 設計の自由度の大きい、構造が簡単で、コスト安で、制御が簡単で、波長依存性がない電気機械式光シャッター素子を、高精度・高品質・低価格で製造できる製造方法を提供する。
【解決手段】 透過型光変調素子の製造方法において、まず、Si(シリコン)基板上に駆動回路を形成し、次に、その上に透過型光変調部の成膜をしてパターニングを行い、その後、前記駆動回路と前記透過型光変調部を前記Si基板から透明基板上に転写するようにした。
【選択図】 図2

Description

本発明は、フォトリソグラフィ工程に使用されるオンディマンドのデジタル露光装置、デジタル露光による画像形成装置、プロジェクタ等の投影表示装置、ヘッドマウントディスプレイ等のマイクロディスプレイ装置などに搭載される1次元又は2次元の光変調素子アレイに関する。
この分野における公知の文献としては、特許文献1〜特許文献3を挙げることができる。
特開平10−39239号公報 特開2002−214543号公報 特表平9−510797号公報 特開平7−311391号公報
このうち、特に特許文献1記載の発明は、実質的な開口率を低下することなく,基板上にシャッタの駆動回路等を設けることを可能とするもので、特長的な発明と言える。そのために微小電気機械要素による光変調部(マイクロマシン技術により形成された微小電気機械式要素をMEM(Micro Electro−Mechanicalの略)と言い、以後、MEM光変調部と呼ぶ。))に、光を集光するマイクロレンズと、マイクロレンズで集光された光が入射され、光を通過させる貫通孔を備えた基板と、基板に設けられ、貫通孔に入射された光の通過・非通過を制御するシャッタとを備えるようにしている。
このようにすることにより、開口率を低下させることなく、貫通孔の開口部の基板表面全体に占める割合を従来のものより低くでき、基板上に駆動回路等を設けるためのスペースを確保することができ、またシャッタの移動距離を小さくすることができ、静電引力によるシャッタ開閉動作を容易に行うことができる。
したがって、より簡単な工程により製造可能で、かつ誤動作が少ない空間光変調素子を得ることができ、そしてこの空間光変調素子を用いればスクリーン上にコントラストの高い画像等を結像することができるものである。
また、特許文献2記載の発明は、光透過性基板と、接合層によって基板に固定され、導電行ライン及び導電列ラインとによって接続され、ピクセル電極の配列に接続されたトランジスタの固定配列を備えた回路パネルを具備し、各ピクセル電極が少なくとも一つのトランジスタに電気的に連結され、トランジスタが、絶縁酸化物層上の本質的単結晶シリコン材料の層で形成され、更に、該回路パネルの本質的単結晶シリコン材料の表面によって形成された第1のパネルと該第1のパネルに平行な第2のパネルにおける対向電極との間に液晶材料を設け、該ピクセル電極が第1のパネルと光透過性基板との間に位置付けられて、電極の各々によって生成され、該液晶材料に加えられる電場又は信号が、液晶材料の光学特性を変更するようにしたものである。
さらに、特許文献3記載の発明は、アクティブ・マトリックス・ディスプレーを製造する方法であって、 第一基板上の半導体層を用いてトランジスタ回路の配列を形成させ、この半導体層にピクセル電極領域を限定する開口部を持たせ、 該ピクセル電極領域の各々にピクセル電極の配列を形成させ、各ピクセル電極を該トランジスタ回路の1つに電気連結させ、そして このトランジスタ回路上に絶縁層を形成し、トランジスタと絶縁層各々の上に光遮光材料を形成し、トランジスタ回路、画素電極配列、光遮光層を該第一基板から第二基板上に転写する方法である。また、第一基板はSOI基板であり、透明基板に回路を転写し、Si基板をエッチングにより除去するようにしている。
また、特許文献4記載の発明は、電界効果電子移動度に優れた高性能の単結晶シリコン基板の透過型LCD装置の製造方法で、それは単結晶シリコン基板上の画素開口部を形成しようとする領域に多結晶部のエピタキシャル層を形成し、該単結晶シリコン基板上のその他の領域に単結晶部のエピタキシャル層を形成する第1工程と、前記単結晶部のエピタキシャル層にスイッチングトランジスタ部および駆動用周辺回路部を形成するとともに、エッチングによって前記多結晶部のエピタキシャル層を除去する第2工程と、前記多結晶部のエピタキシャル層を除去した部分に透光性の樹脂からなる埋込層を形成した後、該埋込層上に画素電極部を形成する第3工程と、画素電極部を形成した単結晶シリコン基板の表面に高平坦度の台ガラスを貼り合わせて接着保持する第4工程と、前記単結晶シリコン基板の裏面側から研削および研磨を行い、さらに必要に応じてエッチングを行って、前記埋込層の裏面を露出させるとともに、単結晶部のエピタキシャル層からなる単結晶シリコン架台を形成する第5工程と、透明接着剤によって前記単結晶シリコン架台の裏面側を色フィルター基板または下側ガラス基板に貼り合わせる第6工程とからなるものである。
しかしながら、特許文献1記載の発明では、不透明基板(例えばSi基板)に光透過のための開口部(貫通孔)を設ける構成であるので、微細化、集積性に制限があるし、またプロセスが複雑になりコストが高くなるという欠点があった。
また、特許文献2記載の発明は液晶素子を用いているため、光源からの光を偏光板やフィルターの多数層に透過させるため、光利用効率の低下、応答性の遅れ、紫外線が不可などの欠点があった。
さらに、特許文献3記載の発明も同じく、液晶素子を用いているため、上記欠点が当てはまる。さらに、開口部に画素電極を形成するため、製作の自由度がなく、製作が困難となる。特に、後述のマイクロレンズアレイを用いる場合には、製作が困難となった。また、光遮光層や画素電極が必須構成となるため、製造工程が複雑化し、コスト高に繋がった。
そして、特許文献4記載の発明も同じく、液晶素子を用いているため、上記欠点が当てはまる。さらに、単結晶部のエピタキシャル層からなる単結晶シリコン架台を形成する第5工程と、透明接着剤によって前記単結晶シリコン架台の裏面側を色フィルター基板または下側ガラス基板に貼り合わせる第6工程とが必要となるため、製造工程が複雑化し、コスト高となった。
そこで、これらの課題を解決するものとして、本出願人は、先に、本願発明に先行する発明(以下、「先行発明」という。)を考え、特許出願(特願2003−146560)した。
先行発明の目的はSi基板に貫通孔を設ける必要のない、したがって微細化および集積性に制限のない、簡単なプロセスで上記と同じ機能で安価で高性能の透過型光変調素子とその製造方法を提供することにあった。
上記課題を解決するため、請求項1記載の透過型光変調素子の発明は、透明基板と、該透明基板上の光透過領域以外の領域に設けられた薄膜の画素駆動回路と、該画素駆動回路によって制御され該画素駆動回路の上に設けられる微小電気機械要素による透過型光変調部とから成るものであり、
これを製造する方法としては、絶縁層と第2シリコン層とから成るSOI基板の上に、まず画素駆動回路を形成し、次に該画素駆動回路側を支持した状態で前記SOI基板を除去した後、ここに透明基板を接合し、前記画素駆動回路の上に微小電気機械要素による透過型光変調部を形成するものであった。
このような構成により、光変調部を備える基板全体を透明な物質で支持することで、公知文献1に記載のようなSi基板(不透明基板)に貫通孔を設ける必要の無い、微細化および集積性に制限のない透過型光変調素子を簡単なプロセスで得られることが可能となった。
しかしながら、先行発明においては次のような克服すべき課題があることに、本出願人はその後、気がついた。
(1) MEMS工程がガラス基板となり、シリコン基板を対象とした一般の半導体製造ラインを利用してMEMS工程を実施することができなくなり、コスト的およびフレキシビリティ的に不利となること、
(2) 転写する透明基板がMEMS工程に適する特性を有する必要があること。例えば、MEMSの製造工程で基板が高温に曝される可能性があるため基板の高耐熱性や、基板の伸び縮みによって可撓膜の応力やアライメント性能が変化するため基板の少熱伸縮性、製品の品質に直接影響する基板の高平坦性などが要求される。そして、これらの要求を満たす基板は高価となることである。
そこで、本発明は、上記課題を解決するもので、MEMS形成工程に一般の半導体製造ラインを利用できるようにしてコスト的およびフレキシビリティ的に有利にすると共に、転写で用いる透明基板に高耐熱性や少熱伸縮性、高平坦性といった高価な基板を使用する必要のないを透過型光変調素子の製造方法を提供することである。
このような課題を解決するため、請求項1記載の発明は、透過型光変調素子の製造方法に係り、透明基板と、該透明基板上の光透過領域以外の領域に設けられた薄膜の画素駆動回路と、該画素駆動回路によって制御され該画素駆動回路の上に設けられる微小電気機械要素による透過型光変調部とから成る透過型光変調素子、又は、該透過型光変調素子にさらに前記微小電気機械要素による透過型光変調部の少なくとも入射側に光学機能体を設け、該光学機能体により、入射光の少なくとも一部が回路基板上の光透過領域及び光変調部に収束されるようにした透過型光変調素子の製造方法において、まず、シリコン基板上に駆動回路を形成し、次に、その上に透過型光変調部を形成し、その後、前記駆動回路と前記透過型光変調部を前記シリコン基板から透明基板上に転写することを特徴としている。
請求項2記載の発明は、請求項1記載の透過型光変調素子の製造方法において、前記転写工程が、前記駆動回路と前記透過型光変調部を支持した状態で前記シリコン基板を除去し、前記透明基板を接合することを特徴としている。
請求項3記載の発明は、請求項1又は2記載の透過型光変調素子の製造方法において、前記Si基板がSOI(シリコン・オン・インシュレータ)基板であることを特徴としている。
請求項4記載の発明は、請求項1〜3のいずれか1項記載の透過型光変調素子の製造方法において、前記透過型光変調部を形成する段階において、前記駆動回路と可動膜との間に犠牲層を形成しておき、前記透明基板に転写後に前記犠牲層を除去することを特徴としている。
請求項5記載の発明は、請求項1〜4のいずれか1項記載の透過型光変調素子の製造方法において、前記透明基板に予め光学機能体を形成しておき、その後転写することを特徴としている。
請求項6記載の発明は、請求項1〜5のいずれか1項記載の透過型光変調素子の製造方法において、前記透過型光変調部の形成を、成膜とパターニングによって行なうことを特徴としている。
請求項7記載の発明は、請求項1〜6のいずれか1項記載の透過型光変調素子の製造方法において、前記光学機能体がマイクロレンズアレイであることを特徴としている。
以上の構成によって、次の(1)〜(3)のような格別の効果が得られることとなる。
(1) Si基板の状態で、CMOS回路形成およびMEMS形成の各工程が可能であり、ガラス基板上に形成する場合より高精度でかつ高品質の製造が可能である。ここで言うMEMS形成工程とは、通常、半導体製造工程で行われている成膜とフォトリソエッチング(パターニング)のことを指している。
(イ) 上記工程A〜Cの各工程は高精度なフォトリソグラフィ工程や成膜、エッチング工程を必要とし、また歩留りを高めるために高いクリーン度が要求される。そして、一般の半導体ラインは、これらの要求を全て満たすように製造可能である。
(ロ) 一方、上記基板転写といったD〜G工程におけるガラス基板、仮支持体(一般的には樹脂等が用いられることができる。)など一般半導体ラインではコンタミネーション、塵埃等による製造が困難な工程や、有機材料を使用した犠牲層の除去などMEMS形成固有の工程が一般半導体ラインとは別の後工程として一貫製造可能であり、製造の効率化や品質管理維持が容易となる。
(ハ) Si基板のサイズや設計ルールを自在に選択でき、生産のフレキシビリティが向上する。
(2) 透明基板の特性許容が広がる(耐熱性、熱伸縮、平坦性など)。なぜなら、本発明によれば、成膜やエッチング工程などの高温プロセスやフォトリソグラフィ工程などの高精度な工程をすべて終えた後に透明基板を転写するのであるから、そのとき以降は透明基板はもはや高耐熱性や少熱伸縮性・高平坦性などが要求されなくなり、低価格の透明基板で十分だからである。
(3) 本発明によれば、透明基板を最終工程Fで接合すればよいので、接合前の透明基板にはいろいろな細工をすることが簡単にできる。そこで、例えば、透明基板の裏面(接合面の反対側)に予めマイクロレンズアレイ等の光学機能体を形成することが簡単にでき、その後、転写することが可能である。したがって、高度で多様な光学機能体を変調素子と一体化でき、高機能・高集積化が簡単に図れる。
以下、本発明について図1および図2に基づいて説明する。なお、以下に記載するMEM光変調部は、ファブリペロー干渉型の例である。
(1) 半導体製造ラインで次のA〜C各工程を順次行なう。
〈A工程:SOI基板の投入工程〉
図1(A)において、SOI(シリコンオンインシュレータ)基板10を出発基板として用いる。すなわち、SOI基板10は、図のように、Si(シリコン)層11の上に、例えばSiO2(二酸化シリコン)の絶縁層12を被覆し、さらにその上にSi層13を設けて成るものである。
Si基板よりも特にSOI基板10の方がよい理由は、後述するE工程(シリコンの電気化学エッチングや研削・研磨といった工程)のようにSi基板を剥離することが容易であり、また、Si基板上に直にCMOS回路を形成しているとSi基板を削り取る場合はCMOS回路を削り取る危険性があるけれども、SOI基板10であれば絶縁層があるのでCMOS回路を削り取る危険性が解消することにある。
〈B工程:CMOS回路20および下部電極22を形成する工程〉
次に、図1(B)において、Si層13の上に通常の半導体製造プロセスによって画素駆動回路(例えば、CMOS−SRAM)20を形成し、そして画素駆動回路20を絶縁膜21で覆い、その上に下部電極31を形成し、下部電極31を駆動する画素駆動回路20との接続線を絶縁膜21内に形成する。透明な絶縁膜21はSiO2や窒化膜で作られる。下部電極31は、後に上部に形成されるMEMの下部電極となるもので画素電極となる。
〈C工程:MEM光変調部形成する工程〉
図1(C)において、MEM光変調部形成する。
図において、22は光学スペーサ、31は下部電極(画素電極)、32は可動膜、33はハーフミラー、34は上部電極[共通電極]、40は犠牲層である。
絶縁膜21、下部電極31、およびハーフミラー(下部)33の上を一面に光学スペーサ22で覆い、さらにこの上を犠牲層40で被覆する。この犠牲層40の上に、先のハーフミラー(下部)33に対向してハーフミラー(上部)33、および可動膜32を形成する。さらに、下部電極31に対向して可動膜32の上に上部電極34を形成し、MEM光変調部30を作る。
図Cで可動膜32は絶縁膜21上に浮上しているように描かれているがこれはMEM光変調部30の中央縦断面であるからであり、紙面の前後で可動膜32は絶縁膜21の上に延びて(全体でブリッジ状になって)いる。また、上部電極34も紙面の前後で接続線にて画素駆動回路20に接続されている。
光学スペーサ22としてはSiN、MgF2などの透明な誘電体、下部電極31としてはアルミ、アルミ合金、Moなどの金属やポリシリコン、金属シリサイド、可動膜32としてはSiN、ハーフミラー33としては金属酸化膜の誘電体多層膜、上部電極34としてはアルミ、アルミ合金などの金属やポリシリコン、金属シリサイド、犠牲層40としてはSiO2、PSG、BPSG、SOGなどガラス材であるが、もちろんこれに限るものではない。
以上のA〜CのMEM光変調部作成30形成までの工程は、シリコン基板を対象とした一般の半導体製造ラインを利用して実施することができ、コスト的およびフレキシビリティ的に有利となる。
次からのD〜G工程は、専用ラインで実施する。
〈D工程:仮支持体を接着する工程〉
図2(D)において、仮支持体50がMEM光変調部30側に接着される。仮支持体50としては、ガラス又は樹脂が好適で、接着テープ(図示なし)により貼り合わせる。
〈E工程:SOI基板の基板Si層を除去する工程〉
図2(E)において、仮支持体50を支持した状態で、Si層11が除去される。除去方法としては、Si層11の電気化学エッチングや、研削・研磨などの方法が用いられる。その他、リフトオフ法によるSi基板の剥離も可能である。
例えば、Si層11の上に予めリフトオフ層を形成しておき、図2(E)において、このリフトオフ層を除去するようにすればよい。
〈F工程:ガラス基板の接合を行なう工程〉
図2(F)において、除去されたSi層11に代えて透明なガラス基板60を接合する。これによって基板全体が透明物質で支持されることになるので、公知文献1に記載のようなSi基板(不透明基板)に貫通孔を設ける必要が無くなる。
〈G工程:MEM基板の完成工程〉
図2(G)において、先のD工程でMEM光変調部30側に接着した仮支持体50および両者間の貼り合わせに用いられた接着テープ(図示なし)を剥離し、犠牲層40をエッチング除去して、MEM基板が完成する。犠牲層40をあらかじめ形成しておき、これを最後に除去するようにした理由は、通常、犠牲層除去はウエットエッチングやドライエッチングをウエハレベルでハンドリングで行うが、その際に薄膜の構造体を損傷したり、途中の工程で異物や塵埃が混入したりする可能性があり、最終工程で犠牲層除去を行なうようにすればその可能性が低くなり、品質安定に効果が大きいからである。
MEM光変調部30は、下部電極31と、これと可動膜32との間に空隙をつくるために介在する絶縁性支柱(図示なし)と、絶縁性支柱の上にそれぞれ橋絡延設される可動膜32と、可動膜32の上にそれぞれ延設される上部電極(可動部電極)34と、空隙に配置されるハーフミラー(多層膜)33とから構成されている。そこで下部電極31と上部電極(可動部電極)34との間に電圧が与えられることにより、可動膜32が空隙内を上下方向に可動し、これに随伴して上部ハーフミラー33が変位するので下部ハーフミラー33との光学的距離が変化して、所謂ファブリペロー干渉の原理により特定波長域の光の透過率を変化させることができることとなる。
ここに用いられるMEM光変調素子30としては、干渉型やメカシャッタが適用可能であるが、その他の方式のMEM光変調素子においても適用可能である。
〈H工程:マイクロレンズアレイ基板の接合工程〉
さらに、用途によっては、MEM光変調部30の上にマイクロレンズアレイ(MLA)基板を接合することも考えられる。このために、図3(H)のステップが設けられる。図3(H)において、周囲にスペーサ70を設けてその上にMLA基板80が取り付けられ、希ガスを封入した後、封止される。その後、ダイシングして、電極をボンディングし、実装する。
MEM光変調素子基板とMLA基板との接合は、MEM光変調部の開口面積を大きくすることにより、アライメント精度の許容度を下げることが可能となる。
〈H工程の簡易化工程〉
ところで、本発明によれば、上記H工程を簡易化することが可能となる。
図3(F’)はH工程の簡易化ステップを示している。図3(F’)のF’工程を上記F工程に替えることでH工程の簡易化が可能となる。すなわち、F工程において接合する透明基板(ガラス基板)60’に、前もってMLAを形成しておくことにより、MEMS基板とMLAが一体であるのでF’工程においてガラス基板60’を接合するだけで光学的に高精度となり、したがってこの場合のH工程は、MEMS上部のガラス窓付き蓋がMLAレスのためスペーサの厚み精度や接合時のアライメント精度の許容が大きく、低コスト化を図ることができる。
ガラス基板60’は、そこに垂直に到来する平行光線が所望の1点(開口部)に集光するようにMLA付きガラス基板の各凸レンズの数、形状、大きさ、レンズ間間隔、開口部との距離を決めればよい。
このように、本発明によればガラス基板を最終工程Fで接合すればよいので、接合前のガラス基板に予めマイクロレンズアレイの光学機能体を形成することが簡単にでき、MEMS基板とMLAが一体となるので上述のように低コスト化を図ることができる。
以上のように、本発明によれば、まず、SOI基板の上に画素駆動回路およびこの画素駆動回路の上にMEM光変調部を形成し、その後、不透明なSi層を除去して、代わりに透明なガラス基板に置き替えるものであり、MEM光変調部を備える基板全体が透明物質で支持されているので、公知文献1に記載のようなSi基板(不透明基板)に貫通孔を設ける必要が無くなり、微細化および集積性に制限のない、簡単なプロセスで同じ機能の透過型光変調素子が得られ、さらに、先行発明との比較で言えば、(1)本発明ではSi基板の状態でMEMS形成するので、先行発明のガラス基板上に形成する場合より高精度でかつ高品質の製造が可能であり、(2)本発明では成膜やエッチング工程などの高温プロセスやフォトリソグラフィ工程などの高精度な工程をすべて終えた後に透明基板を転写するのであるから、そのとき以降は透明基板はもはや高耐熱性や少熱伸縮性・高平坦性などが要求されなくなり、先行発明の高温プロセスや高精度工程を透明基板の上で行なう場合と比べると低価格の透明基板で十分となり、さらに、(3)透明基板を最終工程Fで接合すればよいので、接合前の透明基板にはいろいろな細工をすることが簡単にでき、したがって、透明基板の裏面に予めマイクロレンズアレイ等の光学機能体を形成することが簡単にできる、といった効果がある。
図4は前述のSOI基板によるCMOS回路のより詳しい具体的な製造プロセスの1例を示す。
A)は出発基板として公知のSOI基板(Silicon on Insulator)600を用いる。SOI基板600はSi基板60a上にSiO2等の絶縁層60bが形成され、その上に結晶Si又は結晶Siと同程度のSi薄膜層60cが形成されたものである。SOI基板600は種々の製法により得られるが、代表的な製法としては再結晶化法、エピタキシャル成長法、絶縁膜埋め込み法(SIMOX、FIPOS等)、貼り合せ法等が知られており、何れも使用可能である。
絶縁膜60bの厚さは200nm〜2μm、Si薄膜層60cの厚さは100nm〜数十μm程度が可能であるが、CMOS回路形成用としてのSi薄膜層60cの厚さは100nm〜500nm程度が好適である。
なお、このようなSOI基板600によるCMOS回路は、従来のバルクSi基板によるCMOS回路に比べ、高速応答性、高耐圧性、高集積性に優れる特徴を有する。
B)ではトランジスタ素子の横方向の分離のため、熱酸化処理により半導体基板の一部を選択的に酸化させるLOCOS法を用いて素子の分離領域にフィールド酸化膜61を形成する。
C)ではSi領域に不純物イオンB+、P+をそれぞれ注入し、p型Si半導体62p、n型Si半導体領域62nを形成する。
D)では前記のp型Si半導体62p、n型Si半導体62n領域上にゲート酸化膜(SiO2)63aを熱酸化等により形成した後、poly−Si膜をCVD等により成膜し、RIE等によりパターニングしてゲート電極63bを形成する。その後、絶縁膜(SiO2)をCVDにより成膜し、RIE等によりゲート電極の両サイドにサイドウオール63cを形成する。
次に、E)では、サイドウオールを利用したセルフアラインにより、p型Si半導体、n型Si半導体領域に高濃度の不純物イオンP+、B+をそれぞれ注入し、各々、n+型Si半導体、p+型Si半導体からなるソース領域64s、ドレイン領域64dを形成する。その後、後述する金属配線層との電気的な接続を確実にするため、ゲート電極、ソース、ドレイン領域の上部にシリサイド層を形成する(図示せず)。これにより、それぞれ、n型MOS−FET(65n)、p型MOS−FET(65p)が形成される。
次に、F)では、CVD等により成膜された層間絶縁膜(PSG、BPSG、シリコン窒化膜など)66を介してゲート電極、ソース、ドレイン領域に各々接続された金属配線(アルミなど)67が形成される。
なお、G)のように、層間絶縁膜66と金属配線67は回路構成や集積度に応じて層間絶縁膜66'と金属配線67'のように積層されてもよい。
以上のようにして、所望のCMOS回路が形成され、後述するMEM光変調素子を制御、駆動する回路となる。
図5は図4の駆動回路及び配線回路の上にMEM光変調部を形成するプロセスを簡単に説明する図である。
まず、駆動回路及び配線回路の上部にMEM光変調部の下地となる絶縁膜(SiO2等)71をCVD等により設ける。その後、駆動回路の出力配線とMEM光変調素子の駆動電極を接続するためのコンタクトホール72(図I)設け、金属73を埋め込む。なお、平坦性を高めるために必要に応じて絶縁膜及び埋め込み金属層をCMP等により平坦化する。
I)では、MEM光変調素子を形成する。
H)では、前記の駆動回路及び配線回路の上部にMEM光変調部の下地となる絶縁膜(SiO2等)71をCVD等により設ける。その後、駆動回路の出力配線とMEM光変調素子の駆動電極を接続するためのコンタクトホール72(図I)設け、金属73を埋め込む。なお、平坦性を高めるために必要に応じて絶縁膜及び埋め込み金属層をCMP等により平坦化する。
MEM光変調素子は目的に応じて様々な構造、方式がある。実施例ではComb(櫛歯)型駆動による機械式光シャッタのMEM光変調素子を示す(なお、櫛歯型駆動による機械式光シャッタ自体の詳細は後述。)。櫛歯型駆動による機械式光シャッタのMEM光変調素子は、固定電極74と、一部が支持された可動電極75より構成され、さらに可動電極75は遮光部75aと開口部75bとからなる。また、76は保護膜である。固定電極74と可動電極75は、下地の駆動回路の出力に各々接続され、固定電極74と可動電極75との間の電圧印加により可動電極75が基板と水平な方向に変位する。この変位動作により可動電極75が図の右側へ変位すれば開口部75bに入射光Lが入るので透過し(a)、また可動電極75が図の左側へ変位すれば遮光部75aに入射光Lが当たるので遮光する(b)。このようにしてして光変調を行う。
ここで、MEM光変調素子は、下部駆動回路上に形成されてもよく、また下部駆動回路以外の上に形成されてもよい。但し、光変調領域は下部駆動回路以外の領域(透明領域)に設けられ、駆動回路が入射光を遮ることはない。
製法としては、先ず、エッチング保護層となるSiN膜をCVDで成膜し、その上に犠牲層となるSiO2(又はPSG、BPSG、SOGなど)をCVD等により成膜する。
その後、固定電極形成領域をエッチングにより除去する。
次に、固定電極及び可動電極となるpoly−Si層をCVDにより成膜する。
その後、フォトリン・エッチングにより、poly−Si層をパターニングし、所望形状の固定電極と可動電極を形成する。
最後に、犠牲層(SiO2等)をHF等でエッチング除去してMEM光変調素子を形成する。なお、犠牲層除去後の乾燥工程で可動電極が基板に対して貼り付かないようにCO2による超臨界乾燥を行うのが好ましい。
図6は公知の櫛歯型静電アクチュエータを光シャッタに用いた例である。
本発明の製法により、透明基板(例えばガラス基板、石英基板、サファイア基板など)881(図(2))の上に絶縁層(SiO2等)882を介して駆動回路885を形成する。これは例えばSiプロセスによるトランジスタ回路、特にCMOS回路などで実現できる。層間絶縁膜883、配線回路884、平坦化絶縁膜887などを配置する。この時、駆動回路885、配線回路884などの遮光性部材は光透過部886以外に配置する。光透過部886には絶縁層(例えばシリコン酸化物、シリコン窒化物など)などの透明材料が形成される。
駆動回路885及び平坦化絶縁膜887の上部にアクチュエータ部を形成する。
図の実施例は櫛歯型静電アクチュエータによる光シャッタの例で、第1固定電極81、第2固定電極82、可動電極83、およびこの可動電極83を基板88に支持する支持部84からなる。
第1固定電極81、第2固定電極82、それに可動電極83は図から見て取れるように、第1固定電極81と可動電極83の各対向辺、および第2固定電極82と可動電極83の各対向辺をそれぞれ櫛型の出入りのある形状に形成し、各櫛部分を接触しないように噛み合わせて成るものである。このようにすることにより、小さな駆動電圧でも有効な駆動力が発生するようになる。
なお、上記可動電極83および可動電極83は、金属、半導体など導電性材料から形成されることが好ましいが、絶縁材料と導電性材料の組合せでもよい。各々の電極は、基板88上の駆動回路885の出力に配線回路884を介して各々接続され、各電極の電位を任意に制御できる。
図6は基板88の側(図で下方)から光を入射させた場合である。
この場合は、透明基板881の側に開口部886を有する遮光層884を設け、その開口部886を透過する光路に可動電極83を変位させてその遮光部831か開口部832かのいずれかを合わせることにより、光シャッタ制御を行うものである。
基板側および可動電極側の遮光機能は、光吸収性、光反射性の何れでもよい。
好ましくは光反射性が良く、吸収による熱の発生を防止できる。また、光反射性の場合は金属、半導体の他、多層膜ミラーが好ましい。
次に、図6の例で動作を説明する。
各電極の電位差を、
V1=第1固定電極81と可動電極83の電位差
V2=第2固定電極82と可動電極83の電位差、とした場合、
A)V1>V2のときは、可動電極83が第1固定電極81側に変位する。
この時、基板側の開口部886は可動電極83の遮光部831と重なり、光Lは遮光される。
B)V1=V2のときは、可動電極83が第1固定電極81と第2固定電極83の中間で安定となり、この時も、基板側の開口部886は可動電極83の遮光部831と重なり、光Lは遮光される。
C)V1<V2のときは、可動電極83が第2固定電極82側に変位する。
この時、基板側の開口部886は可動電極83の開口部832と一致し、光Lは透過される。
なお、上記は実施例であり、機械式光シャッタの構成、方式、材料、駆動方法などは本発明の主旨に沿う限り何れでもよい。例えば、回転変位可能な遮光膜を回転変位させ、入射光を透過/遮光させるフラップ型なども有効である。
また、実施例では基板88側の光透過部886の光路上に絶縁膜などの透明部材を形成したが、空隙でも良い。この場合は、光透過部886の箇所に絶縁膜のエッチング等を施すことにより容易に空隙を形成できる。
また、基板と反対側から光を入射してもよい。
図7はマイクロレンズアレイ(以下、MLAと言う)をガラス基板で形成した透過型光変調素子の例を示している。
図において、前述の駆動回路(例えばCMOS)を形成して成る基板の上に、前述の櫛歯型静電アクチュエータを配置したもので、第1固定電極81と第2固定電極82との間を水平方向に変位できる可動電極83に設けられた開口部832が開口部886と一致すれば光L1は透光となり、遮光部831'が開口部886'と一致すれば光L2は遮光となる。一方、ガラス基板88に対して垂直に到来する平行光線が開口部886に集光するようにMLA付きガラス基板88の各凸レンズの数、形状、大きさ、レンズ間間隔、開口部886との距離が決められている。したがって、ガラス基板88に対して垂直に到来する平行光線のほとんどが各開口部886に集光するようになり、光を有効に利用することが可能となる。
このように、本発明によればガラス基板88を最終工程で接合すればよいので、接合前のガラス基板に予めマイクロレンズアレイの光学機能体を形成することが簡単にでき、MEMS基板とMLAが一体となるので簡単に光学的高精度が得られ、しかもMEMS上部のガラス窓付き蓋がMLAレスのためスペーサの厚み精度や接合時のアライメント精度の許容が大きく、低コスト化を図ることができる。
以上のように、本発明によれば、透過光路以外の領域に必要な駆動回路や配線回路を形成することにより、透過光路部を透明とすることができるので、従来のように不透明基板(例えばSi基板など)に貫通孔を設けて透過光路を透明にすることが無く、工程を簡略化でき、また、駆動回路や変調素子を形成する面積を有効に活用でき、
さらに、MEMS光変調部をガラス基板上において形成する先行発明と比較しても、シリコン基板を対象とした一般の半導体製造ラインを利用してMEMS工程を実施することができるので、コスト的およびフレキシビリティ的に有利となり、また、転写する透明基板が低価格の透明基板で十分となり、さらに、透明基板上へのマイクロレンズアレイの光学機能体の形成が簡単にできるため、MEMS基板とMLAが一体にでき簡単に光学的高精度が得られ、しかもMEMS上部のガラス窓付き蓋がMLAレスのためスペーサの厚み精度や接合時のアライメント精度の許容が大きく、低コスト化を図ることができる、といった効果がある。
本発明に係る透過型光変調素子の半導体製造ラインでの製造ステップを説明する図である。 本発明に係る透過型光変調素子の専用ラインでの製造ステップを説明する図である。 MEM光変調部の上にマイクロレンズアレイ基板を接合するステップを説明する図である。 SOI基板によるCMOS回路の具体的な製造プロセスの1例を示す図である。 図4の駆動回路及び配線回路の上にMEM光変調部を形成するプロセスを説明する図である。 公知の櫛歯型静電アクチュエータを光シャッタに用いた例である。 マイクロレンズアレイを光変調素子の入射側に設けた例を示している。
符号の説明
10 SOI(シリコンオンインシュレータ)基板
11 Si(シリコン)層
12 絶縁層(例えばSiO2)
13 Si層
20 画素駆動回路(例えば、CMOS−SRAM)
21 絶縁膜
27 スペーサ27
28 マイクロレンズアレイ基板
22 光学スペーサ
30 MEM光変調部
31 下部電極(画素電極)
32 可動膜
33 ハーフミラー
34 上部電極[共通電極]
40 犠牲層
50 仮支持体
60 透明基板(例えば、ガラス)
60’MLA付き透明基板
600 SOI基板
60a Si基板
60b 絶縁層
60c Si薄膜層
61 フィールド酸化膜
62p p型Si半導体
62n n型Si半導体
63a ゲート酸化膜
63b ゲート電極
63c サイドウオール
64s ソース領域
64d ドレイン領域
65n n型MOS−FET
65p p型MOS−FET
66、66' 層間絶縁膜
67、67' 金属配線
70 スペーサ
71 絶縁膜
72 コンタクトホール
73 金属
74 固定電極
75 可動電極
75a 遮光部
75b 開口部
76 保護膜
80 マイクロレンズアレイ基板
81 第1固定電極
82 第2固定電極
83 可動電極
831 遮光部
832 開口部
84 支持部
88 基板
881 透明基板
882 絶縁層
883 層間絶縁膜
884 配線回路
885 駆動回路
886 光透過部(開口部)
887 平坦化絶縁膜

Claims (7)

  1. 透明基板と、該透明基板上の光透過領域以外の領域に設けられた薄膜の画素駆動回路と、該画素駆動回路によって制御され該画素駆動回路の上に設けられる微小電気機械要素による透過型光変調部とから成る透過型光変調素子、又は、該透過型光変調素子にさらに前記微小電気機械要素による透過型光変調部の少なくとも入射側に光学機能体を設け、該光学機能体により、入射光の少なくとも一部が回路基板上の光透過領域及び光変調部に収束されるようにした透過型光変調素子の製造方法において、まず、シリコン基板上に駆動回路を形成し、次に、その上に透過型光変調部を形成し、その後、前記駆動回路と前記透過型光変調部を前記シリコン基板から透明基板上に転写することを特徴とする透過型光変調素子の製造方法。
  2. 前記転写工程は、前記駆動回路と前記透過型光変調部を支持した状態で前記シリコン基板を除去し、前記透明基板を接合することを特徴とする請求項1記載の透過型光変調素子の製造方法。
  3. 前記Si基板はSOI(シリコン・オン・インシュレータ)基板であることを特徴とする請求項1又は2記載の透過型光変調素子の製造方法。
  4. 前記透過型光変調部を形成する段階において、前記駆動回路と可動膜との間に犠牲層を形成しておき、前記透明基板に転写後に前記犠牲層を除去することを特徴とする請求項1〜3のいずれか1項記載の透過型光変調素子の製造方法。
  5. 前記透明基板に予め光学機能体を形成しておき、その後転写することを特徴とする請求項1〜4のいずれか1項記載の透過型光変調素子の製造方法。
  6. 前記透過型光変調部の形成を、成膜とパターニングによって行なうことを特徴とする請求項1〜5のいずれか1項記載の透過型光変調素子の製造方法。
  7. 前記光学機能体がマイクロレンズアレイであることを特徴とする請求項1〜6のいずれか1項記載の透過型光変調素子の製造方法。
JP2004287895A 2004-09-30 2004-09-30 透過型光変調素子の製造方法 Expired - Fee Related JP4414855B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287895A JP4414855B2 (ja) 2004-09-30 2004-09-30 透過型光変調素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287895A JP4414855B2 (ja) 2004-09-30 2004-09-30 透過型光変調素子の製造方法

Publications (2)

Publication Number Publication Date
JP2006098990A true JP2006098990A (ja) 2006-04-13
JP4414855B2 JP4414855B2 (ja) 2010-02-10

Family

ID=36238842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287895A Expired - Fee Related JP4414855B2 (ja) 2004-09-30 2004-09-30 透過型光変調素子の製造方法

Country Status (1)

Country Link
JP (1) JP4414855B2 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139444A (ja) * 2007-12-03 2009-06-25 Seiko Epson Corp 電気光学表示装置および電子機器
US8009346B2 (en) 2009-02-25 2011-08-30 Samsung Electronics Co., Ltd. Interference light modulator and display apparatus employing the same
JP2012252211A (ja) * 2011-06-03 2012-12-20 Japan Display East Co Ltd 表示装置及び表示装置の製造方法
JP2014123135A (ja) * 2007-01-19 2014-07-03 Pixtronix Inc Memsディスプレイ装置
US8804226B2 (en) 2011-09-26 2014-08-12 Samsung Electronics Co., Ltd. Unit of optical modulator, optical modulator including the same, and method of fabricating the optical modulator
JP2014178557A (ja) * 2013-03-15 2014-09-25 Pixtronix Inc 表示装置
US9116344B2 (en) 2008-10-27 2015-08-25 Pixtronix, Inc. MEMS anchors
US9128277B2 (en) 2006-02-23 2015-09-08 Pixtronix, Inc. Mechanical light modulators with stressed beams
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators
US9135868B2 (en) 2005-02-23 2015-09-15 Pixtronix, Inc. Direct-view MEMS display devices and methods for generating images thereon
US9158106B2 (en) 2005-02-23 2015-10-13 Pixtronix, Inc. Display methods and apparatus
US9177523B2 (en) 2005-02-23 2015-11-03 Pixtronix, Inc. Circuits for controlling display apparatus
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US9336732B2 (en) 2005-02-23 2016-05-10 Pixtronix, Inc. Circuits for controlling display apparatus
JP2016191948A (ja) * 2016-07-21 2016-11-10 株式会社半導体エネルギー研究所 表示装置
US9500853B2 (en) 2005-02-23 2016-11-22 Snaptrack, Inc. MEMS-based display apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US9177523B2 (en) 2005-02-23 2015-11-03 Pixtronix, Inc. Circuits for controlling display apparatus
US9274333B2 (en) 2005-02-23 2016-03-01 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US9158106B2 (en) 2005-02-23 2015-10-13 Pixtronix, Inc. Display methods and apparatus
US9500853B2 (en) 2005-02-23 2016-11-22 Snaptrack, Inc. MEMS-based display apparatus
US9135868B2 (en) 2005-02-23 2015-09-15 Pixtronix, Inc. Direct-view MEMS display devices and methods for generating images thereon
US9336732B2 (en) 2005-02-23 2016-05-10 Pixtronix, Inc. Circuits for controlling display apparatus
US9128277B2 (en) 2006-02-23 2015-09-08 Pixtronix, Inc. Mechanical light modulators with stressed beams
JP2014123135A (ja) * 2007-01-19 2014-07-03 Pixtronix Inc Memsディスプレイ装置
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
JP2009139444A (ja) * 2007-12-03 2009-06-25 Seiko Epson Corp 電気光学表示装置および電子機器
US7999987B2 (en) 2007-12-03 2011-08-16 Seiko Epson Corporation Electro-optical display device and electronic device
US9116344B2 (en) 2008-10-27 2015-08-25 Pixtronix, Inc. MEMS anchors
US9182587B2 (en) 2008-10-27 2015-11-10 Pixtronix, Inc. Manufacturing structure and process for compliant mechanisms
US8009346B2 (en) 2009-02-25 2011-08-30 Samsung Electronics Co., Ltd. Interference light modulator and display apparatus employing the same
US9122057B2 (en) 2011-06-03 2015-09-01 Pixtronix, Inc. Display device and method of manufacturing the display device
JP2012252211A (ja) * 2011-06-03 2012-12-20 Japan Display East Co Ltd 表示装置及び表示装置の製造方法
US8804226B2 (en) 2011-09-26 2014-08-12 Samsung Electronics Co., Ltd. Unit of optical modulator, optical modulator including the same, and method of fabricating the optical modulator
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators
JP2014178557A (ja) * 2013-03-15 2014-09-25 Pixtronix Inc 表示装置
JP2016191948A (ja) * 2016-07-21 2016-11-10 株式会社半導体エネルギー研究所 表示装置

Also Published As

Publication number Publication date
JP4414855B2 (ja) 2010-02-10

Similar Documents

Publication Publication Date Title
JP4338442B2 (ja) 透過型光変調素子の製造方法
JP4414855B2 (ja) 透過型光変調素子の製造方法
JP3526058B2 (ja) 光弁用半導体装置
JP4653374B2 (ja) 電気光学装置の製造方法
JP3072326B2 (ja) 半導体単結晶薄膜基板光弁装置とその製造方法
TWI243948B (en) Electrooptical device, manufacturing method thereof, and projection display device and electronic device
WO2009084125A1 (ja) 半導体装置の製造方法及び半導体装置
US5633176A (en) Method of producing a semiconductor device for a light valve
JP2824818B2 (ja) アクティブマトリックス液晶表示装置
JP3062698B2 (ja) 光弁基板用単結晶薄膜半導体装置
JP3278296B2 (ja) 液晶表示アレイの製造方法
JP2979196B2 (ja) 光弁用半導体基板装置及びその製造方法
JPH10293322A (ja) 液晶表示装置およびその製造方法
JP4366953B2 (ja) 複合半導体基板の製造方法
JP4366954B2 (ja) 複合半導体基板の製造方法
JP3513701B2 (ja) 半導体単結晶薄膜基板光弁装置
JP2958474B2 (ja) 半導体装置、光弁装置およびプロジェクション装置
JP4366983B2 (ja) 複合半導体基板の製造方法
JP4701487B2 (ja) 電気光学装置用基板の製造方法
KR20050052730A (ko) 액정표시장치용 박막 트랜지스터 및 그 제조 방법
KR100292974B1 (ko) 반도체장치와그제조방법
JP2003142667A (ja) 半導体基板の製造方法、半導体基板、電気光学装置並びに電子機器
JP2003142665A (ja) 半導体基板の製造方法、半導体基板、電気光学装置並びに電子機器
JP2005251912A (ja) 複合半導体基板の製造方法、複合半導体基板、電気光学装置および電子機器
JP2004356532A (ja) 複合半導体基板の製造方法、複合半導体基板、デバイスの製造方法、デバイス、電気光学装置並びに電子機器

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees