JP2006087134A - 発振回路およびそれを利用した情報記録再生装置、無線送信装置 - Google Patents

発振回路およびそれを利用した情報記録再生装置、無線送信装置 Download PDF

Info

Publication number
JP2006087134A
JP2006087134A JP2005298037A JP2005298037A JP2006087134A JP 2006087134 A JP2006087134 A JP 2006087134A JP 2005298037 A JP2005298037 A JP 2005298037A JP 2005298037 A JP2005298037 A JP 2005298037A JP 2006087134 A JP2006087134 A JP 2006087134A
Authority
JP
Japan
Prior art keywords
current
circuit
oscillation
oscillation signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005298037A
Other languages
English (en)
Other versions
JP4114753B2 (ja
Inventor
Kosei Kakiuchi
孝生 垣内
Takeshi Wakii
剛 脇井
Wataru Maruyama
渉 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2005298037A priority Critical patent/JP4114753B2/ja
Publication of JP2006087134A publication Critical patent/JP2006087134A/ja
Application granted granted Critical
Publication of JP4114753B2 publication Critical patent/JP4114753B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

【課題】発振周波数に応じて最適な発振信号を出力する。
【解決手段】電圧制御型電流源58は、発振器駆動電流308と発振器等価電流326を出力する。信号発振回路60は、第1源発振信号310と第2源発振信号312を出力する。増幅器52は、第1増幅発振信号314と第2増幅発振信号316を出力する。第1スイッチ回路62と第2スイッチ回路64は、第1電流発振信号320と第2電流発振信号322をそれぞれ出力する。第1電流値変換増幅回路66は、第1電流発振信号320の値を変換し、第2電流値変換増幅回路68は、第2電流発振信号322の値を変換し、最終的に出力電流となる。加算器56は、発振器等価電流326と変換用等価電流328を加算した増幅器駆動電流324を増幅器52に出力する。
【選択図】図1

Description

本発明は発振回路に関する。特に発振周波数の変更が可能な発振回路およびそれを利用した情報記録再生装置、無線送信装置に関する。
電圧制御型の発振回路は、例えば、光ピックアップやPLL(Phase Locked Loop)に使用され、一般に印加される制御電圧に応じて発振周波数を変化させて設定し、当該発振周波数の信号を発振出力する。従来技術における電圧制御発振器の一例は、反転アンプ、第1の充放電回路、第2の充放電回路を一巡するように接続している。この構成において、反転アンプからの反転電圧信号の位相は、第1の充放電回路と第2の充放電回路で段階的に遅れ、さらに、第2の充放電回路の出力が再び反転アンプに入力される。一巡した反転電圧信号の位相は当初の位相と再び同一になるため、電圧制御発振器は以上の処理の繰返しによって継続して発振可能となる。なお、電圧制御発振器の発振周波数は、主に第1の充放電回路と第2の充放電回路における充放電電流の大きさに応じて決定され、さらに充放電電流の大きさは、充放電電流よりも大きな電流値レベルであって、かつ制御が容易な制御電流によって制御される(例えば、特許文献1参照。)。
特開平6−37599号公報
従来の技術においては、充放電電流が非常に小さくても、制御は制御電流によってなされるため、制御のための電流値レベルの安定化によって、低い発振周波数においても安定して発振可能である。一方、一般的に高い発振周波数においては、さらに以下の課題の検討が必要である。高い発振周波数の発振信号を発振し、さらに当該発振信号を電界効果トランジスタ(FET:Field effect transistor)によって増幅する場合(以下、このFETを「増幅用FET」という)、増幅用FETに流す電流が小さければ、増幅用FETの動作速度が遅くなるため、その結果、発振信号は十分に増幅されなくなる。しかし、高い発振周波数の発振信号を十分に増幅するために、増幅用FETに流す電流を大きくすれば、高い発振周波数のかわりに低い発振周波数の発振信号を増幅させる場合において、必要以上の電力が消費される。
一方、発振回路をLSI(Large‐Scale Integrated circuit)等に内蔵して提供する提供者にとっては、量産効果を得るために、当該LSIは汎用的に使用できる方が望ましい。また、LSIを装置等に組み込む使用者は、装置の中で設定する発振周波数において、十分な振幅の信号出力を必要とし、低い消費電力での動作を望む。そのために発振回路には、広い発振周波数の範囲で信号出力や消費電力などの特性を適正にすることが望まれる。特に、使用者が発振回路を所定の装置内に適用し、当該装置の使用中に、所定の設定に応じて発振周波数が変化する場合、それぞれの発振周波数に対して信号出力や消費電力についての所定の要件を満たす必要がある。
本発明者はこうした状況を認識して、本発明をなしたものであり、その目的は発振周波数に応じて、発振信号の特性を良好にし、消費電力を低くした発振回路およびそれを利用した情報記録再生装置、無線送信装置を提供することである。
本発明のある態様は、発振回路である。この発振回路は、発振信号の発振周波数を設定可能であり、発振周波数が設定された発振信号を出力する発振信号生成回路と、出力した発振信号を増幅する増幅器と、増幅した発振信号の電圧を電流に変換して増幅する変換増幅回路と、発振信号生成回路の設定内容に応じて、増幅器の動作特性を調整する周波数依存型調整回路とを含む。
「増幅器」における増幅率は、回路に応じて適宜設定されればよく、例えば、増幅率が「1」より大きい場合、増幅率が「1」の場合、増幅率が「1」より小さい場合も含むものとする。
「設定内容」は、発振周波数に関する設定を示すが、当該設定は、電流値や電圧値あるいはその他の信号にもとづいてなされるものとする。
発振信号生成回路において、発振信号の発振周波数を高く設定した場合、周波数依存型調整回路は、増幅器の動作速度を高めてもよい。
「高く設定」は、電圧値や電流値の大きさ、あるいは所定の信号に応じてなされるが、最終的に発振周波数が高くなればよいものとする。
以上の発振回路により、発振信号の発振周波数に応じて増幅器の動作特性を調整可能であるため、発振周波数が高くなれば増幅器はより高速に動作して、高い発振周波数の発振信号を出力可能になる。
発振信号生成回路は、リング発振器と、リング発振器に対して、設定内容に従った駆動電流を流す駆動回路を含み、周波数依存型調整回路は、駆動電流に応じた電流を増幅器に流して、増幅器を動作させてもよい。
本発明の別の態様も、発振回路である。この発振回路は、所定の発振信号を出力する発振信号生成回路と、出力した発振信号を増幅する増幅器と、増幅した発振信号の電圧を電流に変換して増幅する変換増幅回路と、変換増幅回路の変換特性を設定する設定回路と、設定回路の設定内容に応じて、増幅器の動作特性を調整する出力依存型調整回路とを含む。
設定回路において、発振信号の電圧を電流に変換するための電流を大きく設定した場合、出力依存型調整回路は、増幅器の動作速度を高めてもよい。
以上の発振回路により、発振信号の電圧を電流に変換するための設定に応じて、増幅器の動作特性を調整可能であるため、例えば、増幅器の高速動作によって、発振信号の電流を大きくして出力可能である。
本発明によれば、発振周波数に応じて、発振信号の特性を良好にし、消費電力を低くできる。
(実施の形態1)
実施の形態1は、製造者が汎用性を目的として、広い範囲の発振周波数の発振信号を発振できるように製造し、また使用者が所定の発振周波数に設定して所定の装置に組み込むことを前提にした高周波発振回路に関する。本実施の形態における高周波発振回路は、印加された制御電圧に応じて発振信号の発振周波数を変化させる。例えば制御電圧が高ければ発振周波数を高くし、制御電圧が低ければ発振周波数を低くする。また、発振信号の電圧の振幅は増幅用FETによって十分に増幅され、さらに増幅された発振信号の電圧は電流に変換される。特に本実施の形態における高周波発振回路は、制御電圧を高く設定すれば、増幅用FETに流す電流を増加させるため、発振周波数が高い場合に増幅用FETを高速動作できる。一方、発振周波数が低い場合には、増幅用FETに流す電流を少なくできるため、消費電力を低減できる。
図1は、実施の形態1に係る高周波発振回路100を示す。高周波発振回路100は、電圧制御型発振回路50、増幅器52、変換増幅回路54、加算器56を含み、電圧制御型発振回路50は、電圧制御型電流源58、信号発振回路60を含み、変換増幅回路54は、第1スイッチ回路62、第2スイッチ回路64、第1電流値変換増幅回路66、第2電流値変換増幅回路68、定電流源70を含む。また信号として、制御電圧306、発振器駆動電流308、第1源発振信号310、第2源発振信号312、第1増幅発振信号314、第2増幅発振信号316、変換用定電流318、第1電流発振信号320、第2電流発振信号322、増幅器駆動電流324、発振器等価電流326、変換用等価電流328を含む。
電圧制御型電流源58は、制御電圧306を印加し、制御電圧306の大きさに応じた発振器駆動電流308と発振器等価電流326を流す。ここでは、発振器駆動電流308と発振器等価電流326の大きさは比例関係を有し、両者は制御電圧306の増加に従って大きくなる。
信号発振回路60は、発振器駆動電流308の大きさに応じた発振周波数の第1源発振信号310と第2源発振信号312を出力する。具体的には、発振器駆動電流308が大きくなれば、発振周波数が高く設定される。第1源発振信号310や第2源発振信号312は、例えば、正弦波のように最大値と最小値を一定期間で繰返し出現させるが、後述する増幅器52での差動増幅処理を可能にするために、バランス信号を構成する。なお、「バランス信号」は差動信号を示し、一方、「アンバランス信号」はグランド等を基準にした通常の信号を示すものとする。
増幅器52は、第1源発振信号310と第2源発振信号312をそれぞれ差動増幅処理し、第1増幅発振信号314と第2増幅発振信号316を出力する。なお、差動増幅処理は、後述の第1スイッチ回路62や第2スイッチ回路64におけるドライブ能力の増加を目的として実行される。第1増幅発振信号314や第2増幅発振信号316は、第1源発振信号310や第2源発振信号312と同様の波形を有し、バランス信号を構成する。なお、前述の増幅用FETは増幅器52に含まれる。
定電流源70は、第1増幅発振信号314と第2増幅発振信号316の電圧を電流に変換するための変換用定電流318を供給する。ここで変換用定電流318は一定値に規定されており、さらに変換用定電流318と比例関係を有する変換用等価電流328も出力される。
第1スイッチ回路62は、第1増幅発振信号314を第1電流発振信号320に変換する。ここでは、第1増幅発振信号314の値が大きければ第1電流発振信号320の値が変換用定電流318の値に近くなり、また第1増幅発振信号314の値が小さければ第1電流発振信号320の値がより小さくなる。第2スイッチ回路64も第1スイッチ回路62と同様に動作し、第2増幅発振信号316を第2電流発振信号322に変換する。
第1電流値変換増幅回路66は、第1電流発振信号320の値を変換し、第2電流値変換増幅回路68は、第2電流発振信号322の値を変換する。ここでは、変換された第1電流発振信号320がソース電流に、変換された第2電流発振信号322の値がシンク電流に対応し、第1スイッチ回路62と第2スイッチ回路64における切替にもとづいて、シンク電流とソース電流が切替えられた出力電流になる。ここで、「出力電流」は、「シンク電流」と「ソース電流」を含むものとする。
加算器56は、発振器等価電流326と変換用等価電流328を加えた増幅器駆動電流324を増幅器52に流す。増幅器駆動電流324が大きくなれば、増幅器52の動作が高速になる。すなわち、第1源発振信号310と第2源発振信号312がより高い発振周波数で変動しても、増幅器駆動電流324が大きくなるため、増幅器52の動作もより高い発振周波数に追従でき、第1増幅発振信号314と第2増幅発振信号316の振幅がより大きくなる。
さらに、詳細については実施の形態2において後述するが、増幅器駆動電流324には変換用等価電流328も加えられているため、さらに第1増幅発振信号314と第2増幅発振信号316の振幅が大きくなっても、変換用定電流318の値にかかわらず、第1電流発振信号320と第2電流発振信号322の振幅も大きくなる。
図2は、増幅器52の出力信号として、第1増幅発振信号314の時間変化を示す。図中の実線は、増幅器駆動電流324が十分大きい場合を示し、図中の点線は、増幅器駆動電流324が小さい場合を示す。増幅器駆動電流324が大きければ、増幅器52の動作は高い発振周波数の第1源発振信号310の変動に十分追従できるため、第1増幅発振信号314の振幅も大きくなる。一方、増幅器駆動電流324が小さければ、増幅器52の動作が第1源発振信号310の変動に十分追従できないため、第1増幅発振信号314の振幅がより小さくなる。なお、第2増幅発振信号316についても同様である。
図3は、変換増幅回路54で電圧から変換された出力電流を示す。図中の実線は、第1増幅発振信号314と第2増幅発振信号316の振幅が大きい場合を示し、図中の点線は、第1増幅発振信号314と第2増幅発振信号316の振幅が小さい場合を示す。第1増幅発振信号314と第2増幅発振信号316の振幅が小さい場合とは、例えば、増幅器駆動電流324に変換用等価電流328を加算していない場合を想定する。第1増幅発振信号314と第2増幅発振信号316の振幅が大きければ、第1スイッチ回路62と第2スイッチ回路64のスイッチングが高速になり、十分に第1電流発振信号320と第2電流発振信号322に変換できるため、結果として、変換増幅回路54で変換される出力電流の振幅も大きくなる。一方、第1増幅発振信号314と第2増幅発振信号316の振幅が小さければ、十分に第1電流発振信号320と第2電流発振信号322に変換できないため、結果として、変換増幅回路54で変換される出力電流の振幅が小さくなる。
ここで、「出力電流の振幅」は、例えば、シンク電流とソース電流の大きさの最大値の和、シンク電流の大きさの最大値、ソース電流の大きさの最大値などによって規定されるが、ここではこれらを明示的に区別しないものとする。
本実施の形態による高周波発振回路100の構成において、電圧制御型発振回路50、増幅器52は差動処理にもとづき電圧のバランス信号を伝送し、当該バランス信号を最終的に変換増幅回路54で電流のアンバランス信号に変換している。このような構成によるバランス信号間においては、信号のひずみ成分も相殺されるため、信号のひずみ成分が低減され、その結果、電磁妨害(EMI:Electromagnetic Interference)の高調波成分が低減される。そのため、高周波発振回路100は、高調波成分が不要に含まれない信号を出力できる。
以上の構成による高周波発振回路100の動作は、以下のとおりである。制御電圧306を大きくすると、電圧制御型電流源58が流す発振器駆動電流308と発振器等価電流326も大きくなる。信号発振回路60は、発振器駆動電流308が大きくなればより高い発振周波数の第1源発振信号310と第2源発振信号312を出力する。また、発振器等価電流326が大きくなれば、加算器56から流れる増幅器駆動電流324も大きくなる。増幅器駆動電流324が大きくなれば、増幅器52はより高い発振周波数の第1源発振信号310と第2源発振信号312を十分大きい振幅の第1増幅発振信号314と第2増幅発振信号316にそれぞれ増幅する。
第1スイッチ回路62と第2スイッチ回路64は、定電流源70からの変換用定電流318をもとに第1増幅発振信号314と第2増幅発振信号316をそれぞれ第1電流発振信号320と第2電流発振信号322に変換する。第1電流値変換増幅回路66と第2電流値変換増幅回路68は、第1電流発振信号320と第2電流発振信号322の値をそれぞれ変換し、さらに第1スイッチ回路62と第2スイッチ回路64の切替のよって最終的な出力電流になる。なお、制御電圧306の大きさに関係なく、定電流源70からの変換用等価電流328が増幅器駆動電流324に加えられて増幅器52に流されているため、第1スイッチ回路62と第2スイッチ回路64において変換された第1電流発振信号320と第2電流発振信号322の振幅がより変換用定電流318の値に近くなる。
本実施の形態によれば、発振信号の発振周波数に応じた電流を増幅器に流すため、発振周波数が高い場合には、出力電流の振幅を大きくでき、また発振周波数が低い場合には、低消費電力の動作を実現できる。これに加えて、発振信号の電圧を電流に変換するために使用する電流に比例した電流を増幅器に流すため、増幅器におけるスイッチング特性がより高速になり、発振信号をより大きい振幅の電圧に増幅できるため、出力電流の振幅を大きくできる。
(実施の形態2)
実施の形態2は、実施の形態1と同様の高周波発振回路であるが、実施の形態1では高周波発振回路を機能ブロックによって説明したが、実施の形態2では、高周波発振回路をFET等の回路配置によって説明する。
図4は、実施の形態2に係る高周波発振回路100を示す。なお、図中において、図1における機能ブロックおよび信号と同一のものは、同一の符号で示す。
可変電流源72は、制御電圧306に応じて変化する電流を流す。トランジスタTr1からトランジスタTr3はカレントミラー回路を構成しており、トランジスタTr2とトランジスタTr3から発振器等価電流326と発振器駆動電流308をそれぞれ流す。前述のとおり、発振器駆動電流308、発振器等価電流326、可変電流源72からの電流は互いに比例関係を有している。
トランジスタTr4からトランジスタTr9はカレントミラー回路を構成しており、さらにトランジスタTr10からトランジスタTr14もカレントミラー回路を構成している。これらのカレントミラー回路によって発振器駆動電流308に応じた電流が、それぞれ第1インバータ74、第2インバータ76、第3インバータ78、第4インバータ80によって構成された差動出力型のリング発振器に流される。つまり、発振器駆動電流308が大きくなれば、リング発振器に流される電流が大きくなるため、リング発振器から出力される第1源発振信号310と第2源発振信号312の発振周波数が高くなる。
トランジスタTr15からトランジスタTr18、トランジスタTr23、トランジスタTr24は差動増幅器を構成しており、第1源発振信号310と第2源発振信号312がトランジスタTr23とトランジスタTr24のゲート端子にそれぞれ印加されて、差動増幅処理される。この差動増幅処理は、実施の形態1と同様に、後述のトランジスタTr32やトランジスタTr33におけるドライブ能力を高めることを目的とする。また、トランジスタTr19からトランジスタTr22、トランジスタTr25、トランジスタTr26も差動増幅器を構成しているため、第1源発振信号310と第2源発振信号312は2段階で増幅され、それぞれ第1増幅発振信号314と第2増幅発振信号316として出力される。また、それぞれの差動増幅器に流される増幅器駆動電流324については後述する。
トランジスタTr41とトランジスタTr40は、カレントミラー回路を構成しており、可変電流源82からの一定値の変換用定電流318、および変換用定電流318と比例関係を有する変換用等価電流328を流す。
トランジスタTr32は、ゲート端子に印加される第1増幅発振信号314を第1電流発振信号320に変換する。ここで、トランジスタTr32はnチャネル型であるため、第1増幅発振信号314の値が大きくなれば、第1電流発振信号320の値も変換用定電流318の値に近くなる。トランジスタTr33は、トランジスタTr32と同一の動作を行い、第2電流発振信号322に変換する。トランジスタTr34とトランジスタTr35はカレントミラー回路を構成しており、第1電流発振信号320と比例関係を有する第1の出力電流に変換する。また、トランジスタTr36とトランジスタTr37、およびトランジスタTr38とトランジスタTr39はそれぞれカレントミラー回路を構成しており、第2電流発振信号322と比例関係を有する第2の出力電流に変換する。さらに、第1の出力電流と第2の出力電流は、トランジスタTr32とトランジスタTr33の切替によって、最終的な出力電流になる。
トランジスタTr27、トランジスタTr28、トランジスタTr30はカレントミラー回路を構成しており、発振器等価電流326と比例関係を有する増幅器駆動電流324がトランジスタTr28とトランジスタTr30から流される。前述のとおり、発振器等価電流326が大きくなれば、それに応じて増幅器駆動電流324も大きくなる。
変換用等価電流328に比例した電流を増幅器駆動電流324に加えている理由は、以下の通りである。最終的な出力電流の振幅を大きくするためには、変換用定電流318を大きくする必要がある。しかし、トランジスタTr32およびトランジスタTr33のゲート−ソース間電圧が低くければ、トランジスタTr32とトランジスタTr33のスイッチング動作が遅くなるため、第1電流発振信号320と第2電流発振信号322の振幅に変換用定電流318を効率よく伝えられない。そこで、変換用定電流318と一定の関係を有する変換用等価電流328を流し、トランジスタTr41、トランジスタTr31、トランジスタTr29で構成されるカレントミラー回路から流される電流を増幅器駆動電流324に加える。
それによって、差動増幅器に流される増幅器駆動電流324がさらに大きくなるため、差動増幅器の動作特性がより高速になる。そのため、第1源発振信号310と第2源発振信号312の変動に追従できて、第1増幅発振信号314の第2増幅発振信号316の振幅が十分に大きくなる。その結果、トランジスタTr32およびトランジスタTr33のゲート−ソース間電圧の最大値が大きくなるため、トランジスタTr32とトランジスタTr33のスイッチング動作が速くなり、最終的な出力電流の振幅に変換用定電流318を効率よく伝えられる。
図2は、増幅器52の出力信号として、第1増幅発振信号314あるいは第2増幅発振信号316の時間変化を示し、図3は、変換増幅回路54で電圧から変換された出力電流を示すが、実施の形態1と同一であるため、ここではこれらの説明を省略する。
以上の構成による高周波発振回路100の動作は、以下のとおりである。制御電圧306を大きくすると、カレントミラー回路におけるトランジスタTr2が流す発振器等価電流326とトランジスタTr3が流す発振器駆動電流308が大きくなる。発振器駆動電流308が大きくなれば、第1インバータ74、第2インバータ76、第3インバータ78、第4インバータ80から出力される第1源発振信号310と第2源発振信号312の発振周波数が高くなる。また、発振器等価電流326が大きくなれば、カレントミラー回路におけるトランジスタTr28とトランジスタTr30が流す増幅器駆動電流324も大きくなる。増幅器駆動電流324が大きくなれば、増幅器52において、より高い発振周波数の第1源発振信号310と第2源発振信号312を十分大きい振幅の第1増幅発振信号314と第2増幅発振信号316にそれぞれ増幅する。
トランジスタTr32とトランジスタTr33は、カレントミラー回路におけるトランジスタTr40からの変換用定電流318をもとに第1増幅発振信号314と第2増幅発振信号316を第1電流発振信号320と第2電流発振信号322にそれぞれ変換する。カレントミラー回路におけるトランジスタTr35は第1電流発振信号320の値を変換し、また別のカレントミラー回路におけるトランジスタTr39は第2電流発振信号322の値を変換する。変換された電流はトランジスタTr32とトランジスタTr33の切替に応じて、最終的な出力電流となる。なお、制御電圧306の大きさに関係なく、トランジスタTr31とトランジスタTr29によって変換用等価電流328が増幅器駆動電流324に加えられて流されているため、トランジスタTr32とトランジスタTr33のゲート−ソース間電圧も高くなり、その結果、第1電流発振信号320と第2電流発振信号322の振幅が変換用定電流318の値により近くなる。
本実施の形態によれば、制御電圧を高くすると、発振信号の発振周波数が高くなると共に、差動増幅器におけるトランジスタが高速に動作するため、出力電流の振幅を大きくでき、一方、発振周波数が低い場合には、トランジスタを低消費電力で動作できる。また、発振信号の電圧を電流に変換するためのトランジスタに使用する電流に比例した電流が、差動増幅器におけるトランジスタに流されるため、差動増幅器におけるトランジスタが高速に動作し、発振信号の増幅が大きくなるため、発振信号の電圧を電流に効率よく変換できる。
(実施の形態3)
実施の形態3は、実施の形態1や2における高周波発振回路を適用した装置あるいはLSIの構成について説明する。
図5(a)は、実施の形態3に係る高周波発振回路100の適用例のうち、光ピックアップ200の構成を示す。光ピックアップ200は、高周波発振回路100、半導体レーザチップ102、モニタ用フォトダイオード104、受光用フォトダイオード108を含む。光ピックアップ200は、光ディスク装置あるいは光磁気ディスク装置などの情報記録再生装置において、記録媒体であるディスクに対して信号の読み出しあるいは書き込みを行う。
半導体レーザチップ102は、後述の高周波発振回路100から供給される電流に応じてレーザビームを出射する。高周波発振回路100は、後述のAPC(Automatic Power Control)回路106からの電圧で示された制御信号にもとづいて半導体レーザチップ102に電流を供給する。
光学系110は、半導体レーザチップ102から出射されるレーザビームを図示しない記録媒体のディスクに光スポットとして照射し、また、ディスクからの反射光を後述の受光用フォトダイオード108へ導く。
受光用フォトダイオード108は、反射光を電流信号に変換する。さらに当該電流信号は電圧信号に変換される。モニタ用フォトダイオード104は、半導体レーザチップ102から出射されるレーザビームの一部を電流信号に変換する。なお、ここでレーザビームの一部とは、半導体レーザチップ102の光学系110が存在しない側から出射されるレーザビームをいう。
APC回路106は、モニタ用フォトダイオード104が出力する電流信号にもとづいて、半導体レーザチップ102からレーザビームが常に一定のパワーで出力されるように、高周波発振回路100へ制御信号を出力する、すなわち、半導体レーザチップ102のフィードバック制御を行う。ここで、APC回路106は、以下の理由のために備えられる。光ピックアップ200が出力する電圧信号レベルを所定のレベルに保つ必要があるが、半導体レーザチップ102が出力するレーザビームのパワーは個体差があるとともに温度変化に対して敏感に反応するので、半導体レーザチップ102に対して同一の制御を行うだけではレーザビームのパワーが一定にならず、したがって、電圧信号の出力レベルを一定に保つことができない。
一方、高周波発振回路100は、実施の形態1や2で記載したとおり、高い発振周波数においても出力電流の振幅を大きくできるため、半導体レーザチップ102は、安定してレーザビームを出射可能である。
図5(b)は、実施の形態3に係る高周波発振回路100の適用例のうち、周波数変換回路202の構成を示す。周波数変換回路202は、高周波発振回路100、乗算回路122、BPF(Bandpass Filter)124、増幅器126を含む。周波数変換回路202は、通信装置において、送信すべき信号を伝送するための信号に変換する。より具体的には、無線送信装置において、送信すべきベースバンド信号または当該ベースバンド信号を周波数変換した中間周波数信号を無線周波数信号に周波数変換する。
信号生成部120は、送信すべき信号をベースバンド信号として生成し、当該ベースバンド信号を中間周波数に周波数変換する。
高周波発振回路100は、送信に使用する無線周波数に応じた電圧を入力し、無線周波数の信号を出力する。
乗算回路122は、中間周波数の信号を無線周波数の信号によって周波数変換する。さらに、BPF124は周波数変換によって発生した高調波の影響を低減する。
増幅器126は、BPF124の出力信号を無線伝搬路において送信するために、所定の電力まで増幅する。
ここで、高周波発振回路100は、実施の形態1や2で記載したとおり、高い発振周波数においても大きい値の電流を出力可能なため、半導体レーザチップ102は、無線周波数の信号を安定して出力可能である。
図5(c)は、実施の形態3に係る高周波発振回路100の適用例のうち、PLL204の構成を示す。PLL204は、高周波発振回路100、位相比較器150、ループフィルタ152、分周器154を含む。
位相比較器150は、外部から入力される基準クロック信号と分周器154から入力される参照クロック信号との位相および周波数を比較して、その差に比例した直流信号を出力する。ループフィルタ152は、入力される信号の高周波成分を除去し、制御電圧を出力する。高周波発振回路100は、入力される制御電圧に応じた周波数のクロック信号を出力する。ここでは、基準クロック信号の周波数のN倍の周波数を有するクロック信号を出力する。出力されたクロック信号は、分周器154において1/Nに分周され、参照クロック信号として、位相比較器150に入力される。
本実施の形態によれば、高い発振周波数においても出力電流の振幅を大きくでき、かつ低い発振周波数において低消費電力の動作を実現できる高周波発振回路をさまざまな装置やLSIにおいて適用可能である。
なお、本発明と実施の形態に係る構成の対応を例示する。「発振信号生成回路」は、電圧制御型電流源58の可変電流源72とカレントミラー回路におけるトランジスタTr1、トランジスタTr3と信号発振回路60に対応する。「増幅器」は、増幅器52に対応する。「変換増幅回路」は、変換増幅回路54に対応する。「周波数依存型調整回路」は、電圧制御型電流源58のカレントミラー回路におけるトランジスタTr1、トランジスタTr2と加算器56のカレントミラー回路におけるトランジスタTr27、トランジスタTr28、トランジスタTr30に対応する。「リング発振器」は、信号発振回路60における第1インバータ74、第2インバータ76、第3インバータ78、第4インバータ80に対応する。「駆動回路」は、信号発振回路60のふたつのカレントミラー回路におけるトランジスタTr4からトランジスタTr14に対応する。
また、「発振信号生成回路」は、電圧制御型電流源58の可変電流源72とカレントミラー回路におけるトランジスタTr1、トランジスタTr3と信号発振回路60に対応する。「増幅器」は、増幅器52に対応する。「変換増幅回路」は、変換増幅回路54に対応する。「設定回路」は、定電流源70に対応する。「出力依存型調整回路」は、定電流源70と加算器56のカレントミラー回路におけるトランジスタTr41、トランジスタTr31、トランジスタTr29に対応する。
以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
実施の形態1から3において、信号発振回路60、増幅器52、変換増幅回路54は、差動増幅処理を前提として、それぞれ複数のトランジスタおよび信号の組み合わせで構成され、バランス信号を伝送している。しかしこれに限らず例えば、絶対的な増幅処理を前提として、アンバランス信号を伝送してもよい。本変形例によれば、高周波発振回路100を構成するトランジスタ等の部品数を削減可能である。つまり、最終的に設定した発振周波数の電流が発振されればよい。
実施の形態2において、増幅器52はふたつの差動増幅器によって構成されている。しかし、これに限らず例えば、ひとつの差動増幅器や3個以上の差動増幅器によって構成されてもよい。この変形例によれば、第1増幅発振信号314と第2増幅発振信号316の振幅を変更できる。つまり、増幅器52から出力される第1増幅発振信号314と第2増幅発振信号316に要求される値に応じた数の差動増幅器が設けられればよい。
実施の形態1に係る高周波発振回路を示す図である。 図1の増幅器の出力信号を示す図である。 図1の変換増幅回路で電圧から変換された出力電流を示す図である。 実施の形態2に係る高周波発振回路を示す図である。 図5(a)−(c)は、実施の形態3に係る高周波発振回路の適用例を示す図である。
符号の説明
50 電圧制御型発振回路、 52 増幅器、 54 変換増幅回路、 56 加算器、 58 電圧制御型電流源、 60 信号発振回路、 62 第1スイッチ回路、 64 第2スイッチ回路、 66 第1電流値変換増幅回路、 68 第2電流値変換増幅回路、 70 定電流源、 72 可変電流源、 74 第1インバータ、 76 第2インバータ、 78 第3インバータ、 80 第4インバータ、 82 可変電流源、 100 高周波発振回路、 306 制御電圧、 308 発振器駆動電流、 310 第1源発振信号、 312 第2源発振信号、 314 第1増幅発振信号、 316 第2増幅発振信号、 318 変換用定電流、 320 第1電流発振信号、 322 第2電流発振信号、 324 増幅器駆動電流、 326 発振器等価電流、 328 変換用等価電流、 Tr1〜Tr41 トランジスタ。

Claims (4)

  1. 所定の発振信号を出力する発振信号生成回路と、
    前記出力した発振信号を増幅する増幅器と、
    前記増幅した発振信号の電圧を電流に変換して増幅する変換増幅回路と、
    前記変換増幅回路の変換特性を設定する設定回路と、
    前記設定回路の設定内容に応じて、前記増幅器の動作特性を調整する出力依存型調整回路と、
    を含むことを特徴とする発振回路。
  2. 前記設定回路において、前記発振信号の電圧を電流に変換するための電流を大きく設定した場合、前記出力依存型調整回路は、前記増幅器の動作速度を高めることを特徴とする請求項1に記載の発振回路。
  3. 請求項1または2に記載の発振回路を備えることを特徴とする情報記録再生装置。
  4. 請求項1または2に記載の発振回路を備えることを特徴とする無線送信装置。
JP2005298037A 2005-10-12 2005-10-12 発振回路およびそれを利用した情報記録再生装置、無線送信装置 Expired - Fee Related JP4114753B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298037A JP4114753B2 (ja) 2005-10-12 2005-10-12 発振回路およびそれを利用した情報記録再生装置、無線送信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298037A JP4114753B2 (ja) 2005-10-12 2005-10-12 発振回路およびそれを利用した情報記録再生装置、無線送信装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003123667A Division JP3744918B2 (ja) 2003-04-28 2003-04-28 発振回路およびそれを利用した情報記録再生装置、無線送信装置

Publications (2)

Publication Number Publication Date
JP2006087134A true JP2006087134A (ja) 2006-03-30
JP4114753B2 JP4114753B2 (ja) 2008-07-09

Family

ID=36165173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298037A Expired - Fee Related JP4114753B2 (ja) 2005-10-12 2005-10-12 発振回路およびそれを利用した情報記録再生装置、無線送信装置

Country Status (1)

Country Link
JP (1) JP4114753B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013210A (ja) * 1996-03-12 1998-01-16 Lsi Logic Corp 交差電圧調節機能を備えた差動−cmosレベル変換器
JPH1064261A (ja) * 1996-08-27 1998-03-06 Hitachi Ltd 半導体集積回路
JP2000059181A (ja) * 1998-08-06 2000-02-25 Yamaha Corp 電圧制御発振器
JP2001217695A (ja) * 2000-02-01 2001-08-10 Yamaha Corp 多相発振器
JP2002223149A (ja) * 2001-01-29 2002-08-09 Hitachi Ltd 半導体集積回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013210A (ja) * 1996-03-12 1998-01-16 Lsi Logic Corp 交差電圧調節機能を備えた差動−cmosレベル変換器
JPH1064261A (ja) * 1996-08-27 1998-03-06 Hitachi Ltd 半導体集積回路
JP2000059181A (ja) * 1998-08-06 2000-02-25 Yamaha Corp 電圧制御発振器
JP2001217695A (ja) * 2000-02-01 2001-08-10 Yamaha Corp 多相発振器
JP2002223149A (ja) * 2001-01-29 2002-08-09 Hitachi Ltd 半導体集積回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B.RAZAVI著、黒田忠広監訳, 「アナログCMOS集積回路の設計」, JPNX007049702, 30 March 2003 (2003-03-30), JP, pages 413頁, ISSN: 0000892688 *

Also Published As

Publication number Publication date
JP4114753B2 (ja) 2008-07-09

Similar Documents

Publication Publication Date Title
US7205855B2 (en) Oscillator that oscillates signals of a predetermined frequency
US20030117202A1 (en) Delay circuit with current steering output symmetry and supply voltage insensitivity
JP3961458B2 (ja) 光ディスク装置
JP4114753B2 (ja) 発振回路およびそれを利用した情報記録再生装置、無線送信装置
JP3744918B2 (ja) 発振回路およびそれを利用した情報記録再生装置、無線送信装置
KR20030083206A (ko) 전압 제어 발진기를 위한 적응형 루프 이득 제어 회로
JP3813137B2 (ja) 発振回路およびそれを利用した情報記録再生装置、無線送信装置
CN113875148A (zh) 具有步进控制的多模式振荡电路系统
JP2006121752A (ja) 発振回路およびそれを利用した情報記録再生装置、無線送信装置
JP2002176340A (ja) 遅延回路及び電圧制御発振回路
TWI329976B (en) Oscillator
JP2011135189A (ja) 遅延回路及び電圧制御発振回路
US7362189B2 (en) Oscillator circuit with regulated V-I output stage
KR20050119417A (ko) 발진 회로
KR20050119418A (ko) 발진 회로
US20050275467A1 (en) Oscillator
TWI333334B (en) Oscillator
US10554199B2 (en) Multi-stage oscillator with current voltage converters
JP2008085534A (ja) 電圧制御型発振器
JP6849398B2 (ja) 増幅回路、送信回路及び駆動電流生成方法
KR20060092559A (ko) 피엘엘 회로
JP2008066865A (ja) 差動信号補償回路及び無線受信機
JP2017175520A (ja) 変調器、及び、変調方法
KR200362974Y1 (ko) 래치형 증폭기를 갖는 오실레이터
CN114793108A (zh) 占空比校正电路及方法、晶振电路、电子设备

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees