1333334 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種振盪電路。尤其是有關可變更振盪 頻率之振盪電路。 【先前技術】 電壓控制型之振盪電路係例如使用於光拾波器及ρα (鎖相迴路,Phase Locked Loop),依照一般所施加的控制 電壓使振盪頻率產生變化而設定,並振盪輸出該振盪頻率 之訊號。習知技術中的電壓控制振盪器之一例,係將反轉 放大器、第一充放電電路、第二充放電電路連接成一圈。 '該構造中,來自反轉放大器之反轉電壓訊號之相位,係在 -第一充放電電路與第二充放電電路階段性延遲,再者,第 二充放電電路之輸出再次輸入至反轉放大器。由於成一圈 之反轉電壓訊號之相位再次與當初之相位成為相同,因此 %»壓控制振蘯益係反覆以上之處理而成為可持續振盈。另 外,電壓控制振盪器之振盪頻率主要依照第一充放電電路 與第二充放電電路之大小加以決定’再者充放電電流之大 J、係較充放電電流大的電流值位準’並且藉由控制容易的 控制電流加以控制。 [專利文獻1]日本專利特開平6-37599號公報。 習知技術中’即使充放電電流非常小,由於控制係根 據控制電流而形成’因此隨著用以控制之電流值位準之穩 定化’於低振盪頻率中也可穩定振盪。另一方面,於—般 高振盪頻率中,還必須探討以下之課題。振盪高振盈頻率 315898 5 1333334 中的高頻振盪電路係由於加高設定控制電壓的話,會使流 入放大用FET之電流增加,因此振盈頻率高時可使放大用 FET尚速動作。另一方面,在振盪頻率低之情形’由於可 減少流入放大用FET之電流’因此可降低消耗電力。 第1圖係表示第一實施形態之高頻振盪電路1〇〇。高 頻振盪電路100係包含電壓控制型振盪電路5〇、放大器 52、轉換放大電路54、以及加法器56,電壓控制型振蘯電 路50係包含電壓控制型電流源58、訊號振盪電路6〇,轉 換放大電路54係包含第一開關電路62、第二開關電路64、 第一電流值轉換放大電路66、第二電流值轉換放大電路 68、以及定電流源70。此外以訊號來說,包含有控制電壓 306、振盪器驅動電流308、第一源振盪訊號31〇、第二源 振盪訊號312、第一放大振盪訊號314、第二放大振盪訊號 316、轉換用定電流318、第一電流振盪訊號320、第二電 流振盪訊號322、放大器驅動電流324、振盪器等效電流 326、以及轉換用等效電流328。 電壓控制型電流源58係施加控制電壓306,並流入依 月?、控制电壓306之大小之振盪器驅動電流3〇8與振盪器等 效電流326。此處,振盪器驅動電流3〇8與振盪器等效電 流326之大小具有比例關係,兩者係隨著控制電壓3〇6之 增加而變大。 訊號振盪電路60係輸出依照振盪器驅動電流308之大 小之振盪頻率之第-源振魏號310與第二源振堡訊號 312。具體而言,振盪器驅動電流3〇8變大的話加高設定 315898 9 1333334 振盪頻率。第一源振盪訊號310與第二源振盪訊號312係 例如正弦波在一定期間反覆出現最大值與最小值,但由於 汉成可在將於後述之放大器52作差動放大處理,而構成平 衡訊號。另外’「平衡訊號」係顯示差動訊號,另一方面, 「不平衡訊號」係顯示以接地(gr〇und)等為基準之一般訊 號者。 放大盗52係分別將第一源振盪訊號31 〇與第二源振盪 訊號312作差動放大處理,輸出第一放大振盪訊號314與 第二放大振盪訊號316。另外,差動放大處理係實行以增 加後述之第一開關電路62與第二開關電路64中的驅動能 力為目的。第一放大振盪訊號314與第二放大振盪訊號316 係具有與第一源振盪訊號310與第二源振盪訊號312相同 的波形,並構成平衡訊號。另外’前述之放大用Fet係包 含於放大器52。 定電流源70係供給用以將第一放大振盪訊號314與第 二放大振盪訊號316之電壓轉換為電流之轉換用定電流 318。此處轉換用定電流318係規定在一定值,再者亦輸出 與轉換用定電流318具有比例關係之轉換用等效電流 328。 第一開關電路62係將第一放大振盪訊號314轉換為第 一電流振盪訊號320。在此,第一放大振盪訊號314之值 大的δ舌第一電流振盈訊成320之值將接近轉換用定電流 318之值,此外第一放大振盪訊號314之值小的話第一電 流振盪訊號320之值將變小。第二開關電路64也與第一開 315898 10 1333334 關電路62同樣地動作,將第二放大振盪訊號316轉換為第 二電流振盡訊號322。 第一電流值轉換放大電路66係轉換第一電流振盪訊 说320之值,第二電流值轉換放大電路68係轉換第二電流 振盪訊號322之值。在此,經轉換之第一電流振盪訊號32〇 對應於供應電流,經轉換之第二電流振盪訊號322之值對 應於汲入電流,根據在第一開關電路62與第二開關電路 64中的切換,成為可切換汲入電流與供應電流之輸出電 流。此處’「輸出電流」係包含「汲入電流」與「供應電流」。 加法器56係將加有振盪器等效電流326與轉換用等效 電流328之放大器驅動電流324流入放大器52。放大器驅 動電流324變大的話,放大器52之動作成為高速。亦即, 即使第一源振盪訊號31〇與第二源振盪訊號312以更高的 j盪頻率變動,放大器驅動電流324也將變大,因此放大 。裔52之動作亦可追隨更高的振盪頻率,且第一放大振盪訊 號314與第一放大振盪訊號316之振幅將變大。 再者詳細於第二實施形態中後述,但由於在放大器 驅動電流324亦加有轉換用等效電流328,因此即使第一 放大振盪讯號314與第二放大振盪訊號316之振幅再變 大,不論轉換用定電流318之值,第一電流振盪訊號32〇 與第二電流振盪訊號322之振幅也將變大。 第2圖係表示以第一放大振盪訊號314之時間變化作 =放大时52之輸出訊號。圖中之實線係表示放大器驅動電 非吊大之情形’圖中之虛線係表示放大器驅動電流 11 315898 1333334 324小之情形。放大器驅動電流324大的話,由於放大器 52之動作可充分地追隨高振盪頻率之第一源振盪訊號31 〇 之變動’因此第一放大振盪訊號314之振幅亦將變大。另 一方面’放大器驅動電流324小的話,由於放大器52之動 作無法充分地追隨第一源振盪訊號31 〇之變動,因此第一 放大振盪訊號314之振幅將變更小。另外,有關第二放大 振盪訊號316亦相同。 第3圖係表示在轉換放大電路54從電壓轉換而來的輸 出電流。圖中的實線係表示第一放大振盪訊號3丨4與第二 放大振盪訊號316之振幅大之情形,圖中的虛線係表示第 放大振盪訊说.314與第二放大振篕訊號316之振幅小之 情形。第一放大振盪訊號314與第二放大振盪訊號316之 振幅小之情形係指,假想例如未在放大器驅動電流324加 算轉換用等效電流328之情形。第一放大振盪訊號314與 第二放大振盪訊號316之振幅大的話,第一開關電路62 與第二開關電路64之開關會成為高速,且由於可充分地轉 換成第一電流振盪訊號320與第二電流振盪訊號322,因 此以結果來說’在轉換放大電路54所轉換之輸出電流之振 幅也將變大。另一方面,第一放大振盪訊號314與第二放 大振盪訊號316之振幅小的話’無法充分地轉換成第一電 流振盪訊號320與第二電流振盪訊號322,因此以結果來 說,在轉換放大電路54所轉換之輸出電流之振幅將變小。 在此,「輸出電流之振幅」係依據例如汲入電流與供應 電流的大小之最大值的和、汲入電流大小之最大值、供應 315898 12 丄幻3334 ,机大小之取大值等加以規定,但此處並未明顯地區別該 寺 〇 本實施形態之高頻振盪電路100之構成中,電壓控制 型振盪電路50、放大器52係根據差動處理傳遞電壓之二平 衡戒號,將該平衡訊號最後在轉換放大電路54轉換成電流 之不平衡訊號。如上述構成之平衡訊號間中,訊號之失真 成分也會相互抵銷,因此可降低訊號之失真成分,其結果, 可降低電磁干擾(EMI : Electromagnetic Interference) 之高諧波成分。因此高頻振盪電路100係可輸出不包含高 諧波之訊號。 以上之構成之高頻振盪電路1〇〇之動作係如下述。加 大控制電壓306的話,電壓控制型電流源58流入之振盪器 驅動電流308與振盪器等效電流326也將變大。訊號振盪 電路60係振盪器驅動電流308變大的話,會輸出更高振盡 頻率之第一源振盪訊號310與第二源振盪訊號312。又, 振盡器等效電流3 2 6變大的話’由加法器5 6流入之放大器 驅動電流324亦將變大。放大器驅動電流324變大的話, 放大益52係將更高振盪頻率之第一源振盪訊號31〇與第二 源振盈訊號312分別放大為非常大的振幅之第一放大振盪 益sil波314與第二放大振盈訊號316。 第一開關電路62與第二開關電路64係以來自定電流 源70之轉換用定電流318為基準,將第一放大振盪訊號 314與第二放大振盪訊號316分別轉換為第一電流振盪訊 號320與第二電流振盪訊號322。第一電流值轉換放大電 315898 1333334 路66與第一電流值轉換放大電路68係分別轉換第一電流 振盪訊號320與第二電流振盪訊號322之值,再者利用第 :開關電路62與第二開關電路64之切換成為最後的輸出 電流。另外,由於不論控制電壓3〇6之大小,來自定電流 源70之轉換用等效電流328係加上放大器驅動電流324 而流入放大器52,因此於第一開關電路62與第二開關電 路6 4中轉換之第一電流振盪訊號3 2 〇與第二電流振盪訊號 322之振幅會更接近轉換用定電流318之值。 根據本實施形態,由於將依照振盪訊號之振盪頻率之 電流流入放大器,因此在振盪頻率高之情形下,可加大輸 出電流之振幅,此外在振盪頻率低之情形下,可實現低消 耗電力之動作。除此之外,由於使與用以將振盪訊號之電 壓轉換成電流之電流成正比之電流流入放大器,因此放大 器中的開關特性更高速,且由於可將振盪訊號放大成更大 振幅之電壓,因此可加大輸出電流之振幅。 第一貫施形態 第二實施形態雖係與第一實施形態相同的高頻振盪電 路,但第一實施形態中係根據功能方塊圖說明高頻振盪電 路’而第二實施形態中係根據FET等之電路配置說明高頻 振盪電路。 第4圖係表示第二實施形態之高頻振盪電路1 〇〇。另 外’圖中’與第1圖中的功能方塊圖及訊號相同者係以相 同符號表示。 可變電流源72係流通隨控制電壓306變化之電流。從 315898 1333334 電晶體Tr 1到電晶體Tr3係構成電流鏡電路,從電晶體Tr2 到電晶體Tr3分別流入振盪器等效電流326與振盪器驅動 電流3 0 8。如前所述,來自振盪器驅動電流3 0 8、振盪器等 效電流326、可變電流源72之電流係相互具有比例關係。 從電晶體Tr4到電晶體Tr9係構成電流鏡電路,再者 從電晶體TrlO到電晶體Tr 14亦構成電流鏡電路。藉由該 等電流鏡電路依照振盪器驅動電流308之電流分別流入由 第一反相器74、第二反相器76、第三反相器78、第四反 相器80所構成之差動輸出型之環路振盪器。亦即,由於振 盪器驅動電流308變大的話,流入環路振盪器之電流將變 大,因此由環路振盪器所輸出之第一源振盪訊號310與第 二源振盪訊號312之振盪頻率將變高。 從電晶體Trl5到電晶體Trl8、電晶體Tr23、電晶體 Tr24係構成差動放大器,第一源振盪訊號310與第二源振 盪訊號312係分別施加於電晶體Tr23與電晶體Tr24之閘 極端子,並予以差動放大處理。該差動放大處理係與第一 實施形態相同,以提高後述之電晶體Tr32及電晶體Tr33 中的驅動能力為目的。又,由於從電晶體Trl 9到電晶體 Tr22、電晶體Tr25、電晶體Tr26亦構成差動放大器,因 此第一源振盪訊號310與第二源振盪訊號312係以兩階段 放大,並分別輸出為第一放大振盪訊號314與第二放大振 盪訊號316。此外,有關流入各差動放大器之放大器驅動 電流324將於後述。 電晶體Tr41與電晶體Tr40係構成電流鏡電路’流入 15 315898 1333334 來自可變電流源82之一定值之轉換用定電流318,以及與 轉換用定電流318具有比例關係之轉換用等效電流328。 電晶體Tr32係將施加於閘極端子之第一放大振盪訊 號314轉換成第一電流振盪訊號320。此處,由於電晶體 Tr32係η通道型,因此第一放大振盪訊號314之值變大的 話,第一電流振盪訊號320之值也將接近轉換用定電流318 之值。電晶體Tr33係進行與電晶體Tr32相同的動作,並 轉換成第二電流振盪訊號322。電晶體Tr34與電晶體Tr35 係構成電流鏡電路,轉換成與第一電流振盪訊號320具有 比例關係之第一輸出電流。又,電晶體Tr36與電晶體 Tr37、以及電晶體Tr38與電晶體Tr39係分別構成電流鏡 電路,並轉換成與第二電流振盪電路322具有比例關係之 第二輸出電流。再者,第一輸出電流與第二輸出電流係根 據電晶體Tr32與電晶體Tr33之切換,成為最後的輸出電 流。 電晶體Tr27、電晶體Tr28、電晶體Tr30係構成電流 鏡電路,與振盪器等效電流326具有比例關係之放大器驅 動電流324從電晶體Tr28與電晶體Tr30流入。如前所述, 振盪器等效電流326變大的話,藉此放大器驅動電流324 亦將變大。 將與轉換用等效電流328成比例之電流加入放大器驅 動電流324之理由如下。為了加大最後的輸出電流之振 幅,必須加大轉換用定電流318。但是,電晶體Tr32以及 電晶體Tr33之閘極-源極間電壓低的話’電晶體Tr32與電 16 315898 1333334 晶體Tr33之開關動作將延遲,因此無法有效率地將轉換用 定電流318傳遞至第-電流振盈訊號咖與第二電流振盤 訊號322之振幅。因此,流入與轉換用定電流3丨8具有一 定關係之轉換用等效電流328,將從由電晶MTr4/、'電晶 體Tr3卜f晶體Tr29所構成之電流鏡電路所流入之電流 加入放大器驅動電流324。 藉此,由於流入差動放大器之放大器驅動電流324將 再次變大’因此差動放大器之動作特性成為更高速。因此, 可追隨第一源振盪訊號310與第二源振盪訊號312之變 動,且第一放大振盪訊號314與第二放大振盪訊號316之 振幅將充分變大。其結果,由於電晶體Tr32以及電晶體 Tr33之閘極-源極間電壓之最大值將變大,因此電晶體 Tr32與電晶體Tr33之開關動作將變快,而可有效率地將 轉換用定電流318傳遞至最後的輸出電流之振幅。 第2圖係表示第一放大振盪訊號314或第二放大震盪 訊號316之時間變化作為放大器52之輸出訊號,第3圖係 表示在轉換放大電路54從電壓轉換來之輸出電流,然而由 於與第一實施形態相同,因此在此省略該等說明。 如以上構成之尚頻振盪電路1 〇 〇之動作係如下述。加 大控制電壓306時’則電流鏡電路中的電晶體Tr2所流入 之振盈器等效電流326與電晶體Tr3所流入之振盪器驅動 電流308將變大。振盪器驅動電流308變大的話,從第一 反相74、第二反相器76、第三反相器78、第四反相器 80所輸出之第一源振盪訊號31()與第二源振盪訊號312之 17 315898 1333334 振盪頻率將變高。此外,振盪器等效電流326變大的話, 電流鏡電路中的電晶體Tr28與電晶體Tr30所流入之放大 器驅動電流324也將變大。放大器驅動電流324變大的話, 於放大器5 2,分別將更高振盪頻率之第一源振蓋訊號31 〇 與弟一源振盈訊號312放大至非常大的振幅之第一放大振 盪訊號314與第二放大振盪訊號316。 電晶體Tr32與電晶體Tr33係以來自電流鏡電路中的 電晶體Tr40之轉換用定電流318為基準將第一放大振蘯訊 號314與第一放大振盪訊號316分別轉換至第一電流振盪 訊號320與第二電流振盪訊號322。電流鏡電路中的電晶 體Tr35係轉換第一電流振盪訊號32〇之值,此外另一電流 鏡電路中的電晶體Tr39係轉換第二電流振盪訊號322之 值。經轉換之電流係依照電晶體Tr32與電晶體Tr33之切 換,成為最後的輸出電流。另外,由於不論控制電壓3〇6 之大小,轉換用等效電流328會透過電晶體Tr31與電晶體 Tr29加入放大器驅動電流324並流通,因此電晶體Tr32 與電晶體Tr33之閘極-源極間電壓也將變高,其結果,第 一電流振盪訊號320與第二電流振盪訊號322之振幅將更 接近轉換用定電流318之值。 根據本實施形態,加高控制電壓時,則振盪訊號之振 盪頻率將會變高的同時,差動放大器中的電晶體會高速動 作,因此可加大輸出電流之振幅,另一方面,振盪頻率低 之情形可以低消耗電力使電晶體動作。又,由於與用以將 振蘯訊號之電壓轉換成電流之電晶體所使狀電流成比例 315898 1333334 雷射光束。 APC電路106係根據監視器用光電二極體104輸出之 電流訊號’將控制訊號輸出至高頻振盪電路1〇〇,俾使雷 射光束經常從半導體雷射晶片102以一定的功率輸出,亦 即,進行半導體雷射晶片! 〇2之回授控制。此處,因以下 因素而須具備Ape電路1〇6。雖有必要將光拾波器2〇〇輸 出之電壓讯號位準保持在預定位準,但由於半導體雷射晶 片102輸出之雷射光束之功率係有個別差異並且對溫度 變化反應靈敏,因此僅對半導體雷射晶片1〇2進行相同的 控制時雷射光束<功率會無法穩冑,因而無法將電壓訊號 之輸出位準保持穩定。 另方面,尚頻振盪電路100係如第一與第二實施形 態所示,於高振盪頻率也可加大輸出電流之振幅,因此半 導體雷射晶片102係可穩定射出雷射光束。 第5圖(b)係表示第三實施形態之高頻振盪電路1〇〇 之適用例中頻率轉換電路2〇2之構成。頻率轉換電路2〇2 係包含高頻振|電路100、乘法電路122、卿(帶通遽波 器,Bandpass Filter)124、以及放大器126。頻率轉換電 路202係於通訊裝置中,轉換成用以傳輸應送訊的訊號之 訊號。更具“言,於無線送訊裝置巾,將應送訊之基本 頻帶訊號或將該基本頻帶作頻率轉換之中間頻率訊號頻率 轉換成無線頻率訊號。 〇訊號產生部ι〇2係將應送訊之訊號產生為基本頻帶訊 號,將該基本頻帶訊號頻率轉換成中間頻率。 315898 20 I333334 之動作之高頻振盪電路適用於各種裝置與LSI。 另外’例示本發明與實施形態之構成之對應。「振盪訊 號產生電路」係對應於電壓控制型電流源58之可變電流源 72與電流鏡電路中的電晶體Tri、電晶體τΓ3與訊號振盪 電路60。「放大器」係對應於放大器52。「轉換放大電路」 係對應於轉換放大電路54。「頻率依存型調整電路」係對 應於電麈控制型電流源58之電流鏡電路中的電晶體Trl、 電晶體Tr2與加法器56之電流鏡電路中的電晶體Tr27、 電晶體Tr28、電晶體Tr30。「環路振盪器」係對應於訊號 振盪電路60中的第一反相器74、第二反相器76、第三反 相器78、第四反相器80。「驅動電路」係對應於訊號振盪 電路60之兩個電流鏡電路中的電晶體Tr4到電晶體1333334 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to an oscillating circuit. In particular, it relates to an oscillating circuit that can change the oscillation frequency. [Prior Art] The voltage-controlled oscillation circuit is used, for example, in an optical pickup and a ρα (Phase Locked Loop), and is set in accordance with a control voltage applied in general to change the oscillation frequency, and oscillates and outputs the oscillation. Frequency signal. An example of a voltage controlled oscillator in the prior art is to connect the inverting amplifier, the first charging and discharging circuit, and the second charging and discharging circuit in a single turn. In this configuration, the phase of the inverted voltage signal from the inverting amplifier is phase-delayed in the first charging and discharging circuit and the second charging and discharging circuit, and the output of the second charging and discharging circuit is again input to the inversion. Amplifier. Since the phase of the inverted voltage signal in one turn is again the same as the original phase, the %»pressure control oscillator is over the above process and becomes a sustainable vibration. In addition, the oscillation frequency of the voltage controlled oscillator is mainly determined according to the size of the first charge and discharge circuit and the second charge and discharge circuit, 'the larger the charge and discharge current J, the current value level larger than the charge and discharge current' and borrowed It is controlled by a control current that is easy to control. [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei 6-37599. In the prior art, even if the charge and discharge current is very small, since the control system is formed according to the control current, the oscillation can be stably stabilized in the low oscillation frequency with the stabilization of the current value level for control. On the other hand, in the general high oscillation frequency, the following issues must also be considered. Oscillation High Vibration Frequency The high-frequency oscillation circuit in 315898 5 1333334 increases the current flowing into the amplification FET by increasing the setting control voltage. Therefore, the amplification FET can operate at a high speed when the oscillation frequency is high. On the other hand, in the case where the oscillation frequency is low, the current flowing into the amplification FET can be reduced, so that the power consumption can be reduced. Fig. 1 shows a high frequency oscillation circuit 1A of the first embodiment. The high-frequency oscillation circuit 100 includes a voltage-controlled oscillation circuit 5A, an amplifier 52, a conversion amplifier circuit 54, and an adder 56. The voltage-controlled oscillation circuit 50 includes a voltage-controlled current source 58 and a signal oscillation circuit 6A. The conversion amplifying circuit 54 includes a first switching circuit 62, a second switching circuit 64, a first current value converting amplifying circuit 66, a second current value converting amplifying circuit 68, and a constant current source 70. In addition, the signal includes a control voltage 306, an oscillator driving current 308, a first source oscillating signal 31 〇, a second source oscillating signal 312, a first amplified oscillating signal 314, a second amplified oscillating signal 316, and a conversion setting. Current 318, first current oscillation signal 320, second current oscillation signal 322, amplifier drive current 324, oscillator equivalent current 326, and equivalent current 328 for conversion. The voltage controlled current source 58 applies a control voltage 306 and flows into an oscillator drive current 3〇8 and an oscillator equivalent current 326 of a magnitude of the control voltage 306. Here, the oscillator drive current 3 〇 8 is proportional to the magnitude of the oscillator equivalent current 326, and both become larger as the control voltage 3 〇 6 increases. The signal oscillation circuit 60 outputs a first-source vibration number 310 and a second source vibration signal 312 in accordance with the oscillation frequency of the magnitude of the oscillator drive current 308. Specifically, if the oscillator drive current 3〇8 becomes large, the oscillation frequency is set to 315898 9 1333334. The first source oscillation signal 310 and the second source oscillation signal 312 are, for example, sinusoidal waves repeatedly appearing at a maximum value and a minimum value for a certain period of time, but since Hancheng can perform differential amplification processing on an amplifier 52 which will be described later, a balanced signal is formed. . In addition, the "balanced signal" is a differential signal. On the other hand, the "unbalanced signal" is a general signal based on ground (gr〇und). The amplifying thief 52 system differentially amplifies the first source oscillating signal 31 〇 and the second source oscillating signal 312, and outputs a first amplified oscillating signal 314 and a second amplified oscillating signal 316. Further, the differential amplification processing is performed for the purpose of increasing the driving ability of the first switching circuit 62 and the second switching circuit 64 which will be described later. The first amplified oscillating signal 314 and the second amplified oscillating signal 316 have the same waveform as the first source oscillating signal 310 and the second source oscillating signal 312, and constitute a balanced signal. Further, the aforementioned amplification Fet system is included in the amplifier 52. The constant current source 70 supplies a constant current for conversion 318 for converting the voltages of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 into a current. Here, the constant current for switching 318 is set to a constant value, and the equivalent current for conversion 328 which is proportional to the constant current 318 for conversion is also output. The first switching circuit 62 converts the first amplified oscillation signal 314 into a first current oscillation signal 320. Here, the value of the first current oscillation signal 320 of the δ tongue of the first amplified oscillation signal 314 is close to the value of the constant current 318 for conversion, and the first current oscillation is small when the value of the first amplified oscillation signal 314 is small. The value of signal 320 will be smaller. The second switching circuit 64 also operates in the same manner as the first opening 315898 10 1333334 closing circuit 62, converting the second amplified oscillation signal 316 into a second current oscillation signal 322. The first current value conversion amplifying circuit 66 converts the value of the first current oscillation signal 320, and the second current value conversion amplifying circuit 68 converts the value of the second current oscillation signal 322. Here, the converted first current oscillation signal 32 〇 corresponds to the supply current, and the converted second current oscillation signal 322 has a value corresponding to the inrush current according to the first switch circuit 62 and the second switch circuit 64. Switching becomes the output current that can switch between the inrush current and the supply current. Here, 'output current' includes "inrush current" and "supply current". The adder 56 supplies an amplifier drive current 324 to which the oscillator equivalent current 326 and the conversion equivalent current 328 are applied, to the amplifier 52. When the amplifier drive current 324 becomes large, the operation of the amplifier 52 becomes high speed. That is, even if the first source oscillation signal 31 〇 and the second source oscillation signal 312 fluctuate at a higher j-swing frequency, the amplifier drive current 324 will become larger and thus amplified. The action of the genus 52 can also follow a higher oscillating frequency, and the amplitude of the first amplified oscillating signal 314 and the first amplified oscillating signal 316 will become larger. Further, although it will be described later in detail in the second embodiment, since the conversion equivalent current 328 is also applied to the amplifier drive current 324, even if the amplitudes of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 become larger, Regardless of the value of the constant current 318 for conversion, the amplitudes of the first current oscillation signal 32A and the second current oscillation signal 322 will also become larger. Figure 2 shows the output signal at time 52 when the first amplified oscillation signal 314 is changed. The solid line in the figure indicates the case where the amplifier drive power is not hoisted. The dotted line in the figure indicates the case where the amplifier drive current is 11 315898 1333334 324. When the amplifier drive current 324 is large, since the action of the amplifier 52 sufficiently follows the fluctuation of the first source oscillation signal 31 高 of the high oscillation frequency, the amplitude of the first amplified oscillation signal 314 also becomes large. On the other hand, if the amplifier driving current 324 is small, since the operation of the amplifier 52 cannot sufficiently follow the fluctuation of the first source oscillation signal 31, the amplitude of the first amplified oscillation signal 314 is changed little. In addition, the second amplified oscillation signal 316 is also the same. Fig. 3 shows the output current converted from the voltage by the conversion amplifying circuit 54. The solid line in the figure indicates the case where the amplitudes of the first amplified oscillation signal 3丨4 and the second amplified oscillation signal 316 are large, and the dotted line in the figure indicates the amplified oscillation signal 314 and the second amplified oscillation signal 316. The case where the amplitude is small. The case where the amplitude of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 is small means that, for example, the conversion equivalent current 328 is not added to the amplifier drive current 324. When the amplitudes of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 are large, the switches of the first switching circuit 62 and the second switching circuit 64 become high speed, and can be sufficiently converted into the first current oscillation signal 320 and the first The two current oscillates signal 322, so as a result, the amplitude of the output current converted by the conversion amplifying circuit 54 will also become larger. On the other hand, if the amplitudes of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 are small, 'the first current oscillation signal 320 and the second current oscillation signal 322 cannot be sufficiently converted, so as a result, the conversion is amplified. The amplitude of the output current converted by circuit 54 will be reduced. Here, the "amplitude of the output current" is defined by, for example, the sum of the maximum value of the magnitude of the inrush current and the supply current, the maximum value of the inrush current, the supply of 315898 12 illusion 3334, and the magnitude of the machine. However, in the configuration of the high-frequency oscillation circuit 100 of the embodiment of the present embodiment, the voltage-controlled oscillation circuit 50 and the amplifier 52 are balanced according to the differential voltage of the differential processing. The signal is finally converted into a current imbalance signal by the conversion amplifier circuit 54. In the balanced signal formed as described above, the distortion components of the signals are offset each other, so that the distortion component of the signal can be reduced, and as a result, the harmonic component of the electromagnetic interference (EMI: Electromagnetic Interference) can be reduced. Therefore, the high frequency oscillating circuit 100 can output a signal that does not contain high harmonics. The operation of the above-described high-frequency oscillation circuit 1 is as follows. When the control voltage 306 is increased, the oscillator drive current 308 and the oscillator equivalent current 326 which the voltage control type current source 58 flows in will also become larger. The signal oscillation circuit 60, when the oscillator drive current 308 becomes large, outputs a first source oscillation signal 310 and a second source oscillation signal 312 having a higher frequency of oscillation. Further, if the vibrator equivalent current 3 2 6 becomes large, the amplifier drive current 324 that flows in from the adder 56 becomes larger. When the amplifier driving current 324 becomes larger, the amplification benefit 52 system amplifies the first source oscillation signal 31 更高 of the higher oscillation frequency and the second source oscillation signal 312 to the first amplification oscillation benefit wa 314 of the very large amplitude, respectively. The second amplified vibration signal 316. The first switching circuit 62 and the second switching circuit 64 convert the first amplified oscillation signal 314 and the second amplified oscillation signal 316 into the first current oscillation signal 320, respectively, based on the constant current 318 for conversion from the constant current source 70. And the second current oscillating signal 322. The first current value conversion amplifier 315898 1333334 and the first current value conversion amplifier circuit 68 respectively convert the values of the first current oscillation signal 320 and the second current oscillation signal 322, and further utilize the: switch circuit 62 and the second Switching of switching circuit 64 becomes the final output current. In addition, since the conversion current 328 from the constant current source 70 is added to the amplifier driving current 324 and flows into the amplifier 52 regardless of the control voltage 3〇6, the first switching circuit 62 and the second switching circuit 64 The amplitude of the first current oscillating signal 3 2 〇 and the second current oscillating signal 322 of the intermediate conversion is closer to the value of the constant current 318 for conversion. According to the present embodiment, since the current according to the oscillation frequency of the oscillation signal flows into the amplifier, the amplitude of the output current can be increased in the case where the oscillation frequency is high, and the low power consumption can be realized in the case where the oscillation frequency is low. action. In addition, since a current proportional to a current for converting a voltage of the oscillation signal into a current flows into the amplifier, the switching characteristic in the amplifier is higher, and since the oscillation signal can be amplified to a voltage of a larger amplitude, Therefore, the amplitude of the output current can be increased. The second embodiment is a high-frequency oscillating circuit similar to that of the first embodiment. However, in the first embodiment, the high-frequency oscillating circuit ′ is described based on a functional block diagram, and in the second embodiment, the FET or the like is used. The circuit configuration illustrates the high frequency oscillating circuit. Fig. 4 is a view showing the high frequency oscillation circuit 1 of the second embodiment. Further, the same functions as those of the functional block diagram and the signal in Fig. 1 are denoted by the same reference numerals. The variable current source 72 is a current that varies with the control voltage 306. The transistor Tr 1 to the transistor Tr3 form a current mirror circuit from 315898 1333334, and the oscillator equivalent current 326 and the oscillator drive current 3 0 8 flow from the transistor Tr2 to the transistor Tr3, respectively. As described above, the currents from the oscillator drive current 308, the oscillator equivalent current 326, and the variable current source 72 are proportional to each other. A current mirror circuit is formed from the transistor Tr4 to the transistor Tr9, and a current mirror circuit is also formed from the transistor Tr1 to the transistor Tr14. The currents of the oscillator driving current 308 respectively flow into the differential formed by the first inverter 74, the second inverter 76, the third inverter 78, and the fourth inverter 80. Output type loop oscillator. That is, as the oscillator drive current 308 becomes larger, the current flowing into the loop oscillator will become larger, so the oscillation frequency of the first source oscillation signal 310 and the second source oscillation signal 312 output by the loop oscillator will Becomes high. A differential amplifier is formed from the transistor Tr15 to the transistor Tr13, the transistor Tr23, and the transistor Tr24. The first source oscillation signal 310 and the second source oscillation signal 312 are applied to the gate terminals of the transistor Tr23 and the transistor Tr24, respectively. And differential amplification processing. This differential amplification processing is the same as that of the first embodiment, and is intended to improve the driving ability of the transistor Tr32 and the transistor Tr33 which will be described later. Moreover, since the differential amplifier is formed from the transistor Tr1 to the transistor Tr22, the transistor Tr25, and the transistor Tr26, the first source oscillating signal 310 and the second source oscillating signal 312 are amplified in two stages and output as The first amplified oscillation signal 314 and the second amplified oscillation signal 316. Further, the amplifier drive current 324 flowing into each of the differential amplifiers will be described later. The transistor Tr41 and the transistor Tr40 constitute a constant current 318 for converting a constant current source 82 from a constant current source 82, and a conversion equivalent current 328 having a proportional relationship with the constant current for conversion 318, which constitutes a current mirror circuit 'inflow 15 315898 1333334 . The transistor Tr32 converts the first amplified oscillation signal 314 applied to the gate terminal into the first current oscillation signal 320. Here, since the transistor Tr32 is of the n-channel type, if the value of the first amplified oscillation signal 314 becomes large, the value of the first current oscillation signal 320 will also be close to the value of the constant current for switching 318. The transistor Tr33 performs the same operation as the transistor Tr32 and is converted into the second current oscillation signal 322. The transistor Tr34 and the transistor Tr35 form a current mirror circuit and are converted into a first output current proportional to the first current oscillation signal 320. Further, the transistor Tr36 and the transistor Tr37, and the transistor Tr38 and the transistor Tr39 constitute a current mirror circuit, respectively, and are converted into a second output current having a proportional relationship with the second current oscillation circuit 322. Further, the first output current and the second output current are switched according to the transistor Tr32 and the transistor Tr33 to become the final output current. The transistor Tr27, the transistor Tr28, and the transistor Tr30 constitute a current mirror circuit, and the amplifier driving current 324 having a proportional relationship with the oscillator equivalent current 326 flows from the transistor Tr28 and the transistor Tr30. As described above, if the oscillator equivalent current 326 becomes large, the amplifier drive current 324 will also become larger. The reason why the current proportional to the conversion equivalent current 328 is added to the amplifier driving current 324 is as follows. In order to increase the amplitude of the final output current, the constant current 318 for conversion must be increased. However, if the voltage between the gate and the source of the transistor Tr32 and the transistor Tr33 is low, the switching operation of the transistor Tr32 and the electric 16 315898 1333334 crystal Tr33 is delayed, so that the constant current for conversion 318 cannot be efficiently transmitted to the first stage. - The amplitude of the current oscillating signal coffee and the second current oscillating signal 322. Therefore, the conversion equivalent current 328 having a certain relationship with the constant current 3丨8 for conversion is supplied to the amplifier from the current mirror circuit formed by the transistor MTr4/, the transistor Tr3, and the crystal Tr29. Drive current 324. Thereby, since the amplifier drive current 324 flowing into the differential amplifier will become larger again, the operational characteristics of the differential amplifier become higher. Therefore, the changes of the first source oscillating signal 310 and the second source oscillating signal 312 can be followed, and the amplitudes of the first amplified oscillating signal 314 and the second amplified oscillating signal 316 will be sufficiently increased. As a result, since the maximum value of the gate-source voltage between the transistor Tr32 and the transistor Tr33 becomes large, the switching operation of the transistor Tr32 and the transistor Tr33 becomes faster, and the conversion can be efficiently performed. Current 318 is passed to the amplitude of the last output current. 2 shows the time change of the first amplified oscillation signal 314 or the second amplified oscillation signal 316 as the output signal of the amplifier 52, and FIG. 3 shows the output current converted from the voltage by the conversion amplification circuit 54. Since the embodiment is the same, the description is omitted here. The operation of the frequency oscillating circuit 1 以上 如 constructed as described above is as follows. When the control voltage 306 is increased, the oscillator equivalent current 326 into which the transistor Tr2 in the current mirror circuit flows and the oscillator drive current 308 into which the transistor Tr3 flows will become larger. When the oscillator drive current 308 becomes large, the first source oscillation signal 31() and the second output from the first inversion 74, the second inverter 76, the third inverter 78, and the fourth inverter 80 are generated. Source oscillation signal 312 17 315898 1333334 The oscillation frequency will become higher. Further, if the oscillator equivalent current 326 becomes large, the amplifier driving current 324 flowing into the transistor Tr28 and the transistor Tr30 in the current mirror circuit will also become large. When the amplifier driving current 324 becomes larger, the first source oscillating signal 31 〇 and the source-one vibration signal 312 of the higher oscillation frequency are respectively amplified to the first amplified oscillation signal 314 of the very large amplitude at the amplifier 52. The second amplified oscillation signal 316. The transistor Tr32 and the transistor Tr33 convert the first amplified oscillation signal 314 and the first amplified oscillation signal 316 to the first current oscillation signal 320, respectively, based on the constant current 318 for conversion from the transistor Tr40 in the current mirror circuit. And the second current oscillating signal 322. The electric crystal Tr35 in the current mirror circuit converts the value of the first current oscillation signal 32, and the transistor Tr39 in the other current mirror circuit converts the value of the second current oscillation signal 322. The converted current is switched to the final output current in accordance with the switching between the transistor Tr32 and the transistor Tr33. In addition, since the switching equivalent current 328 is supplied to the amplifier driving current 324 through the transistor Tr31 and the transistor Tr29 regardless of the magnitude of the control voltage 3〇6, the transistor Tr32 and the gate-source of the transistor Tr33 are interposed. The voltage will also go high, and as a result, the amplitudes of the first current oscillation signal 320 and the second current oscillation signal 322 will be closer to the value of the constant current for conversion 318. According to this embodiment, when the control voltage is raised, the oscillation frequency of the oscillation signal becomes higher, and the transistor in the differential amplifier operates at a high speed, so that the amplitude of the output current can be increased, and on the other hand, the oscillation frequency In the low case, the transistor can be operated with low power consumption. Also, it is proportional to the current drawn by the transistor used to convert the voltage of the vibrating signal into a current. 315898 1333334 Laser beam. The APC circuit 106 outputs a control signal to the high frequency oscillating circuit 1 according to the current signal 'outputted by the photodiode 104 for the monitor, so that the laser beam is often outputted from the semiconductor laser wafer 102 with a certain power, that is, , for semiconductor laser chips! 〇2 feedback control. Here, the Ape circuit 1〇6 is required due to the following factors. Although it is necessary to maintain the voltage signal level of the output of the optical pickup 2〇〇 at a predetermined level, since the power of the laser beam output from the semiconductor laser wafer 102 is individual and sensitive to temperature changes, When the same control is applied to the semiconductor laser chip 1〇2, the laser beam < power will not be stable, and the output level of the voltage signal cannot be stabilized. On the other hand, the frequency oscillating circuit 100 can increase the amplitude of the output current at a high oscillation frequency as shown in the first and second embodiments, so that the semiconductor laser wafer 102 can stably emit the laser beam. Fig. 5(b) shows the configuration of the frequency conversion circuit 2〇2 in the application example of the high-frequency oscillation circuit 1A of the third embodiment. The frequency conversion circuit 2〇2 includes a high frequency oscillator circuit 100, a multiplication circuit 122, a binary passband filter 124, and an amplifier 126. The frequency conversion circuit 202 is connected to the communication device and converted into a signal for transmitting a signal to be transmitted. More "speaking, in the wireless transmitter device towel, the basic frequency band signal to be sent or the intermediate frequency signal frequency for frequency conversion of the basic frequency band is converted into a wireless frequency signal. The signal generation unit ι〇2 system should be sent The signal is generated as a basic frequency band signal, and the fundamental frequency band signal frequency is converted into an intermediate frequency. The high frequency oscillation circuit of the operation of 315898 20 I333334 is applied to various devices and LSIs. Further, the present invention corresponds to the configuration of the embodiment. The "oscillation signal generating circuit" corresponds to the variable current source 72 of the voltage control type current source 58 and the transistor Tri, the transistor τ Γ 3 and the signal oscillating circuit 60 in the current mirror circuit. The "amplifier" corresponds to the amplifier 52. The "conversion amplifying circuit" corresponds to the conversion amplifying circuit 54. The "frequency dependent type adjustment circuit" corresponds to the transistor Tr27, the transistor Tr28, and the transistor in the current mirror circuit of the current mirror circuit of the electric current control type current source 58 and the transistor Tr2 and the current mirror circuit of the adder 56. Tr30. The "loop oscillator" corresponds to the first inverter 74, the second inverter 76, the third inverter 78, and the fourth inverter 80 in the signal oscillation circuit 60. The "drive circuit" corresponds to the transistor Tr4 to the transistor in the two current mirror circuits of the signal oscillation circuit 60.
Trl4。 又’「振盪sfl號產生電路」係對應於電壓控制型電流源 58之可變電流源72與電流鏡電路中的電晶體忏卜電晶體 Tr3與訊號振盪電路60。「放大器」係對應於放大器52。「轉 換放大電路」係對應於轉換放大電路54。「設定電路」係 對應於定電流源70。「輸出依存型調整電路」係對應於定 電流源70與加法器56之電流鏡電路中的電晶體Tr4卜電 晶體Tr31、電晶體Tr29。 以上,根據實施形態說明本發明。該實施形態係例示, 且對該等之各構成要素及各處理程序之組合可有各種變形 例’又如此之變形例也在本發明之範圍内可由同業者所能 315898 22 1333334 第一至第三實施形態中,訊號振盪電路60、放大器 52、轉換放大電路54係以差動放大處理為前提,分別以複 數個電晶體及訊號之組合所構成,並傳遞平衡訊號。然而 並不限定於此,例如以絕對的放大處理為前提,傳遞不平 衡Ifl號亦可。根據本變形例,可削減構成高頻振盪電路1 〇〇 之電晶體等之零件數。亦即,使最後設定之振盪頻率之電 流振盪即可。 第二實施形態中,放大器52係由兩個差動放大器所構 成。然而並不限定於此,例如由一個差動放大器或三個以 上之差動放大盗構成亦可。根據本變形例,可變更第一放 大振盪訊號314與第二放大振盪訊號316之振幅。亦即, 只要設有依照從放大器52所輸出之第一放大振盪訊號314 與第二放大振盪訊號316所要求之值的數量之差動放大器 即可。 11 ^雖本發明所記載係典型的具體例,然而可更進一步地 使熟悉該項技術者了解有各種變形及取代,只要不脫離本 發明之範圍皆可定義為本發明之範圍。 【圖式簡單說明】 第1圖係顯示第-實施形態之高頻振盪電路之圖。 第2圖係顯示第1圖之放大器之輸出訊號之圖。 第3圖係顯示在第i圖之轉換放大電路從 換力 之輸出電流之圖。 第4圖係顯示第二實施形態之高頻振盪電路之圖。 第5圖⑷至(c)係顯示第三實施形態之高頻振盈電路 315898 23Trl4. Further, the "oscillation sfl number generating circuit" corresponds to the variable current source 72 of the voltage control type current source 58 and the transistor transistor Tr3 and the signal oscillating circuit 60 in the current mirror circuit. The "amplifier" corresponds to the amplifier 52. The "conversion amplifying circuit" corresponds to the conversion amplifying circuit 54. The "setting circuit" corresponds to the constant current source 70. The "output dependent type adjustment circuit" corresponds to the transistor Tr4, the transistor Tr31, and the transistor Tr29 in the current mirror circuit of the constant current source 70 and the adder 56. The present invention has been described above based on the embodiments. This embodiment is exemplified, and various modifications can be made to the combination of the components and the respective processing procedures. Further, the modifications are also within the scope of the present invention, which can be used by the same industry. 315898 22 1333334 First to the first In the third embodiment, the signal oscillation circuit 60, the amplifier 52, and the conversion amplifier circuit 54 are formed by a combination of a plurality of transistors and signals on the premise of differential amplification processing, and the balanced signals are transmitted. However, the present invention is not limited thereto, and it is also possible to transmit the imbalance Ifl number on the premise of absolute amplification processing. According to the present modification, the number of components of the transistor or the like constituting the high-frequency oscillation circuit 1 can be reduced. That is, the current of the last set oscillation frequency can be oscillated. In the second embodiment, the amplifier 52 is composed of two differential amplifiers. However, the present invention is not limited thereto, and may be constituted by, for example, a differential amplifier or three or more differential amplification pirates. According to the present modification, the amplitudes of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 can be changed. That is, as long as a differential amplifier is provided in accordance with the number of values required for the first amplified oscillation signal 314 and the second amplified oscillation signal 316 output from the amplifier 52. Although the present invention has been described in detail, it is to be understood that various modifications and substitutions may be made without departing from the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a high frequency oscillation circuit of a first embodiment. Figure 2 is a diagram showing the output signal of the amplifier of Figure 1. Fig. 3 is a view showing the output current from the switching force of the conversion amplifying circuit of Fig. i. Fig. 4 is a view showing a high frequency oscillation circuit of the second embodiment. Fig. 5 (4) to (c) show the high frequency oscillation circuit of the third embodiment 315898 23