TWI329976B - Oscillator - Google Patents

Oscillator Download PDF

Info

Publication number
TWI329976B
TWI329976B TW93115612A TW93115612A TWI329976B TW I329976 B TWI329976 B TW I329976B TW 93115612 A TW93115612 A TW 93115612A TW 93115612 A TW93115612 A TW 93115612A TW I329976 B TWI329976 B TW I329976B
Authority
TW
Taiwan
Prior art keywords
circuit
current
signal
oscillation
differential
Prior art date
Application number
TW93115612A
Other languages
Chinese (zh)
Other versions
TW200541202A (en
Inventor
Takao Kakiuchi
Takeshi Wakii
Sho Maruyama
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to TW93115612A priority Critical patent/TWI329976B/en
Publication of TW200541202A publication Critical patent/TW200541202A/en
Application granted granted Critical
Publication of TWI329976B publication Critical patent/TWI329976B/en

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Amplifiers (AREA)

Description

1329976 九、發明說明: 【發明所屬之技術領域】 本發明係有關振蘯電路。有關可變更振靈頻率 之振盪電路。 【先前技術】 电壓控制型之振盪電路係使用於例如光拾訊器 (pickup)及鎖相迴路(Phase Locked Loop; PLL),且一般 係依照所接受的控制電壓使振盪頻率變化而設定振盪頻 率,並振盪輸出該振盪頻率之訊號。習知技術中的電壓控 制振盪器之一例,係將反轉放大器、第一充放電電路、第 二充放電電路連接成一圈。該構造中,係使來自反轉放大 杏之反轉電壓訊號之相位,在第一充放電電路與第二充放 電電路階段性地延遲,並且使第二充放電電路之輸出再輸 入至反轉放大器。由於經過一圈之反轉電壓訊號之相位再 ••欠變為與當初之相位相同,因此電壓控制振盪器可藉由反 覆以上之處理而持續振盪。另外,電壓控制振盪器之振盪 頻率主要依照第一充放電電路與第二充放電電路之充放電 電流的大小加以決定,再者充放電電流之大小係由電流值 準位比充放電電流大且容易控制的控制電流加以控制。 [參考文獻]曰本特開平6-37599號公報 習知技術中’即使充放電電流非常地小,由於控制係 藉由控制電流而進行,因此用於控制之電流值準位很穩定 化’即使在低振盪頻率中也可穩定振盪。然而,一般而言 在高振盪頻率中,還必須探討以下之課題。使高振盪頻率 5 315900 1329976 之振盪訊號振盪’再將該振盪訊號利用場效電晶體^^: .1329976 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a vibrating circuit. An oscillating circuit that can change the vibration frequency. [Prior Art] A voltage-controlled oscillation circuit is used, for example, in an optical pickup and a phase locked loop (PLL), and generally sets an oscillation frequency in accordance with an accepted control voltage to change an oscillation frequency. And oscillates the signal of the oscillation frequency. An example of a voltage controlled oscillator in the prior art is to connect the inverting amplifier, the first charging and discharging circuit, and the second charging and discharging circuit in a circle. In this configuration, the phase of the inverted voltage signal from the inverted amplifying apricot is phase-delayed in the first charging and discharging circuit and the second charging and discharging circuit, and the output of the second charging and discharging circuit is re-introduced to the inversion. Amplifier. Since the phase of the inverted voltage signal after one round is again the same as the original phase, the voltage controlled oscillator can continue to oscillate by reflecting the above processing. In addition, the oscillation frequency of the voltage controlled oscillator is mainly determined according to the magnitude of the charge and discharge current of the first charge and discharge circuit and the second charge and discharge circuit, and the magnitude of the charge and discharge current is greater than the charge and discharge current by the current value. Controllable control current is controlled. [Reference] In the conventional technique of Japanese Laid-Open Patent Publication No. Hei 6-37599, even if the charge and discharge current is extremely small, since the control is performed by controlling the current, the current value level for control is stabilized even if The oscillation can also be stabilized at low oscillation frequencies. However, in general, in the high oscillation frequency, the following issues must also be considered. Oscillate the oscillation signal of the high oscillation frequency 5 315900 1329976 and then use the field effect transistor ^^:

Field effect transistor)放大之情形(以下將該FET稱為 放大用FET)’若流入放大用FET之電流小的話,由於放大 用FET之動作速度會變慢’其結果,振盪訊號將無法得到. 充分的放大。然而,為了將高振盪頻率之振盪訊號充分地 放大,而加大流入放大用FET之電流的話,則在使低振盪* 頻率而不是高振盪頻率之振盪訊號放大之情形,會消耗必 要以上之電力。 另一方面,對於將振盪電路做在大型積體電路(LSI : ^Field effect transistor) (When the FET is referred to as an amplifier for amplification), if the current flowing into the amplifier for amp is small, the operation speed of the FET for amplification will become slower. As a result, the oscillation signal will not be obtained. Magnification. However, in order to sufficiently amplify the oscillation signal of the high oscillation frequency and increase the current flowing into the amplification FET, the amplification of the oscillation signal of the low oscillation* frequency instead of the high oscillation frequency consumes more than necessary power. . On the other hand, for the oscillation circuit to be made in a large integrated circuit (LSI: ^

Large Scale Integrated circuit)等中而提供振盪電路之 提供者而言,為了獲得量產效果,期望該LSI為可泛用者。 另外,將LSI組入裝置等之使用者,係需要在裝置中設定 之振盪頻率中有充分的振幅之訊號輸出,並希望在低消耗 電力下動作。因此期望振盪電路在廣泛的振盪頻率範圍中 有適當的訊號輸出及消耗電力等特性。尤其,使用者將振 盘電路應用於預定之裝置内’且在該裝置的使用中依照預 定之設定變化振盪頻率之情形,必須對於各個振盪頻率都· 滿足訊號輸出與消耗電力方面之預定要件。 【發明内容】 本案發明人係意識到上述之狀況而研創本發明,其目 的在於提供-種可㈣_解,使錄訊號之特性^良 好’並降低消耗電力之振盪電路。 本發明之一樣態係為一種振盪電路。該振盪電路係具 備.可叹定振盪訊號之振盪頻率,並將設定過振盪頻率之 315900 6 1329976 振盪訊號作為差動訊號而輸出之差動型振盪訊號產生電 路;將作為差動訊號而輸出之振盪訊號予以差動放大之差 動放大器’·將經差動放大之振盪訊號的電壓轉換為電流並 放大之轉換放大電路;以及依照差動型振盪訊號產生電路 之設定内容,調整差動放大器的動作特性之頻率依存型調 整電路。 「差動放大器」中的放大率可依照電路而適當設定, 例如包含有放大率較「丨」大之情形,放大率為Γι」之情 形,放大率較「1」小之情形。 「設定内容」係表示與振盪頻率有關之設定,在此該 設定係根據電流值與電壓值或其他訊號而進行者。 …差動型振號產生電路巾,振盪訊號之振盪頻率經 提尚設定之情形,頻率依存型調整電路可提高差動放大器 的動作速度。 「提高設定」係依照電壓值與電流值之大小,或預定 訊號而進行,但只要最終振盪頻率變高即可。 藉由以上之振盪電路,由於可依照振盪訊號之振盪頻 率調整差動放大H之動作特性,因此振I頻率變高的話差 動放大益係更局速的動作,而可輸出高振i頻率之振盈訊 號。再者’由於處理差動型之訊號,因此即使在高振盪頻 率中亦可使訊號之失真成分相互抵銷,而可降低訊號之失 真成分。 差動型振|訊號產生電路可包含:差動型環形振盡器 (ing oscillator),以及使依據設定内容之驅動電流流至 315900 7 1329976 差動型環形振盪器之驅動電路,頻率依存型調整電路係使 依照驅動電流之電流流入差動放大器,而使差動放大器動 作。 本發明之另一樣態也是一種振盪電路。該振盪電路係 包含:將預定的振盪訊號作為差動訊號而輸出之差動型振 盪訊號產生電路;將作為差動訊號^輸出之㈣訊號予以 差動放大之差動放大器;將經差動放大之振盪訊號的電壓 轉換為電流並放大之轉換放大電路;設定轉換放大電路的 轉換特性之設定電路;以及依照設定電路之設定内容,調 整差動放大器的動作特性之輸出依存型調整電路。 士 -設定電路中,用以將振盪訊號的電壓轉換為電流之電 流經加大設定之情形’輸出依存型調整電路可提高差動放 大器的動作速度。 稭由以上之振盪電路,依照用以將振盪訊號之電壓轉 換為電流之設定,可調整差動放大器之動作特性,因此可 ^例如差動放大器之高速動作,而加大輸出㈣訊號之 電流。 再者,本發明内容摘要記載的並非全為必要特徵,因 此本發明也可以是該等特徵之次組合。 【實施方式】 體例將根據較佳具體例而說明如下,惟該等較佳具 以疋要用來限定本發明之範圍而只是說明本發明的 =所有㈣化描狀㈣與其組合衫 發明之必要要素0 V十 315900 8 1329976 第一實施形態 第 只施形態係有關於兩頻振盈電路’其係製造者以 泛用性為目的,而製造成可振盪產生廣範圍振盪頻率之振 4訊號’且使用者以將之設定於預定之振盪頻率並組入預 定之裝置為前提而完成者。本實施形態中的高頻振盪電路 係依照所接受之控制電壓而變化振盪訊號之振盪頻率。例 如控制電壓高時提高振盪頻率,控制電壓低時降低振盪頻 率。又’係利用放大用FET充分放大振盪訊號之電壓之振 幅,再將經放大之振盪訊號之電壓轉換為電流。本實施形 態的高頻振盪電路’若將控制電壓提高而設定的話,由於 會使流入放大用FET之電流增加,因此在振盪頻率高之情 I 了使放大用FET rfj速動作。另一方面,在振盪頻率低之 情形,由於可減少流入放大用FET之電流,因此可降低消 耗電力。 第1圖係表示第一實施形態之高頻振盪電路丨〇〇。高 頻振盪電路100係包含電壓控制型振盪電路50、差動放大 器52、轉換放大電路54、以及加法器56,電壓控制型振 i電路50係包含電壓控制型電流源58、訊號振盪電路6〇, 轉換放大電路54係包含第一開關電路62、第二開關電路 64、第一電流值轉換放大電路66、第二電流值轉換放大電 路68、以及定電流源70。此外以訊號來說,包含有控制電 壓306、振盪器驅動電流308、第一源振盪訊號310、第二 源振盪訊號312、第一放大振盪訊號314、第二放大振盪訊 號316、轉換用定電流318、第一電流振盪訊號320、第二 315900 9 1329976 電流振盪訊號322、差動放大器驅動電流324、振盪器等效 電流326、以及轉換用等效電流328。 ’ 电壓控制型電流源5 8係施加有控制電壓3 〇 6,而輪出 依照控制電壓306之大小之振盪器驅動電流3〇8與振盪器 等效電流326。此處,振盪器驅動電流3〇8與振盪器等效 電流326之大小具有比例關係,兩者皆隨著控制電壓 之增加而變大。 號振盪電路6 0係輸出依照振逢器驅動電流3 〇 8之大 小之振盪頻率之第一源振盪訊號31 〇與第二源振盪訊號 312。具體而言,振盪器驅動電流308變大的話,可提高振 盪頻率。第一源振蘯訊號310與第二源振盪訊號gw可為 例如正弦波使最大值與最小值在一定期間反覆出現,但為 了能夠用後述之差動放大器52進行差動放大處理,而構成 為平衡訊號。「平衡訊號」係表示差動訊號,另一方面,「不 平衡訊號」係表示以接地(ground )等為基準之一般的訊 號。 差動放大器5 2係分別對第一源振盈訊號31 〇與第二源 振盪訊號312進行差動放大處理,而輸出第一放大振盪訊 號314與第二放大振盪訊號316。另外,差動放大處理係 以增加後述之第一開關電路62與第二開關電路64中的驅 動能力為目的而進行。第一放大振盪訊號314與第二放大 振盪訊號316係具有與第一源振盪訊號31〇與第二源振盪 訊號312相同的波形’而構成平衡訊號。另外,前述之放 大用FET係包含於差動放大器52中。 315900 1329976 定電流源70係供給用以將第一放大振盪訊號314與第 . 二放大振盪訊號316之電壓轉換為電流之轉換用定電流 318 ’此處轉換用定電流318係規定為一定值。定電流源 70亦輸出與轉換用定電流318具有比例關係之轉換用等效 電流328。 ^ 第一開關電路62係將第一放大振盪訊號314轉換為第 · 一電流振盪訊號320。在此,第一放大振盪訊號314之值 大的話第一電流振盪訊號32〇之值將接近轉換用定電流 318之值,第一放大振盪訊號314之值小的話第一電流振鲁 盪訊號320之值將變得更小。第二開關電路64也與第一開 關電路62同樣地動作’將第二放大振盪訊號316轉換為第 二電流振盪訊號322。 第一電流值轉換放大電路66係轉換第一電流振盪訊 號320之值,第二電流值轉換放大電路“係轉換第二電流 振盪訊號322之值。在此,經轉換而得之第一電流振盪訊 號320之值對應於供應電流(source current),經轉換而 得之第二電流振盈訊號322之值對應於沒入電流(sink · current),且根據在第一開關電路62與第二開關電路μ 中的切換’成為有汲入電流與供應電流切換之輸出電流。 此處’「輸出電流」係包含「沒入電流」與「供應電流」。 加法器56係使振堡器等效電流326與轉換用等效電流 328相加而得之差動放大器驅動電流324流入差動放大器 52。差動放大!!驅動電流挪變大的話,差動放大器μ 之動作會變高速。亦即,即使第一 丨丨1文乐,原、振盪ifl號310與第二 315900 1329976 源振盈訊號312以更向的振i頻率變動,由於差動放大号 驅動電流324變大,因此差動放大器52之動作亦可追隨更 高的振盪頻率,使第一放大振盪訊號314與第二放大振盪 訊號316之振幅變得更大。 再者’由於差動放大器驅動電流324中加入有轉換用 等效電流328,因此即使第一放大振盪訊號314與第二放 大振盪訊號316之振幅再變大,第一電流振盪訊號32〇與 第一電流振盪訊號322之振幅亦會與轉換用定電流gig之 值無關地變大(其詳細將在之後的第二實施形態中說明)。 第2圖係顯示作為差動放大器52的輸出訊號之第一放 大振盪訊號314的時間變化。圖中之實線係表示差動放大 器驅動電流324非常大之情形,圖中之虛線係表示差動放 大器驅動電流324小之情形。差動放大器驅動電流324大 的話,由於差動放大器52之動作可充分地追隨高振盪頻率 之第一源振盪訊號310之變動,因此第一放大振盪訊號314 之振幅亦會變大。另一方面,差動放大器驅動電流324小 的話,由於差動放大器52之動作無法充分地追隨第一源振 盪訊號310之變動,因此第一放大振盪訊號314之振幅將 變得更小。另外’第二放大振盪訊號316的情形亦相同。 第3圖係顯示經轉換放大電路54而從電壓轉換得到的 輪出電流。圖中的實線係表示第一放大振盪訊號314與第 二放大振盪訊號316之振幅大的情形,圖中的虛線係表示 第一放大振盪訊號314與第二放大振盪訊號316之振幅小 的情形。第一放大振盪訊號314與第二放大振盪訊號316 315900 12 1329976 之振幅小的情形係指,假想例如未在差動放大器驅動電流· 324加上轉換用等效電流328之情形。第一放大振盪訊號 314與第二放大振盪訊號316之振幅大的話,第一開關電 路62與第二開關電路μ之切換會變高速,且由於可充分. 地轉換成第一電流振盪訊號32〇與第二電流振盪訊號 322,因此以結果來說,經轉換放大電路54轉換得到之輸 出電流的振幅也會變大。另一方面,第一放大振盪訊號314 與第二放大振盪訊號316之振幅小的話,無法充分地轉換 成第一電流振盪訊號320與第二電流振盪訊號322 ,因此鲁 以結果來說,經轉換放大電路54轉換得到之輸出電流的振 幅會變小。 在此’「輸出電流之振幅」係依據例如没入電流與供應 電流的大小之最大值的和、汲入電流大小之最大值、供應 電流大小之最大值等加以規定’但此處並未明顯地區別該 等。 本實施形態之高頻振盪電路100之構成中,電壓控制 型振盪電路50、差動放大器52係根據差動處理而傳送電鲁 壓之平衡訊號,並使該平衡訊號最後經轉換放大電路54 轉換成電流之不平衡訊號。在如上述構成之平衡訊號間, 訊號之失真成分也會相互抵銷,因此可降低訊號之失真成 分,其結果,可降低電磁干擾(EMI : Electromagnetic Interference)之高諧波成分。因此高頻振盪電路ι〇〇係可 輸出不包含高諧波成分之訊號。 以上之構成之高頻振盪電路1〇〇之動作係如下述。加 315900 13 1329976 ::电壓306的話,電壓控制型電流源58輪出之_ 與動電流3G8與振S器等效電流326也會變大。訊號振堡 電路60在振驅動電流3()8變大的情況,會輸出更高的 ㈣頻率,第-源振I訊號31G與第二源振盈訊號312。 又’振盪器等效電、流326 :變大的話,從加法器%流出之放 大器驅動電流324亦會變大。差動放大器驅動電流324變 大的話差動放大杰52會將更高的振盪頻率之第一源振盪 訊號31G與第二源振盪訊號312分別纟大為非常大的振幅 之第放大振盪訊號314與第二放大振盈訊號gig。 第一開關電路62與第二開關電路64係以來自定電流 源70之轉換用定電流318為基準,將第一放大振盪訊號 314與第二放大振盪訊號316分別轉換為第一電流振盪訊 號320與第二電流振盪訊號322。第一電流值轉換放大電 路66與第二電流值轉換放大電路68係分別轉換第一電流 振盪訊號320與第二電流振盪訊號322之值,再藉由第一 開關電路62與第二開關電路64之切換使之成為最終的輸 出電流。另外’由於不論控制電壓3〇6之大小為何,來自 定電流源70之轉換用等效電流328係加至差動放大器驅動 電流324而流入差動放大器52,因此於第一開關電路62 與第二開關電路64中轉換之第一電流振盪訊號320與第二 電流振盪訊號322之振幅會更接近轉換用定電流318之 值。 根據本實施形態’由於使依照振盪訊號之振盪頻率之 電流流入放大器’因此在振盪頻率高之情形下,可加大輸 315900 1329976 出電流之振幅’此外在振盈頻率低之情形下,可實現低消 耗電力之動作。除此之外,由於使與為了將振盪訊號之電 壓轉換成電流而使用之電流成比例之電流流入放大器,因 此放大器中的切換特性會變得更高速,且由於可將振篕訊 號放大成更大振幅之電壓’因此可加大輸出電流之振幅。 第二實施形態 第一貫施形態雖係與第一貫施形態相同的高頻振盪電 路’但第一實施形態中係藉由功能方塊圖說明高頻振蘯電 路’而第二實施形態中係藉由FET等之電路配置說明高頻 振盪電路。 第4圖係表示第二實施形態之高頻振|電路1〇〇。圖 中’與第1圖中的功能方塊及訊號相同者以相同符號表 示。 可變電流源72係輸出隨控制電壓306而變化之電流。 電晶體Trl到電晶體Tr3係構成電流鏡電路,且從電晶體 Tr2到電晶體Tr3分別流出振盪器等效電流326與振盪器 驅動電流308。如前述,振盡器驅動電流308、振盪器等效 電流326、來自可變電流源72之電流係相互具有比例關 係。 電晶體Tr4到電晶體Tr9係構成電流鏡電路,電晶體 Trl0到電晶體Trl4亦構成電流鏡電路。藉由電流鏡電路 而與振盪器驅動電流308對應之電流係分別流入由第一反 相器74、第二反相器76、第三反相器78、第四反相器80 所構成之差動輸出型之環形振盪器。亦即,振盪器驅動電 15 315900 1329976 抓308鏠大的話’由於流入環形振盪器之電流會變大,因 此環形振㈣所輸出之第一源振i訊號31G與第二源振盪 訊號312之振蘯頻率會變高。 ^電晶體Trl5到電晶體Trl8、電晶體Tr23、電晶體Tr24 係構成差動放大器52’第一源振盈訊號31G與第二源振盈 訊號312係分別施加於電晶體忏23與電晶體忏24之閘極 鳊子而接文差動放大處理。該差動放大處理係與第一實 施形悲相同,以提高後述之電晶體Tr32及電晶體忏33的 驅動能力為目的。又,由於電晶體Trl9到電晶體Tr22、 電晶體Tr25、電晶體Tr26亦構成差動放大器52,因此第 一源振盪訊號310與第二源振盪訊號312係經兩階段放 大,並分別成為第一放大振盪訊號314與第二放大振盪訊 號316而輸出。此外,有關流入各差動放大器52之差動放 大器驅動電流324將於後述。 電曰a體Tr41與電晶體Tr40係構成電流鏡電路,來自 可變電流源82之一定值之轉換用定電流318,以及與轉換 用定電流318具有比例關係之轉換用等效電流328流入此 電晶體Tr41與電晶體Tr40構成之電流鏡電路。 電晶體Tr32係將施加於閘極端子之第一放大振盪訊 號314轉換成第一電流振盪訊號320。此處,由於電晶體 Tr32係η通道型,因此第一放大振盪訊號314之值變大的 話’第一電流振盪訊號320之值也會變得接近轉換用定電 流318之值。電晶體Tr33係進行與電晶體Tr32相同的動 作,將第二放大振盪訊號316轉換成第二電流振盪訊號 16 315900 1329976 322。電晶體Tr34與電晶體Tr35係構成電流鏡電路,將第 一電流振盪訊號3 2 0轉換成與第一電流振盈訊號3 2 0具有 比例關係之第一輸出電流。又,電晶體Tr36與電晶體 Tr37、以及電晶體Tr38與電晶體Tr39係分別構成電流鏡 電路,將第二電流振盪電路322轉換成與第二電流振盪電 路322具有比例關係之第二輸出電流。第一輸出電流與第 二輸出電流係藉由電晶體Tr32與電晶體Tr33之切換,而 成為最終的輸出電流。 電晶體Tr27、電晶體Tr28、電晶體Tr30係構成電流 鏡電路,與振盪器等效電流326具有比例關係之差動放大 器驅動電流324係從電晶體Tr28與電晶體Tr30流出。如 前述,振盪器等效電流326變大的話,差動放大器驅動電 流324亦會與之對應而變大。 將與轉換用等效電流328成比例之電流加入差動放大 器驅動電流324之理由如下。為了加大最終的輸出電流之 振幅,必須加大轉換用定電流318。但是,電晶體Tr32以 及電晶體Tr33之閘極-源極間電壓低的話,電晶體Tr32 與電晶體Tr33之開關動作會變慢,因此無法有效率地將轉 換用定電流318傳達至第一電流振盪訊號320與第二電流 振盪訊號322之振幅。因此,使與轉換用定電流318具有 一定關係之轉換用等效電流328流入,以將從由電晶體 Tr41、電晶體Tr31、電晶體Tr29所構成之電流鏡電路流 出之電流加入差動放大器驅動電流324。 藉此,由於流入差動放大器52之差動放大器驅動電流 17 315900 1329976 324會變得更大,因此差動放大器52之動作特性會變得更 高速。因此’可追隨第一源振盪訊號31〇與第二源振盈訊 號312之變動’而使第一放大振M訊號314與第二放大振 盪訊號316之振幅變得相當大。其結果,由於電晶體τβ2 · 以及電晶體ΊΥ33之閘極—源極間電壓之最大值會變大,因 此電晶體Tr32與電晶體。33之開關動作會變快而可有. 效率地將轉換用定電流318傳達至最終的輸出電流之振 幅。 第2圖係顯示作為差動放大器52的輸出訊號之第一放鲁 大振盪訊號314或第二放大震盪訊號316之時間變化,第 3圖係顯示經轉換放大電路54而從電壓轉換得到的輸出電 流,然而由於與第一實施形態相同,因此在此省略該等之 說明。 如以上構成之高頻振盪電路1 00之動作係如下。加大 控制電壓306時,則從電流鏡電路中的電晶體Tr2流出之 振盈器等效電流326與從電晶體Tr3流出之振盪器驅動電 流308會變大《振盪器驅動電流308變大的話,從第一反鲁 相器74、第二反相器76、第三反相器78、第四反相器8〇 輸出之第一源振盪訊號310與第二源振盪訊號312之振盪 頻率會變高。此外’振盪器等效電流326變大的話,從電 流鏡電路中的電晶體Tr28與電晶體Tr30流出之差動放大 器驅動電流324也會變大。差動放大器驅動電流324變大 的話’於差動放大器52,分別將更高振盪頻率之第一源振 盛訊號310與第二源振盪訊號312放大至非常大的振幅之 315900 1329976 第一放大振盡訊號314與第二放大振盪訊號316。 電晶體Tr32與電晶體Tr33係以來自電流鏡電路中的 電晶體Tr40之轉換用定電流318為基礎將第一放大振盪訊 號314與第二放大振盪訊號316分別轉換成第一電流振盪 訊號320與第二電流振盪訊號322。電流鏡電路中的電晶 體Tr35係轉換第一電流振盪訊號320之值,另一電流鏡電 路中的電晶體Tr39係轉換第二電流振盪訊號322之值。經 轉換之電流係依照電晶體Tr32與電晶體Tr33之切換,而 成為最終的輸出電流。另外,由於不論控制電壓306之大 小為何,皆藉由電晶體Tr31與電晶體Tr29將轉換用等效 電流3 2 8加入差動放大器驅動電流3 2 4而流通,因此電晶 體Tr32與電晶體Tr33之閘極-源極間電壓也會變高,其結 果,第一電流振盪訊號320與第二電流振盪訊號322之振 幅會更接近轉換用定電流318之值。 根據本實施形態,加高控制電壓,則振盪訊號之振盪 頻率會變高,同時差動放大器中的電晶體會高速動作,因 此可加大輸出電流之振幅,另一方面,振盪頻率低之情形 可使電晶體以低消耗電力動作。又,由於與用以將振盪訊 號之電壓轉換成電流之電晶體所使用之電流成比例之電 流,流入差動放大器中的電晶體,因此差動放大器中的電 晶體會高速動作,且由於振盪訊號之放大變大,因此可有 效率地將振盪訊號之電壓轉換成電流。 第三實施形態 第三實施形態係說明適用第一與第二實施形態的高頻 19 315900 1329976 振盪電路之裝置或LSI之構成。 第5圖(a)係顯示第三實施形態之高頻振盪電路1〇〇 之適用例中光拾訊器200之構成。光拾訊器2〇〇係包含高 頻振盈電路100、半導體雷射晶片102、監視用光電二極體 104、以及受光用光電二極體1〇8。光拾訊器2〇〇係於光碟 裝置或光磁碟裝置等之資訊紀錄再生裝置中,對作為記錄 媒體之碟片進行訊號之讀取或寫入。 半導體雷射晶片102係依照後述之高頻振盪電路1〇〇 所供給之電流而射出雷射光束。高頻振盪電路1 〇〇係根據 以來自後述之 APC(Automatic Power Control)電路 106 之 電壓所表示之控制訊號,將電流供給至半導體雷射晶片 102。 光學系110係使從半導體雷射晶片1〇2射出之雷射光 束以光點照射在未圖示之記錄媒體之碟片,以及將來自碟 片之反射光導至後述之受光用光電二極體。 文光用光電一極體108係將反射光轉換為電流訊號。 該電流訊號之後再被轉換為電壓訊號。監視用光電二極體 104係將伙半導體雷射晶片1〇2射出之雷射光束之一部分 轉換為電流§fl號。此處所謂雷射光束之一部分係指半導體 雷射光束102之從光學系11〇不存在之一側射出之雷射光 束。 APC電路106係根據監視用光電二極體ι〇4輸出之電 流訊號’而以使雷射光束經常以一定的功率從半導體雷射 晶片102輸出之方式將控制訊號輸出至高頻震盈電路 315900 20 1329976 亦即,進行半導體雷射晶片⑽之回授㈣。此處, :以二因素而須具備APC電路1〇6。雖有必要將光拾訊器 200輸出n訊號準位料在預定準位但由於半 雷射晶片1 0 2輸出之雷射光壶$ Λ、玄 刊j 田耵尤束之功车係有個體差,並且對 溫度變化反應靈敏,因此僅對半導體雷射晶片1()2進行相 同的控制時雷射光束之功率並不會—定,因而無法將電壓 訊號之輸出準位保持一定。 a另一方面,高頻振盪電路Ϊ⑽係如第一與第二實施形 心所載R使於南振蘯頻率中亦可加大輸出電流之振幅, 因此半導體雷射晶片1 〇2可穩定射出雷射光束。 第5圖(b)係表示第三實施形態之高頻振盪電路1〇〇 之適用例中頻率轉換電路202之構成。頻率轉換電路2〇2 係包含高頻振盪電路100、乘法電路122、帶通濾波器 (BPF : Bandpass Filter)124、以及放大器 126。頻率轉換 電路202係於通訊裝置中,將要發送的訊號轉換成傳送所 需之訊號。更具體而言,於無線送訊裝置中進行頻率轉換, 以將要發送之基頻訊號或該基頻訊號經頻率轉換而成之中 間頻率訊號轉換成無線頻率訊號。 訊號產生部120係將要發送之訊號產生為基頻訊號, 並將該基頻訊號的頻率轉換成中間頻率。 高頻振盪電路100係輸入依照發訊所使用之無線頻率 之電壓,並輸出無線頻率之訊號。 乘法電路122係利用無線頻率之訊號對中間頻率之訊 號進行頻率轉換。再者,BPF 124係降低因頻率轉換而產 21 315900 1329976 生的两譜波之影響。 放大器126係將BPF 124之輸出訊號放大至預定之電 力以可在無線傳送路中發訊。 在此’向頻振盪電路1 〇 〇係如第一與第二實施形態所 示,即使在尚振盪頻率中亦可輸出較大值之電流,因此放 大器126可穩定輸出無線頻率之訊號。 第5圖(c)係表示第三實施形態之高頻振盪電路1〇〇 之適用例中PLL 204之構成。PLL 204係包含高頻振盪電 路100、相位比較器150、迴路濾波器(lo〇p filter)152、 以及分頻器154。 相位比較器15 0係比較從外部輸入之基準時脈訊號與 從为頻态154輸入之參考時脈訊號之相位以及頻率,輸出 與其差成比例之直流訊號◎迴路濾波器152係除去輸入之 訊號之高頻成分’並輸出控制電壓。高頻振盪電路丨〇〇係 輸出依照輸入之控制電壓之頻率之時脈訊號。此處係輸出 具有基準時脈訊號之頻率之N倍的頻率之時脈訊號。所輸 出之時脈訊號係於分頻器154分頻成1 /N,並作為參考時 脈訊號輸入相位比較器150。 根據本實施形態’可將即使在高振盪頻率中亦可加大 輸出電流之振幅’並且在低振盪頻率中可實現低消耗電力 之動作之高頻振盪電路適用於各種装置與LSI。 另外’例示本發明與實施形態之構成之對應關係。「差 動型振盪訊號產生電路」係對應於電壓控制型電流源58 之可變電流源72與電流鏡電路中的電晶體Trl、電晶體Tr3 315900 22 1329976 與訊號振盪電路60。「差動放大器」係對應於差動放大器 52。「轉換放大電路」係對應轉換放大電路54。「頻率依存 型調整電路」係對應於電壓控制型電流源58之電流鏡電路 中的電晶體Trl、電晶體Tr2與加法器56之電流鏡電路中 的電晶體Tr27、電晶體Tr28、電晶體Tr30。「差動型環形 振盪器」係對應於訊號振盪電路6〇中的第一反相器74、 第二反相器76、第三反相器78、第四反相器80。「驅動電 路」係對應於訊號振盪電路60之兩個電流鏡電路中的電晶 體Tr4到電晶體Trl4。 又’「差動型振盪訊號產生電路」係對應於電壓控制型 電流源58之可變電流源72與電流鏡電路中的電晶體 扦卜電晶體Tr3與訊號振盪電路60。「差動放大器」係對 應於差動放大器52。「轉換放大電路」係對應於轉換放大 電路54。「設定電路」係對應於定電流源7〇 ^「輸出依存型 調整電路」係對應於定電流源70與加法器56之電流鏡電 路申的電晶體Tr41、電晶體Tr3l、電晶體Tr29。 以上,根據貫施形態說明了本發明。該實施形態僅為 例示,熟悉邊項技術者當可理解該等實施形態之各構成要 素及各處理程序之組合可有各種變形例,且各變形例也在 本發明之範圍内。 第二實施形態中,差動放大器52係由兩個差動放大器 所構成。然而並不限定於此,例如由一個差動放大器或三 個以上之差動放大器構成亦可。根據本變形例,可變更第 放大振盪訊號314與第二放大振盪訊號316之振幅。亦 315900 23 1329976 即要设有依照從差動放大器52輸出之第一放大振盪訊 说314與第二放大振盪訊號316所要求之值的數量之差動 放大器即可。 雖本發明已藉由例示的具體例說明如上,然而應了解 熟悉該項技術者在不脫離本發明申請專利範圍所界定之範 圍的情況下所做的各種改變及置換,均應仍在本發明之 圍内。 已 【圖式簡單說明】 第1圖係顯示第一實施形態之高頻振盪電路之圖。 第2圖係顯示第1圖之放大器的輸出訊號之圖。 第3圖係顯示經第丨圖之轉換放大電路而從電壓轉換 得到的輸出電流之圖。 ' 第4圖係顯示第二實施形態之高頻振盪電路之圖。 第5圖(a)至(c)係顯示第三實施形態之高頻振盪電路 之適用例之圖。 【主要元件符號說明】 50 電 壓 控制型振盪電路 52 差 動放大 器 54 轉換放大電路 56 加法 器 58 電 壓 控制電流源 60 信 號 振盪 電路 62 第 一 開關電路 64 第 二 開關 電路 66 第 一 電流值轉換放大電路 68 第 二 電流值轉換放大電路 70 定 電 流源 72 可 變 電流源 74 第 一 反相器 76 第 二 反相 器 315900 24 第三反相器 高頻振盪電路 監視用光電二極體 受光用光電二極體 乘法電路 放大器 迴路濾波器 光拾訊器 鎖相迴路(PLL) 振盪器驅動電流 第二源振盪訊號 第二放大振蘯訊號 第一電流振盪訊號 差動放大器驅動電流 轉換用等效電流 80 第四反相器 102半導體雷射晶片 106 APC電路 120訊號產生部 124帶通濾波器(BPF) 150相位比較器 154分頻器 202頻率轉換電路 3 0 6控制電壓 310第一源振盪訊號 314第一放大振盪訊號 318轉換用定電流 322第二電流振盪訊號 326振盪器等效電流 315900 25In order to obtain mass production effects, the LSI is a versatile provider. Further, a user who incorporates an LSI into a device or the like needs to output a signal having a sufficient amplitude among oscillation frequencies set in the device, and is expected to operate under low power consumption. Therefore, it is desirable for the oscillating circuit to have appropriate signal output and power consumption characteristics in a wide range of oscillating frequencies. In particular, if the user applies the vibration plate circuit to a predetermined device and the oscillation frequency is changed in accordance with a predetermined setting in the use of the device, it is necessary to satisfy the predetermined requirements for signal output and power consumption for each oscillation frequency. SUMMARY OF THE INVENTION The inventors of the present invention have made the present invention aware of the above-described circumstances, and an object of the present invention is to provide an oscillating circuit that can reduce the characteristics of a recording signal by making a good (four) _ solution. The same state of the invention is an oscillating circuit. The oscillating circuit is provided with a oscillating frequency of an oscillating signal, and a differential oscillating signal generating circuit that outputs a oscillating signal of an over-oscillation frequency of 315900 6 1329976 as a differential signal; and outputs the signal as a differential signal. a differential amplifier that differentially amplifies the oscillation signal', converts the voltage of the differentially amplified oscillation signal into a current and amplifies the conversion amplifier circuit; and adjusts the differential amplifier according to the setting content of the differential oscillation signal generation circuit Frequency dependent adjustment circuit for operating characteristics. The amplification factor in the "differential amplifier" can be appropriately set according to the circuit. For example, when the amplification factor is larger than "丨", the amplification factor is Γι", and the amplification factor is smaller than "1". The "setting contents" indicates the setting related to the oscillation frequency, and the setting is performed based on the current value and the voltage value or other signals. ...the differential type vibration generating circuit towel, the oscillation frequency of the oscillation signal is set, and the frequency dependent type adjustment circuit can increase the operating speed of the differential amplifier. The "enhancement setting" is performed according to the magnitude of the voltage value and the current value, or a predetermined signal, but as long as the final oscillation frequency becomes high. According to the above oscillating circuit, since the operating characteristic of the differential amplifying H can be adjusted according to the oscillating frequency of the oscillating signal, if the frequency of the oscillating I becomes high, the differential amplifying is more effective, and the high-frequency i-frequency can be output. Zhenying signal. Furthermore, since the differential type signal is processed, even in the high oscillation frequency, the distortion components of the signal can be offset each other, and the distortion component of the signal can be reduced. The differential vibration signal generation circuit may include: a differential ring oscillator (ing oscillator), and a drive circuit for causing a drive current according to the set content to flow to the 315900 7 1329976 differential ring oscillator, frequency dependent adjustment The circuit causes the differential amplifier to operate by flowing a current according to the drive current into the differential amplifier. Another aspect of the invention is also an oscillating circuit. The oscillating circuit includes: a differential oscillating signal generating circuit that outputs a predetermined oscillating signal as a differential signal; and a differential amplifier that differentially amplifies the (four) signal outputted by the differential signal ^; The conversion signal of the oscillation signal is converted into a current and amplified conversion circuit; a setting circuit for setting a conversion characteristic of the conversion amplifier circuit; and an output dependent adjustment circuit for adjusting the operation characteristic of the differential amplifier according to the setting content of the setting circuit. In the setting circuit, the current used to convert the voltage of the oscillation signal into a current is increased. The output dependent adjustment circuit increases the speed of the differential amplifier. The oscillating circuit can adjust the operating characteristics of the differential amplifier according to the setting of converting the voltage of the oscillating signal into a current. Therefore, for example, the high-speed operation of the differential amplifier can increase the current of the output (four) signal. Furthermore, not all of the essential features are described in the summary of the invention, and thus the invention may be a sub-combination of the features. [Embodiment] The following description will be made based on the preferred embodiments, but the preferred embodiments are intended to limit the scope of the present invention and merely illustrate the necessity of the invention (four) and the combination of the invention. Element 0 V 315900 8 1329976 The first embodiment of the first embodiment is related to the two-frequency oscillation circuit 'the manufacturer of the system for the purpose of versatility, and is made to oscillate to generate a wide range of oscillation frequency vibration 4 signal ' And the user completes on the premise that the user sets the predetermined oscillation frequency and assembles the predetermined device. The high frequency oscillation circuit of this embodiment changes the oscillation frequency of the oscillation signal in accordance with the received control voltage. For example, when the control voltage is high, the oscillation frequency is increased, and when the control voltage is low, the oscillation frequency is lowered. Further, the amplitude of the voltage of the oscillation signal is sufficiently amplified by the amplification FET, and the voltage of the amplified oscillation signal is converted into a current. When the high-frequency oscillation circuit of the present embodiment is set to increase the control voltage, the current flowing into the amplification FET is increased. Therefore, the amplification FET rfj is operated at a high oscillation frequency. On the other hand, in the case where the oscillation frequency is low, the current flowing into the amplification FET can be reduced, so that the power consumption can be reduced. Fig. 1 shows a high frequency oscillation circuit 丨〇〇 of the first embodiment. The high-frequency oscillation circuit 100 includes a voltage-controlled oscillation circuit 50, a differential amplifier 52, a conversion amplifier circuit 54, and an adder 56. The voltage-controlled oscillation circuit i includes a voltage-controlled current source 58 and a signal oscillation circuit 6〇. The conversion amplifier circuit 54 includes a first switch circuit 62, a second switch circuit 64, a first current value conversion amplifier circuit 66, a second current value conversion amplifier circuit 68, and a constant current source 70. In addition, the signal includes a control voltage 306, an oscillator driving current 308, a first source oscillating signal 310, a second source oscillating signal 312, a first amplified oscillating signal 314, a second amplified oscillating signal 316, and a constant current for conversion. 318. The first current oscillation signal 320, the second 315900 9 1329976 current oscillation signal 322, the differential amplifier driving current 324, the oscillator equivalent current 326, and the conversion equivalent current 328. The voltage-controlled current source 58 is applied with a control voltage of 3 〇 6, and the oscillator drive current 3〇8 and the oscillator equivalent current 326 are rotated according to the magnitude of the control voltage 306. Here, the oscillator drive current 3〇8 has a proportional relationship with the magnitude of the oscillator equivalent current 326, both of which become larger as the control voltage increases. The oscillating circuit 60 outputs a first source oscillating signal 31 〇 and a second source oscillating signal 312 according to the oscillation frequency of the amplitude of the amplitude of the amplitude of the amplitude of the current of the spurs. Specifically, if the oscillator drive current 308 becomes large, the oscillation frequency can be increased. The first source oscillation signal 310 and the second source oscillation signal gw may be, for example, sinusoidal waves such that the maximum value and the minimum value appear repeatedly for a certain period of time, but are configured to be differentially amplified by the differential amplifier 52 to be described later. Balance the signal. "Balanced signal" means a differential signal. On the other hand, "unbalanced signal" means a general signal based on ground or the like. The differential amplifier 52 performs a differential amplification process on the first source oscillation signal 31 〇 and the second source oscillation signal 312, respectively, and outputs a first amplified oscillation signal 314 and a second amplified oscillation signal 316. Further, the differential amplification processing is performed for the purpose of increasing the driving ability of the first switching circuit 62 and the second switching circuit 64 which will be described later. The first amplified oscillating signal 314 and the second amplified oscillating signal 316 have the same waveform ′ as the first source oscillating signal 31 〇 and the second source oscillating signal 312 to form a balanced signal. Further, the above-described amplification FET is included in the differential amplifier 52. 315900 1329976 The constant current source 70 is supplied with a constant current for conversion 318 which is used to convert the voltages of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 into current. The constant current 318 for conversion is defined as a constant value. The constant current source 70 also outputs a conversion equivalent current 328 that is proportional to the constant current 318 for conversion. The first switching circuit 62 converts the first amplified oscillation signal 314 into a first current oscillation signal 320. Here, if the value of the first amplified oscillation signal 314 is large, the value of the first current oscillation signal 32 将 will be close to the value of the constant current for conversion 318. If the value of the first amplified oscillation signal 314 is small, the first current is oscillating signal 320. The value will become smaller. The second switching circuit 64 also operates in the same manner as the first switching circuit 62 to convert the second amplified oscillation signal 316 into the second current oscillation signal 322. The first current value conversion amplifier circuit 66 converts the value of the first current oscillation signal 320, and the second current value conversion amplifier circuit "switches the value of the second current oscillation signal 322. Here, the converted first current oscillation The value of the signal 320 corresponds to the source current, and the converted value of the second current oscillation signal 322 corresponds to the sink current, and according to the first switch circuit 62 and the second switch. The switching in the circuit μ is an output current with switching between the inrush current and the supply current. Here, the "output current" includes "incoming current" and "supply current". The adder 56 causes the differential amplifier drive current 324, which is obtained by adding the shaker equivalent current 326 and the conversion equivalent current 328, to the differential amplifier 52. Differential amplification! ! When the drive current is large, the operation of the differential amplifier μ becomes high. That is, even if the first 丨丨1 wenle, the original, oscillating ifl 310 and the second 315900 1329976 source oscillating signal 312 fluctuate at a more oscillating frequency i, since the differential amplification number drive current 324 becomes larger, the difference is The action of the amplifier 52 can also follow a higher oscillating frequency, making the amplitude of the first amplified oscillating signal 314 and the second amplified oscillating signal 316 larger. Furthermore, since the conversion equivalent current 328 is added to the differential amplifier driving current 324, even if the amplitudes of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 become larger, the first current oscillation signal 32 and the first The amplitude of a current oscillation signal 322 also increases irrespective of the value of the constant current gig for conversion (the details of which will be described later in the second embodiment). Fig. 2 shows the time variation of the first amplified oscillation signal 314 as the output signal of the differential amplifier 52. The solid line in the figure indicates that the differential amplifier drive current 324 is very large, and the broken line in the figure indicates that the differential amplifier drive current 324 is small. When the differential amplifier drive current 324 is large, since the operation of the differential amplifier 52 sufficiently follows the fluctuation of the first source oscillation signal 310 of the high oscillation frequency, the amplitude of the first amplified oscillation signal 314 also becomes large. On the other hand, if the differential amplifier driving current 324 is small, since the operation of the differential amplifier 52 cannot sufficiently follow the fluctuation of the first source oscillation signal 310, the amplitude of the first amplified oscillation signal 314 becomes smaller. The same applies to the case of the second amplified oscillation signal 316. Fig. 3 shows the wheel-out current obtained by voltage conversion by the conversion amplifying circuit 54. The solid line in the figure indicates the case where the amplitudes of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 are large, and the broken line in the figure indicates the case where the amplitudes of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 are small. . The case where the amplitude of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 315900 12 1329976 is small means that, for example, the differential amplifier drive current · 324 is not added with the conversion equivalent current 328. When the amplitudes of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 are large, the switching between the first switching circuit 62 and the second switching circuit μ becomes high speed, and can be sufficiently converted into the first current oscillation signal 32〇. The second current oscillates the signal 322, and as a result, the amplitude of the output current converted by the conversion amplifying circuit 54 also becomes large. On the other hand, if the amplitudes of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 are small, the first current oscillation signal 320 and the second current oscillation signal 322 cannot be sufficiently converted, so that the result is converted. The amplitude of the output current converted by the amplifying circuit 54 becomes small. Here, 'the amplitude of the output current' is defined by, for example, the sum of the maximum value of the magnitude of the immersion current and the supply current, the maximum value of the magnitude of the rush current, the maximum value of the magnitude of the supply current, etc. 'But not explicitly here. Differentiate these. In the configuration of the high-frequency oscillation circuit 100 of the present embodiment, the voltage-controlled oscillation circuit 50 and the differential amplifier 52 transmit a balanced signal of the electrical voltage according to the differential processing, and the balanced signal is finally converted by the conversion amplifier circuit 54. Unbalanced signal into current. In the balanced signal constructed as described above, the distortion components of the signals are offset each other, so that the distortion component of the signal can be reduced, and as a result, the high harmonic component of the electromagnetic interference (EMI) can be reduced. Therefore, the high-frequency oscillating circuit can output a signal that does not contain a harmonic component. The operation of the above-described high-frequency oscillation circuit 1 is as follows. Adding 315900 13 1329976 :: Voltage 306, the voltage-controlled current source 58 turns _ and the dynamic current 3G8 and the oscillator S equivalent current 326 also become larger. The signal vibration circuit 60 outputs a higher (four) frequency, a first source vibration signal 31G and a second source vibration signal 312 when the vibration drive current 3 () 8 becomes larger. Further, when the oscillator equivalent power and the stream 326 are increased, the amplifier drive current 324 flowing out from the adder % also becomes large. When the differential amplifier driving current 324 becomes larger, the differential amplification amplifier 52 will increase the first source oscillation signal 31G and the second source oscillation signal 312 of the higher oscillation frequency to the first amplification oscillation signal 314 of a very large amplitude, respectively. The second amplified vibration signal gig. The first switching circuit 62 and the second switching circuit 64 convert the first amplified oscillation signal 314 and the second amplified oscillation signal 316 into the first current oscillation signal 320, respectively, based on the constant current 318 for conversion from the constant current source 70. And the second current oscillating signal 322. The first current value conversion amplifying circuit 66 and the second current value conversion amplifying circuit 68 respectively convert the values of the first current oscillation signal 320 and the second current oscillation signal 322, and then the first switching circuit 62 and the second switching circuit 64. Switching makes it the final output current. In addition, since the switching current equivalent 328 from the constant current source 70 is applied to the differential amplifier driving current 324 and flows into the differential amplifier 52 regardless of the magnitude of the control voltage 3〇6, the first switching circuit 62 and the The amplitudes of the first current oscillation signal 320 and the second current oscillation signal 322 converted in the two switching circuits 64 are closer to the value of the constant current for conversion 318. According to the present embodiment, since the current according to the oscillation frequency of the oscillation signal flows into the amplifier, the amplitude of the current of the input 315900 1329976 can be increased in the case where the oscillation frequency is high, and in the case where the oscillation frequency is low, it can be realized. Low power consumption action. In addition, since a current proportional to the current used to convert the voltage of the oscillation signal into a current flows into the amplifier, the switching characteristic in the amplifier becomes higher, and since the vibrating signal can be amplified to be more The large amplitude voltage 'can therefore increase the amplitude of the output current. The first embodiment is a high-frequency oscillation circuit similar to that of the first embodiment, but in the first embodiment, the high-frequency vibration circuit is described by a functional block diagram, and in the second embodiment, The circuit configuration of the FET or the like explains the high frequency oscillation circuit. Fig. 4 is a view showing a high frequency vibration|circuit 1 of the second embodiment. In the figure, the same as the function blocks and signals in Fig. 1 are denoted by the same symbols. The variable current source 72 outputs a current that varies with the control voltage 306. The transistor Tr1 to the transistor Tr3 constitute a current mirror circuit, and the oscillator equivalent current 326 and the oscillator drive current 308 flow from the transistor Tr2 to the transistor Tr3, respectively. As described above, the vibrator drive current 308, the oscillator equivalent current 326, and the current from the variable current source 72 are proportional to each other. The transistor Tr4 to the transistor Tr9 constitute a current mirror circuit, and the transistor Trl0 to the transistor Tr14 also constitute a current mirror circuit. The current corresponding to the oscillator drive current 308 by the current mirror circuit flows into the difference formed by the first inverter 74, the second inverter 76, the third inverter 78, and the fourth inverter 80, respectively. A ring oscillator with a dynamic output type. That is, the oscillator drive power 15 315900 1329976 grabs 308 鏠 big words 'because the current flowing into the ring oscillator will become larger, so the ring oscillator (4) outputs the first source vibrating signal 31G and the second source oscillating signal 312 The frequency will become higher. ^Transistor Tr15 to transistor Tr13, transistor Tr23, transistor Tr24 constitute differential amplifier 52' first source oscillating signal 31G and second source oscillating signal 312 are applied to transistor 忏23 and transistor 分别, respectively The gate of 24 is connected to the dice and the differential is amplified. This differential amplification processing is the same as the first embodiment, and is intended to improve the driving ability of the transistor Tr32 and the transistor 忏33 which will be described later. Moreover, since the transistor Tr15 to the transistor Tr22, the transistor Tr25, and the transistor Tr26 also constitute the differential amplifier 52, the first source oscillation signal 310 and the second source oscillation signal 312 are amplified in two stages and become the first The amplified oscillation signal 314 and the second amplified oscillation signal 316 are output. Further, the differential amplifier drive current 324 flowing into each of the differential amplifiers 52 will be described later. The electric 曰 a body Tr41 and the transistor Tr40 constitute a current mirror circuit, a constant current 318 for conversion from a constant value of the variable current source 82, and a conversion equivalent current 328 having a proportional relationship with the constant current for conversion 318 flow into the current A current mirror circuit composed of a transistor Tr41 and a transistor Tr40. The transistor Tr32 converts the first amplified oscillation signal 314 applied to the gate terminal into the first current oscillation signal 320. Here, since the transistor Tr32 is of the n-channel type, the value of the first amplified oscillation signal 314 becomes large, and the value of the first current oscillation signal 320 also becomes close to the value of the constant current for conversion 318. The transistor Tr33 performs the same operation as the transistor Tr32, converting the second amplified oscillation signal 316 into a second current oscillation signal 16 315900 1329976 322. The transistor Tr34 and the transistor Tr35 form a current mirror circuit for converting the first current oscillation signal 3 2 0 into a first output current proportional to the first current oscillation signal 3 2 0 . Further, the transistor Tr36 and the transistor Tr37, and the transistor Tr38 and the transistor Tr39 constitute a current mirror circuit, respectively, and the second current oscillation circuit 322 is converted into a second output current having a proportional relationship with the second current oscillation circuit 322. The first output current and the second output current are switched by the transistor Tr32 and the transistor Tr33 to become the final output current. The transistor Tr27, the transistor Tr28, and the transistor Tr30 constitute a current mirror circuit, and the differential amplifier drive current 324 having a proportional relationship with the oscillator equivalent current 326 flows out from the transistor Tr28 and the transistor Tr30. As described above, if the oscillator equivalent current 326 becomes large, the differential amplifier driving current 324 also becomes larger corresponding thereto. The reason why the current proportional to the conversion equivalent current 328 is added to the differential amplifier drive current 324 is as follows. In order to increase the amplitude of the final output current, the constant current 318 for conversion must be increased. However, when the voltage between the gate and the source of the transistor Tr32 and the transistor Tr33 is low, the switching operation of the transistor Tr32 and the transistor Tr33 becomes slow, so that the constant current for switching 318 cannot be efficiently transmitted to the first current. The amplitude of the oscillating signal 320 and the second current oscillating signal 322. Therefore, the conversion equivalent current 328 having a certain relationship with the constant current for switching 318 is made to flow, and the current flowing from the current mirror circuit composed of the transistor Tr41, the transistor Tr31, and the transistor Tr29 is added to the differential amplifier drive. Current 324. Thereby, since the differential amplifier driving current 17 315900 1329976 324 flowing into the differential amplifier 52 becomes larger, the operational characteristics of the differential amplifier 52 become higher. Therefore, the amplitude of the first amplification oscillator M signal 314 and the second amplification oscillation signal 316 can be made relatively large by following the variation of the first source oscillation signal 31〇 and the second source oscillation signal 312. As a result, since the maximum value of the gate-source voltage of the transistor τβ2· and the transistor ΊΥ33 becomes large, the transistor Tr32 and the transistor are thus formed. The switching action of 33 will be faster and more efficient. The conversion constant current 318 is efficiently communicated to the amplitude of the final output current. 2 shows the time variation of the first oscillating signal 314 or the second amplified oscillating signal 316 as the output signal of the differential amplifier 52, and FIG. 3 shows the output converted from the voltage by the conversion amplifying circuit 54. The current is the same as that of the first embodiment, and thus the description thereof is omitted here. The operation of the high-frequency oscillation circuit 100 configured as above is as follows. When the control voltage 306 is increased, the vibrator equivalent current 326 flowing from the transistor Tr2 in the current mirror circuit and the oscillator drive current 308 flowing out from the transistor Tr3 become larger, and the oscillator drive current 308 becomes larger. The oscillating frequency of the first source oscillating signal 310 and the second source oscillating signal 312 outputted from the first anti-phase phaser 74, the second inverter 76, the third inverter 78, and the fourth inverter 8 会Becomes high. Further, if the oscillator equivalent current 326 becomes large, the differential amplifier driving current 324 flowing from the transistor Tr28 and the transistor Tr30 in the current mirror circuit also becomes large. When the differential amplifier driving current 324 becomes large, the differential amplifier 52 respectively amplifies the first source oscillation signal 310 and the second source oscillation signal 312 of the higher oscillation frequency to a very large amplitude of 315900 1329976. The asterisk 314 and the second amplified oscillating signal 316. The transistor Tr32 and the transistor Tr33 convert the first amplified oscillation signal 314 and the second amplified oscillation signal 316 into the first current oscillation signal 320, respectively, based on the constant current 318 for conversion from the transistor Tr40 in the current mirror circuit. The second current oscillates signal 322. The electric crystal Tr35 in the current mirror circuit converts the value of the first current oscillation signal 320, and the transistor Tr39 in the other current mirror circuit converts the value of the second current oscillation signal 322. The converted current is switched to the final output current in accordance with the switching between the transistor Tr32 and the transistor Tr33. In addition, since the conversion equivalent current 3 2 8 is added to the differential amplifier driving current 3 24 by the transistor Tr31 and the transistor Tr29 regardless of the magnitude of the control voltage 306, the transistor Tr32 and the transistor Tr33 are circulated. The gate-source voltage also becomes high. As a result, the amplitudes of the first current oscillation signal 320 and the second current oscillation signal 322 are closer to the value of the conversion constant current 318. According to this embodiment, when the control voltage is raised, the oscillation frequency of the oscillation signal becomes high, and the transistor in the differential amplifier operates at a high speed, so that the amplitude of the output current can be increased, and on the other hand, the oscillation frequency is low. The transistor can be operated with low power consumption. Moreover, since the current proportional to the current used for the transistor for converting the voltage of the oscillation signal into a current flows into the transistor in the differential amplifier, the transistor in the differential amplifier operates at a high speed and is oscillated due to the oscillation. The amplification of the signal becomes large, so that the voltage of the oscillation signal can be efficiently converted into a current. (THIRD EMBODIMENT) The third embodiment describes a configuration of an apparatus or an LSI to which the high-frequency 19 315 900 1329976 oscillation circuit of the first and second embodiments is applied. Fig. 5(a) shows the configuration of the optical pickup 200 in the application example of the high-frequency oscillation circuit 1A of the third embodiment. The optical pickup 2 includes a high frequency oscillation circuit 100, a semiconductor laser wafer 102, a monitor photodiode 104, and a light receiving photodiode 1〇8. The optical pickup 2 is used for reading or writing a signal to a disc as a recording medium in an information recording and reproducing apparatus such as an optical disc device or an optical disc device. The semiconductor laser wafer 102 emits a laser beam in accordance with a current supplied from a high-frequency oscillation circuit 1A to be described later. The high-frequency oscillating circuit 1 supplies current to the semiconductor laser wafer 102 in accordance with a control signal indicated by a voltage from an APC (Automatic Power Control) circuit 106 to be described later. In the optical system 110, a laser beam emitted from the semiconductor laser wafer 1 2 is irradiated onto a disk of a recording medium (not shown) by a light spot, and the reflected light from the disk is guided to a photodiode for light reception, which will be described later. . Wenguang uses the photoelectric body 108 system to convert the reflected light into a current signal. The current signal is then converted to a voltage signal. The monitor photodiode 104 converts a portion of the laser beam emitted from the semiconductor laser wafer 1 〇 2 into a current §fl number. The portion of the laser beam referred to herein means the laser beam of the semiconductor laser beam 102 which is emitted from one side of the optical system 11A. The APC circuit 106 outputs a control signal to the high-frequency vibration circuit 315900 in such a manner that the laser beam is output from the semiconductor laser wafer 102 with a certain power according to the current signal 'outputted by the monitoring photodiode ι 4 '. 20 1329976 That is, the feedback of the semiconductor laser wafer (10) is carried out (4). Here, the APC circuit 1〇6 is required for two factors. Although it is necessary to output the n-signal level of the optical pickup 200 at a predetermined level, the laser light pots of the semi-laser wafers 10 2 output are different from each other. And is sensitive to temperature changes, so the power of the laser beam is not fixed when the same control is applied to the semiconductor laser wafer 1 () 2, so that the output level of the voltage signal cannot be kept constant. a, on the other hand, the high-frequency oscillating circuit Ϊ (10) is such that the R of the first and second embodiments is such that the amplitude of the output current can be increased in the south oscillating frequency, so that the semiconductor laser chip 1 〇 2 can be stably emitted. Laser beam. Fig. 5(b) shows the configuration of the frequency conversion circuit 202 in the application example of the high-frequency oscillation circuit 1A of the third embodiment. The frequency conversion circuit 2〇2 includes a high frequency oscillation circuit 100, a multiplication circuit 122, a band pass filter (BPF) 124, and an amplifier 126. The frequency conversion circuit 202 is coupled to the communication device to convert the signal to be transmitted into a signal required for transmission. More specifically, the frequency conversion is performed in the wireless transmitting device to convert the intermediate frequency signal to be transmitted or the intermediate frequency signal into an intermediate frequency signal into a wireless frequency signal. The signal generating unit 120 generates a signal to be transmitted as a baseband signal, and converts the frequency of the baseband signal into an intermediate frequency. The high frequency oscillating circuit 100 inputs a voltage according to the radio frequency used for the transmission, and outputs a signal of the radio frequency. The multiplying circuit 122 frequency-converts the signal of the intermediate frequency using the signal of the radio frequency. Furthermore, BPF 124 reduces the effects of two-spectral waves generated by 21 315 900 1329976 due to frequency conversion. Amplifier 126 amplifies the output signal of BPF 124 to a predetermined power to be signaled in the wireless transmission path. Here, the 'frequency oscillating circuit 1' is as shown in the first and second embodiments, and a larger value current can be output even in the still oscillating frequency, so that the amplifier 126 can stably output the signal of the radio frequency. Fig. 5(c) shows the configuration of the PLL 204 in the application example of the high-frequency oscillation circuit 1A of the third embodiment. The PLL 204 includes a high frequency oscillating circuit 100, a phase comparator 150, a loop filter 152, and a frequency divider 154. The phase comparator 150 compares the phase and frequency of the reference clock signal input from the outside with the reference clock signal input from the frequency state 154, and outputs a DC signal proportional to the difference. The loop filter 152 removes the input signal. The high frequency component 'and outputs a control voltage. The high frequency oscillating circuit is a clock signal that outputs the frequency according to the input control voltage. Here, the clock signal of the frequency having N times the frequency of the reference clock signal is output. The output clock signal is divided by 1/N by the frequency divider 154 and input to the phase comparator 150 as a reference clock signal. According to the present embodiment, a high-frequency oscillation circuit capable of increasing the amplitude of the output current even at a high oscillation frequency and operating at a low oscillation frequency can be applied to various devices and LSIs. Further, the correspondence between the present invention and the configuration of the embodiment is exemplified. The "differential oscillation signal generating circuit" corresponds to the variable current source 72 of the voltage control type current source 58 and the transistor Tr1, the transistor Tr3 315900 22 1329976 and the signal oscillation circuit 60 in the current mirror circuit. The "differential amplifier" corresponds to the differential amplifier 52. The "conversion amplifying circuit" corresponds to the conversion amplifying circuit 54. The "frequency dependent type adjustment circuit" corresponds to the transistor Tr27, the transistor Tr28, and the transistor Tr30 in the current mirror circuit of the current mirror circuit of the voltage control type current source 58 and the transistor Tr2 and the current mirror circuit of the adder 56. . The "differential ring oscillator" corresponds to the first inverter 74, the second inverter 76, the third inverter 78, and the fourth inverter 80 in the signal oscillation circuit 6''. The "drive circuit" corresponds to the electric crystal Tr4 to the transistor Tr14 in the two current mirror circuits of the signal oscillation circuit 60. Further, the "differential oscillation signal generating circuit" corresponds to the variable current source 72 of the voltage control type current source 58 and the transistor Tr3 and the signal oscillation circuit 60 in the current mirror circuit. The "differential amplifier" corresponds to the differential amplifier 52. The "conversion amplifying circuit" corresponds to the conversion amplifying circuit 54. The "setting circuit" corresponds to the constant current source 7 〇 "the output dependent type adjusting circuit" corresponds to the transistor Tr41, the transistor Tr31, and the transistor Tr29 of the current mirror circuit of the constant current source 70 and the adder 56. The present invention has been described above based on the form of the embodiments. The embodiment is merely illustrative, and those skilled in the art can understand various constituent elements of the embodiments and combinations of the respective processing procedures, and various modifications are possible, and the modifications are also within the scope of the invention. In the second embodiment, the differential amplifier 52 is composed of two differential amplifiers. However, the present invention is not limited thereto, and may be constituted by, for example, a differential amplifier or three or more differential amplifiers. According to the present modification, the amplitudes of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 can be changed. Also, 315900 23 1329976 is provided with a differential amplifier in accordance with the number of values required for the first amplified oscillation signal 314 and the second amplified oscillation signal 316 output from the differential amplifier 52. While the invention has been described above by way of specific examples, it should be understood that various modifications and substitutions may be made without departing from the scope of the invention as defined by the appended claims. Within the perimeter. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a high frequency oscillation circuit of a first embodiment. Figure 2 is a diagram showing the output signal of the amplifier of Figure 1. Fig. 3 is a view showing an output current obtained by voltage conversion by a conversion amplifying circuit of the second drawing. Fig. 4 is a view showing a high frequency oscillation circuit of the second embodiment. Fig. 5 (a) to (c) are views showing an application example of the high frequency oscillation circuit of the third embodiment. [Main component symbol description] 50 voltage control type oscillation circuit 52 differential amplifier 54 conversion amplifier circuit 56 adder 58 voltage control current source 60 signal oscillation circuit 62 first switch circuit 64 second switch circuit 66 first current value conversion amplifier circuit 68 second current value conversion amplifying circuit 70 constant current source 72 variable current source 74 first inverter 76 second inverter 315900 24 third inverter high frequency oscillation circuit monitoring photodiode light receiving photoelectric two Polar body multiplication circuit amplifier loop filter optical pickup phase-locked loop (PLL) oscillator drive current second source oscillation signal second amplification oscillation signal first current oscillation signal differential amplifier drive current conversion equivalent current 80 Four inverter 102 semiconductor laser wafer 106 APC circuit 120 signal generation unit 124 band pass filter (BPF) 150 phase comparator 154 frequency divider 202 frequency conversion circuit 3 0 6 control voltage 310 first source oscillation signal 314 first The amplified oscillation signal 318 is converted by the constant current 322 and the second current oscillation signal 326 is oscillated. Equivalent current 31590025

Claims (1)

1329976 ——__ ~! H年s:月日修正本 第9311%12號專利申請案 ------」 (9 9年5月6曰 十、申請專利範圍: 1· 一種振盪電路’其特徵為包含: 可設定振盪訊號之振盪頻率,並將設定過振盪頻率 之前述振盪訊號作為差動訊號而輪出之差動型振盪訊 號產生電路; 將刚述作為差動訊號而輸出之振盪訊號予以差動 放大之差動放大器; 將則述經差動放大之振盪訊號之電壓轉換為電流 並放大之轉換放大電路;以及 依照前述差動型振盪訊號產生電路之設定内容,調 整刖述差動放大器的動作特性之頻率依存型調整電路; 其中,前述差動型振盪訊號產生電路係包含: 差動型環形振盪器;以及 ^使依據前述設定内容之驅動電流流至前述差動型 環形振盪器之驅動電路, 前述頻率依存型調整電路係使依照前述驅動電流 作電/现"丨L入則述差動放大器,而使前述差動放大器動 2. 如申請專利範圍第i項之振盤電路,其中,前述差動型 j訊號產生電路巾’前述振魏號之振錢率經提高 认疋之情形’前述頻率依存型調整電路係提高前述差動 放大器的動作速度。 3. —種振盪電路,其特徵為包含·· 預疋的振堡訊號作為差動訊號而輸出之差動型 (修正本)315900 26 1329976 第93115612號專利申請案 (9 9年5月 6日) 振盪訊號產生電路; 將前述作為差動訊號而輸出之振盪訊號予以差動 放大之差動放大器; 將前述經差動放大之振盪訊號的電壓轉換為電流 並放大之轉換放大電路; 設定前述轉換放大電路的轉換特性之設定電路;以 及 依照前述設定電路之設定内容,調整前述差動放大 器的動作特性之輸出依存型調整電路。 4.如申請專利範圍第3項之振盪電路,其中,前述設定電 路中,用以將前述振盪訊號的電壓轉換為電流之電流經 加大設定之情形,前述輸出依存型調整電路係提高前述 差動放大器的動作速度。 27 (修正本)3159001329976 ——__ ~! H Year s: The date of the amendment of the 9311%12 patent application ------" (May 6th, 9th, 9th, the scope of application for patent: 1. An oscillating circuit' The characteristic includes: a differential oscillation signal generating circuit capable of setting an oscillation frequency of the oscillation signal and setting the oscillation signal of the over-oscillation frequency as a differential signal; and outputting the oscillation signal as a differential signal a differential amplifier that is differentially amplified; a conversion amplifying circuit that converts the voltage of the differentially amplified oscillation signal into a current and amplifies; and adjusts the differential according to the setting content of the differential oscillation signal generating circuit a frequency dependent type adjustment circuit for operating characteristics of the amplifier; wherein the differential oscillation signal generating circuit includes: a differential ring oscillator; and causing a driving current according to the foregoing setting content to flow to the differential ring oscillator The driving circuit, the frequency dependent type adjusting circuit is configured to make a differential amplifier according to the driving current, and the foregoing The dynamic amplifier circuit 2. The oscillating disc circuit of claim i, wherein the differential type j signal generating circuit towel 'the vibration rate of the aforementioned vibrating number is improved, the frequency dependent type adjusting circuit The operating speed of the differential amplifier is increased. 3. An oscillating circuit characterized in that: the pre-compressed vibration signal is output as a differential signal (corrected version) 315900 26 1329976 Patent No. 93116612 Application (May 6, 2009) oscillation signal generation circuit; differential amplifier that differentially amplifies the oscillation signal outputted as the differential signal; converts the voltage of the differentially amplified oscillation signal into a current And a conversion conversion amplifier circuit; a setting circuit for setting a conversion characteristic of the conversion amplifier circuit; and an output dependent adjustment circuit for adjusting an operation characteristic of the differential amplifier in accordance with a setting content of the setting circuit. An oscillation circuit of three items, wherein the setting circuit is configured to convert a voltage of the oscillation signal into a current When the current is increased, the output dependent adjustment circuit increases the operating speed of the differential amplifier. 27 (Revised) 315900
TW93115612A 2004-06-01 2004-06-01 Oscillator TWI329976B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93115612A TWI329976B (en) 2004-06-01 2004-06-01 Oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93115612A TWI329976B (en) 2004-06-01 2004-06-01 Oscillator

Publications (2)

Publication Number Publication Date
TW200541202A TW200541202A (en) 2005-12-16
TWI329976B true TWI329976B (en) 2010-09-01

Family

ID=45074534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93115612A TWI329976B (en) 2004-06-01 2004-06-01 Oscillator

Country Status (1)

Country Link
TW (1) TWI329976B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466436B (en) * 2011-08-29 2014-12-21 Univ Nat Chiao Tung Ring oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466436B (en) * 2011-08-29 2014-12-21 Univ Nat Chiao Tung Ring oscillator

Also Published As

Publication number Publication date
TW200541202A (en) 2005-12-16

Similar Documents

Publication Publication Date Title
US7205855B2 (en) Oscillator that oscillates signals of a predetermined frequency
TWI271932B (en) Voltage control oscillator (VCO) and delay circuit thereof
TWI689172B (en) Low power crystal oscillator
JP2004129208A (en) Voltage controlled oscillator
JP3961458B2 (en) Optical disk device
TWI329976B (en) Oscillator
US6194973B1 (en) Oscillator with automatic gain control
JP3813137B2 (en) OSCILLATOR CIRCUIT, INFORMATION RECORDING / REPRODUCING DEVICE USING SAME, AND WIRELESS TRANSMITTER
JP3744918B2 (en) OSCILLATOR CIRCUIT, INFORMATION RECORDING / REPRODUCING DEVICE USING SAME, AND WIRELESS TRANSMITTER
JP4114753B2 (en) OSCILLATOR CIRCUIT, INFORMATION RECORDING / REPRODUCING DEVICE USING SAME, AND WIRELESS TRANSMITTER
TWI333334B (en) Oscillator
TW200307407A (en) Controlling output power in cellular telephones
JP2006121752A (en) Oscillation circuit, information recording and reproducing device utilizing the same, and radio transmission apparatus
KR20050119417A (en) Oscillator
KR20050119418A (en) Oscillator
JP2004040509A (en) Oscillation circuit and electronic apparatus using the oscillation circuit
JP4455734B2 (en) Oscillator circuit
JP6823114B1 (en) Oscillator circuit
JP2008085534A (en) Voltage controlled oscillator
JP2008066865A (en) Differential signal compensation circuit and radio receiver
JP6849398B2 (en) Amplifier circuit, transmission circuit and drive current generation method
KR200362974Y1 (en) Oscillator having latch type amplifier
JP2004112231A (en) Oscillator circuit
KR20220037768A (en) Crystal oscillator reducing phase noise and semiconductor chip comprising the same
JP2004221632A (en) Oscillation circuit