TW200541202A - Oscillator - Google Patents

Oscillator Download PDF

Info

Publication number
TW200541202A
TW200541202A TW93115612A TW93115612A TW200541202A TW 200541202 A TW200541202 A TW 200541202A TW 93115612 A TW93115612 A TW 93115612A TW 93115612 A TW93115612 A TW 93115612A TW 200541202 A TW200541202 A TW 200541202A
Authority
TW
Taiwan
Prior art keywords
current
circuit
signal
oscillation
frequency
Prior art date
Application number
TW93115612A
Other languages
Chinese (zh)
Other versions
TWI329976B (en
Inventor
Takao Kakiuchi
Takeshi Wakii
Sho Maruyama
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to TW93115612A priority Critical patent/TWI329976B/en
Publication of TW200541202A publication Critical patent/TW200541202A/en
Application granted granted Critical
Publication of TWI329976B publication Critical patent/TWI329976B/en

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Amplifiers (AREA)

Abstract

An oscillator is provided, in which a voltage controlled current source (58) outputs an oscillator driving current (308) and an oscillator equivalent current (326), a signal oscillating circuit (60) outputs a first source oscillation signal (310) and a second source oscillation signal (312), a differential amplifier (52) outputs a first amplification and oscillation signal (314) and a second amplification and oscillation signal (316), a first switch circuit (62) and a second switch circuit (64) respectively output a first current oscillation signal (320) and a second current oscillation signal (322), a first current value converting and amplifying circuit (66) converts the value of the first current oscillation signal (320) and a second current value converting and amplifying circuit (68) converts the value of the second current oscillation signal (322) so as to finally generate an output current, and a adder (56) outputs a differential amplifier driving current (324) obtained by adding the oscillator equivalent current (326) and an equivalent current for conversion (328) to the differential amplifier (52).

Description

200541202 九、發明說明: 【發明所屬之技術領域】 本發明係有關振盪電路。尤其是有關可變更振盪頻率 之振盪電路。 【先前技術】 電壓控制型之振盪電路係使用於例如光拾訊器 (pickup)及鎖相迴路(Phase Locked Loop ; PLL),且一般 係依照所接受的控制電壓使振盪頻率變化而設定振盪頻 率’並振盪輸出該振盪頻率之訊號。習知技術中的電壓控 制振盪器之一例,係將反轉放大器、第一充放電電路、第 二充放電電路連接成一圈。該構造中,係使來自反轉放大 器之反轉電壓訊號之相位,在第一充放電電路與第二充放 電電路階段性地延遲,並且使第二充放電電路之輸出再輸 入至反轉放大器。由於經過一圈之反轉電壓訊號之相位再 次變為與當初之相位相同,因此電壓控制振盪器可藉由反 覆以上之處理而持續振盪。另外,電壓控制振盪器之振盪 頻率主要依照第一充放電電路與第二充放電電路之充放電 電流的大小加以決定,再者充放電電流之大小係由電流值 準位比充放電電流大且容易控制的控制電流加以控制。 [參考文獻]曰本特開平6-37599號公報 習知技術中,即使充放電電流非常地小,由於控制係 藉由控制電流而進行,因此用於控制之電流值準位报稃定 化’即使在低振盪頻率中也可穩定振盪。然而,一般而古 在高振盪頻率中,還必須探討以下之課題。使高振盪頻率 315900 5 200541202 之振盪訊號振盪,再將該振盪訊號利用場效電晶體(fet .200541202 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to an oscillation circuit. In particular, it relates to an oscillation circuit whose oscillation frequency can be changed. [Prior art] Voltage-controlled oscillation circuits are used in, for example, optical pickups and phase-locked loops (PLLs), and the oscillation frequency is generally set according to the accepted control voltage to change the oscillation frequency. 'And oscillates the signal of the oscillation frequency. An example of the voltage-controlled oscillator in the conventional technology is that the inverting amplifier, the first charge-discharge circuit, and the second charge-discharge circuit are connected in a circle. In this structure, the phase of the inversion voltage signal from the inverting amplifier is delayed in stages between the first charge and discharge circuit and the second charge and discharge circuit, and the output of the second charge and discharge circuit is input to the inverting amplifier again. . Since the phase of the inverted voltage signal after a turn becomes the same phase again, the voltage-controlled oscillator can continue to oscillate by repeating the above processing. In addition, the oscillation frequency of the voltage-controlled oscillator is mainly determined according to the charge and discharge currents of the first charge and discharge circuit and the second charge and discharge circuit. Furthermore, the magnitude of the charge and discharge current is determined by the current level being larger than the charge and discharge current and Easy to control control current. [References] In the conventional technology disclosed in Japanese Unexamined Patent Publication No. 6-37599, even if the charge and discharge current is very small, since the control is performed by controlling the current, the level of the current value used for the control is determined. Stable oscillation even at low oscillation frequencies. However, in general, the following issues must be considered at high oscillation frequencies. Oscillate the oscillating signal of high oscillating frequency 315900 5 200541202, and then use the field effect transistor (fet.

Field effect transistor)放大之情形(以下將該FET稱為 ‘ 放大用FET),若流入放大用FET之電流小的話,由於=大 •用fet之動作速度會變慢,其結果,振盪訊號將無法得到 充分的放大。然而,為了將高振盪頻率之振盪訊號充分地 放大,而加j流入放大用FET之電流的話,則在使低振盪 頻率而不是高振盪頻率之振盪訊號放大之情形,會消耗必 要以上之電力。 另一方面,對於將振盪電路做在大型積體電路(lsi :Field effect transistor) In the case of amplification (hereinafter this FET is referred to as 'amplification FET'), if the current flowing into the amplification FET is small, the operation speed of the fet will be slower. As a result, the oscillation signal will be unavailable. Get full zoom. However, in order to sufficiently amplify an oscillation signal of a high oscillation frequency, if the current flowing into the amplification FET is added to j, the above-mentioned power is consumed in the case of amplifying an oscillation signal of a low oscillation frequency instead of a high oscillation frequency. On the other hand, for oscillating circuits in large integrated circuits (lsi:

Large Scale Integrated circuit)等中而提供振盪電路之 提供者而言,為了獲得量產效果,期望該LSI為可泛用者。 另外,將LSI組入裝置等之使用纟,係需要在裝置中設定 之振蘯頻率中有充分的振幅之訊號輸出,並希望在低消耗 電力下動作。因此期望振盪電路在廣泛的振㈣率範圍中 有適當的訊號輸出及消耗電力等特性。尤其,使用者將振 • f電路應用於預定之裝置内,且在該裝置的使用中依照預 定之設定變化振盡頻率之情形,必須對於各個振盈頻率都 滿足訊號輸出與消耗電力方面之預定要件。 【發明内容】 本案發明人係意識到上述之狀況而研創本發明,1目 的在於提供-種可依照振堡頻率,使振里訊號之特性^ 好,亚降低消耗電力之振盪電路。 本%明之-樣態係為一種振盈電路。該振盈電路係且 •可設絲盈訊號之振盪頻率,並將設錢振錢率之 315900 6 200541202 振堡訊號作為絲减㈣a之差動龍魏號產生電 路;將:為差動訊號而輸出之振盪訊號予以差動放大之差 動放大…將經差動放大之振i訊號的電壓轉換為電流並 文大之轉換放大$路,以及依照差動型振i訊號產生電路 之設定内容’調整差動放A器的動作特性之頻率依存型調 整電路。 「差動放大器」中的放大率可依照電路而適當設定, 例如包含有放大率較大之情形,放大率為Γ1」之情 形,放大率較「1」小之情形。 「設定内容」係表示與振盪頻率有關之設定,在此該 設定係根據電流值與電壓值或其他訊號而進行者。 …差動型振mtiL號產生電財,振盪喊之振盪頻率經 提局設^之情形,頻率依存型調整f路可提高差動放大器 的動作速度。 提同设定」係依照電壓值與電流值之大小,或預定 訊號而進行,但只要最終振盪頻率變高即可。 稭由以上之振盪電路,由於可依照振盪訊號之振盪頻 率調整差動放大器之動作特性,因此振蘯頻率變高的話差 動放大器係更高速的動作,而可輸出高振盪頻率之振盡訊 波。再者,由於處理差動型之訊號,因此即使在高㈣頻 率中亦可使訊號之失真成分相互抵銷,而可降低訊號之失 真成分。 差動型振遺訊號產生電路可包含:絲型環形振盡器 (r ing osc i丨丨ator);以及使依據設定内容之驅動電流流至 315900 7 •200541202 差動型環形振盪器之驅動電路,頻率依存型調整電路係使 依知、驅動電流之電流流入差動放大器,而使差動放大器動 作0 本叙明之另一樣怨也是一種振盈電路。該振盈電路係 包含··將預定的振盪訊號作為差動訊號而輸出之差動型振 盪訊號產生電路;將作為差動訊號而輸出之振盪訊號予以 差動放大之差動放大器;將經差動放大之振盪訊號的電壓 轉換為電流並放大之轉換放大電路;設定轉換放大電路的 轉換特性之设定電路;以及依照設定電路之設定内容,調 整差動放大器的動作特性之輸出依存型調整電路。 、設定電路中,用以將振盪訊號的電壓轉換為電流之電 流經加大設定之情形,輸出依存型調整電路可提高差動放 大器的動作速度。 藉由以上之振盈電路,依照用以將振盈訊號之電壓轉 換為電流之設定’可調整差動放大器之動作特性,因此可 ::例如差動放大器之高速動作,而加大輸_訊號之 電流。 :者,本發明内容摘要記載的並非全為必要特徵,因 此本發明也可以是該等特徵之次組合。 【實施方式】 本發明將根據較佳具體例而說明 限定本發明之範圍-是== 發=要::具體化描述之特徵與其組合並不必然為本 315900 8 200541202 第一實施形態 第κ施形怨係有關於高頻振盪電路,其係製造者以 ^用性為目的’而製造成可振I產生廣範圍振蓋頻率之振 ,訊號,且使用者以將之設定於預定之振盪頻率並組入預 疋之裝置為前提而完成I。本實施形態中的高頻振盪電路 係依照所接受之控制電壓而變化振盪訊號之振盪頻率。例 如控制包壓咼時提尚振盪頻率,控制電壓低時降低振盪頻 率。又,係利用放大用FET充分放大振盪訊號之電壓之振 幅,再將經放大之振盪訊號之電壓轉換為電流。本實施形 態的高頻振盪電路,若將控制電壓提高而設定的話,由於 會使流入放大用FET之電流增加,因此在振盪頻率高之情 形可使放大用FET尚速動作。另一方面,在振盪頻率低之 情形,由於可減少流入放大用FET之電流,因此可降低消 耗電力。 第1圖係表示第一實施形態之高頻振盪電路! 〇〇。高 頻振盪電路100係包含電壓控制型振盪電路50、差動放大 态5 2、轉換放大電路5 4、以及加法器5 6,電壓控制型振 盪電路50係包含電壓控制型電流源58、訊號振盪電路60, 轉換放大電路54係包含第一開關電路62、第二開關電路 64、第一電流值轉換放大電路66、第二電流值轉換放大電 路68、以及定電流源70。此外以訊號來說,包含有控制電 壓306、振盪器驅動電流308、第一源振盪訊號310、第二 源振盈訊號312、第一放大振盪訊號314、第二放大振盪訊 號316、轉換用定電流318、第一電流振盪訊號320、第二 9 315900 *200541202 -# 電流振盪訊號322、差動放大器驅動電流324、振盪器等效 電流326、以及轉換用等效電流328。 電壓控制型電流源58係施加有控制電壓3〇6,而輸出 • 依知、控制電壓306之大小之振盪器驅動電流3〇8與振盪器 等效電流326。此處,振盪器驅動電流3〇8與振盪器等效 電流326之大小具有比例關係,兩者皆隨著控制電壓 之增加而變大。 φ 汛唬振盪電路60係輸出依照振盪器驅動電流308之大 小之振盪頻率之第一源振盪訊號310與第二源振盪訊號 312。具體而言,振盪器驅動電流3〇8變大的話,可提高振 盪頻率。第一源振盪訊號310與第二源振盪訊號312=為 例如正弦波使最大值與最小值在一定期間反覆出現,但為 了能夠用後述之差動放大器52進行差動放大處理,而構成 為平衡訊號。「平衡訊號」係表示差動訊號,另一方面,「不 平衡訊號」係表示以接地(ground)等為基準之一般的訊 ❿ 號。For large scale integrated circuit) providers, in order to obtain mass production effects, it is expected that this LSI is universal. In addition, the use of a LSI in a device or the like requires a signal having a sufficient amplitude in the oscillation frequency set in the device, and it is desired to operate with low power consumption. Therefore, the oscillation circuit is expected to have appropriate signal output and power consumption characteristics in a wide range of oscillation frequency. In particular, in the case where the user applies the vibrating circuit to a predetermined device and changes the exhaust frequency according to a predetermined setting in the use of the device, the vibration output frequency must meet the predetermined signal output and power consumption requirements. Requirements. [Summary of the Invention] The inventor of the present case developed the present invention in recognition of the above-mentioned situation, and an object of the present invention is to provide an oscillating circuit that can improve the characteristics of the vibration signal according to the frequency of the Zhenbao, and reduce the power consumption. Ben% Ming-like system is a vibrating circuit. This vibrating circuit is also able to set the oscillating frequency of the Silk surplus signal, and set the 315900 6 200541202 Zhenbao signal as the differential Longwei generating circuit for silk reduction ㈣a; will: for the differential signal The output oscillating signal is differentially amplified by differential amplification ... converts the voltage of the differentially amplified vibrating i signal into a current and converts the amplified signal to $, and adjusts according to the setting content of the differential vibrating i signal generating circuit. Frequency-dependent adjustment circuit for operating characteristics of the differential amplifier A. The amplification factor in the "differential amplifier" can be appropriately set according to the circuit. For example, it includes the case where the amplification factor is large, the amplification factor is Γ1 ", and the amplification factor is smaller than" 1 ". "Setting content" refers to the setting related to the oscillation frequency. Here, the setting is performed based on the current and voltage values or other signals. … Differential type vibrator mtiL generates electricity, and the frequency of the oscillating shout is set to ^. Frequency-dependent adjustment of the f-channel can increase the speed of the differential amplifier. "Similar setting" is performed according to the magnitude of the voltage and current values or the predetermined signal, but as long as the final oscillation frequency becomes high. The above oscillating circuit can adjust the operation characteristics of the differential amplifier according to the oscillation frequency of the oscillation signal. Therefore, if the oscillation frequency becomes higher, the differential amplifier will operate at a higher speed, and it can output the vibration wave of high oscillation frequency. . Furthermore, since the differential signals are processed, even at high frequencies, the distortion components of the signals can be offset with each other, and the distortion components of the signals can be reduced. The differential oscillator signal generation circuit may include: a ring-shaped ring oscillator (r osc i 丨 丨 ator); and a driving circuit for causing the drive current to flow according to the setting to 315900 7 • 200541202 drive circuit of a differential ring oscillator The frequency-dependent adjustment circuit makes the current of the driving and driving current flow into the differential amplifier, and causes the differential amplifier to operate. Another complaint described in this description is also a vibrating circuit. The vibrating surplus circuit includes a differential oscillation signal generating circuit that outputs a predetermined oscillation signal as a differential signal; a differential amplifier that differentially amplifies an oscillation signal output as a differential signal; A conversion amplifier circuit that converts the voltage of the dynamically amplified oscillation signal into a current and amplifies it; a setting circuit that sets the conversion characteristics of the conversion amplifier circuit; and an output-dependent adjustment circuit that adjusts the operating characteristics of the differential amplifier according to the setting content of the setting circuit . In the setting circuit, the voltage used to convert the voltage of the oscillating signal to the current will increase the setting. The output-dependent adjustment circuit can increase the operating speed of the differential amplifier. With the above vibration surplus circuit, the operating characteristics of the differential amplifier can be adjusted according to the setting used to convert the voltage of the vibration surplus signal into the current, so that: for example, the high-speed operation of the differential amplifier can increase the output signal. The current. Note: Not all of the features described in the summary of the present invention are essential. Therefore, the present invention may also be a sub-combination of these features. [Embodiment] The present invention will be described according to the preferred specific examples to limit the scope of the present invention-yes == hair = to :: the characteristics and combinations of the specific description are not necessarily 315900 8 200541202 Resentment is related to high-frequency oscillation circuits, which are manufactured by the manufacturer to be vibrating I to generate a wide range of vibration frequencies and signals, and users set it to a predetermined oscillation frequency. And put in the pre-crash device as the prerequisite and complete I. The high-frequency oscillation circuit in this embodiment changes the oscillation frequency of the oscillation signal in accordance with the received control voltage. For example, the oscillation frequency is increased when the package pressure is controlled, and the oscillation frequency is decreased when the control voltage is low. In addition, the amplitude of the voltage of the oscillation signal is sufficiently amplified by the amplification FET, and then the voltage of the amplified oscillation signal is converted into a current. In the high-frequency oscillation circuit of this embodiment, if the control voltage is increased and set, the current flowing into the amplifying FET is increased, so that the amplifying FET can operate at a high speed when the oscillation frequency is high. On the other hand, when the oscillation frequency is low, the current flowing into the amplification FET can be reduced, so that power consumption can be reduced. Figure 1 shows the high-frequency oscillation circuit of the first embodiment! 〇〇. The high-frequency oscillating circuit 100 includes a voltage-controlled oscillating circuit 50, a differential amplification state 5 2, a conversion amplifier circuit 5 4, and an adder 56. The voltage-controlled oscillating circuit 50 includes a voltage-controlled current source 58 and signal oscillation. The circuit 60 and the conversion amplifier circuit 54 include a first switch circuit 62, a second switch circuit 64, a first current value conversion amplifier circuit 66, a second current value conversion amplifier circuit 68, and a constant current source 70. In addition, the signal includes the control voltage 306, the oscillator driving current 308, the first source oscillation signal 310, the second source oscillation signal 312, the first amplified oscillation signal 314, the second amplified oscillation signal 316, and the conversion signal. Current 318, first current oscillating signal 320, second 9 315900 * 200541202-# current oscillating signal 322, differential amplifier drive current 324, oscillator equivalent current 326, and conversion equivalent current 328. The voltage-controlled current source 58 is applied with a control voltage of 306, and outputs an oscillator driving current of 308 and an oscillator equivalent current of 326 according to a known and controlled voltage 306. Here, the oscillator driving current 308 is proportional to the magnitude of the oscillator equivalent current 326, both of which increase as the control voltage increases. The φ flood oscillator circuit 60 outputs the first source oscillation signal 310 and the second source oscillation signal 312 according to the oscillation frequency of the oscillator driving current 308. Specifically, if the oscillator driving current 30 is increased, the oscillation frequency can be increased. The first source oscillating signal 310 and the second source oscillating signal 312 = are, for example, a sine wave that causes the maximum value and the minimum value to appear repeatedly within a certain period of time, but in order to be able to perform differential amplification processing by a differential amplifier 52 described later, they are balanced. Signal. "Balanced signal" refers to a differential signal. On the other hand, "unbalanced signal" refers to a normal signal based on ground or the like.

差動放大裔52係分別對第一源振盪訊號3丨〇與第二源 振盪訊號312進行差動放大處理,而輸出第一放大振盪訊 號314與第二放大振盪訊號316。另外,差動放大處理係 以增加後述之第一開關電路62與第二開關電路64中的驅 動能力為目的而進行。第一放大振盪訊號314與第二放大 振盪汛唬316係具有與第一源振盪訊號31〇與第二源振盪 訊號312相同的波形,而構成平衡訊號。 X 大用FET係包含於差動放大器52中。 ^之放 315900 200541202 定電流源7 0係供給用以將第一放大振盪訊號314與第’ 一放大振查訊號316之電壓轉換為電流之轉換用定電流 318 ’此處轉換用定電流318係規定為一定值。定電流源 7 0亦輪)出與轉換用定電流318具有比例關係之轉換用等效 電流328。 第一開關電路62係將第一放大振盪訊號3丨4轉換為第 一電流振盪訊號320。在此,第一放大振盪訊號314之值 大的話第一電流振盪訊號320之值將接近轉換用定電流 318之值,第一放大振盪訊號314之值小的話第一電流振鲁 盪訊號320之值將變得更小。第二開關電路64也與第一開 關電路62同樣地動作,將第二放大振盪訊號316轉換為第 二電流振盪訊號322。 第一電流值轉換放大電路66係轉換第一電流振1訊 號320之值,第二電流值轉換放大電路68係轉換第二電流 振盪訊號322之值。在此,經轉換而得之第一電流振盪訊 號320之值對應於供應電流(s〇urce ,經轉換而 知之第二電流振盪訊號322之值對應於汲入電流(ynk current),且根據在第一開關電路62與第二開關電路 中的切換,成為有汲入電流與供應電流切換 此處,「輸出電流」係包含「汲入電流」與「供應出^:」。 加法器56係使振盪器等效電流326與轉換用等效電流 相加而彳于之差動放大器驅動電流324流入差動放大器 52。差動放大器驅動電流324變大的話,差動放大器52 之動作會雙南速。亦即,即使第一源振盈訊號⑽與第二 315900 •200541202 源振盪訊號312以更高的振盪頻率變動,由於差動放大器 驅動電流324變大,因此差動放大器52之動作亦可追隨更 高的振盪頻率,使第一放大振盪訊號314與第二放大振盪 • 訊號316之振幅變得更大。 再者,由於差動放大器驅動電流324中加入有轉換用 等效電流328,因此即使第一放大振盪訊號314與第二放 大振盡訊號316之振幅再變大,第一電流振盪訊號320與 鲁第二電流振盪訊號322之振幅亦會與轉換用定電流318之 值無關地變大(其詳細將在之後的第二實施形態中說明)。 第2圖係顯示作為差動放大器52的輸出訊號之第一放 大振盡訊號314的時間變化。圖中之實線係表示差動放大 恭驅動電流324非常大之情形,圖中之虛線係表示差動放 大器驅動電流324小之情形。差動放大器驅動電流324大 的忐,由於差動放大器52之動作可充分地追隨高振盪頻率 之第一源振盪訊號310之變動,因此第一放大振盪訊號314 •之振幅亦會變大。另一方面,差動放大器驅動電流324小 的話,由於差動放大器52之動作無法充分地追隨第一源振 盪訊號310之變動,因此第一放大振盪訊號314之振幅將 、欠4于更j、另外,第一放大振盪訊號316的情形亦相同。 第3圖係顯示經轉換放大電路54而從電壓轉換得到的 輸出電流。圖中的實線係表示第一放大振盈訊豸314與第 了放大振盪訊號316之振幅大的情形,圖中的虛線係表示 第:放大振盪訊號b 314與第二放大振盪訊冑316之振幅小 的情形。第-放大振蘯訊號314與第二放大振盧訊號316 315900 12 200541202 之振幅小的情形係指,假想例如未在差動放大器驅動電流 324加士轉換用等效電流328之情形。第一放大振盪訊號 4人弟一放大振盈訊號316之振幅大的話,第一開關電 路62與第二開關電路64之切換會變高速,且由於可充分 地轉換成第一電流振盪訊號32〇與第二電流振盪訊號 322,因此以結果來說,經轉換放大電路54轉換得到之輸 出電流的振幅也會變大。另一方面,第一放大振盪訊號314 第一放大振盪汛號316之振幅小的話,無法充分地轉換 成第一電流振盪訊號32〇與第二電流振盪訊號322,因此 以結果來說,經轉換放大電路54轉換得到之輸出電流的振 幅會變小。 在此’「輸出電流之振幅」係依據例如沒入電流與供應 電流的大小之最大值的和、汲入電流大小之最大值、供應 電流大小之最大值等加以規定,但此處並未明顯地區別該 等。 本實施形態之高頻振盪電路1 〇〇之構成中,電壓控制 型振盪電路50、差動放大器52係根據差動處理而傳送電 壓之平衡訊號,並使該平衡訊號最後經轉換放大電路54 轉換成電流之不平衡訊號。在如上述構成之平衡訊號間, 訊號之失真成分也會相互抵銷,因此可降低訊號之失真成 分’其結果,可降低電磁干擾(EMI : ElectromagneticThe differential amplifier 52 performs differential amplification processing on the first source oscillation signal 3 and the second source oscillation signal 312, respectively, and outputs a first amplified oscillation signal 314 and a second amplified oscillation signal 316. The differential amplification processing is performed for the purpose of increasing the driving capability of the first switching circuit 62 and the second switching circuit 64 described later. The first amplified oscillation signal 314 and the second amplified oscillation signal 316 have the same waveforms as the first source oscillation signal 31 and the second source oscillation signal 312, and constitute a balanced signal. The X-large FET system is included in the differential amplifier 52. ^ Zhifang 315900 200541202 constant current source 7 0 is used to convert the voltage of the first amplified oscillating signal 314 and the first amplified oscillating signal 316 into a constant current for conversion 318 'here the constant current for conversion 318 series A fixed value is specified. The constant current source 70 is also round) and outputs a conversion equivalent current 328 which is proportional to the conversion constant current 318. The first switching circuit 62 converts the first amplified oscillation signal 3 丨 4 into the first current oscillation signal 320. Here, if the value of the first amplified oscillation signal 314 is large, the value of the first current oscillation signal 320 will be close to the value of the constant current 318 for conversion, and when the value of the first amplified oscillation signal 314 is small, the value of the first current oscillation signal 320 is The value will become smaller. The second switch circuit 64 also operates in the same manner as the first switch circuit 62, and converts the second amplified oscillation signal 316 into a second current oscillation signal 322. The first current value conversion amplifier circuit 66 converts the value of the first current vibration 1 signal 320, and the second current value conversion amplifier circuit 68 converts the value of the second current oscillation signal 322. Here, the value of the converted first current oscillation signal 320 corresponds to the supply current (source, and the value of the converted second current oscillation signal 322 corresponds to the sink current (ynk current), and according to the The switching between the first switching circuit 62 and the second switching circuit becomes a switching between the sink current and the supply current. Here, the "output current" includes "sink current" and "supply output ^:". The adder 56 is used to The oscillator equivalent current 326 and the conversion equivalent current are summed up and the differential amplifier drive current 324 flows into the differential amplifier 52. If the differential amplifier drive current 324 becomes larger, the operation of the differential amplifier 52 will have a double-speed That is, even if the first source vibration signal ⑽ and the second 315900 • 200541202 source oscillation signal 312 fluctuate at a higher oscillation frequency, since the differential amplifier drive current 324 becomes larger, the action of the differential amplifier 52 can also follow The higher oscillation frequency makes the amplitude of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 larger. Moreover, the conversion current is added to the drive current 324 of the differential amplifier. Equivalent current 328, so even if the amplitude of the first amplified oscillation signal 314 and the second amplified exhaust signal 316 becomes larger, the amplitudes of the first current oscillation signal 320 and the second current oscillation signal 322 will also be constant current for conversion. The value of 318 becomes irrelevant (the details will be described later in the second embodiment). Fig. 2 shows the time change of the first amplified exhaustion signal 314 which is the output signal of the differential amplifier 52. The solid line indicates that the differential amplifier driving current 324 is very large, and the dotted line in the figure indicates that the differential amplifier driving current 324 is small. The differential amplifier driving current 324 is large. Because the operation of the differential amplifier 52 can be Fully follow the change of the first source oscillation signal 310 with a high oscillation frequency, so the amplitude of the first amplified oscillation signal 314 • will also increase. On the other hand, if the differential amplifier drive current 324 is small, The action cannot fully follow the change of the first source oscillation signal 310, so the amplitude of the first amplified oscillation signal 314 will be less than 4 or more. In addition, the first amplified oscillation signal 316 will The situation is the same. Figure 3 shows the output current obtained from the voltage conversion through the conversion amplifier circuit 54. The solid line in the figure shows the situation where the amplitude of the first amplified vibration signal 314 and the first amplified oscillation signal 316 are large. The dotted line in the figure indicates that the amplitude of the first: the amplified oscillation signal b 314 and the second amplified oscillation signal 316 is small. The amplitude of the first-amplified oscillation signal 314 and the second amplified oscillation signal 316 315900 12 200541202 is small. The situation refers to a case where, for example, the differential amplifier drive current 324 and the equivalent current 328 for conversion is not used. If the amplitude of the first amplified oscillation signal 4 and the amplitude of the amplified surplus signal 316 are large, the first switching circuit 62 and The switching of the second switch circuit 64 becomes high-speed, and since it can be fully converted into the first current oscillation signal 32 and the second current oscillation signal 322, as a result, the output current obtained by the conversion amplifier circuit 54 is converted. The amplitude will also increase. On the other hand, if the amplitude of the first amplified oscillating signal 314 is small, the first amplified oscillating signal 316 cannot be sufficiently converted into the first current oscillating signal 32 and the second current oscillating signal 322. The amplitude of the output current converted by the amplifier circuit 54 becomes smaller. Here, "the amplitude of the output current" is specified based on, for example, the sum of the maximum value of the submerged current and the magnitude of the supply current, the maximum value of the magnitude of the sink current, and the maximum value of the magnitude of the supply current, but it is not obvious here. By region. In the configuration of the high-frequency oscillation circuit 100 of this embodiment, the voltage-controlled oscillation circuit 50 and the differential amplifier 52 transmit a balanced signal of voltage according to differential processing, and finally the balanced signal is converted by the conversion amplifier circuit 54. Unbalanced signal of current. Among the balanced signals constituted as described above, the distortion components of the signals will also cancel each other, so the distortion components of the signals can be reduced. As a result, electromagnetic interference (EMI: Electromagnetic

Interference)之南譜波成分。因此南頻振盈電路1 〇〇係可 輸出不包含高諧波成分之訊號。 以上之構成之高頻振盪電路100之動作係如下述。加 315900 13 •200541202 大控制電壓306的話,電壓控制型電流源58輪出之振盪哭 驅動電流3G8與振|器等效電流326也會變大。訊號振^ 電路60在振盪器驅動電流3〇8變大的情況,會輸出更高的 •振盪頻率之第一源振盪訊號310與第二源振盪訊號312。 又,振盪器等效電流326變大的話,從加法器56流出之放 大為驅動電流324亦會變大。差動放大器驅動電流犯4變 大的話,差動放大器52會將更高的振盪頻率之第一源振盪 馨訊號31〇與第二源振盪訊號312分別放大為非常大的振幅 之第放大振盈訊號314與第二放大振i訊號316。 第一開關電路62與第二開關電路64係以來自定電流 源70之轉換用定電流318為基準,將第一放大振盪訊號1 314與第二放大振盪訊號316分別轉換為第一電流振盪訊 旒320與第二電流振盪訊號322。第一電流值轉換放大電 路66與第二電流值轉換放大電路68係分別轉換第一電流 振盪訊號320與第二電流振盪訊號322之值,再藉由第一 _ 開關電路62與第二開關電路64之切換使之成為最終的輸 出電流。另外,由於不論控制電壓306之大小為何,來自 定電流源70之轉換用等效電流328係加至差動放大器驅動 電流324而流入差動放大器52,因此於第一開關電路62 與第二開關電路64中轉換之第一電流振盪訊號320與第二 電流振盪訊號322之振幅會更接近轉換用定電流318之 值。 根據本實施形態,由於使依照振盪訊號之振盪頻率之 電流流入放大器,因此在振盪頻率高之情形下,可加大輸 14 315900 200541202 出電流之振幅,此外在振盪頻率低之情形下,可實現低消 耗電力之動作。除此之外,由於使與為了將振盪訊號之電 壓轉換成電流而使用之電流成比例之電流流入放大器,因 此放大器中的切換特性會變得更高速,且由於可將振盪訊 號放大成更大振幅之電壓,因此可加大輸出電流之振幅。 第二實施形態 弟一貫施形態雖係與第一實施形態相同的局頻振蘯電 路,但第一實施形態中係藉由功能方塊圖說明高頻振盪電 路,而第二實施形態中係藉由FET等之電路配置說明高頻 振盪電路。 第4圖係表示第二實施形態之高頻振盪電路1〇〇。圖 中,與第1圖中的功能方塊及訊號相同者以相同符號表 示。 可變電流源72係輸出隨控制電壓306而變化之電流。 電晶體Trl到電晶體Tr3係構成電流鏡電路,且從電晶體 Tr2到電晶體Tr3分別流出振盪器等效電流326與振盪器 驅動電流308。如前述,振盪器驅動電流308、振盪器等效 電流326、來自可變電流源72之電流係相互具有比例關 係。 電晶體Tr4到電晶體Tr9係構成電流鏡電路,電晶體 TrlO到電晶體Tr 14亦構成電流鏡電路。藉由電流鏡電路 而與振盪器驅動電流308對應之電流係分別流入由第一反 相器74、第二反相器76、第三反相器78、第四反相器80 所構成之差動輸出型之環形振盪器。亦即,振盪器驅動電 15 315900 200541202 流308變大的話,由於流入環形振盪器之電流會變大,因 此環形振盪器所輸出之第一源振盪訊號31〇與第二源振盪 机5虎312之振盈頻率會變高。 . 電晶體Trl5到電晶體Trl8、電晶體Tr23、電晶體Tr24 係構成差動放大器52,第一源振盪訊號310與第二源振盪 訊號312係分別施加於電晶體Tr23與電晶體Tr24之閘極 端子,而接受差動放大處理。該差動放大處理係與第一實 施形態相同,以提高後述之電晶體Tr32及電晶體Tr33的 •驅動能力為目的。又,由於電晶體Tri9到電晶體Tr22、 電晶體Tr25、電晶體Tr26亦構成差動放大器52,因此第 一源振盪訊號310與第二源振盪訊號312係經兩階段放 大’並分別成為第一放大振盪訊號3丨4與第二放大振盪訊 就316而輸出。此外,有關流入各差動放大器52之差動放 大器驅動電流324將於後述。 電晶體Tr41與電晶體Tr40係構成電流鏡電路,來自 • 可變電流源82之一定值之轉換用定電流318,以及與轉換 用定電流318具有比例關係之轉換用等效電流328流入此 電晶體Tr41與電晶體Tr40構成之電流鏡電路。 電晶體T r 3 2係將施加於閘極端子之第一放大振盪訊 號314轉換成第一電流振盪訊號320。此處,由於電晶體 Tr3 2係n通道型,因此第一放大振蘯訊號314之值變大的 話,第一電流振盪訊號320之值也會變得接近轉換用定電 流318之值。電晶體Tr33係進行與電晶體Tr32相同的動 作,將第二放大振盪訊號316轉換成第二電流振盪訊號 16 315900 200541202 3 2 2。電晶體T r 3 4與電晶體T r 3 5係構成電流鏡電路’將弟 一電流振盪訊號320轉換成與第一電流振盪訊號320具有 比例關係之第一輸出電流。又,電晶體Tr36與電晶體 Tr37、以及電晶體Tr38與電晶體Tr39係分別構成電流鏡 電路,將第二電流振盪電路322轉換成與第二電流振盪電 路322具有比例關係之第二輸出電流。第一輸出電流與第 二輸出電流係藉由電晶體Tr32與電晶體Tr33之切換,而 成為最終的輸出電流。 電晶體Tr27、電晶體Tr28、電晶體Tr30係構成電流 鏡電路,與振盪器等效電流326具有比例關係之差動放大 器驅動電流324係從電晶體Tr28與電晶體Tr30流出。如 前述,振盪器等效電流3 2 6變大的話,差動放大器驅動電 流324亦會與之對應而變大。 將與轉換用等效電流328成比例之電流加入差動放大 器驅動電流324之理由如下。為了加大最終的輸出電流之 振幅,必須加大轉換用定電流318。但是,電晶體Tr32以 及電晶體Tr33之閘極-源極間電壓低的話,電晶體Tr32 與電晶體T r 3 3之開關動作會變慢,因此無法有效率地將轉 換用定電流318傳達至第一電流振盪訊號320與第二電流 振盪訊號322之振幅。因此,使與轉換用定電流318具有 一定關係之轉換用等效電流328流入,以將從由電晶體 Tr41、電晶體Tr31、電晶體Tr29所構成之電流鏡電路流 出之電流加入差動放大器驅動電流324。 藉此,由於流入差動放大器52之差動放大器驅動電流 17 315900 200541202 324會變得更大’因此差動放大器52之動作特性會變得更 高速。因此’可追隨第一源振盪訊號31〇與第二源振盪訊 號312之變動,而使第-放大振盪訊號314與第二放大振 • 盪訊號316之振幅變得相當大。其結果,由於電晶體扦犯 以及電晶體Tr33之閘極-源極間電壓之最大值會變大,因 此電晶體Tr32與電晶體Tr33之開關動作會變快,而可有 效率地將轉換用定電流318傳達至最終的輸出電流之振 幅。 • 第2圖係顯示作為差動放大器52的輸出訊號之第一放 大振盪訊號314或第二放大震盪訊號316之時間變化,第 3圖係顯示經轉換放大電路54而從電壓轉換得到的輸出電 流,然而由於與第一實施形態相同,因此在此省略該等之 說明。 如以上構成之高頻振盪電路1 00之動作係如下。加大 控制電壓306時,則從電流鏡電路中的電晶體Tr2流出之 • 振盪器等效電流326與從電晶體Tr3流出之振盪器驅動電 流308會變大。振盪器驅動電流3〇8變大的話,從第一反 相益74、弟一反相器76、第三反相器78、第四反相器 輸出之第一源振盪訊號31 〇與第二源振盪訊號312之振堡 頻率會變高。此外,振盪器等效電流326變大的話,從電 流鏡電路中的電晶體Tr28與電晶體Tr30流出之差動放大 器驅動電流324也會變大。差動放大器驅動電流324變大 的話,於差動放大器52,分別將更高振盪頻率之第一源振 盪亂號310與第二源振|訊號312放大至非常大的振幅之 315900 18 200541202 弟一放大振盈訊號314與第二放大振Μ訊號316。 電晶體Tr32與電晶體Tr33係以來自電流鏡電路中的 電晶體Tr40之轉換用定電流318為基礎將第一放大振盪訊 號314與第二放大振盪訊號316分別轉換成第一電流振盪 訊號320與第二電流振盪訊號322。電流鏡電路中的電晶 體Tr35係轉換第一電流振盪訊號320之值,另一電流鏡電 路中的電晶體Tr39係轉換第二電流振盪訊號322之值。經 轉換之電流係依照電晶體Tr32與電晶體Tr33之切換,而 成為最終的輸出電流。另外,由於不論控制電壓306之大 小為何,皆藉由電晶體Tr31與電晶體Tr29將轉換用等效 電流328加入差動放大器驅動電流324而流通,因此電晶 體Tr32與電晶體Tr33之閘極-源極間電壓也會變高,其結 果’第一電流振盪訊號320與第二電流振盪訊號322之振 幅會更接近轉換用定電流318之值。 根據本實施形態,加高控制電壓,則振盪訊號之振盪 頻率會變高,同時差動放大器中的電晶體會高速動作,因 此可加大輸出電流之振幅,另一方面,振盪頻率低之情形 可使電晶體以低消耗電力動作。又,由於與用以將振盪訊 號之電壓轉換成電流之電晶體所使用之電流成比例之電 流,流入差動放大器中的電晶體,因此差動放大器中的電 晶體會高速動作,且由於振盪訊號之放大變大,因此可有 效率地將振盪訊號之電壓轉換成電流。 第三實施形態 第二貫施形態係說明適用第一與第二實施形態的高頻 19 315900 200541202 振盪電路之裝置或LSI之構成。 第5圖(a)係顯示第三實施形態之高頻振盪電路100 之適用例中光拾訊器200之構成。光拾訊器200係包含高 頻振盡電路100、半導體雷射晶片1〇2、監視用光電二極體 104、以及受光用光電二極體108。光拾訊器200係於光碟 裝置或光磁碟裝置等之資訊紀錄再生裝置中,對作為記錄 媒體之碟片進行訊號之讀取或寫入。 半導體雷射晶片102係依照後述之高頻振盪電路ι〇〇 所供給之電流而射出雷射光束。高頻振盪電路丨〇〇係根據 以來自後述之 APC(Automatic Power Control)電路 1〇6 之 電壓所表示之控制訊號,將電流供給至半導體雷射晶片 102。 曰曰 光學系110係使從半導體雷射晶片102射出之雷射光 束以光點照射在未圖示之記錄媒體之碟片,以及將來自碟 片之反射光導至後述之受光用光電二極體' • 受光用光電二極體1〇8係將反射光轉換為電流訊號。 該電流訊號之後再被轉換為電壓訊號。監視用光電二極體 104係將從半導體雷射晶片1 〇2射出之雷射光束之一部八 轉換為電流訊號。此處所謂雷射光束之一部分係指半導刀轉 雷射光束102之從光學系11〇不存在 ^ 仔在之一側射出之雷射光 束0 APC電路106係根據監視用光電二極體1〇4輸出之恭 流訊號’ Μ使f射光束經常以—定的功率從 ^ 晶片102輸出之方式將控制訊號輸出至高頻震盪電:田’ 315900 20 200541202 _,亦即,進行半導體雷射晶片1G2之回授控制。此處, 因以下因素而須具備飢電路⑽。雖有必要將光拾訊器 200輸出之電壓訊號準位料在預定準位,但由於半導體 雷射晶片102輸出之雷射光束之功率係有個體差,並且對 溫度變化反應靈敏,因此僅對半導體雷射晶片⑽進行相 同的控制時雷射光束之功率並不會—定,因而無法將電屢 訊號之輸出準位保持一定。 ^另一方面,高頻振盪電路100係如第一與第二實施形 悲所載,即使於高振盪頻率中亦可加A輸出電流之振幅, 因此半導體雷射晶片102可穩定射出雷射光束。 第5圖(b)係表示第二實施形態之高頻振盪電路 適用例中頻率轉換電路202之構成。頻率轉換電路202 係包含高頻振盪電路100、乘法電路122、帶通濾波器 (BPF · Bandpass Fi Iter) 124、以及放大器 126。頻率轉換 ,路^202係於通訊裝置中,將要發送的訊號轉換成傳送所 需之訊號。更具體而言,於無線送訊裝置中進行頻率轉換, 以將要發送之基頻訊號或該基頻訊號經頻率轉換而成之中 間頻率訊號轉換成無線頻率訊號。 、汛號產生部120係將要發送之訊號產生為基頻訊號, 並將该基頻訊號的頻率轉換成中間頻率。 向頻振盪電路100係輸入依照發訊所使用之無線頻率 之電壓,並輸出無線頻率之訊號。 乘法電路122係利用無線頻率之訊號對中間頻率之訊 唬進行頻率轉換。再者,BPF 124係降低因頻率轉換而產 315900 200541202 ♦ 生的高諧波之影響。 放大器126係將BPF 124之輸出訊號放大至預定之電 - 力以可在無線傳送路中發訊。 - 在此,高頻振盪電路1 〇〇係如第一與第二實施形態所 示,即使在高振盪頻率中亦可輸出較大值之電流,因此放 大器126可穩定輸出無線頻率之訊號。 第5圖(c)係表示第三實施形態之高頻振盪電路1〇〇 _ 之適用例中PLL 204之構成。PLL 204係包含高頻振盪電 路100、相位比較器150、迴路濾波器(1〇〇p filter)152、 以及分頻器154。 相位比較器150係比較從外部輸入之基準時脈訊號與 從为頻态15 4輸入之參考時脈訊號之相位以及頻率,輸出 與其差成比例之直流訊號。迴路濾波器152係除去輸入之 訊號之高頻成分,並輸出控制電壓。高頻振盪電路丨〇〇係 輸出依照輸入之控制電壓之頻率之時脈訊號。此處係輸出 • 具有基準時脈訊號之頻率之N倍的頻率之時脈訊號。所輸 出之時脈號係於分頻器15 4分頻成1 / N,並作為參考時 脈訊號輸入相位比較器150。 根據本實施形態,可將即使在高振盪頻率中亦可加大 輸出電流之振幅,並且在低振盪頻率中可實現低消耗電力 之動作之高頻振盪電路適用於各種裝置與LSI。 另外,例示本發明與實施形態之構成之對應關係。「差 動型振盡訊號產生電路」係對應於電壓控制型電流源5 8 之可變電流源72與電流鏡電路中的電晶體Trl、電晶體Tr3 315900 22 200541202 與訊號振蘯電路6 0。「差動放大器」係對應於差動放大器 52。「轉換放大電路」係對應轉換放大電路54。「頻率依存 型調整電路」係對應於電壓控制型電流源58之電流鏡電路 中的電晶體Trl、電晶體Tr2與加法器56之電流鏡電路中 的電晶體Tr27、電晶體Tr28、電晶體Tr30。「差動型環形 振盪器」係對應於訊號振盪電路60中的第一反相器74、 第二反相器76、第三反相器78、第四反相器80。「驅動電 路」係對應於訊號振盪電路60之兩個電流鏡電路中的電晶 體Tr4到電晶體Trl4。 又,「差動型振盪訊號產生電路」係對應於電壓控制型 電流源58之可變電流源72與電流鏡電路中的電晶體 Trl、電晶體Tr3與訊號振盪電路60。「差動放大器」係對 應於差動放大器52。「轉換放大電路」係對應於轉換放大 電路54。「設定電路」係對應於定電流源70。「輸出依存型 調整電路」係對應於定電流源70與加法器56之電流鏡電 路中的電晶體Tr41、電晶體Tr31、電晶體Tr29。 以上,根據實施形態說明了本發明。該實施形態僅為 例示,熟悉該項技術者當可理解該等實施形態之各構成要 素及各處理程序之組合可有各種變形例,且各變形例也在 本發明之範圍内。 第二實施形態中,差動放大器52係由兩個差動放大器 所構成。然而並不限定於此,例如由一個差動放大器或三 個以上之差動放大器構成亦可。根據本變形例,可變更第 一放大振盪訊號314與第二放大振盪訊號316之振幅。亦 23 315900 例說明如上,然而應了解 申請專利範圍所界定之範 換,均應仍在本發明之範Interference). Therefore, the south frequency vibration circuit 100 can output signals that do not contain high harmonic components. The operation of the high-frequency oscillation circuit 100 configured as described above is as follows. If you increase 315900 13 • 200541202 with a large control voltage 306, the drive current of the voltage-controlled current source 58 will increase and the drive current 3G8 and the equivalent current 326 of the vibrator will also increase. The signal oscillator circuit 60 will output a first source oscillation signal 310 and a second source oscillation signal 312 with higher oscillation frequency when the oscillator driving current 308 becomes larger. When the oscillator equivalent current 326 increases, the driving current 324 flowing from the adder 56 increases. If the differential amplifier driving current 4 becomes larger, the differential amplifier 52 will amplify the first source oscillation signal 31 and the second source oscillation signal 312 with higher oscillation frequencies to the first amplification vibration of a very large amplitude, respectively. The signal 314 and the second amplified vibration signal 316. The first switching circuit 62 and the second switching circuit 64 convert the first amplified oscillation signal 1 314 and the second amplified oscillation signal 316 into the first current oscillation signal respectively based on the constant current 318 for conversion from the constant current source 70.旒 320 and the second current oscillation signal 322. The first current value conversion amplifier circuit 66 and the second current value conversion amplifier circuit 68 convert the values of the first current oscillation signal 320 and the second current oscillation signal 322, respectively, and then the first _ switch circuit 62 and the second switch circuit The switching of 64 makes it the final output current. In addition, since the equivalent current 328 for conversion from the constant current source 70 is added to the differential amplifier drive current 324 and flows into the differential amplifier 52 regardless of the size of the control voltage 306, the first switch circuit 62 and the second switch The amplitude of the first current oscillating signal 320 and the second current oscillating signal 322 converted in the circuit 64 will be closer to the value of the constant current 318 for conversion. According to this embodiment, the current according to the oscillation frequency of the oscillation signal flows into the amplifier. Therefore, when the oscillation frequency is high, the amplitude of the output current can be increased. 14 315900 200541202 Low power consumption operation. In addition, since the current proportional to the current used to convert the voltage of the oscillating signal into the current flows into the amplifier, the switching characteristics in the amplifier become faster, and since the oscillating signal can be amplified to be larger Amplitude voltage, so the amplitude of the output current can be increased. Although the second embodiment has a consistent local frequency oscillator circuit as in the first embodiment, the first embodiment uses a functional block diagram to describe a high-frequency oscillation circuit, while the second embodiment uses a high-frequency oscillation circuit. The circuit configuration of FET and so on explains the high-frequency oscillation circuit. Fig. 4 shows a high-frequency oscillation circuit 100 of the second embodiment. In the figure, the same function blocks and signals as in Figure 1 are indicated by the same symbols. The variable current source 72 outputs a current that varies with the control voltage 306. The transistor Tr1 to the transistor Tr3 constitute a current mirror circuit, and an oscillator equivalent current 326 and an oscillator driving current 308 flow from the transistor Tr2 to the transistor Tr3, respectively. As described above, the oscillator driving current 308, the oscillator equivalent current 326, and the current from the variable current source 72 have a proportional relationship with each other. Transistors Tr4 to Tr9 constitute a current mirror circuit, and transistors TrlO to Tr14 also constitute a current mirror circuit. The current corresponding to the oscillator driving current 308 through the current mirror circuit flows into the differences formed by the first inverter 74, the second inverter 76, the third inverter 78, and the fourth inverter 80, respectively. Dynamic output type ring oscillator. That is, if the current of the oscillator driving circuit 15 315900 200541202 increases, the current flowing into the ring oscillator will increase, so the first source oscillation signal 31 and the second source oscillator 5 Tiger 312 output by the ring oscillator will increase. The vibration frequency will become higher. Transistor Tr5 to Transistor Tr8, Transistor Tr23, and Transistor Tr24 constitute the differential amplifier 52. The first source oscillation signal 310 and the second source oscillation signal 312 are applied to the gate ends of the transistor Tr23 and the transistor Tr24, respectively. While receiving differential amplification. This differential amplifying process is the same as the first embodiment, in order to improve the driving ability of the transistor Tr32 and the transistor Tr33 described later. In addition, since the transistor Tri9 to the transistor Tr22, the transistor Tr25, and the transistor Tr26 also constitute the differential amplifier 52, the first source oscillation signal 310 and the second source oscillation signal 312 are amplified in two stages and become the first The amplified oscillating signal 3 丨 4 and the second amplified oscillating signal are output 316. The differential amplifier driving current 324 flowing into each differential amplifier 52 will be described later. The transistor Tr41 and the transistor Tr40 constitute a current mirror circuit. A constant value of the constant current 318 for conversion from the variable current source 82, and a conversion equivalent current 328 having a proportional relationship with the constant current 318 for the conversion flow into this circuit. A current mirror circuit composed of crystal Tr41 and transistor Tr40. The transistor T r 3 2 converts the first amplified oscillation signal 314 applied to the gate terminal into a first current oscillation signal 320. Here, since the transistor Tr3 2 is an n-channel type, if the value of the first amplified vibration signal 314 becomes larger, the value of the first current oscillation signal 320 also becomes closer to the value of the constant current 318 for conversion. The transistor Tr33 performs the same operation as the transistor Tr32, and converts the second amplified oscillation signal 316 into a second current oscillation signal 16 315900 200541202 3 2 2. The transistor T r 3 4 and the transistor T r 3 5 constitute a current mirror circuit 'to convert the first current oscillation signal 320 into a first output current having a proportional relationship with the first current oscillation signal 320. The transistor Tr36 and the transistor Tr37, and the transistor Tr38 and the transistor Tr39 each constitute a current mirror circuit, and convert the second current oscillation circuit 322 into a second output current having a proportional relationship with the second current oscillation circuit 322. The first output current and the second output current are switched to the final output current by switching between the transistor Tr32 and the transistor Tr33. The transistor Tr27, the transistor Tr28, and the transistor Tr30 constitute a current mirror circuit. A differential amplifier driving current 324 having a proportional relationship with the oscillator equivalent current 326 flows from the transistor Tr28 and the transistor Tr30. As mentioned above, if the oscillator equivalent current 3 2 6 becomes larger, the differential amplifier drive current 324 will also increase correspondingly. The reason for adding a current proportional to the conversion equivalent current 328 to the differential amplifier driving current 324 is as follows. In order to increase the amplitude of the final output current, the constant current 318 for conversion must be increased. However, if the voltage between the gate and source of the transistor Tr32 and the transistor Tr33 is low, the switching operation of the transistor Tr32 and the transistor T r 3 3 becomes slow, so the constant current 318 for conversion cannot be efficiently transmitted to The amplitudes of the first current oscillation signal 320 and the second current oscillation signal 322. Therefore, a conversion equivalent current 328 having a certain relationship with the constant current for conversion 318 is caused to flow in, so that the current flowing from the current mirror circuit composed of the transistor Tr41, the transistor Tr31, and the transistor Tr29 is added to the differential amplifier drive. Current 324. As a result, since the differential amplifier drive current 17 315900 200541202 324 flowing into the differential amplifier 52 becomes larger ', the operation characteristic of the differential amplifier 52 becomes faster. Therefore, it can follow the changes of the first source oscillation signal 31 and the second source oscillation signal 312, so that the amplitudes of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 become quite large. As a result, the maximum value of the voltage between the gate and source of the transistor Tr33 and the transistor Tr33 becomes larger, so that the switching operation of the transistor Tr32 and the transistor Tr33 becomes faster, and the conversion can be efficiently used. The constant current 318 is transmitted to the amplitude of the final output current. • Figure 2 shows the time variation of the first amplified oscillating signal 314 or the second amplified oscillating signal 316 as the output signal of the differential amplifier 52, and Figure 3 shows the output current obtained from the voltage conversion through the conversion amplifier circuit 54 However, since it is the same as the first embodiment, the description thereof is omitted here. The operation of the high-frequency oscillation circuit 100 constructed as above is as follows. When the control voltage 306 is increased, the transistor equivalent current 326 flowing from the transistor Tr2 in the current mirror circuit and the oscillator driving current 308 flowing from the transistor Tr3 become larger. When the oscillator driving current 30 is increased, the first source oscillation signal 31 〇 and the second output from the first inverter 74, the first inverter 76, the third inverter 78, and the fourth inverter are output. The oscillation frequency of the source oscillation signal 312 becomes higher. In addition, if the oscillator equivalent current 326 becomes larger, the differential amplifier driving current 324 flowing out of the transistor Tr28 and the transistor Tr30 in the current mirror circuit also becomes larger. If the differential amplifier drive current 324 becomes larger, the differential amplifier 52 will amplify the first source oscillation disorder 310 and the second source oscillation with higher oscillation frequency | Signal 312 to a very large amplitude of 315900 18 200541202 Diyi The amplified vibration gain signal 314 and the second amplified vibration M signal 316. The transistor Tr32 and the transistor Tr33 are based on the constant current 318 for the conversion from the transistor Tr40 in the current mirror circuit. The first amplified oscillation signal 314 and the second amplified oscillation signal 316 are respectively converted into the first current oscillation signal 320 and The second current oscillates signal 322. The transistor Tr35 in the current mirror circuit converts the value of the first current oscillation signal 320, and the transistor Tr39 in the other current mirror circuit converts the value of the second current oscillation signal 322. The converted current is the final output current according to the switching between transistor Tr32 and transistor Tr33. In addition, regardless of the size of the control voltage 306, the equivalent current for conversion 328 is added to the differential amplifier drive current 324 through the transistor Tr31 and the transistor Tr29 to circulate. Therefore, the gate of the transistor Tr32 and the transistor Tr33- The source-to-source voltage will also increase. As a result, the amplitudes of the first current oscillation signal 320 and the second current oscillation signal 322 will be closer to the value of the constant current 318 for conversion. According to this embodiment, when the control voltage is increased, the oscillation frequency of the oscillation signal becomes high, and at the same time, the transistor in the differential amplifier operates at high speed, so the amplitude of the output current can be increased. On the other hand, the oscillation frequency is low. The transistor can be operated with low power consumption. In addition, the current proportional to the current used by the transistor used to convert the voltage of the oscillating signal into the current flows into the transistor in the differential amplifier, so the transistor in the differential amplifier operates at high speed, and due to the oscillation The amplification of the signal becomes larger, so the voltage of the oscillating signal can be efficiently converted into a current. Third Embodiment The second embodiment describes the structure of a device or an LSI to which the high frequency of the first and second embodiments is applied. 19 315900 200541202 FIG. 5 (a) shows the configuration of the optical pickup 200 in the application example of the high-frequency oscillation circuit 100 according to the third embodiment. The optical pickup 200 includes a high-frequency exhaust circuit 100, a semiconductor laser chip 102, a photodiode 104 for monitoring, and a photodiode 108 for light receiving. The optical pickup 200 is used in an information recording / reproducing device such as an optical disc device or a magneto-optical disc device, and reads or writes signals from a disc which is a recording medium. The semiconductor laser chip 102 emits a laser beam in accordance with a current supplied from a high-frequency oscillation circuit ιo described later. The high-frequency oscillation circuit 丨 〇〇 supplies a current to the semiconductor laser chip 102 according to a control signal represented by a voltage from an APC (Automatic Power Control) circuit 106 described later. The optical system 110 is a laser beam that emits a laser beam emitted from the semiconductor laser chip 102 to a recording medium (not shown) at a light spot, and guides the reflected light from the disc to a photodiode for light receiving described later. '• Photodiode 108 for receiving light converts the reflected light into a current signal. This current signal is then converted into a voltage signal. The monitoring photodiode 104 converts a part of the laser beam emitted from the semiconductor laser chip 102 into a current signal. The part of the laser beam referred to here refers to the non-existent optical system 11 of the semi-conductor-to-laser laser beam 102. The laser beam emitted from one side of the laser beam 0 APC circuit 106 is based on the monitoring photodiode 1 〇4 output of the Gongliu signal 'M causes the f-ray beam to output control signals to high-frequency oscillatory power at a constant power output from the chip 102: Tian' 315900 20 200541202 _, that is, semiconductor laser Feedback control of chip 1G2. Here, it is necessary to have a circuit for the following reasons. Although it is necessary to set the voltage signal level output by the optical pickup 200 at a predetermined level, the power of the laser beam output from the semiconductor laser chip 102 is individual difference and is sensitive to temperature changes. When the semiconductor laser chip 时 performs the same control, the power of the laser beam is not constant, so it is impossible to keep the output level of the electrical signal constant. ^ On the other hand, the high-frequency oscillation circuit 100 is as described in the first and second embodiments. The amplitude of the A output current can be added even at high oscillation frequencies, so the semiconductor laser chip 102 can stably emit a laser beam. . Fig. 5 (b) shows the configuration of the frequency conversion circuit 202 in the application example of the high-frequency oscillation circuit of the second embodiment. The frequency conversion circuit 202 includes a high-frequency oscillation circuit 100, a multiplication circuit 122, a band-pass filter (BPF, Bandpass Fi Iter) 124, and an amplifier 126. Frequency conversion, channel 202 is in the communication device, which converts the signal to be sent into the signal needed for transmission. More specifically, frequency conversion is performed in a wireless transmission device to convert a base frequency signal to be transmitted or the base frequency signal to a frequency conversion into an intermediate frequency signal into a wireless frequency signal. The flood number generating unit 120 generates a signal to be transmitted as a baseband signal, and converts the frequency of the baseband signal into an intermediate frequency. The frequency oscillating circuit 100 inputs a voltage according to a wireless frequency used for transmission and outputs a signal of a wireless frequency. The multiplication circuit 122 performs frequency conversion on the signal of the intermediate frequency by using the signal of the wireless frequency. In addition, BPF 124 reduces the influence of high harmonics generated by frequency conversion. The amplifier 126 amplifies the output signal of the BPF 124 to a predetermined power-so as to be able to transmit in a wireless transmission path. -Here, as shown in the first and second embodiments, the high-frequency oscillating circuit 100 can output a large current even at a high oscillating frequency, so the amplifier 126 can stably output a signal of a wireless frequency. FIG. 5 (c) shows the configuration of the PLL 204 in the application example of the high-frequency oscillation circuit 100_ of the third embodiment. The PLL 204 includes a high-frequency oscillation circuit 100, a phase comparator 150, a loop filter 152, and a frequency divider 154. The phase comparator 150 compares the phase and frequency of the reference clock signal input from the outside with the reference clock signal input from the frequency state 15 4 and outputs a DC signal proportional to the difference. The loop filter 152 removes high frequency components of the input signal and outputs a control voltage. High-frequency oscillation circuit 丨 〇〇 Outputs the clock signal according to the frequency of the input control voltage. Here is the output clock signal with a frequency N times the frequency of the reference clock signal. The output clock number is divided by the frequency divider 15 into 4 / N, and is input to the phase comparator 150 as a reference clock signal. According to this embodiment, a high-frequency oscillation circuit that can increase the amplitude of an output current even at a high oscillation frequency and can achieve a low power consumption operation at a low oscillation frequency can be applied to various devices and LSIs. In addition, the correspondence relationship between the present invention and the configuration of the embodiment is exemplified. The "differential type vibration exhaustion signal generating circuit" corresponds to the variable current source 72 of the voltage-controlled current source 5 8 and the transistor Tr1, the transistor Tr3 315900 22 200541202 and the signal oscillation circuit 60 in the current mirror circuit. The "differential amplifier" corresponds to the differential amplifier 52. The “conversion amplifier circuit” corresponds to the conversion amplifier circuit 54. "Frequency-dependent adjustment circuit" is the transistor Tr27, the transistor Tr2, the transistor Tr28, and the transistor Tr30 in the current mirror circuit of the current mirror circuit corresponding to the voltage-controlled current source 58 and the adder 56. . The "differential ring oscillator" corresponds to the first inverter 74, the second inverter 76, the third inverter 78, and the fourth inverter 80 in the signal oscillation circuit 60. The "driving circuit" corresponds to the transistor Tr4 to the transistor Tr4 in the two current mirror circuits of the signal oscillating circuit 60. The "differential oscillation signal generating circuit" corresponds to the variable current source 72 of the voltage-controlled current source 58 and the transistor Trl, the transistor Tr3, and the signal oscillation circuit 60 in the current mirror circuit. The "differential amplifier" corresponds to the differential amplifier 52. The "conversion amplifier circuit" corresponds to the conversion amplifier circuit 54. The “setting circuit” corresponds to the constant current source 70. The "output-dependent adjustment circuit" corresponds to the transistor Tr41, the transistor Tr31, and the transistor Tr29 in the current mirror circuit of the constant current source 70 and the adder 56. The present invention has been described based on the embodiments. This embodiment is merely an example, and those skilled in the art will understand that various combinations of the constituent elements and processing procedures of these embodiments may have various modifications, and that each modification is also within the scope of the present invention. In the second embodiment, the differential amplifier 52 is composed of two differential amplifiers. However, it is not limited to this, and it may be constituted by, for example, one differential amplifier or three or more differential amplifiers. According to this modification, the amplitudes of the first amplified oscillation signal 314 and the second amplified oscillation signal 316 can be changed. Also 23 315900 The examples are described above, but it should be understood that the scope of the patent application scope should be within the scope of the present invention.

200541202 即,只要設有依照從差動放大器52輪出之第_放大振4訊 號314與第二放大振盡訊號316戶斤要求之值的數量之差動 放大器即可。 雖本發明已藉由例示的具體 熟悉該項技術者在不脫離本發明 圍的情況下所做的各種改變及置 圍内。 【圖式簡單說明】 第1圖係顯示第一實施形態之高頻振盪電路 圖〇 第2圖係顯示第1圖之放大器的輸出訊號之圖 第3圖係顯示經第1圖之轉換放大電路而從 得到的輸出電流之圖。 〜^轉換 第4圖係顯示第二實施形態之高頻振盪電路之 第5圖(a)至(c)係顯示第三實施形態之高頻振 之適用例之圖。 【主要元件符號說明】 圖。 盪電路 50 54 58 626668 70 74 電壓控制型振盪電路 轉換放大電路 電壓控制電流源 第一開關電路 第一電流值轉換放大電路 第二電流值轉換放大電路 定電流源 第一反相器 52 差動放大器 5 6 加法器 60 信號振盪電路 64 第二開關電路 72 可變電流源 76 第二反相器 3】5900 24 200541202 78 第三反相器 100高頻振盪電路 104監視用光電二極體 108受光用光電二極體 122乘法電路 126放大器 152迴路濾波器 2 0 0光拾訊器 204鎖相迴路(PLL) 308振盪器驅動電流 312第二源振盪訊號 316第二放大振盪訊號 320第一電流振盪訊號 324差動放大器驅動電流 328轉換用等效電流 80第四反相器 102半導體雷射晶片 106 APC電路 120訊號產生部 124帶通濾波器(BPF) 150相位比較器 154分頻器 202頻率轉換電路 306控制電壓 310第一源振盈訊號 314第一放大振蓋訊號 318轉換用定電流 3 2 2苐_電流振盈訊號 326振盪器等效電流 315900 25200541202 That is, as long as the differential amplifier is provided in accordance with the required value of the _amplified vibration signal 4 314 and the second amplified vibration exhaustion signal 316 from the differential amplifier 52. Although the present invention has been exemplified by those skilled in the art without departing from the scope and scope of the present invention, those skilled in the art can make various changes. [Brief description of the diagram] Fig. 1 is a diagram showing a high-frequency oscillation circuit of the first embodiment. Fig. 2 is a diagram showing an output signal of the amplifier of Fig. 1. Fig. 3 is a diagram showing a conversion amplifier circuit of Fig. 1. A graph of the resulting output current. ~ ^ Conversion Fig. 4 is a diagram showing a high-frequency oscillation circuit of the second embodiment, and Figs. 5 (a) to (c) are diagrams showing application examples of the high-frequency oscillation of the third embodiment. [Description of main component symbols] Figure. Oscillation circuit 50 54 58 626668 70 74 Voltage-controlled oscillation circuit Conversion amplifier circuit Voltage control current source First switching circuit First current value conversion amplifier circuit Second current value conversion amplifier circuit Constant current source First inverter 52 Differential amplifier 5 6 adder 60 signal oscillation circuit 64 second switching circuit 72 variable current source 76 second inverter 3] 5900 24 200541202 78 third inverter 100 high-frequency oscillation circuit 104 monitoring photodiode 108 for light receiving Photodiode 122 Multiplying circuit 126 Amplifier 152 Loop filter 2 0 0 Optical pickup 204 Phase-locked loop (PLL) 308 Oscillator drive current 312 Second source oscillation signal 316 Second amplified oscillation signal 320 First current oscillation signal 324 Differential amplifier drive current 328 Conversion equivalent current 80 Fourth inverter 102 Semiconductor laser chip 106 APC circuit 120 Signal generation unit 124 Band-pass filter (BPF) 150 Phase comparator 154 Frequency divider 202 Frequency conversion circuit 306 control voltage 310 first source vibrating signal 314 first amplified vibrating cover signal 318 constant current for conversion 3 2 2 苐 _current vibrating signal 326 oscillator equivalent 31,590,025

Claims (1)

200541202 十、申請專利範圍: 1 · 一種振盪電路,其特徵為包含·· 可設定振盪訊號之振盪頻率,並將設定過振盪頻率 之前述振盪訊號作為差動訊號而輸出之差動型振盪訊 號產生電路; 將前述作為差動訊號而輸出之振盪訊號予以差動 放大之差動放大器; 將前述經差動放大之振盪訊號之電壓轉換為電流 並放大之轉換放大電路;以及 依照前述差動型振盪訊號產生電路之設定内容,調 整前述差動放大器的動作特性之頻率依存型調整電 路。 2·如申請專利範圍第i項之振盪電路,其中,前述差動型 振盪訊號產生電路中,前述振盪訊號之振盪頻率經提高 叹疋之情形,前述頻率依存型調整電路係提高前述差動 放大器的動作速度。 3·如申請專利範圍第1項之振盪電路,其中,前述差動型 振盪訊號產生電路係包含: 差動型環形振盡器;以及 使依據别述設定内容之驅動電流流至前述差動型 環形振盈器之驅動電路, 前述頻率依存型調整電路係使依照前述驅動電流 之電流流入前述差動放大器’而使前述差動放大器動 315900 26 200541202 4· 一種振盪電路,其特徵為包含·· 將預定的振盪訊號作為差動訊號而輸出之差動型 振盪訊號產生電路; 將前述作為差動訊號而輸出之振盪訊號予以差動 放大之差動放大器; 將雨述經差動放大之振盪訊號的電壓轉換為電流 並放大之轉換放大電路; 口又疋4述轉換放大電路的轉換特性之設定電路;以 ’調整前述差動放大 ^依照前述設定電路之設定内容,調 器的動作特性之輸出依存型調整電路200541202 10. Scope of patent application: 1. An oscillating circuit, which is characterized by including: · The oscillation frequency of the oscillation signal can be set, and the aforementioned oscillation signal with the oscillation frequency set as a differential signal is output as a differential signal. A circuit; a differential amplifier that differentially amplifies the aforementioned oscillating signal output as a differential signal; a conversion amplifier circuit that converts the voltage of the aforementioned differentially amplified oscillating signal into a current and amplifies it; and in accordance with the aforementioned differential type oscillation The setting content of the signal generating circuit is a frequency-dependent adjustment circuit for adjusting the operation characteristics of the differential amplifier. 2. If the oscillating circuit according to item i of the patent application scope, wherein in the aforementioned differential-type oscillating signal generating circuit, the oscillating frequency of the aforementioned oscillating signal is increased, and the aforementioned frequency-dependent adjusting circuit improves the aforementioned differential amplifier Speed of action. 3. The oscillating circuit according to item 1 of the scope of patent application, wherein the aforementioned differential-type oscillating signal generating circuit includes: a differential-type ring-shaped oscillator; and a driving current flowing to the aforementioned differential type according to the setting content of the other type The driving circuit of the ring oscillator, the aforementioned frequency-dependent adjustment circuit causes a current according to the aforementioned driving current to flow into the aforementioned differential amplifier, and thereby causes the aforementioned differential amplifier to move 315900 26 200541202 4 · An oscillation circuit including ·· A differential oscillation signal generating circuit that outputs a predetermined oscillation signal as a differential signal; a differential amplifier that differentially amplifies the aforementioned oscillation signal that is output as a differential signal; and a differentially amplified oscillation signal The conversion amplifier circuit that converts the voltage into current and amplifies it; the circuit for setting the conversion characteristics of the conversion amplifier circuit is described; the output of the operating characteristics of the regulator is adjusted by 'adjusting the aforementioned differential amplifier ^ according to the setting content of the aforementioned setting circuit. Dependent adjustment circuit ’其中,前述設定電 L換為電流之電流經 丨整電路係提高前述 如申請專利範圍第4項之振後電路,其 路中,用以將箭A 315900’Among them, the current set by the above-mentioned set electric current L is changed to the current through the whole circuit to improve the aforementioned post-oscillation circuit such as the scope of the patent application No. 4 in which the arrow A 315900 is used.
TW93115612A 2004-06-01 2004-06-01 Oscillator TWI329976B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93115612A TWI329976B (en) 2004-06-01 2004-06-01 Oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93115612A TWI329976B (en) 2004-06-01 2004-06-01 Oscillator

Publications (2)

Publication Number Publication Date
TW200541202A true TW200541202A (en) 2005-12-16
TWI329976B TWI329976B (en) 2010-09-01

Family

ID=45074534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93115612A TWI329976B (en) 2004-06-01 2004-06-01 Oscillator

Country Status (1)

Country Link
TW (1) TWI329976B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466436B (en) * 2011-08-29 2014-12-21 Univ Nat Chiao Tung Ring oscillator

Also Published As

Publication number Publication date
TWI329976B (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US7205855B2 (en) Oscillator that oscillates signals of a predetermined frequency
US6664861B2 (en) Method and apparatus for stable phase-locked looping
TWI232023B (en) Voltage control oscillator
JP7000550B2 (en) Low power crystal oscillator
JP5329646B2 (en) Digital frequency / phase locked loop
JP3961458B2 (en) Optical disk device
TW201240330A (en) Oscillator and control circuit thereof
US6194973B1 (en) Oscillator with automatic gain control
TW200541202A (en) Oscillator
TW200307407A (en) Controlling output power in cellular telephones
JP3813137B2 (en) OSCILLATOR CIRCUIT, INFORMATION RECORDING / REPRODUCING DEVICE USING SAME, AND WIRELESS TRANSMITTER
JP3744918B2 (en) OSCILLATOR CIRCUIT, INFORMATION RECORDING / REPRODUCING DEVICE USING SAME, AND WIRELESS TRANSMITTER
JP4114753B2 (en) OSCILLATOR CIRCUIT, INFORMATION RECORDING / REPRODUCING DEVICE USING SAME, AND WIRELESS TRANSMITTER
US7362189B2 (en) Oscillator circuit with regulated V-I output stage
JP2006121752A (en) Oscillation circuit, information recording and reproducing device utilizing the same, and radio transmission apparatus
TWI333334B (en) Oscillator
US20050275467A1 (en) Oscillator
KR20050119417A (en) Oscillator
KR20050119418A (en) Oscillator
JP2003229764A (en) Semiconductor integrated circuit
JP6823114B1 (en) Oscillator circuit
CN112910460A (en) Phase-locked loop and related device
TWI230502B (en) VCO circuit with low voltage control and capable of effectively increasing useful oscillation frequency range
JP2013017086A (en) Slew rate control device and slew rate control method
JP2002246882A (en) Ring oscillator