JP2006075804A - 下水処理場運用支援装置 - Google Patents

下水処理場運用支援装置 Download PDF

Info

Publication number
JP2006075804A
JP2006075804A JP2004265638A JP2004265638A JP2006075804A JP 2006075804 A JP2006075804 A JP 2006075804A JP 2004265638 A JP2004265638 A JP 2004265638A JP 2004265638 A JP2004265638 A JP 2004265638A JP 2006075804 A JP2006075804 A JP 2006075804A
Authority
JP
Japan
Prior art keywords
control
sewage treatment
aeration
series
water quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004265638A
Other languages
English (en)
Inventor
Yasuaki Matsumoto
本 泰 明 松
Takumi Obara
原 卓 巳 小
Naoto Yoshizawa
澤 直 人 吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004265638A priority Critical patent/JP2006075804A/ja
Publication of JP2006075804A publication Critical patent/JP2006075804A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

【課題】 処理水の水質を維持し、かつ、運用コストを最低に抑える制御支援情報をオペレータに提示する下水処理場運用支援装置を提供する。
【解決手段】 処理方式が同じである複数系列の下水処理プロセスを有し、各系列毎に、水質センサの計測値が制御目標値に一致するように、プロセスの状態を変化させるアクチュエータを制御するに当たり、処理水の水質を第2の水質センサ85〜87で計測すると共に、下水処理プロセスの状態を状態計測手段81〜84で計測し、運用コスト評価関数に従って、第2の水質センサで計測された処理水の水質及び状態計測手段で計測された下水処理プロセスの状態に対応する前記アクチュエータの運用コストを運用コスト評価関数演算手段71aで演算し、演算された各系列での運用コストを運用コスト比較手段71bで比較し、その比較結果により、各系列におけるアクチュエータの制御に関する支援情報を制御支援手段72aが画面に表示する。
【選択図】 図2

Description

本発明は、下水処理場の運用を支援する下水処理場運用支援装置に関する。
下水処理場では活性汚泥法と呼ばれるプロセスにより主に有機物を除去していたが、近年、湖沼、湾などの閉鎖性水域で富栄養化が進行してきていることから、有機物の除去だけでなく富栄養化の原因物質である窒素、リンの除去をも行う下水高度処理の要求が増大してきている。有機物、窒素及びリンを同時に除去する代表的なプロセスとして、一般にAOプロセスと称されている、嫌気−無酸素−好気の池を持つプロセスがあげられる。
図5は、AOプロセス及びこれを制御する従来の下水処理場水質制御装置の構成を示すブロック図である(例えば、下記の特許文献1参照)。同図において、被処理水としての下水は水配管50を介して最初沈殿地2に導かれ、その流入流量を制御するために流入ポンプ1が設けられている。この最初沈殿地2には、水配管51を介して、嫌気槽10が接続されている。そして、この嫌気槽10には無酸素槽11及び好気槽12が順次に接続されている。好気槽12の被処理水の流出側には、水配管52を介して、最終沈殿池13が接続され、この最終沈殿池13から、水配管60を介して、処理水が排水される。
ここで、好気槽12には、その内部に曝気を供給する曝気装置9が設けられている。また、好気槽12から無酸素槽11に被処理水を還流させるために、これらの間に水配管53によって接続された循環ポンプ14と、最終沈殿池13の汚泥を嫌気槽10に返送するために、これらの間に水配管54で接続された返送ポンプ15とが設けられている。さらに、最終沈殿池13から余剰の汚泥を引き抜くために、その底部に水配管55で接続された余剰ポンプ17と、最初沈殿地2から汚泥を引き抜くために、その底部に水配管58で接続された初沈引抜ポンプ18とが設けられている。
一方、曝気装置9を制御するために、最初沈殿地2と嫌気槽10とを接続する水配管51の経路に、被処理水の流量を計測する流量計3と、被処理水のアンモニア濃度を検出するアンモニア濃度計5とが設けられ、それぞれ信号線3a、5aによって負荷量演算部6に接続されている。負荷量演算部6は被処理水の汚濁負荷量を演算して演算結果を出力するもので、その出力端が信号線6aによって制御部7に接続されている。また、汚濁負荷量の基準値を設定する制御目標値設定器8が信号線8aによって制御部7に接続されている。制御部7は信号線7aによって曝気装置9に接続され、汚濁負荷量がその基準値に一致するように曝気装置9を制御するものである。
次に、図5に示したプロセス及び制御装置の動作について以下に説明する。被処理水としての下水は、水配管50を介して最初沈殿地2に流入し、その後、最初沈殿地2から、水配管51を介して嫌気槽10に流出する。嫌気槽10で処理された被処理水は、無酸素槽11に流出し、無酸素槽11において無酸素処理された後、好気槽12に流出する。
また、好気槽12内の被処理水に対して曝気装置9から酸素が供給されて被処理水は好気処理される。好気槽12内の被処理水は、水配管52を介して最終沈殿池13に流入し、この最終沈殿池13内において沈殿処理される。最終沈殿池13内の被処理水は、処理水となって水配管60により外部へ排出される。最終沈殿池13の一部の汚泥は、水配管54を介して返送ポンプ15により嫌気槽10内へ戻され、余剰の汚泥は、水配管55を介して余剰ポンプ17により引き抜かれて外部に排出される。さらに、好気槽12内の被処理水の一部は、水配管53を介して循環ポンプ14により無酸素槽11へ戻される。最初沈殿地2にて沈殿した汚泥は、水配管58を介して初沈引抜ポンプ18により外部に排出される。
この間、水配管51に設けられた流量計3は、水配管51中を流れる被処理水の流量を計測し、その計測信号を、信号線3aを介して負荷量演算部6に送信する。また、水配管51に設けられたアンモニア濃度計5は、水配管51中を流れる被処理水中のアンモニア濃度を計測し、その計測信号を信号線5aを介して負荷量演算部6に送信する。
負荷量演算部6は、流量計3の計測信号とアンモニア濃度計5の計測信号とに基づいて、流量とアンモニア平均濃度とを乗じて汚濁負荷量を演算し、演算した汚濁負荷量を、信号線6aを介して制御部7に送信する。制御目標値設定器8には、アンモニア平均濃度と被処理水の平均流量とが入力され、制御目標値設定器8は入力されたアンモニア平均濃度と被処理水の平均流量とを乗じて、汚濁負荷量を演算し、この汚濁負荷量を信号線8aを介して制御部7に送信する。
制御部7は、負荷量演算部6からの汚濁負荷量と制御目標値設定器8からの汚濁負荷量の基準値との偏差に基づいて、曝気装置9の曝気量目標値を演算し、この曝気量目標値を、信号線7aを介して曝気装置9に送信する。曝気装置9は、曝気量目標値に従って好気槽12に空気を送り込む。
この水質制御装置によれば、汚濁負荷量の基準値として、被処理水のアンモニアの平均濃度に被処理水の平均流量を乗じた値を用いていることから、過不足なく硝化反応に必要な曝気を好気槽12に送ることができる。
特開2003−136086号公報
上述した従来の下水処理場水質制御装置は、被処理水の水質を評価する基準としてアンモニア濃度を用いているが、これに代えて、溶存酸素濃度、窒素成分濃度、リン成分濃度等を用いることもある。そこで、例えば、溶存酸素濃度を水質評価の基準とする場合には、アンモニア濃度計5の代わりに溶存酸素濃度計を用い、制御目標値設定器8には溶存酸素の平均濃度を入力すれば良い。このように、アンモニア濃度の代わりに溶存酸素濃度を用いた場合、制御部7で演算される曝気量の目標値も変わる可能性がある。
一般に、下水処理場においては、曝気装置の運用コストが下水処理場の運用コストの40〜60%を占めると言われている。したがって、水質を評価する基準がアンモニア濃度、溶存酸素濃度、窒素成分濃度、リン成分濃度のいずれであるかによって運用コストは変化する。
また、AOプロセスにおいては、循環ポンプ14による循環量制御、返送ポンプ15による返送量制御、余剰ポンプ17による余剰汚泥量制御も行われており、それらの制御量が変化すると運用コストも変化する。さらに、曝気装置を制御する制御パラメータの設定状態によっても運用コストが変化する。
このように、水質評価の基準、ポンプの制御量、制御パラメータ等の相異によって運用コストが大きく変化するにも拘わらず、従来の下水処理場水質制御装置は、被処理水の水質を維持するに当たって、運用コストを最低に抑えるための総合的な評価を行うものではなかった。
本発明は上記の事情を考慮してなされたもので、その目的は高度処理プロセスを有する下水処理場において、処理水の水質を維持し、かつ、運用コストを最低に抑える制御支援情報をオペレータに提示する下水処理場運用支援装置を提供することにある。
本発明は、処理方式が同じである複数系列の下水処理プロセスを有し、各系列毎に、被処理水の水質を水質センサで計測すると共に、被処理水の水質の制御目標値を設定手段で設定し、水質センサの計測値が設定手段の制御目標値に一致するように、制御手段がプロセスの状態を変化させるアクチュエータを制御する下水処理場の運用を支援するもので、下水処理プロセスによって処理された処理水の水質を計測する第2の水質センサと、下水処理プロセスの状態を計測する状態計測手段と、下水処理プロセスによる処理水の水質及び下水処理プロセスの状態を因子とする運用コスト評価関数に従って、第2の水質センサで計測された処理水の水質及び状態計測手段で計測された下水処理プロセスの状態に対応するアクチュエータの運用コストを演算する運用コスト評価関数演算手段と、演算された各系列での運用コストを比較する運用コスト比較手段と、運用コスト比較手段の比較結果により、各系列におけるアクチュエータの制御に関する支援情報を画面に表示する制御支援手段とを備えた下水処理場運用支援装置である。
本発明は上記のように構成したことにより、高度処理プロセスを有する下水処理場において、処理水の水質を維持し、かつ、運用コストを最低に抑える制御支援情報をオペレータに提示する下水処理場運用支援装置が提供される。
〔第1の実施の形態〕
図1は本発明に係る下水処理場運用支援装置を適用するプロセスと併せてアクチュエータ及びこれを制御するためのセンサの配置例を示した図である。同図において、下水処理場に流入する被処理水としての下水は、1号流入ポンプ1、2号流入ポンプ101、3号流入ポンプ201によってそれぞれ系列1、系列2、系列3に供給される。各系列に流入する下水は等量となるように1号流入ポンプ1、2号流入ポンプ101、3号流入ポンプ201は制御される。
系列1、系列2、系列3は互いに等しい処理能力を持ち、同一に構成されるが、特に区別する必要のある場合、系列1を構成する要素には「1号」を、系列2を構成する要素には「2号」を、系列3を構成する要素には「3号」を付して説明する。なお、1つの系列内の構成及び動作についてはこれらの号番号を省略することとし、詳細が示された系列1について以下に説明する。
系列1において、流入ポンプ1から供給される下水は最初沈殿地2に導かれる。この最初沈殿地2には、水配管51を介して、嫌気槽10が接続されている。そして、この嫌気槽10には無酸素槽11及び好気槽12が順次に接続されている。好気槽12の被処理水の流出側には、水配管52を介して、最終沈殿池13が接続され、この最終沈殿池13から、水配管60を介して、処理水が排水される。
このうち、好気槽12には、その内部に曝気を供給する曝気装置9が設けられている。また、好気槽12から無酸素槽11に被処理水を還流させるために、これらの間に水配管53によって接続された循環ポンプ14と、最終沈殿池13の汚泥を嫌気槽10に返送するために、これらの間に水配管54で接続された返送ポンプ15とが設けられている。さらに、最終沈殿池13から余剰の汚泥を引き抜くために、その底部に水配管55で接続された余剰ポンプ17と、最初沈殿地2から汚泥を引き抜くために、その底部に水配管58で接続された初沈引抜ポンプ18とが設けられている。
ここで、1号曝気装置9を制御するために1号好気槽12に1号アンモニア濃度計25及び1号溶存酸素濃度計26が設けられ、2号曝気装置109を制御するために2号アンモニア濃度計125及び2号溶存酸素濃度計126が設けられ、3号曝気装置209を制御するために3号アンモニア濃度計225及び3号溶存酸素濃度計226が設けられている。各系列のアンモニア濃度計及び溶存酸素濃度計は流れの方向で互いに同等の位置に設置されている。
また、運用コストを演算するために、曝気装置9の曝気風量を測定して計測信号aを出力する曝気風量計81、循環ポンプ14の循環流量を測定して計測信号bを出力する循環流量計82、返送ポンプ15の返送流量を測定して計測信号cを出力する返送流量計83、余剰ポンプ17により排出される余剰汚泥を測定して計測信号dを出力する余剰汚泥計84、1号最終沈殿地13から排出される処理水の生物学的酸素要求量(BOD)を測定して計測信号eを出力するVV計85、全リン濃度を測定して計測信号fを出力するTP計86、全窒素濃度を測定して計測信号gを出力するTN計87がそれぞれ設けられている。
系列2及び系列3においてもこれと同様な測定を行う計測器が設けられている。なお、アンモニア濃度計25及び溶存酸素濃度計26が本発明の水質センサに対応し、曝気風量計81、循環流量計82、返送流量計83及び余剰汚泥計84が本発明の状態計測手段に対応し、VV計85、TP計86及びTN計87が本発明の第2の水質センサに対応している。
図2は系列1、系列2、系列3の各曝気装置を制御する制御系統と、下水処理場運用支援装置とを併せて示したブロック図である。このうち、制御系統は、1〜3号曝気装置9,109,209を制御する1〜3号アンモニアコントローラ30,130,230及び1〜3号DOコントローラ40,140,240と、アンモニア濃度の目標値を設定する1〜3号制御目標値設定器31,131,231と、溶存酸素濃度を設定する1〜3号制御目標値設定器41,141,241とを備えている。
このうち、1〜3号アンモニアコントローラ30,130,230には、それぞれ、信号線25a,125a,225aによって1〜3号アンモニア濃度計25,125,225が接続され、信号線25b,125b,225bによって1〜3号曝気装置9,109,209が接続され、さらに、信号線31a,131a,231aによって1〜3号制御目標値設定器31,131,231が接続され、信号線41a,141a,241aによって1〜3号制御目標値設定器41,141,241が接続されている。
なお、制御情報設定・記憶部74には、アンモニア濃度一定制御であるか溶存酸素濃度一定制御であるかの制御モード情報、コントローラの制御パラメータ情報及び制御目標値情報が保存されており、オペレータがこれらの情報を選択して1〜3号制御目標値設定器31,131,231及び1〜3号制御目標値設定器41,141,241、1〜3号アンモニアコントローラ30,130,230及び1〜3号DOコントローラ40,140,240に入力するように構成されている。
次に、下水処理場運用支援装置は、系列1〜3の各計測器の計測信号a〜gを入力し、一定時間内の各系列毎の水質及び制御状態を因子とする運用コスト評価関数に従って、計測信号a〜gに対応する運用コストを演算して演算結果を支援情報として提供する運用コスト評価関数演算部71a、このコスト評価関数演算部71aの演算結果の比較を行い、他の系列と比較して運用コストが嵩む系列に関して制御モードや制御パラメータを変更する旨の支援情報を提供する運用コスト比較部71bを備えた運用コスト評価関数演算装置71と、提供された支援情報を制御支援部72aに表示してオペレータ73に提供する制御支援情報表示装置72とを備えている。
上記のように構成された第1の実施の形態の動作のうち、AOプロセスの動作は背景技術の欄で説明したと同様であるので省略し、制御モードに対応する制御系の動作及び下水処理場運用支援に関する部分を中心にして以下に説明する。
先ず、制御モードがアンモニア濃度一定制御であれば、1〜3号アンモニア濃度計25,125,225の各検出値がそれぞれ1〜3号制御目標値設定器31,131,231の制御目標値になるように1〜3号アンモニアコントローラ30,130,230がそれぞれ1〜3号曝気装置9,109,209の風量目標値を演算する。1〜3号曝気装置9,109,209は、演算された風量目標値になるように、風量調節弁(図示せず)の開度調節及び曝気装置(ブロワ)のインバータ制御により風量を調節する。
次に、制御モードが溶存酸素濃度一定制御であれば、1〜3号溶存酸素濃度計26,126,226の各検出値がそれぞれ1〜3号制御目標値設定器41,141,241の制御目標値になるように1〜3号DOコントローラ40,140,240が1〜3号曝気装置9,109,209の風量目標値を演算する。1〜3号曝気装置9,109,209は、演算された風量目標値になるように、風量調節弁の開度調節及び曝気装置のインバータ制御により風量を調節する。
上述したように、本実施の形態ではアンモニア濃度一定制御と溶存酸素濃度一定制御とは互いに同等な制御系であるため、アンモニア濃度一定制御について説明すれば、これをアンモニア濃度一定制御の用語に置き換えれば済むため、以下、アンモニア濃度を制御するものとして説明する。アンモニア濃度一定制御中、各系列の曝気風量計81、循環流量計82、返送流量計83及び余剰汚泥計84の各計測信号a,b,c,dと、第2の水質センサとしてのVV計85、TP計86及びTN計87の計測信号e,f,gと、各コントローラ30,130,230で演算された風量目標値とが運用コスト評価関数演算装置71に伝送される。
運用コスト評価関数演算装置71においては、運用コスト評価関数演算部71aが各系列毎に、例えば、以下に示す運用コスト評価関数の演算を一定時間ごとに行う。
J=EC+OC …(1)
ここで、ECは単位流量当たりの放流水質コストであり、OCは単位流量当たりの運用コストであって、例えば、次式で定義する。
Figure 2006075804
ただし、
BOD:生物学的酸素要求量[m/d]
TN:全窒素濃度[m/d]
TP:全リン濃度[m/d]
ef:処理水の放流水量[m/d]
:曝気風量[m/d]
circ:循環流量[m/d]
ret:返送流量[m/d]
ex:余剰汚泥引抜量[m/d]
pac:凝集剤投入量[m/d]
〜w:コスト換算係数に対応する重み係数
である。なお、重み係数w〜wはポンプやプロワ等の機器の動力費により決められる。このように定義した運用コスト評価関数を予め定めた演算周期により、各系列毎に演算し、その結果を制御支援情報表示装置72に伝送して制御支援部72aに表示する。
また、運用コスト比較部71bは各系列の運用コスト評価関数演算結果の比較を行い、運用コスト評価関数演算結果が他の系列と比較して劣る系列に関しては、制御モード及び制御パラメータ(目標値、比例ゲイン、積分定数、制御周期等)の少なくとも一方を変更する旨の支援情報を制御支援情報表示装置72に伝送して制御支援部72aに表示し、画面を通してオペレータ73に提供する。オペレータ73は支援情報に基づいて制御情報設定・記憶部74の出力状態に介入して、制御モードや制御パラメータを変更する。
かくして、第1の実施の形態によれば、複数系列の高度処理プロセスを有する下水処理場において、最適な制御を行えうる制御支援情報をオペレータに提供することができる。
〔第2の実施の形態〕
図3は本発明に係る下水処理場運用支援装置を適用するプロセスにおける他の制御方法に対応するセンサの配置例を示した図であり、図中、図1と同一の要素には同一の符号を付してその説明を省略する。ここでは、図1中の1〜3号アンモニア濃度計25,125,225を除去し、これらの濃度計の代わりに、1〜3号流入ポンプ1,101,201の前段の下水全体の流入経路に、流入流量計3及び流入全窒素計4を設置し、流入流量の計測値と流入全窒素の計測値の積である窒素負荷量情報を各系列のアンモニアコントローラ30,130,230(図面の簡単化のために、アンモニアコントローラ130,230を省略する)に取り込み各系列の曝気風量を演算するように構成したものである。ここで、1号アンモニアコントローラ30においては次式の演算を行う。
Figure 2006075804
ただし、
Qair1(t):時刻tにおける1号曝気風量目標値[m/min]
Aair1(t):1号窒素負荷倍率異数演算値[m/g]
TN(t):全窒素計計測値[mg/L]
Qin(t):流入流量計計測値[m/min]
Aair01:1号窒素負荷空気倍率係数初期値
Kp:比例ゲイン[m/g]
T1:積分定数[min]
ΔT:制御周期[min]
et:偏差[mg/L]
SVNH(t):1号アンモニア目標値[mg/L]
PVNH(t):アンモニア計計測値[mg/L]
である。
なお、各系列の流入流量は均等になるように制御されるので、いずれか1つの系列の流入流量及び流入窒素計を設けて、(4)式の1/3倍の演算をしないで曝気風量目標値を演算するようにしても良い。この場合、流入流量及び流入窒素計の設置位置は流入ポンプの前段に限らず、最初沈殿地の前後の水配管あるいは最初沈殿地内でも良い。
かくして、第2の実施の形態によれば、第1の実施の形態と同様な効果が得られる他、流入する被処理水の窒素負荷量情報を取り込むため、アンモニア制御の目標値追従性が高まり、運用コストの評価関数が小さくなる可能性もある。
〔第3の実施の形態〕
図4は本発明に係る下水処理場運用支援装置を適用するプロセスの制御系統の他の構成例を示したブロック図であり、図中、図2と同一の要素には同一の符号を付してその説明を省略する。ここでは、1号アンモニアコントローラ30と1号曝気装置9との間に、1号溶存酸素濃度計26の計測信号に基づいてアンモニア濃度一定制御に制限をかける1号DOリミッタ装置47を設け、同様に、2号アンモニアコントローラ130と2号曝気装置109との間に、2号溶存酸素濃度計126の計測信号に基づいてアンモニア濃度一定制御に制限をかける2号DOリミッタ装置147を設け、3号アンモニアコントローラ230と3号曝気装置209との間に、3号溶存酸素濃度計226の計測信号に基づいてアンモニア濃度一定制御に制限をかける3号DOリミッタ装置147を設けた点が図2と構成を異にし、これ以外は図2と同一に構成されている。なお、図2中の下水処理場運用支援装置は図面の複雑化を回避するために省略している。
以下、図4に示した装置の動作を説明する。1〜3号DOリミッタ装置47,147,247には溶存酸素濃度の下限値及び上限値が設定されている。これら1〜3号DOリミッタ装置47,147,247は、1〜3号溶存酸素濃度計26,126,226の計測値が上、下限値の範囲を逸脱した場合には、次の(7),(8),(10),(11)式に示すようにその下限値又は上限値を目標値とした溶存酸素濃度一定制御に切り替わり、上、下限値を悦脱しないように動作する。これら1〜3号DOリミッタ装置47,147,247の演算式を以下に示す。
Figure 2006075804
ただし、
Q´airn(t):時刻tにおけるn号曝気風量目標出力値[(m/min]
Q´air0n:n号曝気風量初期値[(m/min]、
Qairn(t):時刻tにおけるn号曝気風量目標DOリミッタ装置入力値[m/min]
Kp:比例ゲイン[m/g・min]
TI:積分定数[min]
△t:制御周期[min]
e(t):偏差[mg/L]
DOmin:溶存酸素濃度下限値[mg/L]
DOmax:溶存酸素濃度上限値[mg/L]
PVO2n(t):n号溶存酸素濃度計計測値[mg/L]
n=1〜3
である。
なお、制御の切替にはチャタリングの発生が問題となるが、チャタリングに対しては、溶存酸素濃度計測値とアンモニア濃度計測値に関するヒステリシスなどを考慮して対策すればよい。
かくして、第3の実施の形態によれば、第1の実施の形態と同様な効果が得られる他、オペレータは制御支援情報表示装置によりリアルタイムで提供される情報から、最適な制御が行なわれていると推測される系列の制御状態を知ることにより、その他の系列で行なわれている曝気風量制御の制御モード、制御パラメータ、制御目標値等をリアルタイムで最適な値へ切換えることが可能となり、下水処理コストの削減や運転支援の精度向上が期待できる。
〔他の実施の形態〕
(1)本発明は上記の各実施の形態のようにAOプロセスに限らず、標準活性汚泥プロセス、循環式硝化脱窒プロセス、AOプロセス、担体投入型プロセス、ステップ流入プロセスなど曝気を行う下水処理プロセスであればどのようなプロセスにも適用可能である。
(2)本発明は上記の各実施の形態のように3系列に限らず、2系列以上であれば何系列の下水処理場にも適用することができる。
(3)曝気装置は上記の各実施の形態のように各系列に独立したものでなくとも、一つの曝気装置から複数の系列に空気を供給する装置で、その配管上の空気調整弁の制御を行い、曝気風量を調整するものでも良い。
(4)アンモニア計の設置位置は曝気を行っている好気槽のどの部分であっても良い。
(5)下水の流量は同量に制御する機能がなくても、単位処理水当りの運用コストを評価する機能を有するものであっても良い。
(6)運用コスト評価関数演算装置は、ポンプ、ブロワの電流計情報により、運用コストを評価する機能を有するものであっても良い。
(7)運用コスト評価関数演算装置は、ポンプ、ブロワの回転数情報により、運用コストを評価する機能を有するものであっても良い。
本発明に係る下水処理場運用支援装置を適用するプロセスと併せてアクチュエータ及びこれを制御するためのセンサの配置例を示した図。 図1に示したプロセスの複数系列の各曝気装置を制御する制御系統と、下水処理場運用支援装置とを併せて示したブロック図。 本発明に係る下水処理場運用支援装置を適用するプロセスにおける他の制御方法に対応するセンサの配置例を示した略図。 本発明に係る下水処理場運用支援装置を適用するプロセスの制御系統の他の構成例を示したブロック図。 Oプロセス及びこれを制御する従来の下水処理場水質制御装置の構成を示すブロック図。
符号の説明
1,101,201 1〜3号流入ポンプ
2 1号最初沈殿地
10 1号嫌気槽
11 1号無酸素槽
12 1号好気槽
13 1号最終沈殿池
14 1号循環ポンプ
15 1号返送ポンプ
17 1号余剰ポンプ
18 1号初沈引抜ポンプ
25,125,225 1〜3号アンモニア濃度計
26,126,226 1〜3号溶存酸素濃度計
30,130,230 1〜3号アンモニアコントローラ
31,131,231,41,141,241 1〜3号制御目標値設定器
40,140,240 1〜3号DOコントローラ
71 運用コスト評価関数演算装置
72 制御支援情報表示装置
74 制御情報設定・記憶部

Claims (6)

  1. 処理方式が同じである複数系列の下水処理プロセスを有し、各系列毎に、被処理水の水質を水質センサで計測すると共に、前記被処理水の水質の制御目標値を設定手段で設定し、前記水質センサの計測値が前記設定手段の制御目標値に一致するように、制御手段がプロセスの状態を変化させるアクチュエータを制御する下水処理場の運用を支援する下水処理場運用支援装置であって、
    前記下水処理プロセスによって処理された処理水の水質を計測する第2の水質センサと、
    前記下水処理プロセスの状態を計測する状態計測手段と、
    前記下水処理プロセスによる処理水の水質及び前記下水処理プロセスの状態を因子とする運用コスト評価関数に従って、前記第2の水質センサで計測された処理水の水質及び前記状態計測手段で計測された下水処理プロセスの状態に対応する前記アクチュエータの運用コストを演算する運用コスト評価関数演算手段と、
    演算された各系列での運用コストを比較する運用コスト比較手段と、
    前記運用コスト比較手段の比較結果により、前記各系列における前記アクチュエータの制御に関する支援情報を画面に表示する制御支援手段と、
    を備えた下水処理場運用支援装置。
  2. 前記系列がそれぞれ好気槽と、前記アクチュエータとして前記好気槽に曝気を供給する曝気装置とを含み、前記水質センサが前記好気槽のアンモニア濃度を計測するアンモニア濃度計でなり、前記制御手段は計測されたアンモニア濃度が設定された制御目標値に一致するように前記曝気装置を制御し、前記制御支援手段は前記曝気装置を制御する制御パラメータの変更に関する支援情報を画面に表示する、請求項1記載の下水処理場運用支援装置。
  3. 前記系列がそれぞれ好気槽と、前記アクチュエータとして前記好気槽に曝気を供給する曝気装置とを含み、前記水質センサが前記好気槽の溶存酸素濃度を計測する溶存酸素濃度計でなり、前記制御手段は計測された溶存酸素濃度が設定された制御目標値に一致するように前記曝気装置を制御し、前記制御支援手段は前記曝気装置を制御する制御パラメータの変更に関する支援情報を画面に表示する、請求項1記載の下水処理場運用支援装置。
  4. 前記系列がそれぞれ好気槽と、前記アクチュエータとして前記好気槽に曝気を供給する曝気装置とを含み、前記水質センサが前記好気槽の溶存酸素濃度を計測する溶存酸素濃度計及びアンモニア濃度を計測するアンモニア濃度計でなり、前記制御手段は計測された溶存酸素濃度が設定された制御目標値に一致するように前記曝気装置の曝気風量を制御する第1のコントローラ及び計測されたアンモニア濃度が設定された制御目標値と一致するように前記曝気装置の曝気風量を制御する第2のコントローラ、並びに前記第1及び第2コントローラのいずれを使用するかを選択する制御モード設定手段を有し、前記制御支援手段は各系列の制御モード及び制御パラメータの変更に関する支援情報を画面に表示する、請求項1記載の下水処理場運用支援装置。
  5. 前記系列がそれぞれ好気槽と、前記アクチュエータとして前記好気槽に曝気を供給する曝気装置とを含み、前記水質センサが複数系列の下水処理プロセスに流入する下水の流入量を計測する流入流量計及び全窒素を検出する全窒素計でなり、前記制御手段は流入流量の計測値と流入全窒素の計測値との積である窒素負荷量情報に基づいて、アンモニア濃度が設定された制御目標値に一致するように前記曝気装置を制御し、前記制御支援手段は前記曝気装置を制御する制御パラメータの変更に関する支援情報を画面に表示する機能を有する、請求項1記載の下水処理場運用支援装置。
  6. 前記第2のコントローラの出力経路に設けられ、前記溶存酸素計の計測値に基づいて溶存酸素濃度が所定の範囲を逸脱しないようにアンモニア窒素濃度の制御時の前記曝気装置の制御量に制限を加えるリミッタ装置を備えた、請求項4記載の下水処理場支援装置。
JP2004265638A 2004-09-13 2004-09-13 下水処理場運用支援装置 Pending JP2006075804A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265638A JP2006075804A (ja) 2004-09-13 2004-09-13 下水処理場運用支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265638A JP2006075804A (ja) 2004-09-13 2004-09-13 下水処理場運用支援装置

Publications (1)

Publication Number Publication Date
JP2006075804A true JP2006075804A (ja) 2006-03-23

Family

ID=36155701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265638A Pending JP2006075804A (ja) 2004-09-13 2004-09-13 下水処理場運用支援装置

Country Status (1)

Country Link
JP (1) JP2006075804A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108593A (ja) * 2007-10-30 2009-05-21 Toshiba Corp 水融通運用装置
JP2011183353A (ja) * 2010-03-11 2011-09-22 Hitachi Ltd 廃水処理装置及びその酸素供給量制御方法
JP2012106198A (ja) * 2010-11-18 2012-06-07 Toshiba Corp 生物学的廃水処理装置
WO2013146976A1 (ja) * 2012-03-28 2013-10-03 株式会社クボタ 膜分離装置の運転方法及び膜分離装置
JP2013202472A (ja) * 2012-03-28 2013-10-07 Kubota Corp 膜分離装置の運転方法及び膜分離装置
JP2013202471A (ja) * 2012-03-28 2013-10-07 Kubota Corp 膜分離装置の運転方法及び膜分離装置
JP2014050773A (ja) * 2012-09-05 2014-03-20 Metawater Co Ltd ろ過助剤注入制御方法及びろ過助剤注入制御装置
JP2016129875A (ja) * 2015-01-14 2016-07-21 フジクリーン工業株式会社 ブロワ、および、排水処理システム
JP2017113725A (ja) * 2015-12-25 2017-06-29 株式会社ウォーターエージェンシー 下水処理場の運転支援装置及び運転支援方法
JP2017210738A (ja) * 2016-05-24 2017-11-30 株式会社日立製作所 下水処理制御装置
KR101997846B1 (ko) * 2018-10-08 2019-07-08 웅진코웨이엔텍 주식회사 멤브레인 컨텍터를 이용한 암모니아 제거 시스템 및 제어 방법
WO2024057572A1 (ja) * 2022-09-14 2024-03-21 株式会社日立製作所 水処理プラントの運転制御装置並びに水処理プラントの運転制御方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108593A (ja) * 2007-10-30 2009-05-21 Toshiba Corp 水融通運用装置
JP2011183353A (ja) * 2010-03-11 2011-09-22 Hitachi Ltd 廃水処理装置及びその酸素供給量制御方法
JP2012106198A (ja) * 2010-11-18 2012-06-07 Toshiba Corp 生物学的廃水処理装置
US10010834B2 (en) 2012-03-28 2018-07-03 Kubota Corporation Operating method for membrane separation device and membrane separation device
WO2013146976A1 (ja) * 2012-03-28 2013-10-03 株式会社クボタ 膜分離装置の運転方法及び膜分離装置
JP2013202472A (ja) * 2012-03-28 2013-10-07 Kubota Corp 膜分離装置の運転方法及び膜分離装置
JP2013202471A (ja) * 2012-03-28 2013-10-07 Kubota Corp 膜分離装置の運転方法及び膜分離装置
JP2014050773A (ja) * 2012-09-05 2014-03-20 Metawater Co Ltd ろ過助剤注入制御方法及びろ過助剤注入制御装置
JP2016129875A (ja) * 2015-01-14 2016-07-21 フジクリーン工業株式会社 ブロワ、および、排水処理システム
JP2017113725A (ja) * 2015-12-25 2017-06-29 株式会社ウォーターエージェンシー 下水処理場の運転支援装置及び運転支援方法
JP2017210738A (ja) * 2016-05-24 2017-11-30 株式会社日立製作所 下水処理制御装置
KR101997846B1 (ko) * 2018-10-08 2019-07-08 웅진코웨이엔텍 주식회사 멤브레인 컨텍터를 이용한 암모니아 제거 시스템 및 제어 방법
WO2024057572A1 (ja) * 2022-09-14 2024-03-21 株式会社日立製作所 水処理プラントの運転制御装置並びに水処理プラントの運転制御方法

Similar Documents

Publication Publication Date Title
JP5775296B2 (ja) 下水処理場の運転支援装置及び運転支援方法
JP3961835B2 (ja) 下水処理場水質制御装置
CN104090488B (zh) 污水厂自动实时控制溶解氧、污泥负荷和污泥龄的方法
JP2006075804A (ja) 下水処理場運用支援装置
JP4334317B2 (ja) 下水処理システム
JP4509579B2 (ja) 下水処理場の曝気風量制御装置
JP6974795B2 (ja) 下水処理設備における好気槽の曝気風量制御方法と設備
JP6532397B2 (ja) 下水処理場の運転支援装置及び運転支援方法
JP4131955B2 (ja) 下水処理場の曝気風量制御装置
JP2006055683A (ja) 活性汚泥方式排水処理方法及び活性汚泥方式排水処理装置
JP2004275826A (ja) 下水処理場水質監視制御装置
KR100661455B1 (ko) 하수처리장치 및 이를 이용한 하수처리방법
JP2008260002A (ja) 曝気装置の運転制御方法
KR20220024245A (ko) 하수처리장용 통합제어 시스템
JP4008694B2 (ja) 下水処理場水質制御装置
JP2017109170A (ja) 曝気制御装置及び曝気制御方法
JP5032164B2 (ja) 下水処理システムおよび計測システム
JP6619242B2 (ja) 水処理システム
JP2006315004A (ja) 下水処理場水質制御装置
JP6499952B2 (ja) 水処理システム
JP6643086B2 (ja) 活性汚泥法を用いた監視制御システム
KR20150064574A (ko) 에너지 절감형 하폐수 처리 시스템 및 그 제어방법
JP3999869B2 (ja) 生物学的水処理装置
JP4573575B2 (ja) 高度下水処理方法および装置
JP2000325980A (ja) 汚水処理方法及び汚水処理装置