JP2006064363A - エンジン駆動式空気調和装置及びその制御方法 - Google Patents

エンジン駆動式空気調和装置及びその制御方法 Download PDF

Info

Publication number
JP2006064363A
JP2006064363A JP2005212129A JP2005212129A JP2006064363A JP 2006064363 A JP2006064363 A JP 2006064363A JP 2005212129 A JP2005212129 A JP 2005212129A JP 2005212129 A JP2005212129 A JP 2005212129A JP 2006064363 A JP2006064363 A JP 2006064363A
Authority
JP
Japan
Prior art keywords
engine
load
overload state
air conditioner
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005212129A
Other languages
English (en)
Other versions
JP4557828B2 (ja
Inventor
Ryota Hirata
亮太 平田
Katsunori Nakajima
克典 中島
Hiroshi Kanai
弘 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005212129A priority Critical patent/JP4557828B2/ja
Publication of JP2006064363A publication Critical patent/JP2006064363A/ja
Application granted granted Critical
Publication of JP4557828B2 publication Critical patent/JP4557828B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 エンジンが過負荷状態にあるか否かを正確に判定し、エンジンの過負荷状態を適切に回避することができるエンジン駆動式空気調和装置及びその制御方法を提供する。
【解決手段】 空調負荷に応じてエンジンの回転数を可変制御し、このエンジンによって駆動される圧縮機から吐出された冷媒を循環させて空調運転を行うエンジン駆動式空気調和装置において、エンジンの回転数、燃料調整弁開度、スロットル開度を取得し(ステップS1)、取得した情報に基づいて、空調負荷に応じて制御されるエンジン10が過負荷状態か否かを判定し(ステップS2)、エンジン10が過負荷状態にあると判定すると、エンジンの負荷を低減するエンジン負荷低減制御(ステップS3〜S10)を行うようにした。
【選択図】 図4

Description

本発明は、エンジンの回転数を可変制御し、このエンジンによって駆動される圧縮機から吐出された冷媒を循環させて空調運転を行うエンジン駆動式空気調和装置及びその制御方法に関わり、エンジンの過負荷制御に関する。
従来より、ガス等を燃料とするエンジンにより、室外ユニットの圧縮機を駆動して冷媒を圧縮・循環させる、いわゆるエンジン駆動式の空気調和装置が知られている。
この種のエンジン駆動式空気調和装置においては、空調負荷に応じてエンジン回転数を可変制御するものがあり、圧縮機の出口圧力、吸込圧力及び熱交換器の冷媒出入口の温度を測定し、この測定結果から圧縮機の軸出力を求め、この軸出力に基づいてエンジンが過負荷状態か否かを判定するものがある(例えば、特許文献1)。そして、過負荷状態であると判定すると、膨張弁を絞る等してエンジンの負荷を低減し、エンジン寿命の低下を回避するようにしている。
特開平6−137701号公報
ところで、上記のように圧縮機の軸出力からエンジン負荷を推定する場合、圧縮機の体積効率及び動力効率を考慮する必要がある。しかしながら、圧縮機の体積効率及び動力効率は一定ではなく、圧縮機の回転速度や冷媒圧力により無視できない程度の違いが生じ、エンジン負荷を精度良く推定することが難しい問題があった。
そこで、本発明の目的は、エンジンが過負荷状態にあるか否かを正確に判定し、エンジンの過負荷状態を適切に回避することができるエンジン駆動式空気調和装置及びその制御方法を提供することにある。
上述課題を解決するため、本発明は、空調負荷に応じてエンジンの回転数を可変制御し、このエンジンによって駆動される圧縮機から吐出された冷媒を、室外熱交換器と室内熱交換器との間で循環させて空調運転を行うエンジン駆動式空気調和装置において、前記エンジンの回転数、燃料調整弁開度、スロットル開度のすべて、或いはそのいずれかを取得し、取得した情報に基づいて、空調負荷に応じて制御される前記エンジンが過負荷状態にあるか否かを判定する判定手段と、前記エンジンが過負荷状態にあると判定すると、前記エンジンの負荷を低減するエンジン負荷低減制御を行う制御手段とを備えることを特徴とする。この発明では、エンジンの回転数、燃料調整弁開度、スロットル開度のすべて、或いはそのいずれかを取得し、取得した情報に基づいて、空調負荷に応じて制御されるエンジンが過負荷状態にあるか否かを判定するので、エンジンの現在の制御状態からエンジン負荷を判定でき、圧縮機の軸出力から間接的にエンジンが過負荷状態か否かを判定する従来のものに比して、エンジンが過負荷状態にあるか否かを精度良く判定できる。
上記発明において、エンジン回転数、燃料調整弁開度、スロットル開度のすべて、或いはそのいずれかと、前記エンジンのトルク値、イグニッション要求電圧及び空気過剰率の少なくともいずれかとをマップ化して記憶する記憶手段を備え、前記判定手段は、前記記憶手段に記憶された情報を参照して、前記取得した情報から前記エンジンのトルク値、イグニッション要求電圧及び空気過剰率の少なくともいずれかを特定し、この特定した値と予め設定した設定値との比較に基づいて、前記エンジンが過負荷状態にあるか否かを判定するようにしてもよい。
また、上記発明において、エンジン回転数、燃料調整弁開度及びスロットル開度のすべて、或いはそのいずれかから、前記エンジンのトルク値、イグニッション要求電圧、空気過剰率の少なくともいずれかを算出する算出式を記憶する記憶手段を備え、前記判定手段は、前記記憶手段に記憶された算出式を用いて、前記取得した情報から前記エンジンのトルク値、イグニッション要求電圧及び空気過剰率の少なくともいずれかを特定し、この特定した値と予め設定した設定値との比較に基づいて、前記エンジンが過負荷状態にあるか否かを判定するようにしてもよい。
また、上記発明において、前記制御手段は、前記エンジンが過負荷状態にあると判定すると、前記室外熱交換器及び室内熱交換器のうち、蒸発器として機能する熱交換器に対応する膨張弁の開度調整、前記室外熱交換器及び室内熱交換器のうち、凝縮器として機能する熱交換の冷却ファンの回転速度調整、前記エンジン回転数の調整、又は、冷媒高圧部と冷媒低圧部との間に設けられたバイパス管のバイパス弁の開度調整の少なくともいずれかを行うことが好ましい。この場合、前記制御手段は、前記蒸発器として機能する熱交換器に対応する膨張弁の開度調整時の下限値、前記凝縮器として機能する熱交換の冷却ファンの回転速度調整時の上限値、前記エンジン回転数の調整時の下限値、又は、前記バイパス弁の開度調整時の上限値を、空調負荷に応じて変更するようにしてもよい。
また、前記エンジン駆動による圧縮機と前記室外熱交換器とを有する複数台の室外ユニットを備え、運転中の室外ユニットにおいて、前記判定手段及び前記制御手段による制御が実行されても、そのエンジン過負荷状態が継続される場合、他の停止中の室外ユニットを運転してエンジン負荷を低減させるようにしてもよい。さらに、前記エンジン駆動による圧縮機と前記室外熱交換器とを有する互いに能力が異なる複数台の室外ユニットを備え、能力が小の運転中の室外ユニットにおいて、前記判定手段及び前記制御手段による制御が実行されても、そのエンジン過負荷状態が継続される場合、能力が大の室外ユニットの運転に切り替えるようにしてもよい。前記複数台の室外ユニットの各々に設けられた制御装置を制御するトータルコントロール装置を備え、このトータルコントロール装置が、前記判定手段及び前記制御手段による制御が実行されても、そのエンジン過負荷状態が継続される場合の前記制御を実行するようにしてもよい。
また、本発明は、空調負荷に応じてエンジンの回転数を可変制御し、このエンジンによって駆動される圧縮機から吐出された冷媒を、室外熱交換器と室内熱交換器との間で循環させて空調運転を行うエンジン駆動式空気調和装置の制御方法において、前記エンジンの回転数、燃料調整弁開度、スロットル開度のすべて、或いはそのいずれかを取得し、取得した情報に基づいて、空調負荷に応じて制御される前記エンジンが過負荷状態にあるか否かを判定し、前記エンジンが過負荷状態にあると判定すると、前記エンジンの負荷を低減するエンジン負荷低減制御を行うことを特徴とする。この発明によれば、エンジンの回転数、燃料調整弁開度、スロットル開度のすべて、或いはそのいずれかを取得し、取得した情報に基づいて、空調負荷に応じて制御されるエンジンが過負荷状態にあるか否かを判定するので、エンジンの現在の制御状態からエンジン負荷を判定でき、圧縮機の軸出力から間接的にエンジンが過負荷状態か否かを判定する従来のものに比して、エンジンが過負荷状態にあるか否かを精度良く判定することができる。
本発明は、エンジンの回転数、燃料調整弁開度、スロットル開度のすべて、或いはそのいずれかを取得し、取得した情報に基づいて、空調負荷に応じて制御されるエンジンが過負荷状態にあるか否かを判定し、エンジンが過負荷状態にあると判定すると、エンジンの負荷を低減するエンジン負荷低減制御を行うので、エンジンの現在の制御状態からエンジン負荷を判定することができる。このため、圧縮機の軸出力から間接的にエンジンが過負荷状態か否かを判定する従来のものに比して、エンジンが過負荷状態か否かを精度良く判定することができ、エンジンの過負荷状態を適切に回避することができる。
以下、図面を参照して本発明の実施形態を詳述する。
図1は、本実施形態にかかるエンジン駆動式空気調和装置100の構成を示す図である。このエンジン駆動式空気調和装置100は、1台の室外ユニット1と複数台(例えば2台)の室内ユニット2a、2bとを、ガス管3a及び液管3bからなる冷媒配管(ユニット間配管)3で接続して構成される。また、エンジン駆動式空気調和装置100は、当該空気調和装置100の運転制御を行う制御装置4と、この制御装置4の運転指示等の操作を行う操作部5とを備えている。
この操作部5は、室内ユニット2a、2bの運転/停止等を行う、いわゆるリモート制御装置、或いは、これら室内ユニット2a、2bおよび室外ユニット1の各種設定や運転状態の確認が行える遠隔操作装置等である。なお、本実施形態では、エンジン駆動式空気調和装置100には、単位体積当りの冷媒能力が高く圧力損失の少ない代替冷媒R410aを循環させる構成としている。
室外ユニット1は室外に設置され、この室外ユニット1には、燃料ガスなどを燃焼させて駆動力を発生するエンジン10と、このエンジン10に図示しない駆動力伝達手段を介して接続され、上記代替冷媒R410aを圧縮吐出する圧縮機11と、冷媒の循環方向を反転させる四方弁12と、冷媒と外気との熱交換を行わせる室外熱交換器13と、冷媒の減圧を行う室外膨張弁14と、圧縮機11に吸込まれる冷媒の気液分離を行うアキュムレータ15とが冷媒配管で接続されて収納されている。また、室外熱交換器13には、この室外熱交換器13に送風する室外ファン16が隣接して配置されている。
室外ユニット1においては、冷媒高圧部(圧縮機11の吐出側)と冷媒低圧部(図示の例ではアキュムレータ15の手前)との間にバイパス管17が接続され、このバイパス管17にはバイパス弁(電動弁)18が設けられている。このバイパス弁18の開度を調整することにより、バイパス管17を介して圧縮機11から吐出された冷媒の一部が圧縮機11の吸込側に導かれ、室外ユニット1と室内ユニット2a、2bとを循環する循環冷媒量が調整される。
さらに、この室外ユニット1には、室外ユニット1側の管(液管)19を流れる液冷媒を圧縮機11の吸込側に設けられたアキュムレータ15の手前に適宜供給するためのリキッド管40が設けられ、このリキッド管40にはリキッド弁(電動弁)41が設けられている。このリキッド弁41は、通常閉じており、圧縮機11の吐出冷媒が所定温度(冷媒の種類によるが例えば115℃等)を超えた場合に開かれ、室外ユニット1側の管19から温度の低い液冷媒をアキュムレータ15の手前側に供給する。これにより、圧縮機11に吸い込まれるガス冷媒の温度が低下し、圧縮機11の吐出冷媒の過熱防止が図られることとなる。
室内ユニット2a、2bには、これら室内ユニット2a、2bが据え付けられた室内の室内空気と冷媒との熱交換を行う室内熱交換器20a、20bと、各室内ユニット2a、2bへ流入する冷媒の冷媒量を制御する室内膨張弁21a、21bとが、各々冷媒配管で接続されて収納されている。上記室内熱交換器20a、20bには、これらの室内熱交換器20a、20bへ送風する室内ファン22a、22bがそれぞれ隣接して配置されている。
圧縮機11を駆動するエンジン10の燃焼室には、エンジン燃料供給装置31から燃料と空気の混合気が供給される。このエンジン燃料供給装置31は、燃料供給配管32に、燃料遮断弁33、ゼロガバナ34、燃料調整弁35及びスロットルバルブ36が順次配設され、このスロットルバルブ36は、エンジン10の上記燃焼室に接続されている。燃料遮断弁33は、閉鎖型の燃料遮断弁機構を構成し、燃料遮断弁33が全閉または全開し、燃料ガスの漏れのない遮断と連通とを択一に実施する。
図2は、制御装置4の構成を示すブロック図である。制御装置4は、エンジン10及び圧縮機11への運転指示設定等を行う設定部47と、エンジン駆動式空気調和装置100の各種設定や、制御用プログラム、制御用データ及びデータベース50(図3)等を記憶するEEPROM(記憶手段)42と、このEEPROM42内の制御用プログラム等に基づいてエンジン駆動式空気調和装置100の全体を制御するCPU43と、各種データを一時的に格納するRAM44と、操作部5との通信を行う送受信部45と、エンジン駆動式空気調和装置100の各部と信号を送受するためのインターフェース(I/F)46とを備えている。
制御装置4は、このI/F46を介して、さらに、エンジン10の回転数を検出する回転数検出器(図示せず)、及び温度センサ(室内温度を計測する室内温度センサ(図示せず)、熱交換器13、20a、20bの冷媒出入口温度を測定する温度センサ(図示せず)、室内ユニット2a、2bの室内ファン22a、22bによる吹出温度を計測する温度センサ23a、23b等)と接続され、エンジン回転数や各箇所の温度を取得可能に構成されている。
この制御装置4は、上記操作部5が操作されると、室外ユニット1におけるエンジン10、四方弁12、室外膨張弁14及び室外ファン16、並びに室内ユニット2a、2bにおける室内膨張弁21a、21b及び室内ファン22a、22bをそれぞれ制御する。
具体的には、制御装置4は、四方弁12を切り替えることにより、当該空気調和装置100を冷房運転又は暖房運転に設定する。つまり、四方弁12を冷房側に切り替えたときには、冷媒が破線矢印の如く流れ、室外熱交換器13が凝縮器に、室内熱交換器20a、20bが蒸発器として機能して冷房運転状態となり、各室内熱交換器20a、20bが室内を冷房する。また、制御装置4が四方弁12を暖房側に切り替えたときには、冷媒が実線矢印の如く流れ、室内熱交換器20a、20bが凝縮器に、室外熱交換器13が蒸発器として機能して暖房運転状態となり、各室内熱交換器20a、20bが室内を暖房する。
また、制御装置4は、操作部5で設定された設定温度と、室内温度センサにより取得した室内温度との差等に基づいて、上記燃料調整弁35及びスロットルバルブ36の開度(燃料調整弁開度、スロットル開度)を制御してエンジン10の回転数を可変制御し、また、熱交換器13、20a、20bの冷媒出入口温度の差に基づいて、室外膨張弁14及び室内膨張弁21a、21bの開度を制御する。
上記空調運転中においては、制御装置4は、空調負荷に応じて制御されるエンジン10が過負荷状態か否かを判定し、過負荷状態にある場合はエンジン負荷を低減する処理(エンジン負荷低減処理)を実行する。本実施形態では、エンジン10のエンジン回転数、燃料調整弁開度及びスロットル開度といったエンジン10の現在の制御状態を示す情報(制御情報)を取得し、この情報に基づいてデータベース50を参照し、エンジン10が過負荷状態か否かを判定することとしている。図3は、データベース50の一例を図である。
データベース50には、エンジン回転数、燃料調整弁開度、スロットル開度、エンジン10のトルク値、エンジン熱効率、IG(イグニッション)要求電圧、燃料ガス流量、及びλ(空気過剰率)が対応づけて記述されている。このうち、エンジン回転数、燃料調整弁開度及びスロットル開度は、エンジン10の制御中に測定可能な情報であり、トルク値、IG要求電圧及びλは、エンジン10が過負荷状態にあるか否かを判定するための情報である。つまり、トルク値が過大であるとエンジンの耐久性が落ちる、IG要求電圧が高いとコイル寿命が低下する、λが小さくなるとノッキングが発生しエンジン破損を招くおそれが生じる、といったエンジン負荷が高い状況を特定するための情報(負荷特定情報)である。また、エンジン熱効率は、省エネ運転の際に、エンジン熱効率の良い回転速度で運転しているか否かを判断するために用いる情報である。また、燃料ガス流量は、ガスデマンドコントロールや省エネ運転の際に利用するのが好適な情報である。
このデータベース50は、例えば、エンジン10に負荷として1、3、5、7、9、11、13(kg・m)のトルクを加え、各々のトルクについて1000(rpm)でエンジン10が回転するように燃料調整弁開度、スロットル開度を調整し、その状態における燃料調整弁開度、スロットル開度、燃料ガス流量、トルク値、エンジン熱効率、IG要求電圧、燃料ガス流量及びλを計測等によって求める。同様にエンジン回転数1200(rpm)、1400(rpm)・・・2000(rpm)についても、各トルクでの燃料調整弁開度、スロットル開度、燃料ガス流量、エンジン熱効率、IG要求電圧、燃料ガス流量及びλを計測等によって求め、これらの計測データをマップ化することによって作成され、制御装置4のEEPROM42に記憶される。なお、実測する場合に限らず、このようにエンジン10の運転状況を様々に変化させた場合の各値をシミュレーション等によって求め、これらのデータから上記データベース50を作成するようにしてもよい。
図4は、かかるエンジン負荷低減処理を示すフローチャートである。
まず、制御装置4は、現在のエンジン回転数、燃料調整弁開度、スロットル開度を取得し、EEPROM42に記憶されたデータベース50を参照して、取得したエンジン回転数、燃料調整弁開度、スロットル開度から、現在のトルク値、IG要求電圧及びλを取得する(ステップS1)。この場合、データベース50から直接、トルク値、IG要求電圧及びλを特定できない場合は、現在のエンジン回転数、燃料調整弁開度、スロットル開度に近い運転状況から補完計算をすることによって、トルク値、IG要求電圧及びλを取得する。
次いで、制御装置4は、取得したトルク値、IG要求電圧及びλに基づいて、エンジン10が過負荷状態か否かを判定する(ステップS2)。具体的には、制御装置4は、トルク値が予め設定したトルク上限値より高いか否か、IG要求電圧が予め設定した電圧上限値より高いか否か、λが予め設定したλ下限値より小さいか否かを判定し、いずれかに該当すれば、エンジン10が過負荷状態にあると判定し、いずれにも該当しなければエンジン10は過負荷状態にないと判定する。
エンジン10が過負荷状態にあると判定すると(ステップS2:YES)、制御装置4は、エンジン10の負荷を低減するエンジン負荷低減制御を行う。
詳述すると、制御装置4は、まず、蒸発器側の膨張弁(冷房運転時は室内膨張弁21a、21b、暖房運転時は室外膨張弁14)の開度が、予め設定した下限値L1と一致するか否かを判定する(ステップS3)。そして、下限値L1と一致しない場合(下限値L1より大の場合)、制御装置4は、膨張弁開度を所定量小さくする(ステップS4)。ここで、下限値L1は、空調性を著しく低下しない膨張弁開度の下限値であり、空調性を著しく低下させない範囲で膨張弁開度を小さくすることにより、冷媒循環量を少なくし、エンジン負荷を低減することができる。
制御装置4は、膨張弁開度を小さくした後、或いは、エンジン10が過負荷状態にないと判定すると、ステップS1の処理に移行することにより、エンジン10が過負荷状態か否かを継続的に判定するようになっている。このため、制御装置4は、エンジン10が過負荷状態にあると判定される毎に、蒸発器膨張弁の開度を徐々に小さくしてエンジン負荷を徐々に低減させていく。それでもエンジン10が過負荷状態にあると判定され、蒸発器膨張弁の開度が下限値L1まで小さくなると(ステップS3:下限値L1)、ステップS5の処理に移行する。
ステップS5の処理において、制御装置4は、凝縮器側のファン(冷房運転時は室外ファン16、暖房運転時は室内ファン22a、22b)の回転速度が、予め設定した上限値U2と一致するか否かを判定し、一致しない場合(上限値U2より小の場合)は、ファンの回転速度を所定量大きくする(ステップS6)。ここで、上限値U2は、ファンの許容上限回転速度、或いは、ファンによる騒音が許容範囲内の上限回転速度に設定されている。このようにファンの回転速度を大きくすることにより、凝縮圧力を向上させ、エンジン10の負荷を低減することができる。
ファンの回転速度を大きくした後、制御装置4は、ステップS1の処理に移行することにより、エンジン10が過負荷状態にあると再度判定する毎に、ファンの回転速度を徐々に大きくする。それでもエンジン10が過負荷状態にあると判定され、ファンの回転速度が上限値U2に至ると(ステップS5:上限値L2)、制御装置4は、ステップS7の処理に移行する。
ステップS7の処理において、制御装置4は、エンジン回転数が予め設定した下限値L3と一致するか否かを判定し、下限値L3と一致しない場合(下限値L3より大の場合)は、エンジン回転数を所定量小さくする(ステップS8)。ここで、下限値L3は、空調性を著しく低下することがないエンジン回転数に設定されている。このようにエンジン回転数を落とすことにより、圧縮機11の圧縮比が下がり、エンジン負荷を低減できる。
エンジン10の回転数を落とした後、制御装置4は、ステップS1の処理に移行することにより、エンジン10が過負荷状態にあると再度判定する毎に、エンジン回転数を徐々に落とし、それでもエンジン10が過負荷状態にあると判定され、エンジン回転数が下限値L3に至ると(ステップS7:下限値L3)、制御装置4は、ステップS9の処理に移行する。
ステップS9の処理において、制御装置4は、バイパス弁18の開度が予め設定した上限値L4と一致するか否かを判定し、一致しない場合(上限値L4より小の場合)は、バイパス弁18の開度を所定量大きくする(ステップS10)。ここで、上限値L4は、空調性が著しく低下することがないバイパス弁開度に設定される。このようにバイパス弁18を開くことにより、圧縮機11の圧縮比が下がり、エンジン負荷を低減できる。
バイパス弁18を開いた後、制御装置4は、ステップS1の処理に移行することにより、エンジン10が過負荷状態にあると再度判定する毎に、バイパス弁18の開度を徐々に大きくし、それでもエンジン10が過負荷状態にあると判定される場合は、バイパス弁18の開度を最終的に上限値L4まで大きくする。
このように、エンジン10が過負荷状態に至ると、蒸発器側の膨張弁開度調整、凝縮器ファンの速度調整、エンジン回転数の調整、バイパス弁開度の調整を順次実行することにより、いずれかの段階で、エンジン10を過負荷状態から通常の負荷状態に戻すことができる。但し、全ての段階を実行してもエンジン10が過負荷状態にあると判定される場合は、取得したエンジン回転数、燃料調整弁開度、スロットル開度に誤りがある等の何らかの異常が生じている場合が考えられるため、制御装置4は、所定の警告を放置する等の処理を実行することが好ましい。
ところで、上記下限値L1、上限値L2、下限値L3及び上限値L4は、空調性を著しく低下させない蒸発器膨張弁開度、凝縮器ファンの速度、エンジン回転数、バイパス弁開度に設定されるが、これら値を固定値とすると、例えば、上記下限値L1を空調負荷が大の場合に合わせて設定すると、空調負荷が小の場合は、膨張弁開度をその下限値L1よりもっと低い値にしても空調性を著しく低下させることなくエンジン負荷を低減できる等の場合が生じ、エンジン負荷の調整量が制限されてしまう。
そこで、本実施形態では、制御装置4が、現在の空調負荷に応じて上記下限値L1、上限値L2、下限値L3及び上限値L4を変更する制御を行う。具体的には、制御装置4は、例えば、温度センサ23a、23bにより、室内ユニット2a、2bの吹出温度を取得し、この吹出温度に応じて各値L1〜L4を変更する制御を行う。例えば、冷房時に、吹出温度が8℃以下の場合、8℃〜12℃の場合、12℃〜16℃の場合、16℃以上の場合のいずれの条件に該当するかを判断し、各条件に応じて各値L1〜L4を変更する。これにより、空調性を著しく低下させない範囲で、蒸発器膨張弁の開度、凝縮器ファンの速度、エンジン回転数、バイパス弁開度の各変更幅を広く確保することができ、すなわち、エンジン負荷の調整量を充分に確保することができ、より確実にエンジン10を過負荷状態から回避させることが可能となる。
以上説明したように、本実施形態のエンジン駆動式空気調和装置100においては、エンジン回転数、燃料調整弁開度、スロットル開度に基づいてエンジン10が過負荷状態にあるか否かを判定することにより、エンジン10の現在の制御状態からエンジン負荷を判定でき、圧縮機の軸出力から間接的にエンジンが過負荷状態にあるか否かを判定する従来のものに比して、エンジン10が過負荷状態にあるか否かを精度良く判定することができる。
また、エンジン10が過負荷状態の場合は、蒸発器側膨張弁の開度を下限値L1まで絞る、凝縮器ファンの速度を上限値L2まで大きくする、エンジン回転数を下限値L3まで小さくする、バイパス弁18の開度を上限値L4まで大きくする、といった順でエンジン負荷を低減させることにより、一般的にエンジン負荷低減の際に実行される蒸発器側膨張弁開度の制御を優先してエンジン負荷を低減させることができ、かつ、エンジン10を過負荷状態から確実に回避させることが可能となる。
さらに、上記各値L1〜L4を空調負荷に応じてリアルタイムに変化させるため、空調性を著しく低下させることなくエンジン負荷の調整量を広く確保することができ、より確実にエンジン10を過負荷状態から回避させることが可能となる。
つぎに、別の実施形態を説明する。
この実施形態では、図5に示すように、上記室内ユニット2a,2bの他に、室内ユニット2a,2bと略同様構成の2台の室内ユニット2c,2dと、室外ユニット1と略同様構成の室外ユニットAを備え、さらに、この室外ユニットAには、能力が異なる別の2台の室外ユニットB,Cを並列にマルチ接続して構成されている。
各室外ユニットA,B,Cには、各々、制御装置4A,4B,4Cが接続され、これら制御装置4A,4B,4Cは、上述した実施形態における制御装置4と実質的に略同一機能を有している。そして、各制御装置4A,4B,4Cには、トータルコントロール装置200が接続されている。
図6は、この実施形態の処理フローを示す。
運転中の室外ユニット(ここでは室外ユニットAとする。)の負荷が、過負荷状態にあるか否かが、制御装置(判定手段)4Aにより判定され(ステップS21)、過負荷状態にあると判定されれば、図4のステップS3〜ステップS10の処理と同様処理による、エンジン負荷低減制御が実行される(ステップS22)。
エンジン負荷低減制御の実行後に、過負荷が所定時間継続するか否かが判定され(ステップS23)、所定時間継続した場合、運転中の室外ユニットAの能力が、他の停止中の室外ユニットB,Cの能力と比較される(ステップS24)。この比較以降の制御は、トータルコントロール装置200が司る。
運転中の室外ユニットAの能力の方が小さいと判定されれば、過負荷が継続する室外ユニットAの運転を停止、或いは能力を大きくダウンし、停止中の室外ユニットB,Cのいずれかに運転を切り替え(ステップS25)、以後、この室外ユニットB,Cの運転制御を実行する(ステップS26)。
能力がA<B<Cに設定されている場合、まず、室外ユニットBの運転に切り替え、この室外ユニットBの運転でも過負荷に至った時点で、室外ユニットCの運転に切り替えてもよい。或いは、過負荷状況を検出し、この状況によっては、一気に、室外ユニットCの運転に切り替えてもよい。
運転中の室外ユニットAの能力が小さいと判定されれば、過負荷が継続する室外ユニットAの運転を継続しつつ、停止中の室外ユニットB,Cのいずれかを運転する(ステップS27)。そして、いずれかの室外ユニットB,Cの運転開始の結果、エンジン過負荷が減少したか否かが判定され(ステップS28)、この場合には、エンジン過負荷が減少するまで、2台同時併用の運転が実行され、過負荷が減少に至った時点で、室外ユニットAの単独運転に戻される(ステップS29)。
能力がA<B<Cに設定されている場合、まず、室外ユニットBの同時併用運転に切り替え、この室外ユニットBの同時併用運転でも過負荷に至れば、室外ユニットBの運転を停止させて、室外ユニットCの同時併用運転に切り替えてもよい。
或いは、過負荷状況を検出して、この状況によっては、一気に、室外ユニットCの同時併用運転に切り替えてもよい。
図1の実施形態では、全ての制御段階を実行してもエンジン10が過負荷状態から抜け出さない場合、何らかの異常有りとして、制御装置4は、上述したように、所定の警告を放置する等の処理を実行したが、この実施形態では、他の室外ユニットへの運転切り替え、或いは他の室外ユニットとの同時併用運転への切り替えを実行することで、エンジン負荷低減を図るため、空調運転の継続が担保される。
以上、本発明の一実施形態について説明したが、本発明はこれに限定されるものではない。例えば、上記実施形態で示して各設定値や配管構成はこれに限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
例えば、本実施形態では、エンジン回転数、燃料調整弁開度、スロットル開度の全てを取得し、これら情報に基づいてエンジン10が過負荷状態か否かを判定する場合について例示したが、エンジン回転数、燃料調整弁開度、スロットル開度のいずれかを取得し、この情報に基づいてエンジン10が過負荷状態か否かを判定するようにしてもよい。この場合も、エンジン10の実際の状態(制御状態)からエンジン10が過負荷状態か否かを判定するので、圧縮機の軸出力から間接的にエンジンが過負荷状態か否かを判定する従来のものに比して、エンジン10が過負荷状態か否かを精度良く判定することができる。
また、本実施形態では、エンジン回転数、燃料調整弁開度、スロットル開度、エンジン10のトルク値、エンジン熱効率、IG要求電圧、燃料ガス流量及びλをマップ化して記憶した記憶手段を備える構成としたが、エンジン熱効率及び燃料ガス流量は省略してもよく、また、人の脳の構造をまねて作った情報処理機構であるニューラルネットワークを利用して、予めエンジン回転数、燃料調整弁開度、スロットル開度、トルク値、IG要求電圧及びλを測定して得た実験データを学習することにより、エンジン回転数、燃料調整弁開度およびスロットル開度の全て、或いはいずれかから、トルク値、IG要求電圧及びλの少なくともいずれかを算出する算出式を記憶する記憶手段を備える構成としてもよい。これによれば、EEPROM42の使用量を抑えることができる。
また、本実施形態では、エンジン10が過負荷状態の場合、蒸発器側の膨張弁開度調整、凝縮器ファンの速度調整、エンジン回転数の調整、バイパス弁開度の調整を順次実行する場合について例示したが、これらエンジン負荷低減制御を全て行う必要は必ずしもなく、いずれか1つ或いは複数の制御だけを行うようにしてもよい。
本実施形態にかかるエンジン駆動式空気調和装置の構成を示す図である。 制御装置の構成を示すブロック図である。 データベースを説明する図である。 エンジン負荷低減処理を示すフローチャートである。 別の実施形態にかかる空気調和装置の構成を示す図である。 エンジン負荷低減処理を示すフローチャートである。
符号の説明
100 エンジン駆動式空気調和装置
1 室外ユニット
A,B,C 室外ユニット
2a、2b 室内ユニット
4 制御装置
4A,4B,4C 制御装置
5 操作部
10 エンジン
11 圧縮機
13 室外熱交換器
14 室外膨張弁
17 バイパス管
18 バイパス弁
20a、20b 室内熱交換器
21a、21b 室内膨張弁
22a、22b 室内ファン
31 エンジン燃料供給装置
50 データベース
200 トータルコントロール装置

Claims (9)

  1. 空調負荷に応じてエンジンの回転数を可変制御し、このエンジンによって駆動される圧縮機から吐出された冷媒を、室外熱交換器と室内熱交換器との間で循環させて空調運転を行うエンジン駆動式空気調和装置において、
    前記エンジンの回転数、燃料調整弁開度、スロットル開度のすべて、或いはそのいずれかを取得し、取得した情報に基づいて、空調負荷に応じて制御される前記エンジンが過負荷状態にあるか否かを判定する判定手段と、
    前記エンジンが過負荷状態にあると判定すると、前記エンジンの負荷を低減するエンジン負荷低減制御を行う制御手段と
    を備えることを特徴とするエンジン駆動式空気調和装置。
  2. エンジン回転数、燃料調整弁開度、スロットル開度のすべて、或いはそのいずれかと、前記エンジンのトルク値、イグニッション要求電圧及び空気過剰率の少なくともいずれかとをマップ化して記憶する記憶手段を備え、
    前記判定手段は、前記記憶手段に記憶された情報を参照して、前記取得した情報から前記エンジンのトルク値、イグニッション要求電圧及び空気過剰率の少なくともいずれかを特定し、この特定した値と予め設定した設定値との比較に基づいて、前記エンジンが過負荷状態にあるか否かを判定する
    ことを特徴とする請求項1記載のエンジン駆動式空気調和装置。
  3. エンジン回転数、燃料調整弁開度及びスロットル開度のすべて、或いはそのいずれかから、前記エンジンのトルク値、イグニッション要求電圧、空気過剰率の少なくともいずれかを算出する算出式を記憶する記憶手段を備え、
    前記判定手段は、前記記憶手段に記憶された算出式を用いて、前記取得した情報から前記エンジンのトルク値、イグニッション要求電圧及び空気過剰率の少なくともいずれかを特定し、この特定した値と予め設定した設定値との比較に基づいて、前記エンジンが過負荷状態にあるか否かを判定する
    ことを特徴とする請求項1記載のエンジン駆動式空気調和装置。
  4. 前記制御手段は、前記エンジンが過負荷状態にあると判定すると、前記室外熱交換器及び室内熱交換器のうち、蒸発器として機能する熱交換器に対応する膨張弁の開度調整、前記室外熱交換器及び室内熱交換器のうち、凝縮器として機能する熱交換の冷却ファンの回転速度調整、前記エンジン回転数の調整、又は、冷媒高圧部と冷媒低圧部との間に設けられたバイパス管のバイパス弁の開度調整の少なくともいずれかを行うことを特徴とする請求項1乃至3のいずれかに記載のエンジン駆動式空気調和装置。
  5. 前記制御手段は、前記蒸発器として機能する熱交換器に対応する膨張弁の開度調整時の下限値、前記凝縮器として機能する熱交換の冷却ファンの回転速度調整時の上限値、前記エンジン回転数の調整時の下限値、又は、前記バイパス弁の開度調整時の上限値を、空調負荷に応じて変更することを特徴とする請求項4記載のエンジン駆動式空気調和装置。
  6. 前記エンジン駆動による圧縮機と前記室外熱交換器とを有する複数台の室外ユニットを備え、運転中の室外ユニットにおいて、前記判定手段及び前記制御手段による制御が実行されても、そのエンジン過負荷状態が継続される場合、他の停止中の室外ユニットを運転してエンジン負荷を低減させることを特徴とする請求項1乃至5のいずれかに記載のエンジン駆動式空気調和装置。
  7. 前記エンジン駆動による圧縮機と前記室外熱交換器とを有する互いに能力が異なる複数台の室外ユニットを備え、能力が小の運転中の室外ユニットにおいて、前記判定手段及び前記制御手段による制御が実行されても、そのエンジン過負荷状態が継続される場合、能力が大の室外ユニットの運転に切り替えることを特徴とする請求項1乃至5のいずれかに記載のエンジン駆動式空気調和装置。
  8. 前記複数台の室外ユニットの各々に設けられた制御装置を制御するトータルコントロール装置を備え、このトータルコントロール装置が、前記判定手段及び前記制御手段による制御が実行されても、そのエンジン過負荷状態が継続される場合の前記制御を実行することを特徴とする請求項6又は7記載のエンジン駆動式空気調和装置。
  9. 空調負荷に応じてエンジンの回転数を可変制御し、このエンジンによって駆動される圧縮機から吐出された冷媒を、室外熱交換器と室内熱交換器との間で循環させて空調運転を行うエンジン駆動式空気調和装置の制御方法において、
    前記エンジンの回転数、燃料調整弁開度、スロットル開度のすべて、或いはそのいずれかを取得し、取得した情報に基づいて、空調負荷に応じて制御される前記エンジンが過負荷状態にあるか否かを判定し、
    前記エンジンが過負荷状態にあると判定すると、前記エンジンの負荷を低減するエンジン負荷低減制御を行う
    ことを特徴とするエンジン駆動式空気調和装置の制御方法。
JP2005212129A 2004-07-26 2005-07-22 エンジン駆動式空気調和装置及びその制御方法 Active JP4557828B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212129A JP4557828B2 (ja) 2004-07-26 2005-07-22 エンジン駆動式空気調和装置及びその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004217047 2004-07-26
JP2005212129A JP4557828B2 (ja) 2004-07-26 2005-07-22 エンジン駆動式空気調和装置及びその制御方法

Publications (2)

Publication Number Publication Date
JP2006064363A true JP2006064363A (ja) 2006-03-09
JP4557828B2 JP4557828B2 (ja) 2010-10-06

Family

ID=36110993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212129A Active JP4557828B2 (ja) 2004-07-26 2005-07-22 エンジン駆動式空気調和装置及びその制御方法

Country Status (1)

Country Link
JP (1) JP4557828B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140158671A1 (en) * 2007-04-30 2014-06-12 Illinois Tool Works Inc. Engine-driven air compressor/generator load priority control system and method
JP2020143613A (ja) * 2019-03-05 2020-09-10 大阪瓦斯株式会社 エンジン、その遠隔監視装置、及びそのメンテナンス周期調整方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123274U (ja) * 1982-02-16 1983-08-22 株式会社クボタ エンジン駆動式ヒ−トポンプ
JPS61231364A (ja) * 1985-04-05 1986-10-15 ヤンマーディーゼル株式会社 エンジン駆動ヒ−トポンプの制御装置
JPH03156144A (ja) * 1989-11-14 1991-07-04 Honda Motor Co Ltd エンジンの回転数制御装置
JPH05141746A (ja) * 1991-11-18 1993-06-08 Sanyo Electric Co Ltd 空気調和機の制御装置
JPH06137701A (ja) * 1992-10-21 1994-05-20 Sanyo Electric Co Ltd エンジン駆動式空気調和機の運転制御方法
JPH11148383A (ja) * 1997-09-20 1999-06-02 Robert Bosch Gmbh 車両内燃機関の制御方法及び装置
JP2000074519A (ja) * 1998-08-28 2000-03-14 Sanyo Electric Co Ltd 空気調和装置
JP2003262426A (ja) * 2002-03-07 2003-09-19 Sanyo Electric Co Ltd 空気調和装置及びその制御方法
JP2004201452A (ja) * 2002-12-20 2004-07-15 Hitachi Ltd ハイブリッド自動車及びその駆動装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123274U (ja) * 1982-02-16 1983-08-22 株式会社クボタ エンジン駆動式ヒ−トポンプ
JPS61231364A (ja) * 1985-04-05 1986-10-15 ヤンマーディーゼル株式会社 エンジン駆動ヒ−トポンプの制御装置
JPH03156144A (ja) * 1989-11-14 1991-07-04 Honda Motor Co Ltd エンジンの回転数制御装置
JPH05141746A (ja) * 1991-11-18 1993-06-08 Sanyo Electric Co Ltd 空気調和機の制御装置
JPH06137701A (ja) * 1992-10-21 1994-05-20 Sanyo Electric Co Ltd エンジン駆動式空気調和機の運転制御方法
JPH11148383A (ja) * 1997-09-20 1999-06-02 Robert Bosch Gmbh 車両内燃機関の制御方法及び装置
JP2000074519A (ja) * 1998-08-28 2000-03-14 Sanyo Electric Co Ltd 空気調和装置
JP2003262426A (ja) * 2002-03-07 2003-09-19 Sanyo Electric Co Ltd 空気調和装置及びその制御方法
JP2004201452A (ja) * 2002-12-20 2004-07-15 Hitachi Ltd ハイブリッド自動車及びその駆動装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140158671A1 (en) * 2007-04-30 2014-06-12 Illinois Tool Works Inc. Engine-driven air compressor/generator load priority control system and method
US11484959B2 (en) * 2007-04-30 2022-11-01 Illinois Tool Works Inc. Engine-driven air compressor/generator load priority control system and method
JP2020143613A (ja) * 2019-03-05 2020-09-10 大阪瓦斯株式会社 エンジン、その遠隔監視装置、及びそのメンテナンス周期調整方法
JP7221085B2 (ja) 2019-03-05 2023-02-13 大阪瓦斯株式会社 エンジン、その遠隔監視装置、及びそのメンテナンス周期調整方法

Also Published As

Publication number Publication date
JP4557828B2 (ja) 2010-10-06

Similar Documents

Publication Publication Date Title
US7380407B2 (en) Multi air conditioning system and method for operating the same
US20090031740A1 (en) Expansion valve control system and method for air conditioning apparatus
WO2011148856A1 (ja) 熱源側熱交換器用ファンの制御方法および空気調和装置
CN113063216A (zh) 空调外风机的转速控制方法
CN113063215B (zh) 空调外风机的转速控制方法
CN107036245B (zh) 多联机系统及其室外压缩机的控制装置和方法
JP7208519B2 (ja) 台数制御装置、台数制御方法、台数制御プログラム
JP2007504044A (ja) 車両用空調装置の制御方法
EP1643193B1 (en) Method of determining the configuration of an air conditioning system
US20050155361A1 (en) Air conditioning system and method for controlling the same
JP4522690B2 (ja) 空気調和装置
KR100681973B1 (ko) 엔진 구동식 공기 조화 장치
WO2021208523A1 (zh) 制冷模式下空调系统的压缩机回油控制方法
JP4557828B2 (ja) エンジン駆動式空気調和装置及びその制御方法
JP2008039388A (ja) マルチ式空気調和機
JP4179783B2 (ja) 空気調和装置
JP4105413B2 (ja) マルチ式空気調和機
JP2002147819A (ja) 冷凍装置
KR101485848B1 (ko) 멀티형 공기조화기의 제어방법
JPH09178247A (ja) 多室空気調和機の制御装置
KR100667097B1 (ko) 멀티형 공기조화기의 운전방법
JP7197814B2 (ja) 冷媒漏洩検知システム
JP7533557B2 (ja) 空気調和装置
WO2017098577A1 (ja) 圧縮機劣化診断装置および圧縮機劣化診断方法
JP4241500B2 (ja) エンジン駆動式空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

R151 Written notification of patent or utility model registration

Ref document number: 4557828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3