WO2021208523A1 - 制冷模式下空调系统的压缩机回油控制方法 - Google Patents

制冷模式下空调系统的压缩机回油控制方法 Download PDF

Info

Publication number
WO2021208523A1
WO2021208523A1 PCT/CN2020/142347 CN2020142347W WO2021208523A1 WO 2021208523 A1 WO2021208523 A1 WO 2021208523A1 CN 2020142347 W CN2020142347 W CN 2020142347W WO 2021208523 A1 WO2021208523 A1 WO 2021208523A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil return
indoor
compressor
conditioning system
air conditioning
Prior art date
Application number
PCT/CN2020/142347
Other languages
English (en)
French (fr)
Inventor
崔俊
徐佳佳
罗荣邦
孙亚楠
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021208523A1 publication Critical patent/WO2021208523A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of air conditioning, in particular to a compressor oil return control method of an air conditioning system in a refrigeration mode.
  • the compressor is the core component of the air-conditioning system, and its working performance directly affects the operating effect of the air-conditioning system.
  • the compressor is filled with refrigerating machine oil.
  • the refrigerating machine oil plays the role of lubricating and cooling the motor and parts; during the refrigerant cycle of the air conditioning system, the refrigerating machine oil will follow the refrigerant to flow into the heat exchangers of the internal and external machines.
  • Engine oil will hinder the heat exchange between the refrigerant and the outside world, increase thermal resistance, and reduce the capacity and power of the air conditioning system. Therefore, it is very important to control the amount of refrigerating oil in the compressor.
  • the present invention provides a compressor oil return control method of an air conditioning system in a refrigeration mode.
  • the system includes a compressor, an outdoor heat exchanger, a first throttling element, an indoor heat exchanger and an oil control device.
  • the oil control device includes a casing and an inlet pipe, an outlet pipe and an oil return pipe arranged in the casing.
  • the oil return pipe is in communication with the suction port of the compressor, and a second throttle element is arranged between the oil return pipe and the suction port,
  • the compressor oil return control method includes:
  • the opening degree of the second throttle element is controlled to be adjusted to the target opening degree.
  • the step of "determining the target opening of the second throttle element based on the indoor temperature difference and the rotation speed of the internal fan" is further include:
  • the target opening degree of the second throttle element is determined.
  • the step of "determining the target opening degree of the second throttle element based on the comparison result" further includes:
  • the target opening degree of the second throttle element is calculated based on the first fitting formula.
  • the first fitting formula is based on the correspondence between the indoor temperature difference and the rotation speed of the internal fan and the target opening degree Sure.
  • the first fitting formula is:
  • the B is the target opening of the second throttle element;
  • the ⁇ T in is the indoor temperature difference,
  • the r is the rotation speed of the internal fan;
  • the a 1 and b 1 are constants.
  • the step of "determining the target opening degree of the second throttle element based on the comparison result" further includes:
  • the target opening degree of the second throttle element is calculated based on a second fitting formula.
  • the second fitting formula is determined by adding a correction opening on the basis of the first fitting formula.
  • the compressor oil return control method further includes:
  • the third fitting formula is based on the outdoor ambient temperature, the operating frequency of the compressor, and the second throttle element The corresponding relationship between the reference opening degree of and the target opening degree is determined.
  • the third fitting formula is:
  • B is the target opening of the second throttle element
  • T out is the outdoor ambient temperature
  • f is the operating frequency of the compressor
  • B 0 is the second throttle The reference opening of the element
  • the a 2 and b 2 are constants.
  • the air conditioning system includes a compressor, an outdoor heat exchanger, a first throttle element, an indoor heat exchanger, and an oil control device.
  • the oil control device includes a housing and a set The inlet pipe, outlet pipe and oil return pipe of the shell.
  • the oil return pipe communicates with the suction port of the compressor.
  • a second throttling element is arranged between the oil return pipe and the suction port.
  • the compressor of the air conditioning system returns oil in the refrigeration mode.
  • the control method includes: when the air conditioning system is running in the cooling mode, obtain the outdoor ambient temperature; compare the outdoor ambient temperature with the outdoor temperature threshold; when the outdoor ambient temperature is greater than or equal to the outdoor temperature threshold, obtain the indoor ambient temperature, the indoor coil temperature and the internal The speed of the fan; calculate the indoor temperature difference based on the indoor ambient temperature and the indoor coil temperature; determine the target opening of the second throttling element based on the indoor temperature difference and the speed of the internal fan; control the opening of the second throttling element to the target Opening.
  • the control method of the present application can jointly determine the target opening of the second throttling element that is compatible with the current indoor and outdoor environment based on the indoor temperature difference and the rotation speed of the internal fan in the cooling mode, so as to be based on the target opening Adjust the second throttling element to make the oil return of the compressor reach a better level and ensure the efficient and stable operation of the compressor.
  • the cooling mode is running, if the outdoor environment temperature is high, the viscosity of the refrigerating machine oil in the outdoor heat exchanger is small, and the fluidity is good, so there is no need to control the opening degree of the second throttling element based on the outdoor unit.
  • the state of the refrigerating machine oil in the indoor heat exchanger is judged based on the indoor temperature difference and the rotation speed of the internal fan.
  • the target opening of the second seasonal flow element can be adjusted based on the aforementioned indoor temperature difference and internal fan speed parameters, so that the oil return of the compressor reaches the better value of the current indoor and outdoor environmental conditions, and the compressor is efficient and stable. Operation to improve the energy efficiency level of the air-conditioning system.
  • the air conditioning system may be operating in low-temperature cooling or base station temperature control scenarios at this time.
  • the indoor environment temperature is basically unchanged, the temperature of the indoor heat exchanger does not change much, and the oil return effect of the air conditioner
  • the main influencing factor is the outdoor ambient temperature.
  • the oil return effect of the compressor can be matched with the current outdoor environment to ensure compression The efficient and stable operation of the machine.
  • Figure 1 is a system schematic diagram of the air conditioning system of the present invention
  • Fig. 3 is a logic diagram of a possible implementation of the compressor oil return control method of the air conditioning system in the refrigeration mode of the present invention.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • FIG. 1 shows a system diagram of an air conditioning system.
  • the air conditioning system in this application includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a first throttling element 4, and a bridge rectifier tube Road 5, oil control unit 6, indoor heat exchanger 7 and second throttle element 8.
  • the oil control device 6 includes a housing and an inlet pipe 61, an outlet pipe 62 and an oil return pipe 63 arranged in the housing.
  • the inlet pipe 61 extends from the top of the housing, and the outlet pipe 62 and the oil return pipe 63 extend from the bottom of the housing.
  • the extension height of the outlet pipe 62 is greater than the extension height of the oil return pipe 63.
  • the bridge rectifier pipeline 5 is composed of four pipelines to form a bridge structure, and each pipeline is provided with a one-way valve (5a-5d).
  • the first throttle element 4 is an electronic expansion valve
  • the second throttle element 8 can be an electronic expansion valve or a solenoid valve with a controllable opening.
  • the exhaust port of the compressor 1 is connected to the inlet of the outdoor heat exchanger 3 through the four-way valve 2 and the outlet of the outdoor heat exchanger 3 is one-way through the bridge rectifier pipeline 5
  • the valve 5a communicates with the inlet pipe 61 of the oil control device 6, the outlet pipe 62 of the oil control device 6 communicates with the inlet of the first throttling element 4, and the outlet of the first throttling element 4 is connected to the indoor heat exchanger 7 through the one-way valve 5c.
  • the inlet is connected, and the outlet of the indoor heat exchanger 7 is connected to the suction port of the compressor 1 after passing through the four-way valve 2.
  • the oil return pipe 63 of the oil controller 6 communicates with the suction port of the compressor 1 through the second throttle element 8.
  • the gaseous refrigerant mixed with refrigerating machine oil discharged from the compressor 1 enters the outdoor heat exchanger 3 through the four-way valve 2 and is liquefied into liquid refrigerant, and the liquid refrigerant enters the oil control through the one-way valve 5a and the inlet pipe 61 ⁇ 6 ⁇ In the housing of the ⁇ 6.
  • the liquid refrigerant entering the oil control device 6 will flash slightly, most of which are still in liquid state.
  • the refrigerating machine oil will layer with the liquid refrigerant.
  • the refrigerating machine oil is in the lower layer, the middle layer is liquid refrigerant, and the upper layer is gaseous refrigerant.
  • the gaseous and liquid refrigerant After being throttled by the outlet pipe 62 and the first throttling element 4, the gaseous and liquid refrigerant enter the indoor heat exchanger 7 through the one-way valve 5c and vaporize into gaseous refrigerant.
  • the gaseous refrigerant enters the compressor 1 after passing through the four-way valve 2 for suction.
  • the air port realizes the circulation of the refrigerant.
  • the refrigerating machine oil in the lowermost layer of the oil control device 6 enters the suction port of the compressor 1 after passing through the second throttling element 8 to realize the circulation of the refrigerating machine oil.
  • the exhaust port of the compressor 1 is connected to the inlet of the indoor heat exchanger 7 through the four-way valve 2, and the outlet of the indoor heat exchanger 7 is connected through the single bridge rectifier pipeline 5.
  • the valve 5b communicates with the inlet pipe 61 of the oil control device 6, the outlet pipe 62 of the oil control device 6 communicates with the inlet of the first throttle element 4, and the outlet of the first throttle element 4 is connected to the outdoor heat exchanger 3 via the one-way valve 5d.
  • the inlet of the outdoor heat exchanger 3 communicates with the suction port of the compressor 1 after passing through the four-way valve 2.
  • the oil return pipe 63 of the oil controller 6 communicates with the suction port of the compressor 1 through the second throttle element 8.
  • the gaseous refrigerant mixed with refrigerating machine oil discharged from the compressor 1 enters the indoor heat exchanger 7 through the four-way valve 2 and is liquefied into liquid refrigerant, and the liquid refrigerant enters through the check valve 5b and the inlet pipe 61 Inside the housing of the oil control device 6.
  • the liquid refrigerant entering the oil control device 6 will flash slightly, most of which are still in liquid state.
  • the refrigerating machine oil will layer with the liquid refrigerant.
  • the refrigerating machine oil is in the lower layer, the middle layer is liquid refrigerant, and the upper layer is gaseous refrigerant.
  • the gaseous and liquid refrigerant After being throttled by the outlet pipe 62 and the first throttling element 4, the gaseous and liquid refrigerant enter the outdoor heat exchanger 3 through the one-way valve 5d and vaporize into gaseous refrigerant.
  • the gaseous refrigerant enters the compressor 1 after passing through the four-way valve 2 for suction.
  • the air port realizes the circulation of the refrigerant.
  • the refrigerating machine oil in the lowermost layer of the oil control device 6 enters the suction port of the compressor 1 after passing through the second throttling element 8 to realize the circulation of the refrigerating machine oil.
  • the air conditioning system of the present application is introduced in conjunction with the above-mentioned specific settings, this is not intended to limit the scope of protection of the present application.
  • the technology in the field The personnel can add or delete a certain component or several components on the basis of the above-mentioned setting method, or adjust the setting position of a certain component or several components, etc.
  • the oil control unit 6 can also be replaced with other structures in the prior art, and its location can also be between the rotor compressor 1 and the outdoor heat exchanger 3.
  • the air-conditioning system may not be provided with the four-way valve 2, and accordingly the bridge rectifier pipeline 5 also needs to delete two pipelines.
  • the compressor oil return control method of the air conditioning system in the refrigeration mode of the present application mainly includes the following steps:
  • the outdoor environment temperature is greater than or equal to the outdoor temperature threshold, obtain the indoor environment temperature, the indoor coil temperature and the rotation speed of the internal fan; for example, when the comparison result is that the outdoor environment temperature is greater than or equal to the outdoor temperature threshold, it is proved that the outdoor heat exchange at this time
  • the refrigerating oil in the device has good fluidity, and there is no need to control the opening of the second throttling element based on the outdoor ambient temperature; at this time, the indoor ambient temperature is obtained through the temperature sensor installed on the indoor unit, and the indoor ambient temperature is obtained through the The temperature sensor obtains the temperature of the indoor coil, and obtains the speed of the internal fan through the speed sensor installed on the fan or by reading the operating parameters of the air conditioning system.
  • S400 Calculate the indoor temperature difference based on the indoor ambient temperature and the indoor coil temperature; for example, after obtaining the indoor ambient temperature and the indoor coil temperature, calculate the difference between the indoor ambient temperature and the indoor coil temperature as the indoor temperature difference.
  • S500 Determine the target opening of the second throttle element based on the indoor temperature difference and the rotational speed of the internal fan; for example, after calculating the indoor temperature difference, based on the indoor temperature difference and the target opening of the internal fan and the second throttle element Check the table to determine the opening degree of the second throttling element; or after calculating the indoor temperature difference, determine the opening degree of the second throttling element based on the fitting formula between the indoor temperature difference and the rotation speed of the internal fan and the target opening degree .
  • control method of the present application can jointly determine the target opening of the second throttling element compatible with the current indoor and outdoor environment based on the indoor temperature difference and the rotation speed of the internal fan in the cooling mode, so as to be based on the target
  • the opening degree of the second throttle element is adjusted to make the oil return of the compressor reach a better level, and to ensure the efficient and stable operation of the compressor.
  • the refrigerating machine oil when the cooling mode is running, if the outdoor environment temperature is high (for example, higher than 16°C), the refrigerating machine oil has a low viscosity in the outdoor heat exchanger and good fluidity, so there is no need for the second throttling of the outdoor unit.
  • the element performs opening control.
  • the state of the refrigerating machine oil in the indoor heat exchanger is judged based on the indoor temperature difference and the rotation speed of the internal fan.
  • the viscosity of the refrigerating machine oil in the indoor heat exchanger is small and fluidity Better, on the contrary, the liquidity is poor.
  • the target opening of the second seasonal flow element can be adjusted based on the aforementioned indoor temperature difference and internal fan speed parameters, so that the oil return of the compressor reaches the better value of the current indoor and outdoor environmental conditions, and the compressor is efficient and stable. Operation to improve the energy efficiency level of the air-conditioning system.
  • step S500 further includes: comparing the size of the indoor temperature difference and the threshold value of the indoor temperature difference, and the size of the rotation speed of the internal fan and the rotation speed threshold; based on the comparison result, determining the target opening of the second throttle element . Specifically, when the rotation speed of the internal fan is greater than or equal to the rotation speed threshold, the target opening of the second throttle element is calculated based on the first fitting formula; wherein, the first fitting formula is based on the indoor temperature difference and the rotation speed of the internal fan and the target opening The corresponding relationship between is determined.
  • the target opening of the second throttle element is calculated based on the second fitting formula; wherein, the second fitting formula is based on the first fitting formula The way to increase the correction opening is determined.
  • the rotational speed of the internal fan when the rotational speed of the internal fan is greater than or equal to the rotational speed threshold, it proves that the rotational speed of the internal fan is higher at this time, and it also proves that the heat exchange amount of the indoor heat exchanger is large at this time, and the viscosity of the refrigerating machine oil in the indoor heat exchanger is low. , The fluidity is better, so at this time, no matter what the state of the indoor temperature difference is, the target opening of the second throttle element can be adjusted according to the same control method to ensure the oil return of the compressor. Conversely, when the rotational speed of the internal fan is less than the rotational speed threshold, it proves that the rotational speed of the internal fan is low at this time, and the temperature of the indoor coil is also low.
  • the viscosity of the refrigerating machine oil is relatively large and the fluidity is poor. Therefore, in this case, the target opening of the second throttle element needs to be corrected on the basis of the previous adjustment method to make the second throttle element open. The degree is further increased to ensure the oil return and stable operation of the compressor.
  • first fitting formula and the second fitting formula are respectively:
  • the above formula (1) can be determined as follows: the compressor is controlled to work under multiple groups of different indoor temperature differences and internal fan speeds. Under each group of working conditions, by adjusting the opening of the second throttle element, Record the compressor's power, energy consumption and other parameters. When the compressor's power and energy consumption reach a better state, record the opening of the second throttling element in this state as the standard of the second throttling element under the working condition Opening. After the test, the multiple sets of data were classified and fitted, and finally the formula for the target opening degree was obtained by fitting.
  • the above formula (2) can be based on formula (1), through the same experimental method to obtain the standard opening of the second throttle element under different working conditions, and finally compare formula (2) with formula (1) Correct the opening degree.
  • the compressor oil return control method further includes: when the outdoor ambient temperature is less than the outdoor temperature threshold, calculating the target opening of the second throttle element based on the third fitting formula; wherein, the first The three-fitting formula is determined based on the corresponding relationship between the outdoor ambient temperature, the operating frequency of the compressor, and the reference opening degree of the second throttle element and the target opening degree.
  • the third fitting formula is:
  • the determination method of formula (3) is similar to the above formula (1), and will not be repeated.
  • the air conditioning system may be operating in a low-temperature cooling or base station temperature control scenario at this time.
  • the indoor environment temperature is basically unchanged, and the temperature of the indoor heat exchanger changes.
  • the main influencing factor of the oil return effect of the air conditioner is the outdoor ambient temperature.
  • the oil return effect of the compressor can be matched with the current outdoor environment to ensure compression The efficient and stable operation of the machine.
  • FIG. 3 is a logic diagram of the compressor oil return control method of the air conditioning system in the refrigeration mode of the present invention.
  • step S10 is first performed: Obtain the operating mode ⁇ After obtaining the operating mode, perform step S20: Determine whether it is currently operating in the cooling mode ⁇ If yes, perform step S20 S21: Obtain the outdoor ambient temperature T out ⁇ After acquiring the outdoor ambient temperature T out , perform step S30: Compare the size of the outdoor ambient temperature T out with the outdoor temperature threshold T 1 ⁇ When T out ⁇ T 1 is not established, perform step S31: Follow Formula (3) determines the target opening degree of the second throttling element and controls the second throttling element to adjust to the target opening degree ⁇ otherwise, if T out ⁇ T 1 is established, perform step S40: further compare the indoor temperature difference ⁇ T in The size of the difference from the indoor temperature threshold T 2 and the size of the rotation speed r of the internal fan and the rotation speed threshold R ⁇ When ⁇ T in ⁇ T 2 and r ⁇ R are established, perform step S41: Determine the second throttle according to formula (2)
  • controller used to perform the above control method may physically be a controller specifically used to perform the method of the present invention, or may be a controller of an existing air-conditioning system, or may be a functional module of a general-purpose controller Or functional unit.
  • the controller of the air-conditioning system also includes some other well-known structures, such as a processor, a memory, etc., where the memory includes but is not limited to Random access memory, flash memory, read-only memory, programmable read-only memory, volatile memory, non-volatile memory, serial memory, parallel memory or registers, etc.
  • processors include but are not limited to CPLD/FPGA, DSP, ARM processing Processor, MIPS processor, etc. In order to unnecessarily obscure the embodiments of the present disclosure, these well-known structures are not shown in the drawings.
  • the various steps are described in the above-mentioned order in the above embodiment, those skilled in the art can understand that in order to achieve the effect of this embodiment, different steps need not be executed in such an order. Simultaneous (parallel) execution or execution in reverse order, these simple changes are all within the protection scope of the present invention.
  • the step of obtaining the rotation speed of the internal fan can be executed simultaneously with the indoor ambient temperature and the indoor coil temperature, or it can be executed after the indoor temperature difference is calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种制冷模式下空调系统的压缩机回油控制方法,空调系统包括压缩机(1)、四通阀(2)、室外换热器(3)、第一节流元件(4)、桥式整流管路(5)、控油器(6)、室内换热器(7)和第二节流元件(8),回油控制方法包括:当空调系统运行制冷模式时,获取室外环境温度;比较室外环境温度与室外温度阈值的大小;当室外环境温度大于等于室外温度阈值时,获取室内环境温度、室内盘管温度和内风机的转速;基于室内环境温度和室内盘管温度,计算室内温差;基于室内温差与内风机的转速,确定第二节流元件(8)的目标开度;控制第二节流元件(8)的开度调整至目标开度。

Description

制冷模式下空调系统的压缩机回油控制方法 技术领域
本发明涉及空气调节技术领域,具体涉及一种制冷模式下空调系统的压缩机回油控制方法。
背景技术
压缩机是空调系统的核心部件,其工作性能直接影响着空调系统的运行效果。压缩机中填充有冷冻机油,压缩机工作时冷冻机油起到润滑、冷却电机和零部件的作用;在空调系统的冷媒循环过程中,冷冻机油会跟随冷媒流到内外机的换热器中,机油会阻碍冷媒与外界的换热,增加热阻,使空调系统的能力降低、功率上升。因此控制压缩机的冷冻机油量至关重要,如果油量太少起不到润滑和冷却效果,而且系统回油困难,导致零部件磨损;如果油量太多又阻碍系统循环降低系统循环效率,影响能效水平。
研究表明,冷冻机油的粘度与温度有关,温度高,冷冻机油的粘度低,流动性好,回油速度快,反之流动性差,回油速度慢。因此,如何基于温度进行高效、稳定的回油控制是本领域亟待解决的问题。
相应地,本领域需要一种新的制冷模式下空调系统的压缩机回油控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有压缩机回油控制方法存在的效果差的问题,本发明提供了一种制冷模式下空调系统的压缩机回油控制方法,所述空调系统包括压缩机、室外换热器、第一节流元件、室内换热器和控油器,所述控油器包括壳体和设置于所述壳体的进口管、出口管和回油管,所述回油管与所述压缩机的吸气口连通,所述回油管与所述吸气口之间设置有第二节流元件,
所述压缩机回油控制方法包括:
当所述空调系统运行制冷模式时,获取室外环境温度;
比较所述室外环境温度与室外温度阈值的大小;
当所述室外环境温度大于等于所述室外温度阈值时,获取室内环境温度、室内盘管温度和内风机的转速;
基于所述室内环境温度和所述室内盘管温度,计算室内温差;
基于所述室内温差与所述内风机的转速,确定所述第二节流元件的目标开度;
控制所述第二节流元件的开度调整至所述目标开度。
在上述制冷模式下空调系统的压缩机回油控制方法的优选技术方案中,“基于所述室内温差与所述内风机的转速,确定所述第二节流元件的目标开度”的步骤进一步包括:
比较所述室内温差与室内温差阈值的大小、以及所述内风机的转速与转速阈值的大小;
基于比较结果,确定所述第二节流元件的目标开度。
在上述制冷模式下空调系统的压缩机回油控制方法的优选技术方案中,“基于比较结果,确定所述第二节流元件的目标开度”的步骤进一步包括:
在所述内风机的转速大于等于转速阈值时,基于第一拟合公式计算所述第二节流元件的目标开度。
在上述制冷模式下空调系统的压缩机回油控制方法的优选技术方案中,所述第一拟合公式基于所述室内温差和所述内风机的转速与所述目标开度之间的对应关系确定。
在上述制冷模式下空调系统的压缩机回油控制方法的优选技术方案中,所述第一拟合公式为:
B=a 1ΔT in+b 1r
其中,所述B为所述第二节流元件的目标开度;所述△T in为所述室内温差,所述r为所述内风机的转速;所述a 1、b 1为常数。
在上述制冷模式下空调系统的压缩机回油控制方法的优选技术方案中,“基于比较结果,确定所述第二节流元件的目标开度”的步骤还包括:
在所述室内温差小于所述室内温差阈值且所述内风机的转速小于所述转速阈值时,基于第二拟合公式计算所述第二节流元件的目标开度。
在上述制冷模式下空调系统的压缩机回油控制方法的优选技术方案中,,所述第二拟合公式通过在所述第一拟合公式的基础上增加修正开度的方式确定。
在上述制冷模式下空调系统的压缩机回油控制方法的优选技术方案中,所述压缩机回油控制方法还包括:
当所述室外环境温度小于所述室外温度阈值时,基于第三拟合公式计算所述第二节流元件的目标开度;
在上述制冷模式下空调系统的压缩机回油控制方法的优选技术方案中,,所述第三拟合公式基于所述室外环境温度、所述压缩机的运行频率和所述第二节流元件的基准开度与所述目标开度之间的对应关系确定。
在上述制冷模式下空调系统的压缩机回油控制方法的优选技术方案中,所述第三拟合公式为:
B=a 2(35-T out)+(b 2/f)B 0+B 0
其中,所述B为所述第二节流元件的目标开度;所述T out为室外环境温度,所述f为所述压缩机的运行频率;所述B 0为所述第二节流元件的基准开度;所述a 2、b 2为常数。
本领域技术人员能够理解的是,在本发明的优选技术方案中,空调系统包括压缩机、室外换热器、第一节流元件、室内换热器和控油器,控油器包括壳体和设置于壳体的进口管、出口管和回油管,回油管与压缩机的吸气口连通,回油管与吸气口之间设置有第二节流元件,制冷模式下空调系统的压缩机回油控制方法包括:当空调系统运行制冷模式时,获取室外环境温度;比较室外环境温度与室外温度阈值的大小;当室外环境温度大于等于室外温度阈值时,获取室内环境温度、室内盘管温度和内风机的转速;基于室内环境温度和室内盘管温度,计算室内温差;基于室内温差与内风机的转速,确定第二节流元件的目标开度;控制第二节流元件的开度调整至目标开度。
通过上述控制方式,本申请的控制方法能够在制冷模式下基于室内温差和内风机的转速共同确定出与当前室内外环境相适应的第二节流元件的目标开度,从而基于该目标开度调整第二节流元件,使得压缩机的回油量达到较佳的水平,保证压缩机高效、稳定地运行。具体而言,运行制冷模式时,如果室外环境温度较高,冷冻机油在室外换热器内黏度较小,流动性较好,因此无需基于室外机对第二节流元件进行开度控制。此时,基于室内温差和内风机的转速对室内换热器中的冷冻机油的状态进行判断,当室内温差大、内风机转速高时,室内换热器中的冷冻机油黏度较小,流动性较好,反之流动性差。因此,可以基于上述室内温差和内风机转速参数对第二季节流元件的目标开度进行调节,使得压缩机的回油量达到当前室内外环境条件的较佳值,保证压缩机高效、稳定地运行,提高空调系统的能效水平。
进一步地,在室外环境温度较低时,证明此时空调系统可能运行于低温制冷或者基站控温的场景,室内环境温度基本不变,室内换热器的温度变化不大,空调的回油效果的主要影响因素为室外环境温度。此时通过基于室外环境温度、压缩机的运行频率和第二节流元件的基准开度确定第二节流元件的开度,能够使压缩机的回油效果与当前室外环境相匹配,保证压缩机的高效、稳定运行。
附图说明
下面参照附图来描述本发明的制冷模式下空调系统的压缩机回油控制方法。附图中:
图1为本发明的空调系统的系统示意图;
图2为本发明的制冷模式下空调系统的压缩机回油控制方法的流程图;
图3为本发明的制冷模式下空调系统的压缩机回油控制方法的一种可能的实施方式的逻辑图。
附图标记列表
1、压缩机;2、四通阀;3、室外换热器;4、第一节流元件;5、桥式整流管路;6、控油器;61、进口管;62、出口管;63、回油管;7、室内换热器;8、第二节流元件。
具体实施方式
本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,尽管下文详细描述了本发明方法的步骤,但是,在不偏离本发明的基本原理的前提下,本领域技术人员可以对上述步骤进行组合、拆分及调换顺序,如此修改后的技术方案并没有改变本发明的基本构思,因此也落入本发明的保护范围之内。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参照图1,对本发明的空调系统的结构进行描述。
如图1所示,图1示出的是空调系统的系统图,本申请中空调系统包括压缩机1、四通阀2、室外换热器3、第一节流元件4、桥式整流管路5、控油器6、室内换热器7和第二节流元件8。控油器6包括壳体和设置于壳体的进口管61、出口管62和回油管63,进口管61由壳体的顶部伸入,出口管62和回油管63均由壳体的底部伸入,并且出口管62的伸入高度大于回油管63的伸入高度。桥式整流管路5由四个管路组成桥式结构,每个管路上设置有一单向阀(5a-5d)。本申请中,第一节流元件4选用电子膨胀阀,第二节流元件8可以为电子膨胀阀或开度可控的电磁阀。
参照图1,空调系统在制冷模式下,压缩机1的排气口经四通阀2与室外换热器3的进口连通,室外换热器3的出口经桥式整流管路5的单向阀5a与控油器6的进口管61连通,控油器6的出口管62与第一节流元件4的进口连通,第一节流元件4的出口经单向阀5c与室内换热器7的进口连通,室内换热器7的出口经四通阀2后与压缩机1的吸气口连通。控油器6的回油管63经第二节流元件8与压缩机1的吸气口连通。
空调系统在制冷运行时,压缩机1排出的混合有冷冻机油的气态冷媒经四通阀2后进入室外换热器3并液化为液态冷媒,液态冷媒经单向阀5a和进口管61进入控油器6的壳体内。进入控油器6的液态冷媒会有微量的闪发,大部分仍为液体状态,在控油器6里面冷冻机油会与液态冷媒分层,冷冻机油在下层,中层是液态冷媒,上层为气态冷媒。气态和液态冷媒经出口管62和第一节流元件4的节流后,经单向阀5c进入室内换热器7并汽化为气态冷媒,气态冷媒经四通阀2后进入压缩机1吸气口,实现冷媒的循环。控油器6最下层的冷冻机油经过第二节流元件8后进入压缩机1的吸气口,实现冷冻机油的循环。
继续参照图1,在制热模式下,压缩机1的排气口经四通阀2与室内换热器7器的进口连通,室内换热器7的出口经桥式整流管路5的单向阀5b与控油器6的进口管61连通,控油器6的出口管62与第一节流元件4的进口连通,第一节流元件4的出口经单向阀5d与室外换热器3的进口连通,室外换热器3的出口经四通阀2后与压缩机1的吸气口连通。控油器6的回油管63经第二节流元件8与压缩机1的吸气口连通。
空调系统在制热运行时,压缩机1排出的混合有冷冻机油的气态冷媒经四通阀2后进入室内换热器7并液化为液态冷媒,液态冷媒经单向阀5b和进口管61进入控油器6的壳体内。进入控油器6的液态冷媒会有微量的闪发,大部分仍为液体状态,在控油器6里面冷冻机油会与液态冷媒分层,冷冻机油在下层,中层是液态冷媒,上层为气态冷媒。气态和液态冷媒经出口管62和第一节流元件4的节流后,经单向阀5d进入室外换热器3并汽化为气态冷媒,气态冷媒经四通阀2后进入压 缩机1吸气口,实现冷媒的循环。控油器6最下层的冷冻机油经过第二节流元件8后进入压缩机1的吸气口,实现冷冻机油的循环。
本领域技术人员能够理解的是,虽然本申请的空调系统是结合上述具体设置方式进行介绍的,但是这并非旨在于限制本申请的保护范围,在不偏离本申请原理的前提下,本领域技术人员可以在上述设置方式的基础上增加或删除某一个或几个部件,或者调整某一个或几个部件的设置位置等。例如,控油器6还可以更换为其他现有技术中的结构,其设置位置还可以在转子式压缩机1与室外换热器3之间。再如,空调系统也可以不设置四通阀2,相应地桥式整流管路5也需要删减两条管路。
下面结合图2和图3对本发明的制冷模式下空调系统的压缩机回油控制方法进行介绍。
如背景技术所述,现有研究表明,冷冻机油的粘度主要与温度有关。温度高,冷冻机油的粘度低,流动性好,回油速度快,反之流动性差,回油速度慢。因此,如何基于温度进行高效、稳定的回油控制是本领域亟待解决的问题。为解决上述问题,本申请的制冷模式下空调系统的压缩机回油控制方法主要包括以下步骤:
S100、当空调系统运行制冷模式时,获取室外环境温度;例如,在空调系统开机并运行制冷模式时,通过设置在室外机上的温度传感器获取室外环境温度。
S200、比较室外环境温度与室外温度阈值的大小;例如,室外温度阈值预先存储于空调器的控制器中,在获取到室外环境温度后,将室外环境温度与室外温度阈值进行比较。
S300、当室外环境温度大于等于室外温度阈值时,获取室内环境温度、室内盘管温度和内风机的转速;例如,在比较结果为室外环境温度大于等于室外温度阈值时,证明此时室外换热器内的冷冻机油流动性较好,无需基于室外环境温度对第二节流元件进行开度控制;此时通过设置在室内机上的温度传感器获取室内环境温度,通过设置在室内换热器上的温度传感器获取室内盘管温度,通过设置在风机上的速度传感器或通过读取空调系统的运行参数获得内风机的转速。
S400、基于室内环境温度和室内盘管温度,计算室内温差;例如,在获取到室内环境温度和室内盘管温度后,计算室内环境温度与室内盘管温度的差值作为室内温差。
S500、基于室内温差与内风机的转速,确定第二节流元件的目标开度;例如,在计算出室内温差后,基于室内温差和内风机与第二节流元件的目标开度之间的对照表,确定第二节流元件的开度;或者在计算出室内温差后,基于室内温差与和内风机的转速与目标开度之间的拟合公式,确定第二节流元件的开度。
S600、控制第二节流元件的开度调整至目标开度;例如,在确定出第二节流元件的目标开度后,控制第二节流元件调整至该目标开度。
从上述描述可以看出,本申请的控制方法能够在制冷模式下基于室内温差和内风机的转速共同确定出与当前室内外环境相适应的第二节流元件的目标开度,从而基于该目标开度调整第二节流元件,使得压缩机的回油量达到较佳的水平,保证压缩机高效、稳定地运行。
具体而言,运行制冷模式时,如果室外环境温度较高(如高于16℃),冷冻机油在室外换热器内黏度较小,流动性较好,因此无需基于室外机对第二节流元件进行开度控制。此时,基于室内温差和内风机的转速对室内换热器中的冷冻机油的状态进行判断,当室内温差大、内风机转速高时,室内换热器中的冷冻机油黏度较小,流动性较好,反之流动性差。因此,可以基于上述室内温差和内风机转速参数对第二季节流元件的目标开度进行调节,使得压缩机的回油量达到当前室内外环境条件的较佳值,保证压缩机高效、稳定地运行,提高空调系统的能效水平。
下面对本申请的制冷模式下空调系统的压缩机回油控制方法的一种较为优选的实施方式进行介绍。
在一种较为优选的实施方式中,步骤S500进一步包括:比较室内温差与室内温差阈值的大小、以及内风机的转速与转速阈值的大小;基于比较结果,确定第二节流元件的目标开度。具体地,在内风机的转速大于等于转速阈值时,基于第一拟合公式计算第二节流元件的目标开度;其中,第一拟合公式基于室内温差和内风机的转速与目标开度 之间的对应关系确定。在室内温差小于室内温差阈值且内风机的转速小于转速阈值时,基于第二拟合公式计算第二节流元件的目标开度;其中,第二拟合公式通过在第一拟合公式的基础上增加修正开度的方式确定。
举例而言,当内风机的转速大于等于转速阈值时,证明此时内风机的转速较高,也证明此时室内换热器的换热量大,室内换热器中的冷冻机油黏度较小,流动性较好,因此,此时无论室内温差处于何种状态,都可以按照相同的控制方式调节第二节流元件的目标开度,以保证压缩机的回油量。反之,当内风机的转速小于转速阈值时,证明此时内风机的转速较低,室内盘管温度也较低,如果此时室内温差小于室内温差阈值,证明室内换热器的换热量小,冷冻机油的粘度较大,流动性较差,因此,这种情况下需要在上一种调节方式的基础上对第二节流元件的目标开度进行修正,使第二节流元件的开度进一步增大,以保证压缩机的回油量和稳定运行。
例如,在一种较为优选的实施方式中,第一拟合公式和第二拟合公式分别为:
B=a 1ΔT in+b 1r              (1)
B=a 1ΔT in+b 1r+B 1           (2)
公式(1)和公式(2)中,B为第二节流元件的目标开度;△T in为室内温差,r为内风机的转速;B 1为修正开度;a 1、b 1为常数。
上述公式(1)可以按照如下方式确定:分别在多组不同的室内温差和内风机转速的工况下控制压缩机工作,在每组工况下,通过调整第二节流元件的开度,记录压缩机的功率、能耗等参数,当压缩机的功率和能耗达到较佳的状态时记录该状态下的第二节流元件的开度作为该工况下第二节流元件的标准开度。试验结束后,对多组数据进行归类拟合,最终拟合得出目标开度的公式。
上述公式(2)可以在公式(1)的基础上,通过同样的实验方式得出第二节流元件在不同工况下的标准开度,最后将公式(2)与公式(1)进行比对得出修正开度。
从上述公式(1)和公式(2)可以看出,在内风机的转速较高时,通过基于室内温差和内风机的转速拟合出的公式(1)确定第二节流元件的目标开度,能够使得压缩机在运行过程中的回油量与当前室内 外环境相匹配,保证压缩机的高效、平稳运行。在室内温差较小且内风机的转速较低时,通过对公式(1)进行修正从而得到公式(2)来控制第二节流元件的目标开度,可以使得在室内换热器的冷冻机油流动性较差时通过加大第二节流元件的开度来提高压缩机的回油量,保证压缩机运行效率。
在另一种较为优选的实施方式中,压缩机回油控制方法还包括:当室外环境温度小于室外温度阈值时,基于第三拟合公式计算第二节流元件的目标开度;其中,第三拟合公式基于室外环境温度、压缩机的运行频率和第二节流元件的基准开度与目标开度之间的对应关系确定。具体地,在本申请中,第三拟合公式为:
B=a 2(35-T out)+(b 2/f)B 0+B 0      (3)
公式(3)中,B为第二节流元件的目标开度;T out为室外环境温度,f为压缩机的运行频率;B 0为第二节流元件的基准开度;a 2、b 2为常数。公式(3)的确定方式与上述公式(1)类似,不再赘述。
举例而言,在室外环境温度较低时(如低于16℃),证明此时空调系统可能运行于低温制冷或者基站控温的场景,室内环境温度基本不变,室内换热器的温度变化不大,空调的回油效果的主要影响因素为室外环境温度。此时通过基于室外环境温度、压缩机的运行频率和第二节流元件的基准开度确定第二节流元件的开度,能够使压缩机的回油效果与当前室外环境相匹配,保证压缩机的高效、稳定运行。
需要说明的是,上述室外温度阈值、室内温差阈值、转速阈值等虽然没有给出具体数值,但这并非是本申请公开不充分,相反地,本领域技术人员可以基于空调系统的具体应用场景对上述参数进行设定,以便本控制方法能够更好的发挥其功效。
下面结合图3,对本发明的控制方法的一种可能的实施过程进行介绍。其中,图3为本发明的制冷模式下空调系统的压缩机回油控制方法的逻辑图。
如图3所示,在一种可能的实施方式中,空调启动后首先执行步骤S10:获取运行模式→获取运行模式后,执行步骤S20:判断当前是否以制冷模式运行→如果是,则执行步骤S21:获取室外环境温度T out→获取室外环境温度T out后,执行步骤S30:比较室外环境温度T out与室 外温度阈值T 1的大小→当T out≥T 1不成立时,执行步骤S31:按照公式(3)确定第二节流元件的目标开度并控制第二节流元件调整至该目标开度→否则,如果T out≥T 1成立,则执行步骤S40:进一步比较室内温差△T in与室内温差阈值T 2的大小以及内风机的转速r与转速阈值R的大小→当△T in<T 2且r<R成立时,则执行步骤S41:按照公式(2)确定第二节流元件的目标开度并控制第二节流元件调整至该目标开度→否则,当△T in<T 2且r<R不成立时,执行步骤S50:判断r≥R是否成立→在r≥R成立时,则执行步骤S51:按照公式(1)确定第二节流元件的目标开度并控制第二节流元件调整至该目标开度→当步骤S20或步骤S50的判断结果为否时,则结束程序,保持空调系统的当前运行状态不变。
需要说明的是,用于执行上述控制方法的控制器物理上可以是专门用于执行本发明的方法的控制器,也可以现有空调系统的控制器,还可以是通用控制器的一个功能模块或功能单元。
本领域技术人员可以理解,虽然上述实施方式中没有就控制器的具体结构进行阐述,但是上述空调系统的控制器还包括一些其他公知结构,例如处理器、存储器等,其中,存储器包括但不限于随机存储器、闪存、只读存储器、可编程只读存储器、易失性存储器、非易失性存储器、串行存储器、并行存储器或寄存器等,处理器包括但不限于CPLD/FPGA、DSP、ARM处理器、MIPS处理器等。为了不必要地模糊本公开的实施例,这些公知的结构未在附图中示出。
此外,上述实施例中虽然将各个步骤按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,这些简单的变化都在本发明的保护范围之内。例如,获取内风机的转速步骤可以与室内环境温度、室内盘管温度同时执行,也可以在计算出室内温差后执行。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种制冷模式下空调系统的压缩机回油控制方法,其特征在于,所述空调系统包括压缩机、室外换热器、第一节流元件、室内换热器和控油器,所述控油器包括壳体和设置于所述壳体的进口管、出口管和回油管,所述回油管与所述压缩机的吸气口连通,所述回油管与所述吸气口之间设置有第二节流元件,
    所述压缩机回油控制方法包括:
    当所述空调系统运行制冷模式时,获取室外环境温度;
    比较所述室外环境温度与室外温度阈值的大小;
    当所述室外环境温度大于等于所述室外温度阈值时,获取室内环境温度、室内盘管温度和内风机的转速;
    基于所述室内环境温度和所述室内盘管温度,计算室内温差;
    基于所述室内温差与所述内风机的转速,确定所述第二节流元件的目标开度;
    控制所述第二节流元件的开度调整至所述目标开度。
  2. 根据权利要求1所述的制冷模式下空调系统的压缩机回油控制方法,其特征在于,“基于所述室内温差与所述内风机的转速,确定所述第二节流元件的目标开度”的步骤进一步包括:
    比较所述室内温差与室内温差阈值的大小、以及所述内风机的转速与转速阈值的大小;
    基于比较结果,确定所述第二节流元件的目标开度。
  3. 根据权利要求2所述的制冷模式下空调系统的压缩机回油控制方法,其特征在于,“基于比较结果,确定所述第二节流元件的目标开度”的步骤进一步包括:
    在所述内风机的转速大于等于转速阈值时,基于第一拟合公式计算所述第二节流元件的目标开度。
  4. 根据权利要求3所述的制冷模式下空调系统的压缩机回油控制方法, 其特征在于,,所述第一拟合公式基于所述室内温差和所述内风机的转速与所述目标开度之间的对应关系确定。
  5. 根据权利要求4所述的制冷模式下空调系统的压缩机回油控制方法,其特征在于,所述第一拟合公式为:
    B=a 1ΔT in+b 1r
    其中,所述B为所述第二节流元件的目标开度;所述△T in为所述室内温差,所述r为所述内风机的转速;所述a 1、b 1为常数。
  6. 根据权利要求3所述的制冷模式下空调系统的压缩机回油控制方法,其特征在于,“基于比较结果,确定所述第二节流元件的目标开度”的步骤还包括:
    在所述室内温差小于所述室内温差阈值且所述内风机的转速小于所述转速阈值时,基于第二拟合公式计算所述第二节流元件的目标开度。
  7. 根据权利要求6所述的制冷模式下空调系统的压缩机回油控制方法,其特征在于,,所述第二拟合公式通过在所述第一拟合公式的基础上增加修正开度的方式确定。
  8. 根据权利要求1所述的制冷模式下空调系统的压缩机回油控制方法,其特征在于,所述压缩机回油控制方法还包括:
    当所述室外环境温度小于所述室外温度阈值时,基于第三拟合公式计算所述第二节流元件的目标开度。
  9. 根据权利要求8所述的制冷模式下空调系统的压缩机回油控制方法,其特征在于,,所述第三拟合公式基于所述室外环境温度、所述压缩机的运行频率和所述第二节流元件的基准开度与所述目标开度之间的对应关系确定。
  10. 根据权利要求9所述的制冷模式下空调系统的压缩机回油控制方法,其特征在于,所述第三拟合公式为:
    B=a 2(35-T out)+(b 2/f)B 0+B 0
    其中,所述B为所述第二节流元件的目标开度;所述T out为室外环境温度,所述f为所述压缩机的运行频率;所述B 0为所述第二节流元件的基准开度;所述a 2、b 2为常数。
PCT/CN2020/142347 2020-04-14 2020-12-31 制冷模式下空调系统的压缩机回油控制方法 WO2021208523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010290911.8 2020-04-14
CN202010290911.8A CN113551389B (zh) 2020-04-14 2020-04-14 制冷模式下空调系统的压缩机回油控制方法

Publications (1)

Publication Number Publication Date
WO2021208523A1 true WO2021208523A1 (zh) 2021-10-21

Family

ID=78085215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142347 WO2021208523A1 (zh) 2020-04-14 2020-12-31 制冷模式下空调系统的压缩机回油控制方法

Country Status (2)

Country Link
CN (1) CN113551389B (zh)
WO (1) WO2021208523A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114719397A (zh) * 2021-12-07 2022-07-08 青岛海尔空调电子有限公司 一种空调器的控制方法
CN115264675A (zh) * 2022-04-29 2022-11-01 佛山市顺德区美的电子科技有限公司 一种空调器及其控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105299979A (zh) * 2015-10-15 2016-02-03 海信(山东)空调有限公司 压缩机回油控制方法、回油装置及空调器
CN106247652A (zh) * 2016-09-29 2016-12-21 广东美的制冷设备有限公司 空调系统及其控制方法
CN106500390A (zh) * 2016-10-09 2017-03-15 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
CN106766371A (zh) * 2016-11-29 2017-05-31 珠海格力电器股份有限公司 一种双级压缩机热泵及其回油控制系统和控制方法
JP2018200145A (ja) * 2017-05-29 2018-12-20 三菱重工サーマルシステムズ株式会社 制御装置、空気調和機及び制御方法
CN109140829A (zh) * 2018-08-13 2019-01-04 珠海格力电器股份有限公司 压缩机回油结构、制冷机组及空调系统
CN109341123A (zh) * 2018-12-07 2019-02-15 珠海格力电器股份有限公司 空调系统及其控制方法
JP2019078440A (ja) * 2017-10-24 2019-05-23 パナソニックIpマネジメント株式会社 空気調和機
CN110806036A (zh) * 2019-10-22 2020-02-18 珠海格力电器股份有限公司 一种热泵的回油控制及压缩机变容量控制系统和空调器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402027B2 (ja) * 2009-01-30 2014-01-29 ダイキン工業株式会社 空気調和機
CN103115417B (zh) * 2013-03-19 2015-04-01 海尔集团公司 低温环境空调器的制冷方法
CN105588361A (zh) * 2015-11-04 2016-05-18 青岛海信日立空调系统有限公司 一种多联机空调系统
CN105371531B (zh) * 2015-11-30 2018-02-09 珠海格力电器股份有限公司 空调器的低频回油控制方法及系统
CN106016458B (zh) * 2016-05-31 2019-02-19 广东美的暖通设备有限公司 空调器及其模式切换控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105299979A (zh) * 2015-10-15 2016-02-03 海信(山东)空调有限公司 压缩机回油控制方法、回油装置及空调器
CN106247652A (zh) * 2016-09-29 2016-12-21 广东美的制冷设备有限公司 空调系统及其控制方法
CN106500390A (zh) * 2016-10-09 2017-03-15 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
CN106766371A (zh) * 2016-11-29 2017-05-31 珠海格力电器股份有限公司 一种双级压缩机热泵及其回油控制系统和控制方法
JP2018200145A (ja) * 2017-05-29 2018-12-20 三菱重工サーマルシステムズ株式会社 制御装置、空気調和機及び制御方法
JP2019078440A (ja) * 2017-10-24 2019-05-23 パナソニックIpマネジメント株式会社 空気調和機
CN109140829A (zh) * 2018-08-13 2019-01-04 珠海格力电器股份有限公司 压缩机回油结构、制冷机组及空调系统
CN109341123A (zh) * 2018-12-07 2019-02-15 珠海格力电器股份有限公司 空调系统及其控制方法
CN110806036A (zh) * 2019-10-22 2020-02-18 珠海格力电器股份有限公司 一种热泵的回油控制及压缩机变容量控制系统和空调器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114719397A (zh) * 2021-12-07 2022-07-08 青岛海尔空调电子有限公司 一种空调器的控制方法
CN114719397B (zh) * 2021-12-07 2023-11-24 青岛海尔空调电子有限公司 一种空调器的控制方法
CN115264675A (zh) * 2022-04-29 2022-11-01 佛山市顺德区美的电子科技有限公司 一种空调器及其控制方法
CN115264675B (zh) * 2022-04-29 2023-11-10 佛山市顺德区美的电子科技有限公司 一种空调器及其控制方法

Also Published As

Publication number Publication date
CN113551389A (zh) 2021-10-26
CN113551389B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2021233465A1 (zh) 空调机组的控制方法及空调机组
CN110388769B (zh) 电子膨胀阀的控制方法及控制系统
WO2021135679A1 (zh) 空调外风机的转速控制方法
WO2021208523A1 (zh) 制冷模式下空调系统的压缩机回油控制方法
KR101513768B1 (ko) 공기 조화 장치
CN104653444B (zh) 一种控制变频空调启动的方法和装置
CN107152822A (zh) 室外机的控制方法、空调器、及存储介质
WO2021135680A1 (zh) 空调外风机的转速控制方法
JP2004218879A (ja) 空気調和機及びその制御方法
CN114353277B (zh) 防结霜控制方法以及防结霜空调
CN111520879A (zh) 一种空调机组能效的评估方法及装置
CN113551447B (zh) 制热模式下空调系统的压缩机回油控制方法和控制系统
CN113865059B (zh) 多联机空调器制热运行控制方法
WO2021208517A1 (zh) 空调系统的冷冻机油循环量控制方法
KR102329030B1 (ko) 자연냉각 기계실 에어컨의 제어 방법, 제어 장치 및 자연냉각 기계실 에어컨
EP1632735B1 (en) Engine driven type air conditioner and method of controlling the same
WO2023207222A1 (zh) 空调器及其控制方法
CN114754466B (zh) 空调控制方法、装置、空调及存储介质
JP2018071864A (ja) 空気調和機
CN108692425B (zh) 空调器除霜控制方法
WO2021208520A1 (zh) 空调器的压缩机回油控制方法
CN110686423A (zh) 具有压缩机冷却支路的空调机组和压缩机冷却控制方法
CN107906811A (zh) 热泵机组防冷冻控制方法
JP4557828B2 (ja) エンジン駆動式空気調和装置及びその制御方法
CN112344511A (zh) 一种适用于机房空调冷媒流量的控制方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931007

Country of ref document: EP

Kind code of ref document: A1