JP2006060925A - ステッピングモータのマイクロステップ駆動装置、電動雲台カメラおよびズームカメラ - Google Patents

ステッピングモータのマイクロステップ駆動装置、電動雲台カメラおよびズームカメラ Download PDF

Info

Publication number
JP2006060925A
JP2006060925A JP2004240380A JP2004240380A JP2006060925A JP 2006060925 A JP2006060925 A JP 2006060925A JP 2004240380 A JP2004240380 A JP 2004240380A JP 2004240380 A JP2004240380 A JP 2004240380A JP 2006060925 A JP2006060925 A JP 2006060925A
Authority
JP
Japan
Prior art keywords
stepping motor
phase
microstep
micro
stepping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004240380A
Other languages
English (en)
Inventor
Kazuto Yamamoto
一人 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2004240380A priority Critical patent/JP2006060925A/ja
Publication of JP2006060925A publication Critical patent/JP2006060925A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/40Special adaptations for controlling two or more stepping motors

Abstract

【課題】二つのステッピングモータを同時に駆動するに際して、マイクロステップ駆動時の最大消費電流を低減すると共に、最大消費電流と最小消費電流の差を低減してEMIノイズの発生を抑える。
【解決手段】二つのステッピングモータ1,2のステップレートが等しく、かつ、一方のステッピングモータのマイクロステップ電流波形の位相90°n相(nは整数)と他方のステッピングモータのマイクロステップ電流波形の位相−45°+90°m相(mは整数)が一致するように、それぞれが別個の機構部を動作させる二つのステッピングモータを同時にマイクロステップ駆動(18,5,6)させる。
【選択図】図1

Description

本発明は、二つのステッピングモータを同時駆動するステッピングモータのマイクロステップ駆動装置や、該マイクロステップ駆動装置を備える電動雲台カメラおよびズームカメラに関するものである。
従来、二つのステッピングモータを有する電子機器に関する提案は既になされている(特許文献1)。この種の電子機器において、同時にマイクロステップ駆動を行う場合、二つのステッピングモータはそれぞれ独立したマイクロステップ用クロック信号で駆動されていたため、駆動タイミングがばらばらで位相が一致していないことが常であった。
図6に、従来の電子機器に具備される、二つのステッピングモータを同時に駆動するマイクロステップ駆動装置の回路構成を示す。同図において、1は一方のステッピングモータ(STMaとも記す)、2は他方のステッピングモータ(STMbとも記す)である。3はステッピングモータ1を駆動するマイクロステップ相信号、4はステッピングモータ2を駆動するマイクロステップ相信号、5はマイクロステップ相信号3を出力するマイクロステップモータドライバ、6はマイクロステップ相信号4を出力するマイクロステップモータドライバである。7はマイクロステップモータドライバ5の入力であるところのマイクロステップ用クロック信号、8はステッピングモータ1の相状態をプリセットするプリセット信号、9はマイクロステップ用クロック信号7の有効無効を決定するイネーブル信号、10はステッピングモータ1の回転方向を決めるディレクション信号である。25はマイクロステップモータドライバ6の入力であるところのマイクロステップ用クロック信号、11はステッピングモータ2の相状態をプリセットするプリセット信号、12はマイクロステップ用クロック信号25の有効無効を決定するイネーブル信号、13はステッピングモータ2の回転方向を決めるディレクション信号である。
14は上記各信号7〜13,25をマイクロステップモータドライバ5および6に供給するマイコンである。このマイコン14には、CPU18,ROM16,RAM17,I/Oポート15が内蔵されている。また、マイコン14には初期データを格納するEEPROM19が接続されている。
22は不図示の双方向リモコンへ赤外線を送信するIr発光素子、23は双方向リモコンから赤外線を受信するIr受光素子である。20は、Ir発光素子22ヘ信号を送信し、Ir受光素子23からの信号を受信するIrコントローラであり、マイコン14と通信を行う。21はマイコン14とパソコン24の通信の橋渡しを行うLANコントローラである。
上記構成において、電源が投入されると、マイコン14内のROM16に納められているイニシャルプログラムが起動し、CPU18にてイニシャル処理が行われる。EEPROM19からはステッピングモータの動作に関わる初期データを読み取り、RAM17の所定のデータ領域44〜51への書き込みが行われる。
上記RAM17の所定のデータ領域44〜51に書き込まれるデータは、図7に示すように、ステッピングモータの加減速制御に関するデータである。すなわち、起動時のステップレートである、STMa起動ステップレート:γ、STMb起動ステップレート:αがデータ領域44,48に、到達時のステップレートである、STMa到達ステップレート:β、STMb到達ステップレート:κがデータ領域45,49に、加減速時に段階的に変化するステップレートピッチである、STMaステップレート加減速ピッチ:p、STMbステップレート加減速ピッチ:qがデータ領域46,50に、各加減速ステップレートの駆動時間である、STMa各加減速ステップレート駆動時間:ta、STMb各加減速ステップレート駆動時間:tbが、データ領域47,51に、それぞれ書き込まれる。
不図示の双方向リモコンから送信されるSTM動作コマンドは、Ir受光素子23にて受信され、Irコントローラ20を介してマイコン14にコマンドが取り込まれる。CPU18がこのコマンドを認識すると、該CPU18は、ROM16内に納められているステッピングモータ1,2を動作させるための該当プログラムを起動し、RAM17に取り込まれた初期データに基づいてステッピングモータ1,2を駆動するためにマイクロステップモータドライバ5,6にマイクロステップ用クロック信号7,25、プリセット信号8,11、イネーブル信号9,12、ディレクション信号10,13をそれぞれ出力する。
この時、ステッピングモータ1が動作中に、ステッピングモータ2が動作、つまり同時駆動することがあり得るが、クロック信号7とクロック信号25は任意のタイミング、任意のステップレートで出力されるため、ステッピングモータ1とステッピングモータ2の励磁位相がばらばらであった。パソコン24からのステッピングモータ動作コマンドがLANコントローラ21を介してマイコン14に取り込まれる場合も、同様である。
特開平9−103096号公報
上記従来例では、一方のステッピングモータにマイクロステップMax(最大)電流が流れるタイミングと他方のステッピングモータにマイクロステップMax電流が流れるタイミングが一致することがあるため、Max消費電流が大きくなるという欠点があった。
また、一方のステッピングモータにマイクロステップMin(最小)電流が流れるタイミングと他方のステッピングモータにマイクロステップMin電流が流れるタイミングが一致することもあるため、電流変化が大きく、EMI(電磁妨害:electromagnetic interference)ノイズの発生が大きくなる傾向があった。この時のステッピングモータ1(STMa)とステッピングモータ2(STMb)に流れる電流の合成波形を、図8に示す。
一般的には、二つのステッピングモータのステップレートは一致していないが、二つのステッピングモータのMax電流値及びMin電流値が重なる最悪状態を示すため、図8では、同一のステップレート、同一位相で示してある。2相マイクロステップ駆動のA相電流波形をSINΘ(ピーク電流を1に正規化)とすると、B相では位相が90°ずれているため、SIN(Θ+90)、A相正規化電流とB相正規化電流の和は、以下ように表すことができる。
Θ=0°〜90°の時、I=|SINΘ|+|SIN(Θ+90°)|
I=SINΘ+SIN(Θ+90°)
=SINΘ+COSΘ
=√(2)SIN(Θ+45°) ← 三角関数合成公式
Max値は、SIN(Θ+45°)=1の時のI=√(2)=1.414であり、その時の位相角はΘ=45°である。Θ=90°以降も同様であり、90°おきにこのポイントが表れる。よって、最大値となる位相角の一般式は、Θ=45°+90°×n(nは整数)である。
二つのステッピングモータでこの電流が流れるタイミングが一致した時、最大電流となり、その値は2.828である。一方、A相正規化電流とB相正規化電流の和のMin値はΘ=0°または90°の時のI=√2SIN(45°)=√2SIN(135°)=1である。
Θ=90°以降も同様であり、90°おきにこのポイントが表れる。よって、最小値となる位相角の一般式はΘ=90°×n(nは整数)である。二つのステッピングモータでこの電流が流れるタイミングが一致した時、最小電流となり、その値は2である。
(発明の目的)
本発明の目的は、二つのステッピングモータを同時に駆動するに際して、マイクロステップ駆動時の最大消費電流を低減すると共に、最大消費電流と最小消費電流の差を低減してEMIノイズの発生を抑えることのできるマイクロステップ駆動装置、電動雲台カメラおよびズームカメラを提供しようとするものである。
上記目的を達成するために本発明は、それぞれが別個の機構部を動作させる二つのステッピングモータを同時にマイクロステップ駆動させるステッピングモータのマイクロステップ駆動装置において、前記二つのステッピングモータのステップレートが等しく、かつ、一方のステッピングモータのマイクロステップ電流波形の位相90°n相(nは整数)と他方のステッピングモータのマイクロステップ電流波形の位相−45°+90°m相(mは整数)が一致しているステッピングモータのマイクロステップ駆動装置とするものである。
同じく上記目的を達成するために、請求項2に記載の発明は、請求項1に記載のステッピングモータのマイクロステップ駆動装置を備える雲台カメラであって、二つのステッピングモータのうちの一方が、パンニング用ステッピングモータであり、他方が、チルティング用ステッピングモータである電動雲台カメラとするものである。
同じく上記目的を達成するために、請求項3に記載の発明は、請求項1に記載のステッピングモータのマイクロステップ駆動装置を備えるズームカメラであって、二つのステッピングモータのうちの一方が、ズーム用ステッピングモータであり、他方が、フォーカス用ステッピングモータであるズームカメラとするものである。
本発明によれば、二つのステッピングモータを同時に駆動するに際して、マイクロステップ駆動時の最大消費電流を低減すると共に、最大消費電流と最小消費電流の差を低減してEMIノイズの発生を抑えることができるマイクロステップ駆動装置、電動雲台カメラまたはズームカメラを提供できるものである。
以下の実施例1ないし実施例3に示す通りである。
図1は、本発明の実施例1に係わる、二つのステッピングモータを同時駆動するマイクロステップ駆動装置の回路構成を示すブロック図である。図1において、図6の従来例とは、マイクロステップモータドライバ5および6に供給するマイクロステップ用クロック信号7を共通にする点を除いては同じであるため、ブロック図の説明は割愛する。
図2に、図1のマイクロステップ駆動装置における各信号波形を示す。この図2では、一周が16マイクロステップの場合を示している。本実施例1では、加減速制御は行わないものとする。
先ず、マイクロステップモータドライバ5の信号波形について説明する。プリセット信号8が“L”(L=アクティブ)の時のマイクロステップ用クロック信号7により、マイクロステップ相信号3のA相は電流0の相、B相は正のMax電流の相にプリセットされるが、イネーブル信号9が“H”(L=アクティブ)の間は、両相とも流れる電流は0である。その後、イネーブル信号9が“H”の後の最初のクロックパルス1でプリセット相の電流が流れる。そして、プリセット信号8が“H”になり、次のクロックパルスで位相が進んで行く。
マイクロステップモータドライバ6においても同様に、プリセット信号11、イネーブル信号12によりクロックパルス2でプリセット相の電流が流れる。クロックパルス1とクロックパルス2は2パルスの差があるので、位相は45°(=360°/16×2)ずれている。すなわち、マイクロステップモータドライバ5のマイクロステップ電流波形の位相45°相(2相励磁安定相)と、マイクロステップモータドライバ6のマイクロステップ電流波形の位相0°相(1相励磁安定相)が、一致している。
以後、両ステッピングモータ(STMa,STMb)とも同じマイクロステップ用クロック信号7で駆動されるので、45°ずれた関係は保たれる。よって、マイクロステップモータドライバ5のマイクロステップ電流波形の位相90°相(1相励磁安定相)と、マイクロステップモータドライバ6のマイクロステップ電流波形の位相45°相(2相励磁安定相)も、一致している。
以後同様の関係が保たれる。これを一般式化すると、一方のステッピングモータのマイクロステップ電流波形の位相90°n相(nは整数)と、他方のステッピングモータのマイクロステップ電流波形の位相−45°+90°m相(mは整数)が、一致していることになる。この理由については後述する。
次に、停止後のディレクション切り換えについて説明する。マイクロステップモータドライバ6の動作中(ステッピングモータ2(STMb)の動作中)にマイクロステップモータドライバ5の動作を停止(ステッピングモータ1(STMa)の動作停止)し、ディレクションを切り換える。停止は必ず安定相である90°mの相(一相励磁安定相)か、−45°+90°mの相(二相励磁安定相)で行う(mは整数)。この理由についても後述する。図2では、マイクロステップモータドライバ5は360°(0°)の相で停止している。
マイクロステップモータドライバ5が360°(0°)の相になった後、すぐにイネーブル信号9を“H”にし、次のクロックパルス3で動作を停止して両相の電流を0にする(またこの時、ステッピングモータの制動性を高めるため、保持電流を流しても良い)。イネーブル信号9が“H”の間にディレクション信号10を切り換えた(“H”→“L”)後、イネーブル信号9を“L”にし、次のクロックパルス4で励磁を再開するのであるが、停止相から1ステップ戻るので、22.5°戻ることになる。したがって、この相の位相は337.5°である。この励磁相を再開するタイミングは、連続動作中のステッピングモータ2のマイクロステップ相4の67.5°の相に合わせる。ステッピングモータ1はその後入力されるクロックパルスにより逆方向にマイクロステップすることになる。
この後、ステッピングモータ1のマイクロステップ電流波形の位相315°相とステッピングモータ2のマイクロステップ電流波形の位相90°相が一致する。さらに、ステッピングモータ1のマイクロステップ電流波形の位相270°相とステッピングモータ2のマイクロステップ電流波形の位相135°相が一致する。
以後、同様の関係が保たれる。これを一般化すると、一方のステッピングモータのマイクロステップ電流波形の位相90°n相(nは整数)と、他方のステッピングモータのマイクロステップ電流波形の位相−45°+90°m相(mは整数)が、一致していることになる。図2では、マイクロステップ動作を簡単に説明するため、1周16マイクロステップの例で示してあるが、実際は擬似正弦波駆動をするため、1周64マイクロステップ程度が使用される。
次に、ステッピングモータに流れる電流の合成波形を、図3に示す。ここでは電流波形を正弦波として記してあるが、実際は擬似正弦波の離散的な波形である。
ステッピングモータ1(STMa)の2相マイクロステップ駆動のA相電流波形を|SINΘ|(ピーク電流を1に正規化)とすると、B相では位相が90°ずれているため、|SIN(Θ+90°)|、A相正規化電流とB相正規化電流の和のMax値は、上記したようにI=1.414であり、その時の位相角はΘ=45°+90°×n(nは整数)である。A相正規化電流とB相正規化電流の和のMin値はI=1であり、その時の位相角はΘ=90°×n(nは整数)である。
ステッピングモータ2(STMb)の電流駆動波形も、ステップレートが同じであるのでステッピングモータ1と同じである。なお、ステップレートとは、ステッピングモータを駆動する駆動周波数であり、通常、PPS(pulse per second)が用いられる。パルスはステップに置き換えられ、1秒間に何ステップするかを表わす。
二つのステッピングモータの駆動電流の和のMax値を最小にするには、一方のステッピングモータのMax値のタイミングと他方のステッピングモータのMin値のタイミングを合わせることである。したがって、ステッピングモータ1とステッピングモータ2の位相は45°ずらせばよい。このタイミングは、図3に示すように、90°おきに表れる。よって、両ステッピングモータの位相は、一方のステッピングモータのマイクロステップ電流波形の位相90°n相(1相励磁安定相、nは整数)と他方のステッピングモータのマイクロステップ電流波形の位相−45°+90°m相(2相励磁安定相、mは整数)が一致していることになる(停止時も同様にこの関係は保たれる)。
したがって、ステッピングモータ2のA相電流波形は|SIN(Θ−45°)|、B相は|SIN(Θ+45°)|となり、二つのステッピングモータの駆動電流の和の計算式は
I=|SINΘ|+|SIN(Θ+90°)|+|SIN(Θ−45°)|
+|SIN(Θ+45°)|
0°≦Θ−45°≦180°,0°≦Θ+90°≦180°、すなわち45°≦Θ≦90°とすると
I=SINΘ+SIN(Θ+90°)+SIN(Θ−45°)+SIN(Θ+45°)
=SINΘ+SINΘCOS90°+COSΘSIN90°
+SINΘCOS(−45°)+COSΘSIN(−45°)
+SINΘCOS45°+COSΘSIN45°
=((2+√(2))/√(2))SINΘ+COSΘ
=√(1+((2+√(2))/√(2)))SIN(Θ+α)←三角関数合成公式
α=SIN−1(1/√(1+((2+√(2)/√(2))) ∴ α=22.5°
となる。
Max値はSIN(Θ+22.5°)=1、すなわちΘ=67.5°の時のI=2.613である。また、Min値は、Θ=45°または90°の時のI=2.414である。Θ=45°以前、Θ=90°以降も同様であり、45°おきにこのポイントが表れる。よって、Max値の位相角の一般式は、Θ=67.5°+45°×n(nは整数)、Min値の位相角の一般式はΘ=45°×n(nは整数)である。
よって、従来例と比較すると、従来例でのMax値である2.828より約1割Max電流が低い。また、従来例でのMin値は2であるので、(Max−Min)の差は(2.613−2.414)/(2.828−2)=0.24に縮小されている。
なお、本実施例1では、図1で示すように、クロック信号7を同一信号線でマイクロステップモータドライバ5および6に共通に加えているが、従来例の図6に示すように、マイクロステップモータドライバ5にはクロック信号7を、マイクロステップモータドライバ6にはマイクロステップ用クロック信号25を、それぞれ加えて、マイコン14から両ラインに同一信号を出力してもよい。
本発明の実施例2は、上記実施例1と同様の構成において、加減速制御を行う場合を示すものである。回路構成は、図1と同じである。また、マイクロステップ同時駆動時における各信号波形も、図2と同じである。さらに、マイクロステップ同時駆動方式の駆動電流合成波形も、図3と同じである。
マイクロステップ用クロック信号7のパルス周期を変動させれば、本実施例2の加減速制御に対応する。電源が投入されると、マイコン14内のROM16に納められているイニシャルプログラムが起動し、CPU18にてイニシャル処理が行われる。EEPROM19から送信されるステッピングモータの動作に関わる初期データは、RAM17の所定のデータ領域に書き込まれる。このデータは、図5に示すように、ステッピングモータの加減速制御に関するデータである。
すなわち、起動時のステップレートである、STMa起動ステップレート:γ、STMb起動ステップレート:αがデータ領域44,48に、到達時のステップレートである、STMa,STMb到達ステップレート:βがデータ領域52に、停止時から起動可能な限界ステップレートである、STMa自起動ステップレート:ζ、STMb自起動ステップレート:ε(γ<ζ<β、α<ε<β、γ<α)がデータ領域53,56に、加減速時に段階的に変化するステップレートピッチである、STMa,STMbステップレート加減速ピッチ:pがデータ領域54に、各加減速ステップレートの駆動時間である、STMa,STMb各加減速ステップレート駆動時間:tabがデータ領域55に、それぞれ書き込まれる。
そして、これらの設定値を用いて加減速制御が行われる。ここではステッピングモータ1(STMa)が動作中に、ステッピングモータ2(STMb)を起動、加減速制御、停止する場合の動作について、図4のフローチャートを用いて説明する。
先ず、CPU18は、動作距離に対応する総ステップパルス数:SPa、起動ステップレート:γ、到達ステップレート:β、ステップレート加減速ピッチ:p、加減速ステップレート駆動時間:tab、のパラメータを持ったSTMa動作コマンドと、動作距離に対応する総ステップパルス数:SPb、起動ステップレート:α、到達ステップレート:β、ステップレート加減速ピッチ:p、加減速ステップレート駆動時間:tab、のパラメータを持ったSTMb動作コマンドを入力する(ステップ#25,26)。この入力されたパラメータにより、STMb起動タイミング、STMb減速タイミングを決定する。
上記STMb起動タイミング及びSTMb減速タイミングは、次のように計算される。
SPa={SP[γ]+SP[γ+p]+ ……+SP[α−p]+SP[α]+ ……+SP[β−2p]+SP[β−p]} ← 加速時
+SP[β] ← 一定速時
+{SP[β−p]+SP[β−2p]+ …… +SP[α]+ …… +SP[γ+p]+SP[γ]} ← 減速時
SPb={SP[α]−2[α]+ …… +SP[β−2p]
+SP[β−p]}← 加速時
+SP[β] ← 一定速時
+{SP[β−p]+SP[β−2p]+ …… +SP[α]
+2[α−p]} ← 減速時
なお、SP[γ]は、ステップレートγでのステップパルス数である。2[α]はステップレートαのステップパルスが二つあるという意味である。他も同様である。また、α=γ+n1×p、β=α+n2×pである(n1,n2は正の整数)。
ステッピングモータ2は、ステッピングモータ1が、SP[γ]+SP[γ+p]+ …… +SP[α−p]+2[α](2[α]はSTMaとSTMbの位相差45°に相当する。一周16マイクロステップの場合。図2参照)加速ステップ動作後、ステッピングモータ2の起動周波数であるαで動作を開始する。また、ステッピングモータ2は到達ステップレートβでのステップ数
SP[β]=総ステップ数−(加速制御ステップ数+減速制御ステップ数)
=SPb−{SP[α]+ …… +SP[β−2p]+SP[β−p]} ×2
の動作後、減速動作を開始する。このように、ステッピングモータ1,2が動作する前にステッピングモータ2の起動タイミング、ステッピングモータ2の減速タイミングを決定しておく(ステップ#27)。
動作準備後、ステッピングモータ1をステップレート(SRa)=γで起動し(ステップ#28a)、加速制御を行う(ステップ#28b)。以後、ステッピングモータ1のステップレートをSRaと記す。ステッピングモータ1(STMa)が起動からSP[γ]+SP[γ+p]+ ……+SP[α−p]+2[α]パルス動作終了したら(ステップ#29)、ステッピングモータ2(STMb)をステップレート(SRb)=αで起動し(ステップ#30)(この時、STMaとSTMbの位相差Θa−b=45°となっている。図2参照)、ステップピングモータ1及び2を同時加速制御する(ステップ#31)。以後、STMbのステップレートをSRbと記す。
ステッピングモータ1及び2が、SP[α]−2[α]+SP[α+p]+ …… +SP[β−2p]+SP[β−p]パルス動作終了したら(ステップ#32)、ステッピングモータ1及び2をSRa,SRb=βで一定速駆動する(ステップ#33)。一定速駆動で、SPb−{SP[α]+ …… +SP[β−2p]+SP[β−p]}×2パルス動作終了したら(ステップ#34)、ステッピングモータ1及び2の同時減速制御を行う(ステップ#35)。減速制御で、SP[β−p]+SP[β−2p]+ …… +SP[α]+2[α−p]パルス動作終了したら(2[α−p]はSTMaとSTMbの位相差45°に相当。一周16マイクロステップの場合。)(ステップ#36)、ステッピングモータ2を停止する(ステップ#37)。次は、ステッピングモータ1のみの動作であるが、二つのケースが考えられる。
《ケース1(ステッピングモータ2(STMb)停止後のステッピングモータ1(STMa)の動作ステップパルス数が少ない場合)》
SRa=α−pで一定速駆動を行い(ステップ#38)、続いて、SRa=α−p→γに減速制御し、目的位置で停止する(ステップ#42)。
《ケース2(ステッピングモータ2(STMb)の停止後のステッピングモータ1(STMa)の動作ステップパルス数が多い場合)》
SRa=α−pから加速制御した(ステップ#39)後、SRa=βに達したら(ステップ#40)、βで一定速駆動を行い(ステップ#41)、続いてSRa=β→γに減速制御し、目的位置で停止する(ステップ#43)。
このように本実施例2では、ステッピングモータ2をステッピングモータ1の起動ステップレートより高いステップレートでステッピングモータ1の動作中に起動(ステッピングモータ1が加速し、ステッピングモータ2の起動ステップレートになったとき同期して起動する)、停止することにより、起動トルクに差のあるモータにも対応することができ、加減速制御を行っても実施例1に記したと同じ効果、すなわち、二つのステッピングモータの消費電流の和のMax値を最も小さくすることができる。また、二つのステッピングモータの消費電流の和の(Max値−Min値)差を最も小さくできる。
なお、ここでは説明し易くするため、位相差Θa−b=45°で起動、停止する場合について説明したが、一方のステッピングモータのマイクロステップ電流波形の位相90°n相(nは整数)と他方のステッピングモータのマイクロステップ電流波形の位相−45°+90°m相(mは整数)が一致している位相で起動、停止するならどの場合も同様である。
上記の各実施例によれば、二つのステッピングモータによりそれぞれ別個の機構部を同時にマイクロステップ動作させるマイクロステップ駆動装置において、二つのステッピングモータのステップレートが等しく、かつ、一方のステッピングモータのマイクロステップ電流波形の位相90°n相(nは整数)と他方のステッピングモータのマイクロステップ電流波形の位相−45°+90°m相(mは整数)が一致するようなマイクロステップ駆動方式をとっている。よって、Max消費電流を低減することができる。また、Max消費電流とMin消費電流の差を低減することもでき、EMIノイズの発生を抑えることも可能となる。
なお、上記各実施例におけるマイクロステップ駆動装置は、電動雲台カメラに好適である。つまり、電動雲台カメラには、パンニング用ステッピングモータとチルティング用ステッピングモータが備えられており、これらの二つのステッピングモータを上記のようにマイクロステップ駆動することにより、Max消費電流を低減し、且つ、Max消費電流とMin消費電流の差を低減してEMIノイズの発生を抑えることができるといった効果を有しつつ、パンニング、チルティングの同時駆動を行え、被写体を短時間で捉えることが可能となる。
また、上記各実施例におけるマイクロステップ駆動装置は、ズーム機能を備えたズームカメラにも好適である。つまり、ズームカメラには、ズーム用ステッピングモータとフォーカス用ステッピングモータが備えられており、これらの二つのステッピングモータを上記のようにマイクロステップ駆動することにより、Max消費電流を低減し、且つ、Max消費電流とMin消費電流の差を低減してEMIノイズの発生を抑えるといった効果を有しつつ、ズーム動作に追従しながらフォーカス動作を行うといった、各モータの同時駆動を実現でき、被写体にピントを合わせつつ、画角変更を行うことが可能となる。
本発明の実施例1に係わる二つのステッピングモータを同時に駆動するマイクロステップ駆動装置の回路構成を示すブロック図である。 図1のマイクロステップ駆動装置における各信号波形を示す図である。 図1のマイクロステップ駆動装置における駆動電流の合成波形を示す図である。 本発明の実施例2における主要部の動作を示すフローチャートである。 本発明の実施例2においてマイコン内のRAMへのデータの割り付け図である。 従来の二つのステッピングモータを同時に駆動するマイクロステップ駆動装置の回路構成を示すブロック図である。 従来例で使用するマイコン内のRAMへのデータの割り付け図である。 図6のマイクロステップ駆動装置における駆動電流の合成波形を示す図である。
符号の説明
1 ステッピングモータ(STMa)
2 ステッピングモータ(STMb)
14 マイコン
16 ROM
18 CPU
19 EEPROM
20 Irコントローラ
21 LANコントローラ
22 Ir発光素子
23 Ir受光素子
24 パソコン

Claims (3)

  1. それぞれが別個の機構部を動作させる二つのステッピングモータを同時にマイクロステップ駆動させるステッピングモータのマイクロステップ駆動装置において、
    前記二つのステッピングモータのステップレートが等しく、かつ、一方のステッピングモータのマイクロステップ電流波形の位相90°n相(nは整数)と他方のステッピングモータのマイクロステップ電流波形の位相−45°+90°m相(mは整数)が一致していることを特徴とするステッピングモータのマイクロステップ駆動装置。
  2. 請求項1に記載のステッピングモータのマイクロステップ駆動装置を備える電動雲台カメラであって、
    二つのステッピングモータのうちの一方が、パンニング用ステッピングモータであり、他方が、チルティング用ステッピングモータであることを特徴とする電動雲台カメラ。
  3. 請求項1に記載のステッピングモータのマイクロステップ駆動装置を備えるズームカメラであって、
    二つのステッピングモータのうちの一方が、ズーム用ステッピングモータであり、他方が、フォーカス用ステッピングモータであることを特徴とするズームカメラ。
JP2004240380A 2004-08-20 2004-08-20 ステッピングモータのマイクロステップ駆動装置、電動雲台カメラおよびズームカメラ Pending JP2006060925A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004240380A JP2006060925A (ja) 2004-08-20 2004-08-20 ステッピングモータのマイクロステップ駆動装置、電動雲台カメラおよびズームカメラ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240380A JP2006060925A (ja) 2004-08-20 2004-08-20 ステッピングモータのマイクロステップ駆動装置、電動雲台カメラおよびズームカメラ

Publications (1)

Publication Number Publication Date
JP2006060925A true JP2006060925A (ja) 2006-03-02

Family

ID=36107946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240380A Pending JP2006060925A (ja) 2004-08-20 2004-08-20 ステッピングモータのマイクロステップ駆動装置、電動雲台カメラおよびズームカメラ

Country Status (1)

Country Link
JP (1) JP2006060925A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092619A (ja) * 2006-09-29 2008-04-17 Casio Comput Co Ltd モータ駆動制御装置、デジタルカメラ及びモータ駆動制御プログラム
JP2013029731A (ja) * 2011-07-29 2013-02-07 Pentax Ricoh Imaging Co Ltd 光学機器
JP2013031327A (ja) * 2011-07-29 2013-02-07 Pentax Ricoh Imaging Co Ltd 光学機器
JP2017005812A (ja) * 2015-06-05 2017-01-05 キヤノン株式会社 モータ制御装置、モータ制御方法及びモータ制御プログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092619A (ja) * 2006-09-29 2008-04-17 Casio Comput Co Ltd モータ駆動制御装置、デジタルカメラ及びモータ駆動制御プログラム
JP2013029731A (ja) * 2011-07-29 2013-02-07 Pentax Ricoh Imaging Co Ltd 光学機器
JP2013031327A (ja) * 2011-07-29 2013-02-07 Pentax Ricoh Imaging Co Ltd 光学機器
US9086530B2 (en) 2011-07-29 2015-07-21 Pentax Ricoh Imaging Company, Ltd. Optical equipment
JP2017005812A (ja) * 2015-06-05 2017-01-05 キヤノン株式会社 モータ制御装置、モータ制御方法及びモータ制御プログラム

Similar Documents

Publication Publication Date Title
US5298933A (en) Image pickup apparatus
EP1696552B1 (en) Method and apparatus for controlling motor
JP2006060925A (ja) ステッピングモータのマイクロステップ駆動装置、電動雲台カメラおよびズームカメラ
JP2002359997A (ja) ステッパモータの駆動制御方法及びそのステッパモータ装置
US7791306B2 (en) Apparatus, method, and system for controlling stepping motor
JPH04299A (ja) オートフォーカス装置のモータ制御回路
JP2003224998A (ja) ステッピングモータ駆動方法
JP4250051B2 (ja) 位置制御用モータの制御装置
JP2003304698A (ja) 制御装置、駆動装置、撮像装置及びこれらの方法
US7342377B2 (en) Stepping-motor control apparatus and method of controlling the apparatus
JPH04351498A (ja) ステッピングモータの駆動制御装置
JP3223216B2 (ja) ステッピングモータの駆動方式
JP2008160900A (ja) ステッピングモータ制御装置および印刷装置
JP5327666B2 (ja) ステッピングモータ駆動装置及びステッピングモータ駆動方法
JP3453886B2 (ja) ステッピングモータの脱調防止装置
JP2004246294A (ja) カメラ移動装置
JP4399783B2 (ja) ステッピングモータの駆動装置
JP6425305B2 (ja) ステッピングモータ用駆動装置、及びステッピングモータの駆動方法
JP2563580B2 (ja) 電動ズームカメラ
JP5036592B2 (ja) ステップモータ制御装置
JPH09247966A (ja) 超音波モ−タの速度制御装置
JP3820898B2 (ja) ステップモータ制御装置及び制御方法
JP2769721B2 (ja) ディスク装置のステッピングモータ駆動方法
JPH08331896A (ja) フロッピーディスク装置
JPH09308296A (ja) ステッピングモータの駆動回路