JP2006011362A - 半透過型液晶表示装置 - Google Patents

半透過型液晶表示装置 Download PDF

Info

Publication number
JP2006011362A
JP2006011362A JP2004347905A JP2004347905A JP2006011362A JP 2006011362 A JP2006011362 A JP 2006011362A JP 2004347905 A JP2004347905 A JP 2004347905A JP 2004347905 A JP2004347905 A JP 2004347905A JP 2006011362 A JP2006011362 A JP 2006011362A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
display device
crystal display
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004347905A
Other languages
English (en)
Inventor
Tokuo Koma
徳夫 小間
Masayuki Kametani
雅之 亀谷
Kazuhiro Inoue
和弘 井上
Kazuyuki Maeda
和之 前田
Masaaki Aota
雅明 青田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004347905A priority Critical patent/JP2006011362A/ja
Priority to US11/132,767 priority patent/US7573551B2/en
Priority to TW098112965A priority patent/TWI349139B/zh
Priority to KR1020050042476A priority patent/KR100723555B1/ko
Priority to TW094116432A priority patent/TW200604654A/zh
Priority to TW99130153A priority patent/TWI354833B/zh
Publication of JP2006011362A publication Critical patent/JP2006011362A/ja
Priority to US12/491,744 priority patent/US7876407B2/en
Priority to US12/964,855 priority patent/US8089596B2/en
Priority to US13/303,432 priority patent/US8345198B2/en
Priority to US13/687,568 priority patent/US8537316B2/en
Pending legal-status Critical Current

Links

Images

Abstract

【課題】半透過型LCDの高品質化の実現。
【解決手段】画素電極200を備える第1基板100と共通電極320を備える第2基板300との間に、垂直配向型の液晶層400が封入され、各画素領域は、反射領域220と透過領域210とを有し、液晶層400への入射光の位相差を制御する該液晶層の厚さ(ギャップ)dが、反射領域220でのギャップdrを透過領域210でのギャップdtより小さくするギャップ調整部を第1基板側又は第2基板側に備える。また、画素領域内には液晶の配向を1画素領域内で分割する配向制御部500が第1基板側又は第2基板側のいずれか又は両方に設けられている。
【選択図】図1

Description

本発明は、各画素に反射領域と透過領域の両方が設けられた半透過型の液晶表示装置に関する。
液晶表示装置(以下LCDという)は薄型で低消費電力であるという特徴を備え、現在、コンピュータモニターや、携帯情報機器などのモニターとして広く用いられている。このようなLCDは、一対の基板間に液晶が封入され、それぞれの基板に形成され電極によって間に位置する液晶の配向を制御することで表示を行うものであり、CRT(陰極線管)ディスプレイや、エレクトロルミネッセンス(以下、EL)ディスプレイ等と異なり、原理上自ら発光しないため、観察者に対して画像を表示するには光源を必要とする。
そこで、透過型LCDでは、各基板に形成する電極として透明電極を採用し、液晶表示パネルの後方や側方に光源を配置し、この光源光の透過量を液晶パネルで制御することで周囲が暗くても明るい表示ができる。しかし、常に光源を点灯させて表示を行うため、光源による電力消費が避けられないこと、また昼間の屋外のように外光が非常に強い環境下では、十分なコントラストが確保できないという特性がある。
一方、反射型LCDでは、太陽や室内灯等の外光を光源として採用し、液晶パネルに入射するこれらの周囲光を、非観察面側の基板に形成した反射電極によって反射する。そして、液晶層に入射し反射電極で反射された光の液晶パネルからの射出光量を画素ごとに制御することで表示を行う。このように反射型LCDは、光源として外光を採用するため、透過型LCDと異なり光源による電力消費がなく非常に低消費電力であり、また屋外など周囲が明るいと十分なコントラストが得られるが、逆に、外光がないと表示が見えないという特性がある。
そこで、最近、屋外でも見やすく、かつ暗いところでも観察の可能なディスプレイとして、例えば下記特許文献1や特許文献2に示されるように反射機能と光透過機能の両方を備えた半透過型LCDが提案がされ、着目されている。この半透過型LCDでは、一画素領域内に透過領域と反射領域を設けることで透過機能と反射機能の両立を図っている。
特開平11−101992号公報 特開2003−255399号公報
このように屋外での視認性と、暗い状況下での視認性を両立することができるため、例えば携帯型の情報機器などのディスプレイとして上記半透過型LCDを採用することは非常に有用である。
しかし、この携帯型情報機器などにおいて、想定される観察状況が多様であり、様々な観察状況(特に様々な観察角度)においても高品質の表示を行うためには、視野角を拡大することが必要となる。
また、半透過型LCDでは、一画素内を透過領域と反射領域に分けて半透過性を実現するため、1画素当たりにおける透過特性、反射特性は、透過型LCDより低く、また反射型LCDより低くなるため、それぞれの表示領域(透過領域、反射領域)における表示品質を高めるには、いずれの領域においても一層高いコントラストを実現すること必要となってくる。
しかし、半透過型LCDにおいては、まだ透過機構と反射機構を両立させるための構成の改良に留まっており、視野角の拡大やコントラストの向上等、表示品質の向上のための試みはまだ行われていない。
本発明は、半透過型LCDにおいて高い表示品質を実現することを目的とする。
本発明は上記のような半透過型LCDを実現することができ、以下のような特徴を備える。
即ち、複数の画素を備え、第1電極を備える第1基板と第2電極を備える第2基板との間に、垂直配向型の液晶層が封入された液晶表示装置であって、各画素領域は、反射領域と透過領域とを有し、前記反射領域においては、前記第1基板側又は前記第2基板側の少なくとも一方に、液晶層への入射光の位相差を制御する該液晶層の厚さで規定されるギャップが、前記反射領域での前記ギャップを前記透過領域での前記ギャップよりも小さくするためのギャップ調整部を有し、さらに、前記画素領域内には、液晶の配向方向を1画素領域内で分割するための配向制御部を、前記第1基板側又は第2基板側のいずれか又は両方に有する。
このように、半透過型LCDにおいて、垂直配向型の液晶層を採用することで、例えばよく知られたTN(Twisted Nematic)液晶などと比較してその応答性を高め、かつ高コントラストの表示を実現することができる。また、垂直配向型の液晶では、プレチルトをつけた上で配向制御がなされる上記TN液晶などと比べ、液晶の配向を基板平面に対して平行か垂直に制御するため、原理的に視覚依存性が低く、TN液晶に比較してその視野角を拡大することができる。さらに、本発明では、液晶の配向方向を1画素領域内で分割するための配向制御部を1画素領域内に設けているので、LCDを様々な角度から観察した場合にも、その観察位置において、分割されたいずれかの領域がその最適な視野角の範囲内に入る可能性が高まり、1画素の視野角を一層拡大することが可能となる。従って、周囲が暗くても、明るくても、高速かつ広視野角で、さらにコントラスト比の高い表示を実現することができる。
また、単純に計算しても、入射光が2回通過する反射領域と、1回しか通過しない透過領域とでは液晶層中でのトータル光路長が異なるが、ギャップ調整部を1画素領域内に設けることで、反射領域と透過領域とで、それぞれ最適な液晶層の厚さ(セルギャップ)を得ることができる。よって、反射領域でも透過領域でも色つきなどがなく、かつ最適な反射率、透過率を実現でき、明るくかつ色再現性の良い表示が可能となる。
本発明の他の態様では、上記半透過型LCDにおいて、前記配向制御部は、前記第1電極または前記第2電極のいずれか又は両方に形成された電極不在部を備える。
あるいは、上記配向制御部は、前記第1基板側または前記第2基板側のいずれか又は両方から前記液晶層に向かって突出する突起部を備える。なお、一画素領域内で、この配向制御部として、電極不在部及び突起部の両方が設けられていても良い。
上記半透過型LCDにおいて、前記画素領域内における前記ギャップ調整部の端部面が、さらに、前記配向制御部として機能してもよい。
本発明の他の態様では、上記半透過型LCDにおいて、前記画素領域内における前記配向制御部によって制御される液晶の配向方角と、該配向制御部の基板平面への投影線と交差する投影線を持つ他の配向制御部によって制御される液晶の配向方角との角度差が90度未満である。
90度未満とすることで、配向制御部によって分割された1領域内の不定の位置にディスクリネーションライン(配向方向の異なる領域の境界)が発生して表示にざらつきを発生させてしまうなどの問題を確実に防止することができる。
本発明の他の態様では、上記半透過型LCDにおいて、前記複数の画素は、赤用、緑用、青用の画素を含み、各画素の透過領域又は反射領域のいずれか又は両方において、前記赤用、緑用、青用の画素のうちの少なくとも1つが他の色の画素のギャップと異なる。
赤、緑、青の各画素においては、異なる色(R,G,B)、つまり異なる波長の光の透過率を液晶層で制御することとなる。よって、透過させる波長に応じて最適なギャップ(液晶層の厚さ)は異なることがある。そのような場合に、R,G,Bの画素のうち、他の異なる色の画素とそのギャップを変更することで、波長依存性の少ない色再現性に優れたフルカラーLCDを得ることが容易となる。また波長依存性を低減することができるので、各画素の駆動条件を等しくすることができ、駆動回路側の処理負担を減らすことができる。
本発明の他の態様では、上記半透過型LCDにおいて、前記第1基板及び前記第2基板には、4分の1波長板及び2分の1波長板がそれぞれ設けられている。
このように4分の1波長板及び2分の1波長板の両方を設け、これらを直線偏光板と組み合わせ、これを例えば広波長帯域円偏光板として用いることで、波長の異なるR,G,B光のいずれについてもより確実に垂直配向型液晶層に対して必要な円偏光を得ることができ、LCDの波長依存性をより低減することができる。
本発明の他の態様では、上記半透過型LCDにおいて、前記第1基板及び前記第2基板の内、光源に近接配置される基板と対向する基板側に、負の屈折率異方性を有する位相差板を備える。
このような負の屈折率異方性(光学異方性)を持つ位相差板(ネガティブリターダ)を設けることで、垂直配向型の液晶層(液晶セル)に対する光学補償をすることが可能となり、LCDの視野角を更に拡大することが可能となる。
本発明の他の態様では、上記半透過型LCDにおいて、前記第1基板又は前記第2基板の少なくとも一方には、2軸位相差板が設けられている。このような2軸位相差板を採用することで、例えば上記ネガティブリターダと、上記4分の1波長板及び2分の1波長板の機能をこの1枚の位相差板で実現でき、薄く、また光損失を最小限にすることができる。
本発明の他の態様では、上記半透過型LCDにおいて、前記第1基板側に形成された前記第1電極は、画素毎に個別のパターンに形成され、第1基板側に複数形成され、該複数の第1電極にはそれぞれ薄膜トランジスタが接続され、前記第2基板側に形成された前記第2電極は、各画素共通の共通電極として形成され、前記ギャップ調整部は、前記第2基板側に形成されている。
ギャップ調整部を第2基板側に形成すれば、第1基板側に薄膜トランジスタ等を形成する場合にも、第1基板側は各画素共通の工程で形成することができ、多くの構成を備え、トータルの製造時間の長くなる第1基板の製造と並行して、その間に第1基板と比較すると簡易な構成の第2基板側にギャップ調整部を形成しておけば良く、製造効率を向上させることができる。
本発明の他の態様では、複数の画素を備え、第1電極を備える第1基板と第2電極を備える第2基板との間に、垂直配向型の液晶が封入された液晶表示装置であって、各画素領域は、反射領域と透過領域とを有し、前記第1基板側又は前記第2基板側の少なくとも一方に、液晶層への入射光の位相差を制御する該液晶層の厚さで規定されるギャップについて、前記反射領域での前記ギャップを前記透過領域での前記ギャップよりも小さくするためのギャップ調整部を有し、前記ギャップ調整層の側面は、該ギャップ調整層の形成基板に向けて幅の広がる順テーパ形状を有する。
このようにギャップ調整層の側面を順テーパ状とすることで、この側面での液晶の配向乱れを防ぎ、かつ、この側面を配向制御用の傾斜面として利用することができる。
以上説明したように、この発明では、半透過型LCDにおいてその視野角の拡大、コントラスト、応答速度の向上等を図ることができ、表示品質の高いLCDを実現することができる。
以下、図面を用いて本発明の好適な実施の形態(以下実施形態という)について説明する。
図1は、本実施形態に係る半透過型LCDとして、半透過型アクティブマトリクスLCDを用いた場合の概略断面構成を示している。本実施形態に係る半透過LCDは、複数の画素を備え、互いの対向面側に第1電極200、第2電極320が形成された第1及び第2基板を、間に液晶層400を挟んで貼り合わせて構成されるとともに、各画素領域内には透過領域210と反射領域220とが形成されている。
液晶層400としては負の誘電率異方性を備えた垂直配向型の液晶が採用され、かつ、1画素領域内を複数の配向領域に分割するための配向制御部500(配向分割部)が第2基板側又は第1基板に設けられている。配向制御部500は、例えば図1に示すような液晶層400に向かって突出する突起部510、傾斜部520や、図1では、画素電極200の間隙によって構成される電極不在部などによって構成している(詳しくは後述する)。
第1及び第2基板100,300には、ガラスなどの透明基板が用いられている。第1基板100側には、第1電極として、画素毎に個別のパターンのITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)などの透明導電性金属酸化物が用いられた画素電極200、及びこの画素電極200に接続された薄膜トランジスタなどのスイッチ素子が形成されている(図示せず。後述の図5参照)。画素電極200を覆う第1基板100の全面には垂直配向型の配向膜260が形成されている。この配向膜260には、例えばポリイミドなどが用いられ、本実施形態では、ラビングレスタイプを採用しており、液晶の初期配向(電圧非印加状態での配向)を膜の平面方向に対して垂直に配向させる。なお、図5に示すような構成により(詳しくは後述)、1つの画素電極200の形成領域内に、上記透明の電極のみからなる透明領域210と、上記透明電極と積層形成された反射膜又は反射電極の形成された反射領域220が設けることができる。
このような第1基板100と、間に液晶層400を挟んで貼り合わされた第2基板300には、その液晶との対向面側に、まずR,G,Bのカラーフィルタ330r、330g、330bが対応する所定位置に形成されている。なお、各カラーフィルタ330r、330g、330bの間隙(画素領域の間隙)には、画素間での光漏れを防ぐための遮光層(ここでは黒色カラーフィルタ)330BMが設けられている。
カラーフィルタ330r、330g、330bの上には、各画素の反射領域220に対向する領域においてその液晶層の厚さ(セルギャップ)drを透過領域210での液晶層の厚さ(セルギャップ)dtより小さい所望の値(dr<dt)とするために、光透過性材料よりなるギャップ調整部340が形成されている。このギャップ調整部340の厚さは、入射光が液晶層400を1回通過する透過領域210と、2回通過する反射領域220とで、それぞれ最適な透過率、反射率を得るために要求される液晶層の厚さdが異なる場合に対応している。よって、例えば、ギャップ調整部340を設けない透過領域210で最適な透過率が得られるように液晶層の厚さdを決め、反射領域220では、所望の厚さのギャップ調整部340を形成することで、透過領域210よりも小さい液晶層の厚さdを得ることができる。
上記ギャップ調整部340を含む第2基板300の全面を覆うように、第2電極として、各画素に対して共通の電極(共通電極)320が形成されている。この共通電極320は、上記画素電極200と同様に、ITOやIZOなどの透明導電性金属酸化物を用いて形成することができる。
本実施形態では、この共通電極320の上に、1画素領域内において液晶の配向方向を分割して配向方向の異なる領域を複数形成する配向制御部500として突起部510を形成している。この突起部510は、液晶層400に向かって突起しており、導電性であっても絶縁性であっても良いが、ここでは、絶縁性の例えばアクリル系の樹脂などを所望パターンに形成して用いることができる。また、突起部510は、各画素領域内の透過領域210にも、反射領域220にもそれぞれ形成されている。
上記突起部510及び共通電極320を覆って、第1基板側と同様の垂直配向型であって、さらにラビングレスタイプの配向膜260が形成されている。上述のように配向膜260は、その膜平面方向に対して垂直な方向に液晶を配向させるが、突起部510を覆う位置では、突起部510の形状を反映した斜面が形成される。従って、突起部510の形成位置では、これを覆う配向膜260の斜面に対し、液晶が垂直な方向に配向されることとなり、この突起部510を境に液晶の配向方向が分割される。また、本実施形態では、第2基板側に設けられた上記ギャップ調整部340の側面をテーパ形状として傾斜させ、この斜面を引き継いでギャップ調整部340の上方を覆う配向膜260にも斜面を形成している。この斜面においても、液晶が斜面に垂直な方向に制御され、ギャップ調整層340の斜面も配向制御部500として機能している。
図1に示す半透過型LCDにおいて、第1基板100の外側(光源600側)には直線偏光板(第1偏光板)112、λ/4位相板差及びλ/2位相板差の組み合わせからなる広波長帯域λ/4板(第1の位相差板)111が設けられ、この直線偏光板112と位相差板111により広波長帯域円偏光板110が構成されている。
第2基板300の外側(観察側)には、光学補償板として負の屈折率異方性を有する位相差板310が設けられ、さらに、λ/4位相板及びλ/2位相板の組み合わせからなる広波長帯域λ/4板(第2の位相差板)111と、直線偏光板(第2偏光板)112が設けられ、第1基板側と同様に、この直線偏光板112と位相差板111により広帯域円偏光板110が構成されている。ここで、これらの光学部材の配置関係は、一例として、図1の下部に示すように、第1偏光板の軸は45°に配置され、第1のλ/4板の遅相軸は90°、第2のλ/4板の遅相軸は180°、第2偏光板の軸は135°に配置されている。
光源600から射出され第1基板100側の直線偏光板112を透過した該偏光板112の偏光軸に沿った方向の直線偏光は、第1のλ/4板111においてその位相差がλ/4ずらされることで円偏光となる。ここで、本実施形態では、少なくとも波長の異なるR,G,Bのいずれの成分に対しても確実に円偏光として、液晶セルでの光の利用効率(透過率)を高めるために、λ/4位相板とλ/2位相板の両方を用いて広波長帯域λ/4板111としている。得られた円偏光は、透過領域210において画素電極210を透過して液晶層400に入射される。
本実施形態に係る半透過型LCDでは、液晶層400には、上述のように、負の誘電率異方性(Δε<0)をもつ垂直配向型液晶を用いており、また垂直配向型の配向膜260を用いている。
よって、電圧非印加状態では、配向膜260の平面方向に垂直な方向にそれぞれ配向し、印加電圧が大きくなるにつれ、液晶の長軸方向が画素電極200と共通電極320の間に形成される電界に直交(基板の平面方向に平行)するように傾く。液晶層400に電圧が印加されていない場合には、液晶層400で偏光状態が変化せず、円偏光のまま第2基板300に到達し、第2のλ/4板111で円偏光が解消され、直線偏光となる。このとき第2のλ/4板111からの直線偏光の方向と直交するように第2偏光板112が配置してあるので、この直線偏光は、第1偏光板112と直交方向の透過軸(偏光軸)の第2偏光板112を透過することができず、表示は黒となる。
液晶層400に電圧が印加されると、入射された円偏光に対して液晶層400が位相差を発生させ、例えば逆回りの円偏光や、楕円偏光、直線偏光となり、得られた光に対して第2のλ/4板111で更にλ/4位相がずらされることで、直線偏光(第2偏光板の透過軸と平行)、楕円偏光や円偏光となり、これらの偏光は第2偏光板112の偏光軸に沿った成分を有しており、その成分に応じた量の光がこの第2偏光板112から観察側に向けて射出され、表示(白又は中間調)として認識される。
なお、位相差板310は、ネガティブリターダであり、液晶層の中央領域と配向膜260との微妙な配向状態の違いを補償する逆の光学異方性を持ち、この位相差板310を透過することで、色つきが解消され、また意図しないプレチルト(配向膜260付近での液晶の吸着による固定化等による)などによる表示の反転や色つきなどを解消でき、結果として視野角を向上させることを可能としている。なお、このネガティブリターダ(310)と上記λ/4板111に代えて、これら両方の機能を備えた1枚の2軸位相差板を採用しても良く、これによりLCDの薄型化及び透過率の向上を図ることが可能となる。
本実施形態では、上述のようにギャップ調整部340によって、光の透過率を実質的に制御する液晶層400の厚さ(セルギャップ)dを、透過領域210と反射領域220とで異なる所望のギャップとしている。これは、透過領域210ではLCDの背面側(図1の例では第1基板100側)に設けられる光源600から液晶層400を透過し第2基板300側から外部に射出される光量(透過率)を制御することで表示が行われ、反射領域220ではLCDの観察側から液晶層400に入射した光を画素電極200の形成領域内に設けた反射膜などによって反射させ、再び液晶層400を透過して第2基板側から観察側に射出する光の量(LCDの反射率)を制御することで表示が行われ、光の液晶層の透過回数が異なることが大きな原因である。つまり、反射領域220では、光が液晶層400を2回通過するので、そのセルギャップdrは、透過領域210のセルギャップdtよりも小さくする必要がある。本実施形態では、図1に示すように、所望の厚さのギャップ調整部340を各領域の反射領域220にのみ設けることで、上記dr<dtを達成している。ギャップ調整部340は、光透過性であって所望の厚さに形成することができれば特に限定されないが、例えば、平坦化絶縁層などとしても用いられるアクリル系の樹脂などを採用することができる。
ギャップ調整部340の側面は、上述のように配向制御部500の一部(傾斜部520)として用いる場合、少なくともそのテーパ角は基板平面に対して90度未満とすることが必要である。テーパ角が90度以上では、液晶の配向がこのギャップ調整部340の側面で乱れ、またギャップ調整部340の上に形成する共通電極320や配向膜260の被覆が不十分となるからである。またギャップ調整部340の側面は、表示自体には寄与しないので、テーパ角が小さすぎると、ギャップ調整部340の側面の面積が大きくなり、画素の開口率、特に一層の輝度向上が望まれている反射領域の開口率を低下させてしまう。このため、ギャップ調整部340の側面のテーパ角は、上層の第2電極320や配向膜260の被覆性を低下させず、液晶の配向分割が可能であって、かつ開口率の低下の少ない角度とすることが好適である。具体的には30度〜80度の範囲が好ましい。
傾斜部520がこのような範囲のテーパ角を持ったギャップ調整部340として、例えば、感光剤を含有する上記アクリル樹脂が利用可能である。そして、ギャップ調整材料としてアクリル樹脂に加える重合開始剤、光重合性モノマーの含有量を、製造条件や露光装置特性などに合わせて調整することで任意の順テーパ角とすることができる。このように含有材料を調整するほかに、ギャップ調整部340の側面を順テーパとするには、一例として、周囲に存在する酸素による光重合抑制効果や、露光時の光の回折によるパターンの拡大、樹脂ベークによるメルトフローなどを単独又は組み合わせることで所望角度の順テーパを形成することができる。
光重合抑制効果は、ギャップ調整部340の表面付近では雰囲気中の酸素によって得られ、逆に、表面から遠い基板側においては酸素が少ないので抑止されずに重合による硬化が進むため、平坦化絶縁層38の表面側が現像時に除去されやすく、上ほど幅の狭い順テーパとなる。
露光時の光の回折は、露光装置にもよるが、例えばプロキシミティ露光装置などにおいて、この回折が大きいことを利用してギャップ調整部340でギャップ調整部形成領域と除去領域とでテーパを形成する。
メルトフローでは、現像終了後、例えば80℃〜180℃の温度で1〜20min(一例として、120℃、8min)でベーキングすることでギャップ調整部340の上面及び側面を溶かし、表面の平滑化と共に、側表面が溶け材料自体が持つ表面張力に依存した形状変化によって順テーパを形成する。
ここでギャップ調整部などに用いられる有機材料として、露光光源のg線(436nm)、h線(405nm)、i線(248nm)などに感度を示す材料が知られており、i線に感度を持つ有機材料はテーパ角が90度以上(逆テーパ)となるものが多い。本実施形態では、そこで、g線、h線に感度を持ち、順テーパになりやすいアクリル系樹脂をギャップ調整部の材料として採用している。
一画素領域内において透過領域210と反射領域220とで液晶層の厚さdを変えると共に、本実施形態では、それぞれ波長の異なるR,G,B用の画素で、その液晶層の厚さdを変えている(但し、LCDの特性によってはR,G,Bで共通のギャップとしても良い)。図1の例では、R,G,B全てのギャップdを第2基板300側にそれぞれ形成するR,G,Bのカラーフィルタ330r、330g、330bの厚さをそれぞれ変えることで実現している。カラーフィルタの厚さを変える構成に限らず、上記ギャップ調整層340を透過領域210でも設け、R,G,B毎に透過領域210も反射領域220もこのギャップ調整部340の厚さを変えても良い。また、R,G,Bの全てにおいて互いに液晶層の厚さdが異なるようにしなくとも、LCDの特性に応じて、例えばG用とB用とは同じ液晶層の厚さとし、R用のみ他の2色と異なる厚さとしても良いし、B用のみdを変えても良い。
図2は、R,G,B用の画素で異なるギャップとするための更に別の構成を示している(図2において図1と共通する構成については説明を省略する)。図2に示す構成では、第2基板側でR,G,Bのギャップを変えるのではなく、第1基板100側において、画素電極200の下層に形成される平坦化絶縁層38の厚さをR,G,Bで調整する。平坦化絶縁層38の厚さを変える方法としては、例えば、感光材料を含む平坦化絶縁材料を、目的とする厚さに応じた開口量の単一又は複数枚のハーフ露光マスクを用いて露光することで、特別な工程の追加なく、R,G,Bの画素毎に異なる厚さの平坦化絶縁層38を形成することができる。なお、図2では、反射領域において平坦化絶縁層38の表面に凹凸を形成している。この平坦化絶縁層38の表面の凹凸は、反射領域において平坦化絶縁層38の上に形成される反射層44に引き継がせることができ、反射層44の表面に凹凸を形成して液晶層への入射光を散乱させ、反射領域での表示品質を向上させている。そして、平坦化絶縁層38の反射領域でのこの凹凸と、画素電極200とTFTとを接続するため平坦化絶縁層38を貫通して形成されるコンタクトホールについても、上記R,G,Bで平坦化絶縁層38を異なる厚さとするためのハーフ露光を利用し、工程の追加無く一緒に形成することができる。
次に、本実施形態に係る半透過型LCDの各画素のより具体的な構造について説明する。図3は、本実施形態に係る半透過型LCDの概略平面構成の一例、図4は、図3のA−A’線に沿った概略断面構造、図5は、図3のB−B’線に沿った概略断面構造、図6は図3の画素電極200及びこれに接続された薄膜トランジスタ等のより具体的な構成を示している。
図3に示す平面構成において、画素毎に個別パターンの画素電極200は、画面の垂直走査方向(図3における上下方向)に細長い6角形のパターンを有し、長手方向における2つの上辺を含む図中斜線で囲んだ四角形(図では菱形又は正方形)の領域には、図6に示すように反射膜が選択的に形成され、反射領域220が設けられている。そして、6角形の画素電極200の残りの概略矢羽根形状の領域が透過領域210となっている。
反射領域220には、図4からも理解できるように液晶層の厚さ(セルギャップ)drを透過領域210でのギャップdtよりも小さくするためにギャップ調整層340が第2基板300の上、図4の例では、共通電極320の上に形成されている。
このギャップ調整層340の画素内の端部は、上記六角形の画素電極200の2つの上辺とほぼ線対称となる四角形の反射領域220の下側の2辺に沿った位置に配置されている。また、四角形の反射領域220の水平走査方向(図面上の左右方向)で対向する頂点間を結んで該反射領域220を水平走査方向に上下に分割するように、第2基板300(具体的には、図4ではギャップ調整部340)の上には、断面が3角形の突起部510rが形成されている。
また、図4では省略しているが、突起部510及びギャップ調整部340を含む第2基板300の全面は、図1及び図2に示したように垂直配向膜260で覆われている。もちろん、第1基板100側の画素電極200を含む全面側にも図1、図2と同様に垂直配向膜260が形成されている。従って、画素電極200と共通電極320との間に電圧が印加されていない状態では、液晶の長軸方向(液晶ダイレクタ)410が垂直配向膜260の平面方向に対して垂直に配向される。よって、第2基板300側では、突起部510及びギャップ調整部340の斜面の上では、これらの斜面を引き継いで液晶との対向面側に形成される配向膜260の斜面に対し、液晶ダイレクタ410が垂直に配向する。従って、図3及び図4に示されるように、反射領域220を上下に分断する位置の突起部510rを境に液晶の配向方角(配向方位)が互いに180°異なる領域が形成されている。
次に、矢羽根形状の透過領域210では、図3及び図5に示されるように、垂直走査方向に細長い六角形の画素電極200を垂直走査方向に沿って左右(水平走査方向)に等分する位置(矢羽根の芯に相当する部分)において、第2基板300側、具体的には共通電極320の上に、断面3角形の突起部510tを形成している。図5においても図4と同様に省略しているが、第2基板300側及び第1基板100側のいずれにおいても、液晶との接触面には図1及び図2に示す垂直配向膜260が形成されており、透過領域210においても第2基板300に形成された突起部510tを境に、液晶ダイレクタ410の配向方向(配向方位)が、互いに180°異なる向きに分割されている。
また、本実施形態では、配向制御部500として、上記突起や斜面だけでなく、電極不在領域530も用いており、図3〜図5の例では、第1基板100側に複数配置される画素電極200の互いの隙間部分を配向制御のための電極不在部530として用いている。電極不在部530による配向分割は、画素電極200と共通電極320との間に電圧を印加し始めたときの弱電界の傾きを利用している。この弱電界下では、図4及び図5に、点線で示した電気力線は、電極不在部の端部、つまり、電極の端から、電極不在部の中央に向かって広がるように斜めに傾く。そして、負の誘電率異方性を有する液晶の短軸が、この斜めの電気力線に沿うように配向していくので、液晶への印加電圧の上昇に追従して液晶分子が初期の垂直配向状態から倒れていく方角が斜め電界によって規定される。
図3に示すような6角形の画素電極200では、その画素電極200の端部、つまり少なくとも6辺の電極不在部530を備える。従って、液晶ダイレクタ410は、上記突起部510(510r、510t)及び斜面520と、画素電極200の周囲の電極不在部530の作用により、1画素領域内において、反射領域220で少なくとも2つ配向領域、透過領域210で、上記反射領域220の2領域のいずれとも異なる配向方位の2つの配向領域、つまり、合計4つの互いに異なる配向方向を持つ領域が形成されている。
なお、より正確には、液晶ダイレクタ410は、上記突起部510の延在方向及び電極(電極不在部)のエッジの延在方向に対して、その平面成分(配向方角)が直交するように制御される。従って、上記4つの配向領域についても、その1領域内において液晶の配向方角は完全には同一でない。例えば、図3において、透過領域210の垂直走査方向における中央位置では、該垂直走査方向に沿って延びる突起部510t及び画素電極200のエッジに対し、液晶ダイレクタ410は垂直な方角に配向する。しかし、透過領域210の例えば反射領域220との境界では、ギャップ調整部340による傾斜(突起部)520と、透過領域210の突起部510tとが90度より大きい角度で交差しており、この交差付近の液晶の配向方角は、突起部510の延在方向に直交する方向から、ギャップ調整部340による傾斜部520に近づくにつれ、この傾斜部520の延在方向に直交する方向に変化する。しかし、一配向領域内においては、後述するように、液晶の配向方角の位置による変化度合い(又は最大角度)が小さくなるように配向制御部500の延在方向を設定することにより、一配向領域内の不定の位置に、液晶の配向方角の異なる領域の境界(ディスクリネーションライン)が発生することを防止している。
以下、本実施形態に係るこのような配向制御部500の延在方向及び液晶の配向方角との1画素領域内の各位置での関係を説明する
透過領域210の突起部510tによって制御される液晶の配向方角と、この突起部510tと交差するギャップ調整部340の傾斜部520によって制御される液晶の配向方角との角度差は、液晶分子は長軸方向における上下の特性差がないので、90度より小さく、図3の例では、突起部510とギャップ調整部340による傾斜部520との交差角度が約135度であるのに対し、液晶の配向方角の差は、45度である。なお、ここで突起部510tとギャップ調整部340とが交差すると説明しているが、物理的には交差していない場合もあり、本明細書において、交差するとは、それぞれの延長線が交差する、また、それぞれが異なる基板に設けられている場合には、それぞれの延長線の同一の基板平面への投影線が交差するという意味である。
また、ギャップ調整部340による傾斜部520と透過領域210の画素電極200の辺との交差角度(但し、実際には傾斜520及び画素電極200は同一基板上に形成されていないから、この場合、それぞれ同一基板平面への投影線における交差角度である)は、図3の例では、約45度である。傾斜部520によって制御される液晶の配向方角と、画素電極200のエッジで制御される液晶の配向方角の角度は、やはり90度以下で、ここでは45度よりも小さい角度である。
透過領域210の下端付近での突起部510tと画素電極200のエッジとの基板平面への投影線上での交差角度は、ここでは45度であり、この交差付近での液晶の配向方角の差は、上記同様液晶分子に上下の特性差がないので、90度より小さく、ここでは、45度以下である。
透過領域210には、さらに、画素電極200の辺同士が交差する領域がある。図3の例では、垂直走査方向に沿って延びる辺と、この垂直走査方向に沿う辺に向かって上記突起部510と交差する頂点から延びる辺とが該当し、両辺の交差角度は90度より大きく、ここでは135度である。そして、この交差部における液晶の配向方角の差は、やはり液晶分子の上下の特性差がないことから、ここでも90度より小さく、45度となっている。
同様に、反射領域220においても、配向制御部500の基板平面への投影線(延長線を含む)が他の配向制御部500の同一基板平面への投影線(延長線を含む)と交差する領域において、液晶の配向方角の差が90度より小さくなるように配向制御部500が設けられている。すなわち、まず、反射領域220内の配向方向を上下に分割する突起部510rと、画素電極200の端部で交差するギャップ調整部340による傾斜部520とが、90度より小さい角度で交差し、この交差領域における液晶の配向方角の角度差は90度より小さい45度以下に制御されている。
この突起部510rと反射領域220の画素電極200のエッジとの交差角度(基板平面への投影線の交差角度)も同様に90度より小さく、これらの交差部の液晶の配向方角の角度差も上記同様に90度より小さい45度以下に制御されている。
以上のように、配向制御部500の基板平面上への投影線同士が交差する場合に、これらの配向制御部500によって制御される液晶の配向方角の差が90度未満となるように配向制御部500(突起部510、傾斜部520、電極不在部(図3の例では画素電極200の形状)530)を決定する。これにより、配向制御部500によって分割された1領域内の不定の位置にディスクリネーションラインが発生することが確実に防止されている。
なお、反射領域220の画素電極200の辺同士が交差する位置(図3では画素電極200の垂直走査方向の最上部にある頂点付近)及び、ギャップ調整部340による傾斜部520同士の交差部(V字のまたの付近)では、図3の例では交差角度は共に90度となっている。もちろんこの交差角度が90度より小さいか、90度より大きくすれば上記観点からより好ましいが、透過領域210と比較して菱形状の反射領域220の面積自体が小さいため、不定位置でのディスクリネーションラインの発生が防止されている。
反射領域220内の液晶は、突起部510r、傾斜部420及び画素電極200の辺による配向制御をより強く受けるため、上記反射領域220の電極200の辺の交点とギャップ調整部340による斜面部520の交点とを結ぶ菱形反射領域220の斜線上では、物理的な配向制御部500が存在しない。しかし、近接する配向制御部500から等しく制御を受け、また突起部510rの延在方向に対して垂直方向に制御される液晶との連続体性両方の影響により、この位置における液晶ダイレクタ410の平面成分は、図3に示すように垂直走査方向に沿った方向となるためである。そして、この位置から画素電極の水平走査方向での端部に近づくにつれ、液晶は、画素電極200の辺(530)及びギャップ調整部340の斜面520の延在方向と、さらに突起部510rの影響を受け、これらの延在方向に直交する方向から少しずれた方角(90度未満で、図3の例では45度よりも小さい)を向くように制御される。従って、反射領域220内でも不定の位置にディスクリネーションラインが発生することが防止されている。
次に、図6を参照して、画素電極200及びこの画素電極に接続される薄膜トランジスタTFTの構成及び製造方法について説明する。本実施形態では、上述のように各画素に薄膜トランジスタを備えるいわゆるアクティブマトリクス型LCDであり、図6に示すように、第1基板100側に形成された画素電極200と基板100との間にこの薄膜トランジスタTFTを形成している。また1画素領域内にできる限り効率的に透過領域210及び反射領域220を配置し、特に透過領域210での開口率を低下させないという目的から、透過型LCDであっても通常遮光領域に形成するTFTは、これを設けても開口率に影響を及ぼさない反射領域220に配置されている。
本実施形態において、TFTとしては、トップゲート型を採用しており、また、能動層20としてアモルファスシリコン(a−Si)をレーザアニールで多結晶化して得た多結晶シリコン(p−Si)を用いている。もちろん、TFTは、トップゲート型p−Siに限定されるものではなく、ボトムゲート型でもよいし、能動層にa−Siが採用されていてもよい。TFTの能動層20のソース・ドレイン領域20s、20dにドープされる不純物は、n導電型、p導電型のいずれでもよいが、本実施形態ではリンなどのn導電型不純物をドープし、n−ch型のTFTを採用している。
TFTの能動層20はゲート絶縁膜30に覆われ、ゲート絶縁膜30上にCrやMoなどの高融点金属材料からなり、ゲートラインを兼用するゲート電極32が形成されている。そして、このゲート電極32形成後、このゲート電極32をマスクとして能動層20に上記不純物がドープされてソース及びドレイン領域20s、20d、そして不純物がドープされないチャネル領域20cが形成される。次に、このTFT110全体を覆って層間絶縁膜34が形成され、この層間絶縁膜34にコンタクトホールを形成した後、電極材料が形成され、このコンタクトホールを介し、それぞれ、上記p−Si能動層20のソース領域20sにソース電極40が接続され、ドレイン領域20dにドレイン電極36が接続される。なお、本実施形態では、ドレイン電極36は、各TFT110に表示内容に応じたデータ信号を供給するデータラインを兼用している。一方、ソース電極40は、後述するように画素電極である第1電極50に接続される。なお、ドレイン電極36及びソース電極40はいずれも高導電性の例えばAlなどが用いられている。
ソース電極40及びドレイン電極36の形成後、基板全面を覆ってアクリル樹脂などの樹脂材料からなる平坦化絶縁膜38を形成する。次に、この平坦化絶縁層38のソース電極40の形成領域にコンタクトホールを形成し、このコンタクトホールに接続用金属層42を形成し、ソース電極40とこの金属層42とを接続する。ソース電極40としてAlなどが用いられている場合に、金属層42としてはMo等の金属材料を採用することで、ソース電極40とこの金属層42との接続は良好なオーミックコンタクトとなる。なお、ソース電極40は、省略することも可能であり、この場合、金属層42は、TFT110のシリコン能動層20と接することとなるが、Mo等の金属は、このような半導体材料との間でオーミックコンタクトを確立することができる。
接続用金属層42の積層・パターニング後、まず、基板全面に、反射層用のAl−Nd合金や、Alなど、反射特性に優れた反射材料層が蒸着やスパッタリングなどによって積層される。積層されたこの反射材料層は、金属層42及び後に形成される画素電極200とTFTとのコンタクトを妨げないように、TFTのソース領域付近(金属層42の形成領域)からエッチング除去され、また同時に透過領域210に残存しないようにエッチング除去され、上記図3に示すような外形が菱形パターンの反射層44が各画素の反射領域220に形成される。なお、TFT(特にチャネル領域20c)に光が照射されてリーク電流が発生してしまうことを防止し、かつ反射可能な領域(つまり表示領域)をできるだけ広くするために、本実施形態では、反射層44は、図1のように、TFT110のチャネル上方領域にも積極的に形成している。
このような反射層44のパターニングに際し、上記Mo等からなる金属層42は、十分な厚さ(例えば0.2μm)を備え、かつエッチング液に対して十分な耐性を備える。従って、金属層42上の反射層44をエッチング除去した後もこの金属層42は完全に除去されずにコンタクトホール内に残存することができる。また、多くの場合、ソース電極40等には、反射層44と同様な材料(Al等)から構成されるため、上記金属層42が存在しないと、ソース電極40が反射層44のエッチング液に浸食されて断線等が発生してしまう。しかし、本実施形態のように金属層42を設けることで、反射層44のパターニングに耐えて、ソース電極40との良好な電気的接続が維持することができる。
反射層44のパターニング後、透明導電層がスパッタリングによって反射層44を含む基板全面を覆うように積層される。ここで、上述のようにAlなどからなる反射層44の表面は、このとき絶縁性の自然酸化膜で覆われるが、Mo等の高融点金属は、スパッタリング雰囲気に晒されても表面は酸化されない。従って、コンタクト領域において露出した金属層42は、この金属層42の上に積層される画素電極用の透明導電層との間でオーミックコンタクトすることができる。なお、透明導電層は、成膜後、画素毎に独立し、かつ1画素領域内では反射領域と透過領域で共通し、さらに例えば上記図3に示すように細長い6角形の形状にパターニングされ、これにより画素電極200が得られる。また、この画素電極200がパターニング形成された後には、基板全面を覆うようにポリイミドなどからなる配向膜260が形成され第1基板側が完成する。後は、図1及び図2に示すようなR,G,Bのカラーフィルタ、共通電極320、ギャップ調整部340及び突起部510(510r、510t)そして、これらを覆って配向膜260まで形成した第2基板300と、該第1基板100とを一定の間隔離して基板の周辺部分で貼り合わせ、基板間に液晶を封入することでLCDを得る。
なお、図1及び図2の例では第2基板300側に形成する共通電極320は、ギャップ調整層340よりも上層に形成し、この共通電極320の所望の位置に突起部510を形成している。これに対し、図4に示すように、共通電極320は、図4に示すようにギャップ調整部340よりも下(実際には第2基板300の上に形成されたカラーフィルタとギャップ調整部340との間)に形成してもよい。ギャップ調整部340が非常に厚い場合には、図4に示すようにギャップ調整部340の下に共通電極320を形成すると、液晶層410に対して印加される実効電圧が低くなるが、十分高い電圧を共通電極320と画素電極200との間に印加する場合や、ギャップ調整部340が余り厚くない場合には、図4のような構成を採用してもよい。
次に、本実施形態に係る半透過型LCDの各画素の構造の他の例について説明する。図7は、この他の例に係る半透過型LCDの概略平面構成、図8は、図7のC−C’線に沿った概略断面構造である。なお、図7のD−D’に沿った概略断面構造は、上述の図5に示す概略断面構造と同一である。
上述の図3に示す構造と相違する点は、まず、画素電極240の形状が図7の例では長方形であり、かつ、透過領域210及び反射領域220のそれぞれ四角形の領域内で、その4角形の斜辺に相当する位置に配向制御部500として略X字状の突起部510t、510rが形成されていることである。このような配向制御部500により、透過領域210及び反射領域220内には、各突起部510t、510rを境としてそれぞれ液晶の配向方角の異なる4つの領域が形成され、視野角の一層の拡大が図られている。
また、一画素領域内の透過領域210の境界には、上述のように第2基板300側にはギャップ調整部340による斜面部520による配向制御部500が構成されると共に、この斜面部520と並んで、水平走査方向に延在する電極不在部530(スリット:窓530s)530が画素電極200に形成されている。従って、透過領域210と反射領域220の境界領域では、第2電極側においてギャップ調整部340の斜面(傾斜部520)によって液晶の初期配向がその斜面に垂直な方向に制御されると共に、第1基板側では、電極不在部530sにおいて図8に示すように弱電界の傾きにより、液晶の配向がその不在部530sを境に異なる方角に制御される。従って、透過領域210と反射電極220との境界付近における液晶の配向分割がより確実に行われる。
以上のように、画素電極200のエッジ、上記突起部510及び電極不在部530sなどからなる配向制御部500の個々のパターン及び配向分割数も上記図3に示す態様とは異なるが、図7に示す態様においても、ある配向制御部500によって制御される液晶の配向方角と、この配向制御部500の基板平面上への投影線と交差する投影線を持つ他の配向制御部500によって制御される液晶の配向方角との角度差がいずれの交点でも90度未満となっている。従って、分割された各配向領域内において不定の位置にディスクリネーションラインが発生することが確実に防止されている。また、上記図3及びこの図7に示すような配向制御部500のパターンを採用することで、最小限の配向制御部500の形成によって最大限の配向分割数及び確実な配向分割を可能としている。本実施形態で採用している垂直配向型液晶では、電圧非印加状態、即ち垂直配向状態で黒が表示されるため、画素電極200の間隙だけでなく、他の配向制御部500(突起部510、傾斜部520及びスリット530s)についても、その直上位置では共通電極320と画素電極200との間に十分な電圧が印加された状態であっても、液晶の配向状態は垂直配向状態からほとんど変化せず、表示に寄与しない。従って、無用な配向制御部500の配置はLCDの開口率を低下させることになる。しかし、以上に説明した図3や図7のようなレイアウトとすれば、開口率の低下を最小限に抑制しつつ、視野角の拡大と表示品質の向上が可能となる。
図9及び図10は、上記図3に示す構成の別の変形例をそれぞれ示している。
まず、図9では、画素電極250全体が矢羽根形状をしており、そのうちの反射領域220の形状、構成は、図3と同一であるが、残りの透過領域210のパターンが横に配置した鼓型或いは略砂時計形状、或いは、M字が上下逆に連結したような形状である点が異なる。この突起部510tの平面上への投影線と、同じく平面上への投影線が交差する透明領域210の画素電極250の2辺とは、いずれも90度より大きい角度(ここで135度)で交差している。上述したように液晶分子は長軸方向において上下で特性差がないため、この交差領域における液晶の配向方角の角度差は、やはり90度未満となる。また、垂直走査方向に沿って延びる画素電極250の2辺の下端に向かって、それぞれ上記突起部510tとの交差位置から延びる画素電極250の下部の2辺と、該垂直走査方向に沿った画素電極250の辺との交差角度は、90度未満であり、この領域において液晶の配向方角の最大差も90度未満となる(図9の例では45度よりも小さい)。従って、透過領域210内の2つの配向領域内においても不定の位置にディスクリネーションラインが発生することが防止されている。
図10では、画素電極252の形状が矢羽根形状であり、透過領域210の形状(矢羽根形状)及び構成は、図3と同一であるが、矢羽根形状の画素電極252の残りの反射領域220の形状と、この領域内の液晶の配向を分割する突起部510rの形成位置が異なる。即ち、図10の例では、反射領域220も丈の短い矢羽根形状で、反射領域220と透過領域210との境界は、ギャップ調整部340のV字状の傾斜部520によって配向分割され、このV字状の頂点と、反射領域220内の画素電極252の同様のV字状の頂点を結ぶ垂直走査方向に沿った線上において、第2基板側(ギャップ調整部の上)に突起部510rが形成され、この突起部510rを境に反射領域220は水平走査方向において左右2つの配向領域が形成されている。このような構成においても、いずれの配向制御部500によって制御される液晶の配向方角と、この配向制御部500の基板平面への投影線と交差する投影線を持つ他の配向制御部500によって制御される液晶の配向方角との角度差が90度未満の関係を満たしており、良好な配向分割が行われている。
次に、本実施形態に係る垂直配向型半透過LCDの駆動電圧と透過率及びその波長依存性について説明する。
図11は、液晶への印加電圧(V)と透過率(任意単位)の関係を示しており、
(del−n)d/wl・・・(i)で表される垂直配向液晶セルの光学特性、言い換えるとセルの構造を変えたときの印加電圧と透過率の関係である。なお、図11では、wlは550nm(緑)とした。上記(i)式において、(del−n)は、液晶層の複屈折(即ち、屈折率異方性)であり、dは、液晶層の厚さ(セルギャップ)、wlは入射光の波長である。携帯用機器など、例えば携帯電話機に搭載される小型のLCD等では、一層の消費電力の低減、駆動電圧の低下が望まれているが、図11にから理解できるように、例えば上記(i)の値が1.0のセルでは、最大透過率を実現するための印加電圧は3V程度で良く、さらに値を大きくして、1.1、1.2とすれば印加電圧を3V未満とすることが可能であることがわかる。dの値を微調整することで同じ液晶材料、同一光源を用いた場合でも、十分低電圧駆動が可能であり、dの値は、図1,図2等で示したように、ギャップ調整部340やカラーフィルタ330又は平坦化絶縁層38の厚さで調整することができる。
また、式(i)に「wl」成分があることから理解できるように、本実施形態のLCDにおいてその透過特性は波長依存性がある。図12は、R,G,Bの各画素ですべて液晶層の厚さ(セルギャップ)dを一定とした場合の印加電圧に対する透過率特性がR(630nm),G(550nm),B(460nm)光に対して相違している。これに対し、図13は、図1に示したようにR,G,B毎に例えばカラーフィルタ330r、330g、330b(ギャップ調整部340の厚さで調整しても良い)の厚さを変えることでセルギャップdの値を調整したLCDの印加電圧と透過率の関係を示している。図13から分かるように、セルギャップdをR,G,Bでそれぞれ所望の値にすることにより、R,G,Bのいずれの光に対しても対応する各画素での印加電圧に対する透過率特性を同じに揃えることができる。従って、このような構成を採用すれば、例えば上記図11に示すような3V未満の印加電圧であって、かつR,G,Bを同一の振幅の表示信号によって駆動することが明らかである。
また、図14及び図15は、色度(CIEのX−Y座標)の印加電圧依存性を示している。このうち図14は、上記図12に示すようにセルギャップをR,G,Bで同一とした場合のLCDで、液晶に印加する電圧を1.5V、2.0V、2.3V、2.6V、3.0Vとした場合の色度の変化、図15は、上記図13に示すようにセルギャップをR,G,Bでそれぞれ調整して印加電圧に対する透過率変化の色依存性の内LCDにおいて、液晶への印加電圧を同様に1.5V、2.0V、2.3V、2.6V、3.0Vとした場合の色度の変化である。図14と図15の比較から理解できるように、R,G,Bでそれぞれセルギャップを調整することによって、色度の印加電圧依存性、つまり印加電圧を変えたときの色度のずれを改善することができ、様々な電圧範囲内で駆動したときにも色ずれの小さいLCDを実現できる。
本発明の実施形態に係る垂直配向型半透過LCDの概略断面構成を示す図である。 本発明の実施形態に係る垂直配向型半透過LCDの他の概略断面構成を示す図である。 本発明の実施形態に係るより具体的な半透過LCDの概略平面構成を示す図である。 図3のA−A’線に沿った位置における半透過型LCDの概略断面構成を示す図である。 図3のB−B’線に沿った位置における半透過型LCDの概略断面構成を示す図である。 図3に示す半透過LCDの画素電極及びこれに接続されるTFTの構成を示す概略断面図である。 本発明の実施形態に係るより図3と異なる半透過LCDの概略平面構成を示す図である。 図7のC−C’線に沿った位置における半透過型LCDの概略断面構成を示す図である。 図3に示す半透過型LCDの変形例に係る概略平面構成を示す図である。 図3に示す半透過型LCDの他の変形例に係る概略平面構成を示す図である。 本実施形態に係る垂直配向型半透過LCDの印加電圧に対する透過率特性のセル構造との関係を示す図である。 本実施形態に係る垂直配向型半透過LCDの印加電圧に対する透過率特性の波長依存性を示す図である。 本実施形態に係る垂直配向型半透過LCDにおいてセルギャップをR,G,Bで調整したときの印加電圧に対する透過率特性の波長依存性を示す図である。 本実施形態に係る垂直配向型半透過LCDの色度の印加電圧に対する依存性を示す色度座標を示す図である。 本実施形態に係る垂直配向型半透過LCDにおいてセルギャップをR,G,Bで調整したとき色度の印加電圧に対する依存性を示す色度座標を示す図である。
符号の説明
20 能動層(p−Si層)、30 ゲート絶縁膜、32 ゲート電極(ゲートライン)、34 層間絶縁膜、36 ドレイン電極(データライン)、38 平坦化絶縁膜、40 ソース電極、42 接続用金属層、44 反射層、100 第1基板、110 広帯域円偏光板、111 広帯域λ/4板、112 直線偏光板、200,240,250,252 画素電極、210 透過領域、220 反射領域、260 配向膜、300 第2基板、310 負の屈折率異方性板(負の光学補償板)、320 共通電極、330 カラーフィルタ、340 ギャップ調整部、400 液晶層、410 液晶ダイレクタ、500 配向制御部、510,510t,510r 突起部、520 ギャップ調整部の斜面、530 電極不在部(スリット)、600 光源。

Claims (15)

  1. 複数の画素を備え、第1電極を備える第1基板と第2電極を備える第2基板との間に、垂直配向型の液晶が封入された液晶表示装置であって、
    各画素領域は、反射領域と透過領域とを有し、
    前記反射領域においては、前記第1基板側又は前記第2基板側の少なくとも一方に、液晶層へ入射された光の位相差を制御する該液晶層の厚さで規定されるギャップが、前記反射領域での前記ギャップを前記透過領域での前記ギャップよりも小さくするためのギャップ調整部を有し、
    さらに、前記画素領域内には、液晶の配向方向を1画素領域内で分割するための配向制御部を前記第1基板側又は第2基板側のいずれか又は両方に、有することを特徴とする半透過型液晶表示装置。
  2. 請求項1に記載の半透過型液晶表示装置において、
    前記配向制御部は、前記第1電極または前記第2電極のいずれか又は両方に形成された電極不在部を備えることを特徴とする半透過型液晶表示装置。
  3. 請求項1又は請求項2に記載の半透過型液晶表示装置において、
    前記配向制御部は、前記第1基板側または前記第2基板側のいずれか又は両方から前記液晶層に向かって突出する突起部を備えることを特徴とする半透過型液晶表示装置。
  4. 請求項1〜請求項3のいずれか一つに記載の半透過型液晶表示装置において、
    前記画素領域内における前記ギャップ調整部の端部面は前記配向制御部として機能することを特徴とする半透過型液晶表示装置。
  5. 請求項1〜請求項3のいずれか一つに記載の半透過型液晶表示装置において、
    前記画素領域内における前記配向制御部によって制御される液晶の配向方角と、該配向制御部の基板平面への投影線と交差する投影線を持つ他の配向制御部によって制御される液晶の配向方角と、の角度差が90度未満であることを特徴とする半透過型液晶表示装置。
  6. 請求項1〜請求項5のいずれか一つに記載の半透過型液晶表示装置において、
    前記複数の画素は、赤用、緑用、青用の画素を含み、各画素の透過領域における前記ギャップは、前記赤用、緑用、青用の画素のうちの少なくとも1つが他の色の画素のギャップと異なることを特徴とする半透過型液晶表示装置。
  7. 請求項1〜請求項6のいずれか一つに記載の半透過型液晶表示装置において、
    前記複数の画素は、赤用、緑用、青用の画素を含み、各画素の反射領域における前記ギャップは、前記赤用、緑用、青用の画素のうちの少なくとも1つが他の色の画素のギャップと異なることを特徴とする半透過型液晶表示装置。
  8. 請求項1〜請求項7のいずれか一つに記載の半透過型液晶表示装置において、
    前記液晶層は、負の誘電率異方性を有することを特徴とする半透過型液晶表示装置。
  9. 請求項1〜請求項8のいずれか一つに記載の半透過型液晶表示装置において、
    前記第1基板及び前記第2基板には、4分の1波長板及び2分の1波長板がそれぞれ設けられていることを特徴とする半透過型液晶表示装置。
  10. 請求項1〜請求項9のいずれか一つに記載の半透過型液晶表示装置において、
    前記第1基板及び前記第2基板の内、光源に近接配置される基板と対向する基板側に、負の屈折率異方性を有する位相差板を備えることを特徴とする半透過型液晶表示装置。
  11. 請求項1〜請求項7のいずれか一つに記載の半透過型液晶表示装置において、
    前記第1基板又は前記第2基板の少なくとも一方には、2軸位相差板が設けられていることを特徴とする半透過型液晶表示装置。
  12. 請求項1〜請求項11のいずれか一つに記載の半透過型液晶表示装置において、
    前記第1基板側に形成された前記第1電極は、画素毎に個別のパターンに形成され、第1基板側に複数形成され、該複数の第1電極にはそれぞれ薄膜トランジスタが接続され、
    前記第2基板側に形成された前記第2電極は、各画素共通の共通電極として形成され、 前記ギャップ調整部は、前記第2基板側に形成されていることを特徴とする半透過型液晶表示装置。
  13. 請求項1〜請求項12のいずれか一つに記載の半透過型液晶表示装置において、
    前記画素領域内における前記ギャップ調整部は、該ギャップ調整層の形成基板に向けて幅の広がる順テーパ形状を有することを特徴とする半透過型液晶表示装置。
  14. 複数の画素を備え、第1電極を備える第1基板と第2電極を備える第2基板との間に、垂直配向型の液晶が封入された液晶表示装置であって、
    各画素領域は、反射領域と透過領域とを有し、
    前記第1基板側又は前記第2基板側の少なくとも一方に、液晶層への入射光の位相差を制御する該液晶層の厚さで規定されるギャップについて、前記反射領域での前記ギャップを前記透過領域での前記ギャップよりも小さくするためのギャップ調整部を有し、
    前記ギャップ調整層の側面は、該ギャップ調整層の形成基板に向けて幅の広がる順テーパ形状を有することを特徴とする半透過型液晶表示装置。
  15. 請求項14に記載の半透過型液晶表示装置において、
    前記複数の画素にそれぞれ割り当てられた表示色の波長に応じて前記ギャップの厚さが異なることを特徴とする半透過型液晶表示装置。
JP2004347905A 2004-05-21 2004-11-30 半透過型液晶表示装置 Pending JP2006011362A (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2004347905A JP2006011362A (ja) 2004-05-21 2004-11-30 半透過型液晶表示装置
US11/132,767 US7573551B2 (en) 2004-05-21 2005-05-19 Transflective liquid crystal display device and color liquid crystal display device
TW99130153A TWI354833B (en) 2004-11-30 2005-05-20 Liquid crystal display device
KR1020050042476A KR100723555B1 (ko) 2004-05-21 2005-05-20 반투과형 액정 표시 장치, 및 수직 배향형 액정 표시 장치및 그 제조 방법
TW094116432A TW200604654A (en) 2004-05-21 2005-05-20 Transflective liquid crystal display device and color liquid crystal display device
TW098112965A TWI349139B (en) 2004-11-30 2005-05-20 Liquid crystal display device
US12/491,744 US7876407B2 (en) 2004-05-21 2009-06-25 Transflective liquid crystal display device and color liquid crystal display device
US12/964,855 US8089596B2 (en) 2004-05-21 2010-12-10 Transflective liquid crystal display device and color liquid crystal display device
US13/303,432 US8345198B2 (en) 2004-05-21 2011-11-23 Transflective liquid crystal display device and color liquid crystal display device
US13/687,568 US8537316B2 (en) 2004-05-21 2012-11-28 Transflective liquid crystal display device and color liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004152609 2004-05-21
JP2004347905A JP2006011362A (ja) 2004-05-21 2004-11-30 半透過型液晶表示装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2009012226A Division JP2009104172A (ja) 2004-05-21 2009-01-22 液晶表示装置
JP2011148632A Division JP2011191795A (ja) 2004-05-21 2011-07-04 半透過型液晶表示装置

Publications (1)

Publication Number Publication Date
JP2006011362A true JP2006011362A (ja) 2006-01-12

Family

ID=35778664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347905A Pending JP2006011362A (ja) 2004-05-21 2004-11-30 半透過型液晶表示装置

Country Status (1)

Country Link
JP (1) JP2006011362A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100850826B1 (ko) 2006-01-31 2008-08-06 엡슨 이미징 디바이스 가부시키가이샤 액정 표시 패널
WO2009001576A1 (ja) * 2007-06-27 2008-12-31 Sharp Kabushiki Kaisha 液晶表示パネルおよび液晶表示装置
WO2009004849A1 (ja) * 2007-07-02 2009-01-08 Sharp Kabushiki Kaisha 液晶表示装置
JP2009104172A (ja) * 2004-05-21 2009-05-14 Sanyo Electric Co Ltd 液晶表示装置
JP2010175598A (ja) * 2009-01-27 2010-08-12 Toppan Printing Co Ltd フォトマスク、カラーフィルタの製造方法、カラーフィルタ、及び液晶表示装置
US7876407B2 (en) 2004-05-21 2011-01-25 Sanyo Electric Co., Ltd. Transflective liquid crystal display device and color liquid crystal display device
US8593607B2 (en) 2010-09-17 2013-11-26 Optrex Corporation Liquid crystal display element

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159823A (ja) * 1984-01-31 1985-08-21 Matsushita Electric Ind Co Ltd カラ−液晶表示装置
JPH1152381A (ja) * 1997-07-29 1999-02-26 Tokuo Koma 液晶表示装置
JPH11352488A (ja) * 1998-06-11 1999-12-24 Sanyo Electric Co Ltd 液晶表示装置
JP2000356771A (ja) * 1999-04-12 2000-12-26 Matsushita Electric Ind Co Ltd 反射型カラー液晶表示装置
JP2002055343A (ja) * 2000-02-25 2002-02-20 Sharp Corp 液晶表示装置
JP2002287158A (ja) * 2000-12-15 2002-10-03 Nec Corp 液晶表示装置およびその製造方法ならびに駆動方法
JP2002350853A (ja) * 2001-05-28 2002-12-04 Sony Corp 液晶表示素子
JP2003167253A (ja) * 2001-04-11 2003-06-13 Sharp Corp 液晶表示装置
JP2003186030A (ja) * 2001-12-14 2003-07-03 Seiko Epson Corp 電気光学装置および電子機器
JP2003202594A (ja) * 2002-01-04 2003-07-18 Fujitsu Display Technologies Corp 液晶表示装置用基板及びそれを備えた液晶表示装置
JP2003295177A (ja) * 2002-01-29 2003-10-15 Seiko Epson Corp 液晶表示装置および電子機器
JP2003295165A (ja) * 2002-01-29 2003-10-15 Seiko Epson Corp 液晶表示装置および電子機器
JP2003344839A (ja) * 2002-05-24 2003-12-03 Seiko Epson Corp 半透過反射型液晶装置、およびそれを用いた電子機器
JP2004069767A (ja) * 2002-08-01 2004-03-04 Nec Lcd Technologies Ltd 液晶表示装置
KR20040041060A (ko) * 2002-11-08 2004-05-13 세이코 엡슨 가부시키가이샤 액정 표시 장치 및 전자 기기
KR20040041058A (ko) * 2002-11-08 2004-05-13 세이코 엡슨 가부시키가이샤 액정 표시 장치 및 전자 기기
JP2004198929A (ja) * 2002-12-20 2004-07-15 Seiko Epson Corp 電気光学装置及び電子機器
JP2005049687A (ja) * 2003-07-30 2005-02-24 Seiko Epson Corp 液晶表示装置、及び電子機器
JP2005128083A (ja) * 2003-10-21 2005-05-19 Seiko Epson Corp 液晶表示装置および電子機器
JP2005227464A (ja) * 2004-02-12 2005-08-25 Sharp Corp 液晶表示装置

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159823A (ja) * 1984-01-31 1985-08-21 Matsushita Electric Ind Co Ltd カラ−液晶表示装置
JPH1152381A (ja) * 1997-07-29 1999-02-26 Tokuo Koma 液晶表示装置
JPH11352488A (ja) * 1998-06-11 1999-12-24 Sanyo Electric Co Ltd 液晶表示装置
JP2000356771A (ja) * 1999-04-12 2000-12-26 Matsushita Electric Ind Co Ltd 反射型カラー液晶表示装置
JP2002055343A (ja) * 2000-02-25 2002-02-20 Sharp Corp 液晶表示装置
JP2002287158A (ja) * 2000-12-15 2002-10-03 Nec Corp 液晶表示装置およびその製造方法ならびに駆動方法
JP2003167253A (ja) * 2001-04-11 2003-06-13 Sharp Corp 液晶表示装置
JP2002350853A (ja) * 2001-05-28 2002-12-04 Sony Corp 液晶表示素子
JP2003186030A (ja) * 2001-12-14 2003-07-03 Seiko Epson Corp 電気光学装置および電子機器
JP2003202594A (ja) * 2002-01-04 2003-07-18 Fujitsu Display Technologies Corp 液晶表示装置用基板及びそれを備えた液晶表示装置
JP2003295177A (ja) * 2002-01-29 2003-10-15 Seiko Epson Corp 液晶表示装置および電子機器
JP2003295165A (ja) * 2002-01-29 2003-10-15 Seiko Epson Corp 液晶表示装置および電子機器
JP2003344839A (ja) * 2002-05-24 2003-12-03 Seiko Epson Corp 半透過反射型液晶装置、およびそれを用いた電子機器
JP2004069767A (ja) * 2002-08-01 2004-03-04 Nec Lcd Technologies Ltd 液晶表示装置
KR20040041060A (ko) * 2002-11-08 2004-05-13 세이코 엡슨 가부시키가이샤 액정 표시 장치 및 전자 기기
KR20040041058A (ko) * 2002-11-08 2004-05-13 세이코 엡슨 가부시키가이샤 액정 표시 장치 및 전자 기기
JP2004198929A (ja) * 2002-12-20 2004-07-15 Seiko Epson Corp 電気光学装置及び電子機器
JP2005049687A (ja) * 2003-07-30 2005-02-24 Seiko Epson Corp 液晶表示装置、及び電子機器
JP2005128083A (ja) * 2003-10-21 2005-05-19 Seiko Epson Corp 液晶表示装置および電子機器
JP2005227464A (ja) * 2004-02-12 2005-08-25 Sharp Corp 液晶表示装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104172A (ja) * 2004-05-21 2009-05-14 Sanyo Electric Co Ltd 液晶表示装置
US7876407B2 (en) 2004-05-21 2011-01-25 Sanyo Electric Co., Ltd. Transflective liquid crystal display device and color liquid crystal display device
US8089596B2 (en) 2004-05-21 2012-01-03 Sanyo Electric Co., Ltd. Transflective liquid crystal display device and color liquid crystal display device
US8345198B2 (en) 2004-05-21 2013-01-01 Sanyo Electric Co., Ltd. Transflective liquid crystal display device and color liquid crystal display device
US8537316B2 (en) 2004-05-21 2013-09-17 Sanyo Electric Co., Ltd. Transflective liquid crystal display device and color liquid crystal display device
KR100850826B1 (ko) 2006-01-31 2008-08-06 엡슨 이미징 디바이스 가부시키가이샤 액정 표시 패널
WO2009001576A1 (ja) * 2007-06-27 2008-12-31 Sharp Kabushiki Kaisha 液晶表示パネルおよび液晶表示装置
WO2009004849A1 (ja) * 2007-07-02 2009-01-08 Sharp Kabushiki Kaisha 液晶表示装置
JPWO2009004849A1 (ja) * 2007-07-02 2010-08-26 シャープ株式会社 液晶表示装置
JP5015250B2 (ja) * 2007-07-02 2012-08-29 シャープ株式会社 液晶表示装置
JP2010175598A (ja) * 2009-01-27 2010-08-12 Toppan Printing Co Ltd フォトマスク、カラーフィルタの製造方法、カラーフィルタ、及び液晶表示装置
US8593607B2 (en) 2010-09-17 2013-11-26 Optrex Corporation Liquid crystal display element

Similar Documents

Publication Publication Date Title
KR100723555B1 (ko) 반투과형 액정 표시 장치, 및 수직 배향형 액정 표시 장치및 그 제조 방법
JP2011191795A (ja) 半透過型液晶表示装置
KR100787356B1 (ko) 액정 표시 장치
JP2005266778A (ja) 液晶表示装置
US20070046879A1 (en) Liquid crystal display device and information terminal device provided with the same
TW201109786A (en) Liquid crystal display device
JP4721879B2 (ja) 液晶表示装置
JP5036678B2 (ja) 液晶表示装置
JP2006011362A (ja) 半透過型液晶表示装置
JP4111929B2 (ja) 液晶表示装置
JP2005338553A (ja) 液晶表示装置および電子機器
JP4297775B2 (ja) 液晶表示装置
KR20050051400A (ko) 액정 표시 패널 및 이를 갖는 액정 표시 장치
JP2006154585A (ja) 液晶表示装置
JP4420698B2 (ja) 液晶表示装置
JP2006154583A (ja) 半透過型カラー液晶表示装置及びその製造方法
JP2007334085A (ja) 液晶表示装置、及び電子機器
JP4248381B2 (ja) 液晶表示装置
JP2005266195A (ja) 液晶表示装置
JP2006011400A (ja) 液晶表示装置
JP4184216B2 (ja) 液晶表示装置
JP2005274668A (ja) 液晶表示装置
JP2005128233A (ja) 液晶表示装置および電子機器
JP2005172944A (ja) 液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110711

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111121