TWI354833B - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
TWI354833B
TWI354833B TW99130153A TW99130153A TWI354833B TW I354833 B TWI354833 B TW I354833B TW 99130153 A TW99130153 A TW 99130153A TW 99130153 A TW99130153 A TW 99130153A TW I354833 B TWI354833 B TW I354833B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
pixel region
pixel
region
alignment
Prior art date
Application number
TW99130153A
Other languages
Chinese (zh)
Other versions
TW201109786A (en
Inventor
Norio Koma
Kazuhiro Inoue
Kazuyuki Maeda
Masaaki Koga
Masayuki Kametani
Original Assignee
Sanyo Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004347905A external-priority patent/JP2006011362A/en
Application filed by Sanyo Electric Co filed Critical Sanyo Electric Co
Publication of TW201109786A publication Critical patent/TW201109786A/en
Application granted granted Critical
Publication of TWI354833B publication Critical patent/TWI354833B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Description

丄354833 _ 第99130153號專利申請案 v 100年10月25日修正替換頁 、 六、發明說明: ' 【發明所屬之技術領域】 " 本發明係有關在具有像素電極之第一基板與具有共通 * 電極之第二基板間封入有垂直配向型液晶的液晶顯示裝 V 置。 【先前技術】 液晶顯示裝置(以下稱LCD)具備薄型且低消費電力之 鲁 特徵,現在被廣泛運用於電腦顯示器、可攜式資訊機器等 之顯示器中。該種LCD,係在一對基板間封入液晶,藉由 形成於各個基板之電極控制位於基板間之液晶之配向而進 行顯示者,該LCD與CRT(陰極射線管)顯示器、電激發光 . (electroluminescence,以下稱EL)顯示器等不同,由於 . 原理上不能自身發光,因此為了對觀察者顯示圖像而需要 光源。 於此’在穿透型LCD中’係採用透明電極作為形成於 φ 各基板之電極,而在液晶顯示面板後面及侧面配置光源, 以液晶面板控制該光源光之透過量,因此即使是周圍光線 較暗,也可明亮地顯示。但是,由於經常使光源點亮進行 顯示,因此會有無法避免由於光源產生之電力消耗之特 • 性,或是如同在白天屋外之光線非常強之環境下,無法確 保充分之對比度之特性。 另一方面,在反射型LCD中’將太陽、室内燈等之外 光採用為光源,將入射至液晶面板之這些周圍光,藉由形 成於非觀察面侧之基板之反射電極進行反射。然後,依每 317049D1D1(修正版) 3 1354833 第99130153號專利申請案 100年10月25日修正替換頁丄 354833 _ Patent Application No. 99130153 v. October 25, 100, revised replacement page, sixth, invention description: 'Technical field of invention> " The present invention relates to a common substrate having a pixel electrode and having common * A liquid crystal display device V with vertical alignment type liquid crystal is sealed between the second substrates of the electrodes. [Prior Art] A liquid crystal display device (hereinafter referred to as LCD) has a thin and low power consumption characteristic, and is now widely used in displays such as computer monitors and portable information devices. In this type of LCD, liquid crystal is sealed between a pair of substrates, and the display is controlled by the electrodes formed on the respective substrates to control the alignment of the liquid crystals between the substrates, the LCD and the CRT (Cathode Ray Tube) display, and the electric excitation light. Electroluminescence, hereinafter referred to as EL) display, etc., differs in principle. In principle, it is not possible to emit light by itself, and therefore a light source is required in order to display an image to an observer. Here, in the 'transmissive LCD', a transparent electrode is used as an electrode formed on each of the φ substrates, and a light source is disposed behind and on the side of the liquid crystal display panel, and the light transmittance of the light source is controlled by the liquid crystal panel, so that even the ambient light It is darker and can also be displayed brightly. However, since the light source is often illuminated for display, there is a possibility that the power consumption due to the light source cannot be avoided, or the contrast is not ensured in an environment where the light outside the day is very strong, and sufficient contrast cannot be ensured. On the other hand, in the reflective LCD, light such as the sun or an indoor lamp is used as a light source, and the ambient light incident on the liquid crystal panel is reflected by the reflective electrode of the substrate formed on the non-observation surface side. Then, according to 317049D1D1 (Revised Edition) 3 1354833 Patent Application No. 99130153, revised replacement page on October 25, 100

個像素控制入射至液晶層而由反射電極反射後之光而從液 ^ 晶面板射出的射出光量,從而進行顯示。該種反射型LCD 由於採用外光作為光源,因此與穿透型LCD不同,沒有由 . 於光源之電力消費,而具有非常低之低消費電力,並且當 v 在屋外等周圍明亮之情況,可獲得充分之對比度,相反地, 在無外光之情況下,具有無法看到顯示之特性。 於此,最近係提出一種在屋外可容易觀視,且在暗處 也可觀察之顯示器,並受到矚目,例如在曰本專利早期公 • 開平11-101992號公報、日本專利早期公開2003-255399 號公報等所揭示之具備反射功能與光穿透功能之半穿透型 LCD。該穿透型LCD係藉由在一像素區域内設置穿透區域與 反射區域,而謀求同時具有穿透功能及反射功能。 如此,由於能夠同時具有屋外之識認性、以及昏暗情 4 況下之識認性,因此採用前述之半穿透型LCD作為例如可 攜式之資訊機器等之顯示器係非常有用。 _ 但是’在該可攜式資訊機器等之中,所設想之觀察狀 態有多樣,為了實現即使是多種觀察狀態(特別是各種觀察 角度)都可進行高品質之顯示,必須擴大視野角度。 此外,由於半穿透性LCD係將一像素分割為穿透區域 與反射區域,從而實現半穿透性,因此丨個像素份之穿透 ,特性、反射特性係低於穿透型LCD或是反射型[CD,因此 為了提高各個顯示區域(穿透區域、反射區域)之顯示品 質’無論是哪一區域都必須有更高的對比度。 仁疋,關於半穿透型LCD,還僅停留於同時具備穿透 317049D1D1(修正版) 4 1354833The pixels control the amount of light emitted from the liquid crystal panel by the light incident on the liquid crystal layer and reflected by the reflective electrode, thereby displaying. Since the reflective LCD uses external light as a light source, unlike the transmissive LCD, there is no power consumption of the light source, and it has a very low power consumption, and when v is bright around the house, A sufficient contrast is obtained, and conversely, in the absence of external light, there is a property that the display cannot be seen. Herein, a display which can be easily observed outside the house and which can be observed in a dark place has recently been proposed, and has been attracting attention, for example, in the early Japanese Patent Publication No. Hei 11-101992, Japanese Patent Laid-Open Publication No. 2003-255399 A transflective LCD having a reflective function and a light penetrating function disclosed in Japanese Laid-Open Patent Publication No. The transmissive LCD seeks to have both a penetrating function and a reflecting function by providing a penetrating region and a reflecting region in a pixel region. As described above, since the above-described semi-transmissive LCD can be used as a display device such as a portable information device, it is possible to have both the visibility of the outside and the visibility in the dark state. _ However, in the portable information machine, etc., the observation state is various, and in order to realize high-quality display even in various observation states (especially various observation angles), it is necessary to enlarge the viewing angle. In addition, since the semi-transparent LCD system divides a pixel into a transmissive area and a reflective area to achieve translucency, the penetration of one pixel is lower than that of the transmissive LCD or Reflective type [CD, therefore, in order to improve the display quality of each display area (penetrating area, reflective area), there must be a higher contrast regardless of the area. Ren Yan, about the semi-transparent LCD, only stays at the same time with penetration 317049D1D1 (revision) 4 1354833

本發明係以實現半穿透型LCD、彩色LCD之* _ 質為目的。 顯不品 (解決問題的手段) 特徵 本發明可實現如前所述之半穿透型LCD,並具備如下 在具為—種液晶顯示裝置,具備複數個像素,並 /、象素電極之第—基板與具有共通電 間,封入有垂直配向型液晶,盆中,夂後去❹弟·;基板 向县许A x, /、 各像素的形狀係行方 曲成$、1方向長度長;各像素储由沿列方向延伸、彎 素區域而形成;前述第一端係切入糊 像素區域的優先視角Hi域的優先視角與前述第二 在本發明的其他態樣中, 前迷第1素區域中,液曰/糸為一種液晶顯示裳置,在 區域,並且,在前述第‘,方向被分割成為兩個不同 割成為兩個不同區域。、區域中,液晶配向方向被分 在本發明的其他態樣中,係為-種液晶顯示裝置,在 5 317049D1D1(修正版〉 I第99130153號專利尹諳 行方向之方向,在前方向被控制成朝向垂直於 控制成朝向 垂直區域中’液晶配向方向被 在本發_其他紐卜 攻弟一像素區域的面積比前^ 種液明顯示裝置,前 错在本發明的其:;述::像素區域的面積小。 f複數個像素,並在具有像素=#液晶顯示裝置’具 电極之第 二基板間,之第-基板與具有共通 =狀係行方向長度比列方向:,晶’其中’各像 ]方向延伸的分界線而分 、度長;各像素係藉由沿 f二像素區域’·在前述第積相異的第-像素區域與 為四個彼此間具有。區’液晶配向方向被 1並且,在前述第二像=90度以下的角度差的區 ’四個彼此間具有90度或°°9〇 ,液晶配向方向被分割 在本發明的其他態樣中:以下的角度差的區域。 二第-像素區域中的四個:為1液晶顯示裝置,前 、四個配向方向相同。°肖與前述第二像素區域中 在本發明的其他態樣中, 素區域的四個區域與晶顯示裳置,前 τ的夜晶的優先視角相同。 年—像素區域的四個區 v在本發明的其他態樣中, ,第像素區域的面積比前當4種液晶顯示袋置,前 【實施方式】 二像素區域的面積小。 下面使用附圖說明本發明之 實施形態(下面稱為 317049D1D1(修正版) 6 1354833 ___ 第99130153號專利申請案 、 100年10月25日修正替換頁 “實施形態”)。 ’ [實施形態1] v 第1圖表示作為本實施形態之半穿透型LCD而使用半 • 穿透型主動矩陣(Active matrix)LCD時之基本剖面構成。 - 本實施形態之半穿透型LCD係具有複數像素,且將在相互 的相對面側形成有第1電極200、第2電極320之第1及 第2基板以其間夾有液晶層400之方式予以貼合而構成 者’同時在各像素區.域内形成有穿透區域210與反射區域 • 220 ° 採用具有負介電率異向性之垂直配向型液晶作為液晶 層400 ’且在第2基板側或第1基板設置有用於將1個像 素區域内分割為複數配向區域之配向控制部500(配向分割 ^ 部)。配向控制部500係例如由如第1圖所示之向液晶層 400突出之突起部510、傾斜部520、以及在第1圖中由像 素電極200的間隙構成之無電極部等所構成(具體如後面 I 所述)。 第1及第2基板1〇〇、300使用玻璃等透明基板。在第 1基板100側形成有使用氧化銦錫(ITO,Indium Tin 〇Xlde)、氧化銦鋅(IZO,Indium Zinc Oxide)等透明導電 . 性金屬氧化物之在每一像素之個別圖 案的像素電極200而 '‘ 作為第1電極、以及與該像素電極200相連接之薄膜電晶 體等開關元件(未圖示。參閱後述第5圖在覆蓋像素電 極200之第1基板100之全面係形成有垂直配向型的配向 膜260 °該配向膜26〇例如使用聚醯亞胺等,在本實施形 7 317049D1D1(修正版) 1354833 _____ 第99130153號專利申請案 V 100年10月25日修正替換^ . 態中,採用無摩擦型(mbbingkss),使液晶的初期配向(電 * 壓非施加狀態下的配向)垂直於膜的平面方向。再者,藉由 苐5圖所示之結構(具體如後面所述),可在1個像素電極 • 200的形成區域内設置僅由上述透明電極構成之透明區域 V 210、以及形成有與上述透明電極層疊形成之反射膜或反射 電極之反射區域220。 在與該種第1基板100之間失有液晶層400而貼合之 第2基板300中’在與該液晶之相對面侧,首先將r、g、 鲁 B彩色濾光層330r、330g、330b形成於對應的預定位置。 再者’在各彩色濾、光層330r、330g、330b的間隙(像素區 域的間隙)中設置用於防止像素間的漏光之遮光層(在此為 黑色彩色濾光層)330BM。 彩色濾光層330r、330g、330b上形成有由光穿透性材 、屬 料構成之間隙調整部340,以使在與各像素的反射區域220 相對之區域,其液晶層的厚度(液晶盒間隙)dr與在穿透區 域210的液晶層的厚度(液晶盒間隙)dt相比小期望的值 ^ (dr<dt)。該間隙調整部340的厚度在入射光通過液晶層 400 —次之穿透區域210與通過2次之反射區域220中, 分別對應於為得到最適合的穿透率、反射率而需要之液晶 層厚度d之不同情形而設定者。因此’例如’決定液晶層 的厚度d,俾使在未設置間隙調整部340之穿透區域210 可得到最適合的穿透率,而在反射區域220中,藉由設置 具有期望厚度之間隙調整部340,從而可得到比穿透區域 210小之液晶層的厚度d。 8 317049D1D1(修正版)The present invention aims to achieve the quality of a transflective LCD or a color LCD. The present invention can realize a semi-transmissive LCD as described above, and has the following liquid crystal display device, which has a plurality of pixels and/or a pixel electrode - between the substrate and the co-energized, sealed with vertical alignment type liquid crystal, in the basin, after the sputum to the younger brother; the substrate to the county Xu A x, /, the shape of each pixel is curved in the direction of $, 1 long; The pixel storage is formed by extending the curved region in the column direction; the first end is cut into the preferential viewing angle Hi region of the paste pixel region, and the second viewing angle is in the other aspect of the present invention, the first prime region In the liquid 曰 / 糸 is a liquid crystal display skirt, in the area, and, in the aforementioned ', the direction is divided into two different cut into two different areas. In the region, the liquid crystal alignment direction is divided into other aspects of the present invention, and is a liquid crystal display device, which is controlled in the direction of the front direction in the direction of the 5 317 049 D1D1 (Revised Edition) I Patent No. 99130153 The direction of the liquid crystal display is perpendicular to the area in which the liquid crystal alignment direction is controlled in the vertical direction, and the liquid crystal display device is in the front of the present invention. The area of the pixel area is small. f is a plurality of pixels, and between the second substrate having the pixel=#liquid crystal display device with the electrode, the first substrate has a common direction of the length direction of the column line: crystal ' The dividing line in which the 'each image' direction extends is divided and the length is long; each pixel is provided by the second pixel region along the f-pixel region'. The alignment direction is 1 and the area of the angle difference of the aforementioned second image = 90 degrees or less has four degrees of 90 degrees or ° 〇, and the liquid crystal alignment direction is divided in other aspects of the invention: An area with a poor angle. Four in the area: 1 liquid crystal display device, the front and the four alignment directions are the same. In the other second aspect of the invention in the second pixel region, the four regions of the prime region are displayed with the crystal display. The preferred viewing angles of the front τ night crystals are the same. The four regions v of the year-pixel region are in other aspects of the present invention, and the area of the pixel region is earlier than the four liquid crystal display pockets, before [Embodiment] The area of the pixel area is small. The embodiment of the present invention will be described below with reference to the drawings (hereinafter referred to as 317049D1D1 (Revised Edition) 6 1354833 ___ Patent Application No. 99130153, and the revised page "Embodiment" on October 25, 100). [Embodiment 1] v Fig. 1 shows a basic cross-sectional configuration when a semi-transmissive active matrix LCD is used as the transflective LCD of the present embodiment. - The semi-transmissive type of this embodiment The LCD has a plurality of pixels, and the first and second substrates on which the first electrode 200 and the second electrode 320 are formed on the opposite surface sides are bonded together so that the liquid crystal layer 400 is interposed therebetween. Various images A penetrating region 210 and a reflecting region are formed in the region. The vertical alignment type liquid crystal having a negative dielectric anisotropy is used as the liquid crystal layer 400', and one substrate is provided on the second substrate side or the first substrate. In the pixel region, the alignment control unit 500 (the alignment division) is divided into a plurality of alignment regions. The alignment control unit 500 is, for example, a protrusion 510 protruding from the liquid crystal layer 400 as shown in FIG. 1 , an inclined portion 520 , and In the first drawing, an electrodeless portion or the like is formed by a gap of the pixel electrode 200 (specifically, as described later in I). The first and second substrates 1 and 300 are made of a transparent substrate such as glass. A pixel electrode of an individual pattern of each pixel of a transparent conductive metal oxide such as indium tin oxide (ITO, Indium Tin Oxide) or indium zinc oxide (IZO, Indium Zinc Oxide) is formed on the first substrate 100 side. a switching element such as a first electrode and a thin film transistor connected to the pixel electrode 200 (not shown. Referring to FIG. 5 described later, the entire substrate 100 covering the pixel electrode 200 is formed vertically. Alignment type alignment film 260 ° The alignment film 26 〇 is, for example, a polyimine, and the like, in the present embodiment, 7 317 049 D1 D1 (Revised Edition) 1354833 _____ No. 99130153 Patent Application No. V 100 October 25 In the frictionless type, the initial alignment of the liquid crystal (the alignment in the non-applied state) is perpendicular to the plane direction of the film. Furthermore, the structure shown in Fig. 5 (specifically, as shown later) In the formation region of one pixel electrode 200, a transparent region V 210 composed only of the transparent electrode and a reflection film or a reflection electrode formed by laminating the transparent electrode may be provided. In the second substrate 300 in which the liquid crystal layer 400 is lost between the first substrate 100 and the first substrate 100, the r, g, and Lu B color filter layers 330r are first placed on the side opposite to the liquid crystal. 330g, 330b are formed at corresponding predetermined positions. Further, a light shielding layer for preventing light leakage between pixels is provided in a gap (a gap of a pixel region) of each of the color filters and light layers 330r, 330g, and 330b (herein a black color filter layer 330 BM. The color filter layers 330r, 330g, and 330b are formed with a gap adjusting portion 340 made of a light-transmitting material or a material to be opposed to the reflection region 220 of each pixel. The thickness of the liquid crystal layer (cell gap) dr is smaller than the thickness (cell gap) dt of the liquid crystal layer in the penetrating region 210 by a desired value ^(dr<dt). The thickness of the gap adjusting portion 340 is incident. The light passes through the liquid crystal layer 400, the second penetration region 210, and the secondary reflection region 220, respectively, corresponding to the difference in thickness d of the liquid crystal layer required to obtain the most suitable transmittance and reflectance. Therefore, 'for example' determines the thickness d of the liquid crystal layer, so that The most suitable transmittance can be obtained in the penetration region 210 where the gap adjustment portion 340 is not provided, and in the reflection region 220, by providing the gap adjustment portion 340 having a desired thickness, it is possible to obtain a smaller than the penetration region 210. The thickness of the liquid crystal layer d. 8 317049D1D1 (revision)

第99130153號專利申請I 以涛莒直士, 100年10月25日修正替換| 復典,、有上述間隙調整部34〇之- 在本實施形態巾 取 部510,作為將/ 該共通電極320上,係形成突起 而形成配向方A目像素區域内的液晶配向方向予以分割 突起AP 51°0向二Ϊ同的獲數個區域之配向控制部500。該 性二此可=、1層400突起,可以為導電性也可為絕緣 案加以佶用# 11的例如丙稀酸系列樹脂等形成期望圖 t 突起部51G分別形成料像素區域内 牙透區域210以及反射區域22〇。 覆蓋述犬起部51〇及共通電極32〇須形成有無摩擦 之配向膜260 ’其為與第1基板側相同之垂直配向型。 如上所述,配向臈260使液晶配向於與其膜平面方向垂直 之方向’而在覆蓋突起部51G之位置係形成有反映突起部 510形狀之斜面。因此,在突起部51()之形成位置液晶 係相對於覆蓋突起部510之配向膜260之斜面而配向於垂 直方向’並以該突起部51〇為界分贿晶之配向方向。並 且,在本實施形態中’使設置於第2基板側之上述間隙調 整部340之侧面傾斜為斜錐形,覆蓋間隙調整部mo之上 方之配向膜260也延續該斜面而形成有斜面。液晶在該斜 面也被控制成與斜面垂直之方向’而間隙調整部340之斜 面也作為配向控制部500之用。 在第1圖所示之半穿透型LCD中’在第]基板1〇〇之 317049D1D1(修正版) 9 1354833 第99130153號專利申請案 ' 100年10月25日修正替換頁 一 外侧(光源600側)設置有直線偏光板(第1偏光板)112、以 ' 及由λ/4相位差板及λ/2相位差板之組合構成之廣波長 ‘ 帶域λ/4板(第1相位差板)111,由該直線偏光板112與 . 相位差板丨11構成廣波長帶域圓偏光板110。 • 在第2基板300之外側(觀察侧)設置具有負的折射率 異向性之相位差板310作為光學補償板,復設置有由又/4 相位板及Λ/2相位板之組合構成之廣波長帶域λ/4板(第 2相位差板)111、以及直線偏光板(第2偏光板)112,與第 1基板側相同,由該直線偏光板112與相位差板Ul構成 廣π域圓偏光板11 〇。在此,該等光學元件之配置關係可 如第1圖之下部之一個例子所示,將第丨偏光板之轴配置 • 為45 ’第1個λ /4板之遲相轴配置為90。,第2個λ /4 . 板之遲相軸配置為180。,第2偏光板之軸配置為135。。 從光源600射出、且穿透第丨基板1〇〇側之直線偏光 板112而沿該偏光板112之偏光軸方向之直線偏光係藉由 鲁在第1個λ /4板111使其相位差偏離又/4而成為圓偏光。 在此’在本實施形態中’為了至少對波長不同之R、G、Β 中任意之成分也確實設為圓偏光,以提高液晶盒中之光之 利用效率(牙透率),而使用λ/4相位板與λ/2相位板雙方 • 作為廣波長帶域λ/4板111。所得到之圓偏光在穿透區域 • 210穿透像素電極200而入射至液晶層400。 在本實施形態之半穿透型LCD中,如上所述,使用具 有負介電率異向性(△ ε <0)之垂直配向型液晶於液晶層 400 ’並且使用垂直配向型配向膜26〇。 10 317049D1D1(修正版) 1354833 _ 第99Π0153號專利申請案 - 100年10月25日修正替換頁 . 因此’在電壓非施加狀態下,係分別配向於垂直於配 ‘ 向膜260之平面方向之方向,隨著施加電壓增大,液晶之 ' 長轴方向係以與形成於像素電極200與共通電極320之間 - 之電場垂直(平行於基板之平面方向)的方式傾斜。在未向 • 液晶層400施加電壓時,在液晶層400中偏光狀態不會變 化’而直接以圓偏光到達第2基板3〇〇,在第2個λ/4板 111消除圓偏光而成為直線偏光。此時,因係將第2偏光 板112配置成使其與來自第2個;1/4板111之直線偏光之 方向垂直’故該直線偏光不能穿透與第1偏光板112為垂 直之方向之穿透軸(偏光軸)之第2偏光板112,使顯示變 為黑色。 向液晶層400施加電壓後,液晶層400使入射之圓偏 , 光產生相位差’例如成為逆轉之圓偏光、橢圓偏光、直線 偏光’藉由在第2個Α/4板ill對於所得到之光進一步偏 移λ/4相位’從而成為直線偏光(平行於第2偏光板之穿 _ 透軸)、橢圓偏光、圓偏光,這些偏光具有沿第2偏光板 112之偏光軸之成分,對應該成分之光從該第2偏光板112 向觀察侧射出’作為顯示(白色或中間色調)而被識認。 再者’相位差板31〇為負延遲器(negative retarder), 能夠提升從斜向觀視LCD時的光學特性,而提高視角。再 者’也可取代該負延遲器(310)與上述λ/4板111而使用 具有該雙方功能之一片2轴相位差板,由此可實現LCD之 薄型化及穿透率之提高。 在本實施形態中,如上所述,藉由間隙調整部340, 11 317049D1D1(修正版) 1354833 第99130153號專利申請案 1〇〇年10月25日修正替換^ 將實質上控制光之穿透率之液晶層400之厚度(液晶盒間 隙)d設為在穿透區域210與反射區域220不同之期望之間 隙。主要的原因是因為,在穿透區域210係對從設置於LCD 背面侧(在第1圖中為第1基板100側)之光源600穿透液 晶層400而從第2基板300侧向外部射出之光量(穿透率) 進行控制’從而進行顯示,而在反射區域220係將從LCD 之觀察側向液晶層400入射之光藉由設置於像素電極200 之形成區域内之反射膜予以反射,並再次穿透液晶層400 從第2基板侧向觀察側射出之光量(LCD之反射率)進行控 制’從而進行顯示,光之液晶層之穿透次數不同。即,因 在反射區域220,光係穿透液晶層400兩‘次’故其液晶盒 間隙dr必須設定成比穿透區喊210之液晶.盒間隙dt小。 在本實把形感中’如第1圖所示,藉由將期望厚度之間隙 調整部34G僅設置於各區域之反射區域22(),從而達成上 述dr<dt °整部34{)只要具有光穿透性且可形成期 望厚度外’沒有其他特殊限定,例如可制也作為平坦化 絕緣層等使用之丙稀酸㈣樹脂等。 在如上所述間隙調整部340之側面作為配向控制部 500之部分(傾斜部52〇)使用時必須至少其斜錐角相對 於基板平面不到9〇度。原因係為如果斜錐角在9〇度以上, 液晶之配向就會在該間隙調整部340之側面產生混亂,並 且形,於間隙調整部34()上之共通電極聊、配向膜湖 之覆蓋也會變知不充分。此外,間隙調整部340之侧面對 τ本身OL有作用,如果斜錐角過小的話,就會使間隙調 12 317049D1D1(修正版) 第99130153號專利申請案 1〇〇年10月25日修正替換頁 王。卩3=之侧面面積增大,致使像素之開口率、尤其是期 敕,加提呵凴度之反射區域之開口率下降。由此,間隙調 正。卩340之侧面之斜錐角最好為不使上層之第2電極320、 向膜260之覆蓋性下降,且可進行液晶之配向分割,並 率下降較少之角度。具體地說較宜為3〇度至8〇度 之範圍。 彳頁斜。卩520作為具有該範圍之斜錐角之間隙調整部 ,、a ^1列如可利用含有感光劑之上述丙稀酸樹脂。然後,間 二周正材料藉由將作為間隙調整劑加入丙豨酸樹脂中之聚 °開始創、光聚合性單體之含有量配合製造條件、曝光裝 調整’而?形成任意之順斜錐角。岛使間隙 : 之侧面為順—斜錐,除如此調整含有材料外,例 氣引= = = :下述方法:利用存在於周圍之氧 ==彳用樹脂洪烤引起之,熔體流動㈤⑽ 專韻可形成期望角度之順斜錐。 大氣ί 制效果係藉由間隙調整部340之表面附近之 氧氣較少相反地,因離表面較遠之基板側 故顯影時易於去除平㈣ 而持續聚合引起之硬化, 寬度,窄之順斜錐。’,層38之表面侧,形成越向上 袭置ίί時利用曝光裝置,例如在近接曝光 間隙部步成魅心大之效果而在間隙調整部340以 ^成£域與去除區域形成斜錐。 317049D1D1 (修正版) 13 1354833 _ 第99130153號專利申請案 ‘ 100年10月25日修正替換頁 , 在熔體流動中’顯影結束後,藉由例如以80X:至180 °C之溫度、進行烘烤1至20min(例如以120°C、8min),從 ' 而使間隙調整部340之上面及侧面熔融,使表面平滑化’ . 同時,藉由侧表面依存於熔化材料自身所具有之表面張力 • 之形狀變化,而形成順斜錐。 在此,用於間隙調整部等之有機材料,係公知有表示 對曝光光源之g線(436nm)、h線(405)nm、i線(248nm)之 靈敏度等之材料’對i線具有靈敏度之有機材料其斜錐角 一般多在90度以上(逆斜錐)。因此,在本實施形態中,間 隙調整部之材料採用對g線、h線具有靈敏度,容易形成 順斜錐之丙稀酸系列樹脂。 在本實施形態中’在一像素區域内,在穿透區域210 • 與反射區域220改變液晶層之厚度d,同時,分別在波長 不同之R、G、B用像素改變該液晶層之厚度d(但,也可根 據LCD之特性在R、G、B設定共通之間隙)。在第1圖之例 φ 子中,藉由分別形成於第2基板300側之R、G、B之彩色 濾、光層330r、330g、330b之厚度分別予以改變,而得以實 現將R、G、B全部之間隙d。不限於改變彩色濾光層之厚 度之構成,也可在穿透區域21〇亦設置上述間隙調整部 340,在每一 R、G、B之穿透區域21〇與反射區域220改變 該間隙調整部340之厚度。並且,在全部r、g、B中,即 使不使液晶層之厚度d互不相同,也可依據LCD.之特性, 例如使G用與B用為相同液晶層厚度,而僅1^用與其他2 色不同之厚度,也可僅改變B用的d。 14 317049D1D1(修正版) 1^M833 . 第99130153號專利申請案 100年10月25日修正替換頁 .· 胃2圖係顯不為使R、G、B用像素為不同之間隙之其 他構成(在第2圖中,對與第i圖相同之構成不再資述)。 在第^圖之構成中’在第2基板侧不改變RGB之間隙, 而在第1基板100側將形成於像素電極下層之平坦化 、邑緣層38之厚度以r、G、B調整。改變平坦化絕緣層38 t厚度之方法有例如:使用對應於目標厚度之開口量之單 7或複數個半曝光料’將含有感光材料之平坦化絕緣材 魯料予以曝光’而不用追加特別之製程即可形成在每一卜〇、 B像素具有不同厚度之平坦化絕緣層 38。再者,在第2圖 反射區域在平坦化绝緣層38之上形成有凹凸。該平坦Patent Application No. 99130153, in the Japanese Patent Application No. 99130153, the Japanese Patent Application No. In the upper portion, the alignment control unit 500 is formed to form the liquid crystal alignment direction in the alignment target A pixel region, and to divide the projection AP 51°0 into two different regions. This can be used as a second layer of 400 protrusions, which can be electrically conductive or can be used for insulation. For example, an acrylic resin or the like can be formed to form a desired pattern. The protrusions 51G respectively form a tooth-permeable region in the pixel region. 210 and the reflection area 22〇. The accommodating portion 51 〇 and the common electrode 32 are formed so as to form a rubbing-free alignment film 260 ′ which is the same vertical alignment type as the first substrate side. As described above, the alignment 臈 260 has the liquid crystal aligned in the direction ' perpendicular to the plane direction of the film, and the inclined surface reflecting the shape of the protrusion 510 is formed at the position covering the protrusion 51G. Therefore, at the position where the projection portion 51 is formed, the liquid crystal is aligned in the vertical direction with respect to the slope of the alignment film 260 covering the projection portion 510, and the alignment direction of the briquettes is defined by the projection portion 51. In the present embodiment, the side surface of the gap adjusting portion 340 provided on the second substrate side is inclined to a tapered shape, and the alignment film 260 covering the gap adjusting portion mo continues the inclined surface to form a slope. The liquid crystal is also controlled in the direction perpendicular to the inclined surface, and the inclined surface of the gap adjusting portion 340 is also used as the alignment control portion 500. In the semi-transmissive LCD shown in Fig. 1, the 317049D1D1 (Revised Edition) 9 1354833 Patent Application No. 99130153 of the semi-transmissive LCD shown in Fig. 1 is amended on October 25, 100. Side) is provided with a linear polarizing plate (first polarizing plate) 112, and a wide wavelength 'band λ/4 plate composed of a combination of λ/4 phase difference plate and λ/2 phase difference plate (first phase difference) The plate 111 is composed of the linear polarizing plate 112 and the phase difference plate 11 to form a wide-wavelength-region circular polarizing plate 110. A phase difference plate 310 having a negative refractive index anisotropy is provided on the outer side (observation side) of the second substrate 300 as an optical compensation plate, and a combination of a /4 phase plate and a Λ/2 phase plate is further provided. The wide-wavelength band λ/4 plate (second phase difference plate) 111 and the linear polarizing plate (second polarizing plate) 112 are the same as the first substrate side, and the linear polarizing plate 112 and the phase difference plate U1 constitute a wide π. Domain circular polarizing plate 11 〇. Here, the arrangement relationship of the optical elements can be as shown in an example of the lower part of Fig. 1, and the axis of the second polarizing plate is arranged to be 90 ′. The retardation axis of the first λ /4 plate is 90. , the second λ /4 . The slow phase axis of the board is configured as 180. The axis of the second polarizing plate is 135. . The linear polarizing plate 112 which is emitted from the light source 600 and penetrates the linear polarizing plate 112 on the side of the second substrate 1 and is along the polarization axis direction of the polarizing plate 112 is made to have a phase difference by the first λ /4 plate 111. It deviates from /4 and becomes circularly polarized. Here, in the present embodiment, in order to improve the light use efficiency (teeth permeability) in the liquid crystal cell, at least for any of the components of R, G, and 波长 having different wavelengths, it is necessary to use λ. Both the /4 phase plate and the λ/2 phase plate • As the wide-wavelength band λ/4 plate 111. The resulting circularly polarized light is incident on the liquid crystal layer 400 through the pixel electrode 200 at the penetration region. In the transflective LCD of the present embodiment, as described above, the vertical alignment type liquid crystal having a negative dielectric anisotropy (? ε < 0) is used in the liquid crystal layer 400' and the vertical alignment type alignment film 26 is used. Hey. 10 317049D1D1 (Revised Edition) 1354833 _ Patent Application No. 99-0153 - October 25, 100, revised replacement page. Therefore, 'in the non-applied state of the voltage, the direction is perpendicular to the direction of the plane of the alignment film 260, respectively. As the applied voltage increases, the 'long axis direction of the liquid crystal is inclined perpendicularly to the electric field formed between the pixel electrode 200 and the common electrode 320 (parallel to the plane direction of the substrate). When a voltage is not applied to the liquid crystal layer 400, the polarization state does not change in the liquid crystal layer 400, and the circularly polarized light directly reaches the second substrate 3, and the circular eclipse is eliminated in the second λ/4 plate 111 to become a straight line. Polarized light. At this time, since the second polarizing plate 112 is disposed so as to be perpendicular to the direction of the linear polarization from the second; 1/4 plate 111, the linearly polarized light cannot penetrate the direction perpendicular to the first polarizing plate 112. The second polarizing plate 112 of the transmission axis (polarizing axis) turns the display black. When a voltage is applied to the liquid crystal layer 400, the liquid crystal layer 400 deflects the incident circle, and the light produces a phase difference 'for example, a reversed circularly polarized light, an elliptically polarized light, or a linearly polarized light' obtained by the second Α/4 plate ill. The light is further shifted by λ/4 phase' to become linearly polarized light (parallel to the through-axis of the second polarizing plate), elliptically polarized, and circularly polarized, and these polarized light have a component along the polarization axis of the second polarizing plate 112, corresponding to The light of the component is emitted from the second polarizing plate 112 toward the observation side and is recognized as a display (white or halftone). Further, the retardation plate 31 is a negative retarder, which can improve the optical characteristics when observing the LCD from an oblique direction, and improve the viewing angle. Further, instead of the negative retarder (310) and the λ/4 plate 111, a one-axis two-axis phase difference plate having both functions can be used, whereby the thickness of the LCD can be reduced and the transmittance can be improved. In the present embodiment, as described above, the gap adjustment unit 340, 11 317049D1D1 (revision) 1354833, the patent application No. 99130153, the replacement of the patent on October 25, 1 will substantially control the transmittance of light. The thickness (cell gap) d of the liquid crystal layer 400 is set to a desired gap between the penetration region 210 and the reflection region 220. The main reason is that the light source 600 disposed on the back side of the LCD (the first substrate 100 side in the first drawing) penetrates the liquid crystal layer 400 and is emitted from the second substrate 300 side to the outside in the penetration region 210. The amount of light (transmission rate) is controlled to be displayed, and in the reflection region 220, light incident from the observation side of the LCD toward the liquid crystal layer 400 is reflected by the reflection film provided in the formation region of the pixel electrode 200, Further, the amount of light (the reflectance of the LCD) emitted from the second substrate side toward the observation side is controlled to be transmitted through the liquid crystal layer 400 again to perform display, and the number of times of penetration of the liquid crystal layer is different. That is, since the light system penetrates the liquid crystal layer 400 two times in the reflective region 220, the cell gap dr must be set smaller than the liquid crystal cell gap dt of the penetrating region shout 210. In the actual shape, as shown in Fig. 1, by providing the gap adjusting portion 34G having a desired thickness only in the reflection region 22() of each region, the above-mentioned dr<dt° entire portion 34{) is achieved. It is light-transmissive and can be formed into a desired thickness. There is no other particular limitation, and for example, an acrylic acid (tetra) resin or the like which is also used as a planarization insulating layer or the like can be produced. When the side surface of the gap adjusting portion 340 is used as the portion (the inclined portion 52A) of the alignment control portion 500 as described above, at least the taper angle must be less than 9 degrees with respect to the substrate plane. The reason is that if the taper angle is above 9 degrees, the alignment of the liquid crystal will be chaotic on the side of the gap adjusting portion 340, and the shape will be the common electrode chat on the gap adjusting portion 34 (), and the coverage of the alignment film lake. It will also become inadequate. In addition, the side of the gap adjusting portion 340 has an effect on the τ itself OL. If the taper angle is too small, the gap is adjusted to 12 317049D1D1 (Revised Edition) Patent Application No. 99130153, October 25, revised replacement page king. The area of the side surface of 卩3= is increased, so that the aperture ratio of the pixel, especially the period, is increased, and the aperture ratio of the reflection area of the gradation is lowered. Thereby, the gap is adjusted. It is preferable that the taper angle of the side surface of the crucible 340 is such that the coverage of the second electrode 320 of the upper layer and the film 260 is not lowered, and the alignment of the liquid crystal can be performed, and the rate is reduced. More specifically, it is preferably in the range of 3 to 8 degrees. The page is skewed. The crucible 520 is a gap adjusting portion having a taper angle of the range, and the a ^1 column is such that the acrylic resin containing a photosensitive agent can be used. Then, the two-week positive material is started by the addition of the gap adjusting agent to the acrylic acid resin, the content of the photopolymerizable monomer is blended with the production conditions, and the exposure is adjusted. Form any slanting taper angle. The island makes the gap: the side is the cis-bevel cone, in addition to adjusting the material, the gas index = = = : The following method: using the oxygen present in the surrounding == 洪 caused by resin roasting, melt flow (5) (10) The rhyme can form a straight cone of the desired angle. The effect of the atmosphere is that the oxygen near the surface of the gap adjusting portion 340 is less reversed, and the substrate side farther from the surface is easy to remove the flat (four) during development, and the hardening caused by the continuous polymerization, the width, the narrow tapered cone . On the surface side of the layer 38, the upper side of the layer 38 is formed by an exposure device, for example, in the effect of the proximity exposure gap portion, and the slanting cone is formed in the gap adjusting portion 340. 317049D1D1 (Revised) 13 1354833 _ Patent Application No. 99130153 'Revised replacement page on October 25, 100, after drying in the melt flow, by baking at a temperature of, for example, 80X: to 180 °C Bake for 1 to 20 minutes (for example, at 120 ° C for 8 minutes), and melt the surface and the side surface of the gap adjusting portion 340 to smooth the surface. At the same time, the side surface depends on the surface tension of the molten material itself. • The shape changes to form a straight cone. Here, the organic material used for the gap adjusting portion or the like is known to have sensitivity to the i-line such as sensitivity to the g-line (436 nm), h-line (405) nm, and i-line (248 nm) of the exposure light source. The organic material has a taper angle of more than 90 degrees (reverse taper). Therefore, in the present embodiment, the material of the gap adjusting portion is sensitive to the g-line and the h-line, and the acrylic resin which is easy to form a tapered cone is used. In the present embodiment, in the one pixel region, the thickness d of the liquid crystal layer is changed in the transmissive region 210 and the reflective region 220, and the thickness of the liquid crystal layer is changed by pixels of R, G, and B having different wavelengths, respectively. (However, it is also possible to set a common gap between R, G, and B according to the characteristics of the LCD). In the example φ of the first embodiment, the thicknesses of the R, G, and B color filters and the optical layers 330r, 330g, and 330b respectively formed on the second substrate 300 side are changed, thereby realizing R and G. And the gap d between all B. It is not limited to the configuration of changing the thickness of the color filter layer. The gap adjustment portion 340 may also be disposed in the penetration region 21, and the gap adjustment may be changed in each of the R, G, and B penetration regions 21 and reflective regions 220. The thickness of the portion 340. Further, in all of r, g, and B, even if the thickness d of the liquid crystal layer is not made different from each other, depending on the characteristics of the LCD, for example, G and B are used as the same liquid crystal layer thickness, and only For other thicknesses of 2 colors, it is also possible to change only d for B. 14 317049D1D1 (Revised Edition) 1^M833 . Patent Application No. 99130153, October 25, 100, revised replacement page. · Stomach 2 is not the other structure for making R, G, and B pixels different. In the second figure, the same configuration as that of the i-th figure is not described. In the configuration of Fig. 2, the gap between the RGB layers is not changed on the second substrate side, and the thickness of the lower layer of the pixel electrode and the thickness of the edge layer 38 are adjusted by r, G, and B on the first substrate 100 side. The method of changing the thickness of the planarization insulating layer 38 t is, for example, using a single 7 or a plurality of half exposure materials corresponding to the opening amount of the target thickness to expose the flattened insulating material containing the photosensitive material without adding a special one. The process can form a planarization insulating layer 38 having different thicknesses in each of the dipoles and B pixels. Further, in the reflection region of Fig. 2, irregularities are formed on the planarization insulating layer 38. The flat

Le緣層38之表面之凹凸可使反射區域中形成於平坦化 、邑緣層38 Ji之反射層44延續此形狀,而在反射| 之表 % *,成凹凸’從而使向晶層入射之入射光散亂,提高反The unevenness of the surface of the Le edge layer 38 allows the reflective layer 44 formed in the reflective region to be planarized, and the edge layer 38 Ji to continue the shape, and the surface %* of the reflection|is a concave-convex" and thus enters the crystal layer. Incident light scattered, improve the inverse

Md域之顯不品質。並且’也可利用用於在上述rg、b 將平坦化絕緣層38形成為不同厚度之半曝光,不追加製程 • 地一同形成’在平坦化絕緣層38之反射區域之該凹凸、以 及為連接像素電極200與m而貫穿平坦化絕緣層38形成 之接觸孔。 其次’對本實施形態之半穿透型LCD之各像素之具體 、、°構加以5兒明。第3圖為本實施形態之半穿透型LCD之基 - 本平面構成之一例,第4圖為沿第3圖之A — A,線之基本 剖面結構’第5圖為沿第3圖之B-B’線之基本剖面結構, 第6圖表不第3圖之像素電極200及與其相連之薄膜電晶 體等之具體構成。 317049D1D1 (修正版) 比4833 第99130153號專利申請案 100年10月25曰修正替換頁 在第3圖所示之平面構成中,每一像素之個別圖案之 素電極200在畫面之垂直掃描方向(第3圖之上下方向) 了有、、、田長之六角形圖案,在含有在長度方向之2個上邊而 以圖中斜線所包圍之四角形(在圖中為菱形或正方形)之區 域中’如第6圖所示’選擇性地形成有反射膜,而設置有 反射區域220 °並且’六角形像素電極2GG之其餘之約略 箭羽形狀區域係成為穿透區域21〇。The Md domain is not quality. Further, 'the half-exposure for forming the planarizing insulating layer 38 to a different thickness in the above rg and b can be used, and the unevenness in the reflective region of the planarizing insulating layer 38 can be formed together without adding a process. The pixel electrode 200 and m penetrate the contact hole formed by the planarization insulating layer 38. Next, the details of the respective pixels of the transflective LCD of the present embodiment will be described. Fig. 3 is an example of the base-to-plane configuration of the transflective LCD of the present embodiment, and Fig. 4 is a view along the line A-A of Fig. 3, the basic cross-sectional structure of the line. Fig. 5 is a view along the third figure. The basic cross-sectional structure of the B-B' line, the sixth chart is not the specific configuration of the pixel electrode 200 of FIG. 3 and the thin film transistor connected thereto. 317049D1D1 (Revised Edition) 4833 Patent Application No. 99130153, October 25, 1995 Revision Correction Page In the plane configuration shown in FIG. 3, the individual patterns of the individual electrodes 200 of each pixel are in the vertical scanning direction of the screen ( In the lower direction of Fig. 3), the hexagonal pattern of the 、, 、, 田长, in the area containing the two sides in the longitudinal direction and surrounded by the slanting lines in the figure (diamond or square in the figure) As shown in Fig. 6, 'a reflective film is selectively formed, and a reflection region 220 ° is provided, and the remaining approximately arrow-shaped region of the hexagonal pixel electrode 2GG is a penetration region 21A.

如從第4圖也可理解,為使在反射區域220之液晶層 之厚度(液晶盒間隙)dr比在穿透區域21〇之間隙价小, 而將間隙調整層340形成於第2基板300上,在第4圖之 例子中係形成於共通電極32〇上。 該間隙調整層340之像細之端部係配置於沿著與上 述八角I之像素電極200之2個上邊大致線對稱之四角形 反射區域220之下侧2邊之位置。並且,以連接四角形反 射區域22G之水平掃描方向(圖中之左右方向)相對之頂點 間而將該反射區域220於水平掃插方向分割為上下之方 式’在第2基板300(具體地說為楚」因士 * 兄在第4圖中為間隙調整部34〇) 上形成有截面為三角形之突起部51〇r。 並且,雖然第4圖中省畋 v ^ 名略’但如第1圖及第2圖所示, 在包括有突起部510及間隙胡 ± 门I周整部340之第2基板300之 全部表面覆蓋垂直配向膜26η λκ , u α〇。畲然’包括第1基板100 側之像素電極200之全部表面 側也與第1圖、第2圖相同 形成有垂直配向膜260。因此 .,A ^ 匕’在未於像素電極2〇〇與共 通電極3 2 0之間施加電壓之妝能丁、产h 狀態下,液晶之長軸方向(液晶 317049D1D1(修正版) 1354833 ___ 第99130153號專利申請案 、 100年10月25曰修正替換g 指向(director))4l〇係相對於垂直配向膜260之平面方向 ' *垂直地配向。由此,在第2基板側,在突起部51〇 及_調整部340之斜面上,液晶指向彻係相對於延續 . 這些斜面而形成於與液晶之相對面側之配向膜26〇之斜面 * 而垂直配向。因此’如第3圖及第4圖所示,以將反射區 域220分割為上下之位置之突起部51〇r為界,形成液晶之 配向角(配向方位)互相相差180。之區域。 Μ 其次’如第3圖及第5圖所示’在箭羽形狀之穿透區 域210巾’在垂直掃描方向將細長六角形像素電極2⑽沿 垂直掃描方向左右(水平掃描方向)等分之位置(相當於箭 羽之中心之部分)’在第2基板3〇〇侧(具體地說為共通電 極320之上)形成有截面為三角形之突起部51〇t。雖在第& 圖中與第4圖同樣予以省略,但在第2基板300側及第i 基板100側之任一者均在與液晶之接觸面形成如第丨圖及 第2圖所示之垂直配向膜26〇,在穿透區域21〇中亦以形 •成於第2基板300上之突起部510t為界’將液晶指向41〇 之配向方向(配向方位)分割成互相相差18〇。之方向。 此外,在本實施形態中,不僅使用上述突起、斜面, 也使用非電極區域530作為配向控制部5〇〇,在第3圖至 第5圖之例子中’將配置於第1基板1 〇〇侧之像素電極2〇〇 ' 彼此之間隙部分作為用於配向控制之無電極部530使用。 利用無電極部530之配向分割係利用在像素電極2〇〇與共 通電極320之間開始施加電壓時之弱電場之傾斜。在該弱 電場下’如第4圖及第5圖所示,用虛線表示之電力線從 317049D1D1(修正版) 17 益 匕二〇 a修正替換 j極部之端部(亦即’電極之端部)以朝無電極部之中央 =見的方式傾斜、然後’具有負介電率異向性之液晶之短 髮係沿著該傾斜之電力線進行配向,因此,液晶分子從初 月之垂直配向狀態所隨著向液晶之施加電壓之上升傾斜之 方向係由傾斜電場決定。 在第3圖所示之六角形像素電極200中具有該像素電 極200之端部,亦即至少具有六邊之無電極部。因此, 液晶指向410由於上述突起部510(5U)r、51〇t)及斜面 52〇,以及像素電極200周圍之無電極部53〇之作用,在一 像素區_,在反射區域220至少形成兩個配向區域,在 f透區域210形成與上述反射區域220之兩個區域中之任 —者都不同之配向方位之兩個配向區蜮,亦即,總共形成 四個具有不同配向方向之區域。 、,其中’更準碟地說’液晶指向410係被控制成,使其 平面成分(配向方位角)相對於上述突起部51〇之延伸方^ 及電極(無電極部)之邊緣之延伸方向垂直。因此,即使在 上述四個配向區域中,在其一個區域内液晶之配向方位角 亦不完全相同。例如’在第3圖中,切透區域21〇之垂 直婦描方向之中間位置’液晶指向41〇係相對於沿該垂直 掃描方向延伸之突起部510t及像素電槌2〇〇邊緣而配向為 垂直之方向。但是在穿透區域210之例如與反射區域22〇 之交界,利用間隙調整部340之傾斜部(突起部)52〇係與 穿透區域210之突起部510t以大於90度之角度交又,而 隨著靠近利用間隙調整部340之傾斜部52〇,該交叉附近 317049D1D1(修正版) 18 1354833 第99130153號專利申請案 • 100年1〇月25曰修正替換頁 之液晶之配向方位角係從與突起部510之延伸方向垂直之 .f向,變化成與該傾斜部520之延伸方向垂直之方向。但 . 疋在配向區域内,如後所述,以使液晶之配向方位角 .之依據仇置之變化程度(或最大角度)變小的方式,設定配 2控制。P 500之延伸方向,因而可防止在一配向區域之不 疋位置產生液晶之配向方位角不同之區域之交界(向錯線 (disclination line))。 • Y面’說明本實施形態之配向控制部5i)G之延伸方向 及液aa之配向方位角在_像素區域内之各位置之關係。 。因為液晶分子沒有長軸方向之上下特性差,因此由穿 透區=21〇之突起部_控制之液晶之配向方位角以及由 與該=起部510t交叉之間隙調整部340之傾斜部520控制 之液:日之配向方位角之角度差b匕90度小’在第3圖之例子 中大起。p 510t與利用間隙調整部34〇之傾斜部52〇之交 叉角度約為135度,對此,液晶之配向方位角之差為45度。 • 再者,在此係以突起部51〇t與間隙調整部34〇交叉為例進 行了說月,但也有物理地未交叉的情形,而在本說明書中, 所謂交又係指各自之延伸線交叉,此外,當設置於各自不 同之基板時,係指各自之延長線之向同一基板平面之投影 線交叉。 • 另外,利用間隙調整部340之傾斜部520與穿透區域 21〇之像素電極200之邊之交叉角度(但,因為實 際上傾斜 部520及像素電極2〇〇並不形成於同一基板上,故此時係 /刀別朝同〜基板平面之投影線的交叉角度),在第3圖之例 317049D1D1(修正版) 19 1354833 第99130153號專利申請案 100年10月25日修正替換頁 子中,為約45度。由傾斜部520控制之液晶之配向方位角 與由像素電極200之邊緣控制之液晶之配向方位角之角度 仍然在90度以下,於此係為比45度小之角度。 穿透區域210之下端附近之突起部510t與像素電極 200之邊緣朝基板平面之投影線上之交叉角度在此為45 度,因為和上述同樣液晶分子沒有上下之特性差,故在該 交叉附近之液晶之配向方位角之差比90度小,在此,為 45度以下。 在穿透區域210中還具有像素電極200之邊彼此交叉 之區域。在第3圖之例子中,係指沿垂直掃描方向延伸之 邊,與從與上述突起部510交叉之頂點朝向沿該垂直掃描 方向之邊延伸之邊,兩邊之交叉角度比90度大,在此為 135度。而該交叉部之液晶之配向方位角之差仍然因液晶 分子沒有上下特性差,故在此也比90度小,為45度。 同樣,在反射區域220中,在配向控制部500朝基板 平面之投影線(包括延長線)與其他配向控制部500朝同一 基板平面之投影線(包括延長線)交叉之區域,係以使液晶 之配向方位角之差比90度小之方式設置配向控制部500。 即,首先,反射區域220内之將配向方向上下分割之突起 部510r係與利用在像素電極200之端部交叉之間隙調整部 340之傾斜部520以小於90度之角度交叉,該交叉區域之 液晶之配向方位角之角度差係控制在比90度小之45度以 下。 該突起部510r與反射區域220之像素電極200之邊緣 20 317049D1D1(修正版) 第99130153號專利申請案 100年10月25日修正替換頁 之父又角度C朝基板平面之投影線之交叉角度)也同樣控制 成小於90度’該等交又部之液晶之配向方位角之角度差也 與上述相同控制在比90度小之45度以下。 如上所述’當配向控制部500朝基板平面上之投影線 彼此間交叉時,係以使由該等配向控制部5〇〇控制之液晶 之配向方位角之差未滿9〇度之方式而決定配向控制部 5〇〇(突起部510、傾斜部52〇、無電極部(在第3圖之例子 中,為像素電極200之形狀)53〇)。由此,可確實防止在由 配向控制部500分割之一區域内之不定位置產生向錯線。 再者’在反射區域220之像素電極2〇〇之邊彼此間交 叉之位置(在第3圖中為位於像素電極2〇〇之垂直掃描方向 之最上部之頂點附近)及利用間隙調整部Mo之傾斜部520 彼此間之交叉部(V字之接頭附近),在第3圖之例子中, 其父又角度皆為90度。當然,將該交叉角度設為小於9〇 度或者大於90度從上述觀點而言更好,但因為與穿透區域 21〇相比較,菱形反射區域220之面積本身較小,故可防 止在不定位置產生向錯線。 反射區域220内之液晶因為強烈地接受利用突起部 51〇r、傾斜部420及像素電極2〇〇之邊之配向控制,故在 連接上述反射區域220之電極2〇〇之邊之交點與利用間隙 调整部340之斜面部520之交點之菱形反射區域220之斜 線上,不存在物理性之配向控制部5〇〇。但是,從相鄰之 配向控制部500接受到相等之控制,以及相對於突起部 510r之延伸方向而被控制成垂直方向之液晶之連續體性雙 317049D1D1(修正版) 21 1354833 _ 第99130153號專利申請案 - 100年10月25日修正替換頁 方之影響’該位置之液晶指向410之平面分量如第3圖所 示’成為沿垂直掃描方向之方向。然後,隨著從該位置向As can be understood from FIG. 4, the gap adjustment layer 340 is formed on the second substrate 300 so that the thickness (liquid crystal cell gap) dr of the liquid crystal layer in the reflective region 220 is smaller than the gap value in the penetration region 21A. Above, in the example of Fig. 4, it is formed on the common electrode 32A. The narrow end portion of the gap adjusting layer 340 is disposed at a position along the lower side of the quadrangular reflecting region 220 which is substantially line-symmetric with respect to the two upper sides of the pixel electrode 200 of the octagonal I. Further, in the horizontal scanning direction (the horizontal direction in the drawing) of the quadrangular reflection region 22G, the reflection region 220 is divided into the upper and lower sides in the horizontal scanning direction (in the second substrate 300 (specifically, Chu, "In the case of the gap adjustment portion 34" in Fig. 4, a projection portion 51〇r having a triangular cross section is formed. Further, although FIG. 4 is omitted, but as shown in FIGS. 1 and 2, the entire surface of the second substrate 300 including the protrusion portion 510 and the gap portion 340 is integrally formed. Covering the vertical alignment film 26η λκ , u α〇. The vertical alignment film 260 is formed on the entire surface side of the pixel electrode 200 including the first substrate 100 side as in the first and second drawings. Therefore, A ^ 匕 'the long axis direction of the liquid crystal in the state in which the voltage is not applied between the pixel electrode 2 〇〇 and the common electrode 3 2 0 (liquid crystal 317049D1D1 (revision) 1354833 ___ Patent Application No. 99130153, October 25, pp., correction, replacement, g, director, 4l, 〇, vertical alignment with respect to the plane direction of the vertical alignment film 260. As a result, on the second substrate side, on the inclined surface of the protrusion portion 51 and the adjustment portion 340, the liquid crystal is directed to the slope of the alignment film 26 which is formed on the side opposite to the liquid crystal with respect to the continuation. Vertical alignment. Therefore, as shown in Figs. 3 and 4, the alignment angles (alignment directions) of the liquid crystals formed by the projections 51〇r which divide the reflection region 220 into the upper and lower positions are different from each other by 180. The area. Μ Next, as shown in Fig. 3 and Fig. 5, 'the penetration area 210 of the shape of the arrow feather' aligns the elongated hexagonal pixel electrode 2 (10) in the vertical scanning direction to the left and right (horizontal scanning direction) in the vertical scanning direction. (corresponding to the portion of the center of the arrow feather) 'The projection portion 51〇t having a triangular cross section is formed on the side of the second substrate 3 (specifically, above the common electrode 320). Though it is omitted in the same manner as in the fourth embodiment, the second substrate 300 side and the i-th substrate 100 side are formed on the contact surface with the liquid crystal as shown in the second and second figures. The vertical alignment film 26〇 is also divided into the alignment direction (orthogonal orientation) of the liquid crystal pointing 41〇 in the penetration region 21〇 by the protrusion 510t formed on the second substrate 300. . The direction. Further, in the present embodiment, not only the projections and the inclined surfaces but also the non-electrode regions 530 are used as the alignment control portion 5, and in the examples of FIGS. 3 to 5, the first substrate 1 is disposed. The gap portion between the pixel electrodes 2'' on the side is used as the electrodeless portion 530 for alignment control. The alignment division by the electrodeless portion 530 utilizes the inclination of the weak electric field when voltage is applied between the pixel electrode 2A and the common electrode 320. In the weak electric field, as shown in Fig. 4 and Fig. 5, the power line indicated by the broken line is corrected from the 317049D1D1 (revision) 17 匕 匕 〇 a correction to replace the end of the j pole (that is, the end of the 'electrode ) is tilted toward the center of the electrodeless portion, and then the short hair system of the liquid crystal having the negative dielectric anisotropy is aligned along the oblique power line, and therefore, the liquid crystal molecules are vertically aligned from the first month. The direction in which the voltage is applied to the liquid crystal is tilted by the tilt electric field. The hexagonal pixel electrode 200 shown in Fig. 3 has an end portion of the pixel electrode 200, that is, an electrodeless portion having at least six sides. Therefore, the liquid crystal pointing 410 is formed at least in the reflective region 220 due to the protrusions 510 (5U) r, 51 〇 t) and the inclined surface 52 〇 and the electrodeless portion 53 周围 around the pixel electrode 200 in a pixel region _ The two alignment regions form two alignment regions 配 in the f-transmissive region 210 that are different from any of the two regions of the reflective region 220, that is, a total of four regions having different alignment directions are formed. . The liquid crystal pointing 410 is controlled such that the planar component (orthogonal azimuth) is extended with respect to the extending edge of the protrusion 51 and the edge of the electrode (electrodeless portion). vertical. Therefore, even in the above four alignment regions, the alignment azimuth of the liquid crystal in one of the regions is not completely the same. For example, in FIG. 3, the middle position of the vertical cut-in area of the cut-through area 21〇' liquid crystal pointing 41 is aligned with respect to the edge of the protrusion 510t and the pixel electrode 2〇〇 extending in the vertical scanning direction. The direction of the vertical. However, at the intersection of the penetration region 210 and the reflection region 22, for example, the inclined portion (projection portion) 52 of the gap adjustment portion 340 and the protrusion portion 510t of the penetration region 210 are intersected at an angle of more than 90 degrees. With the inclined portion 52 靠近 close to the use of the gap adjusting portion 340, the intersection near the 317049D1D1 (revision) 18 1354833 Patent Application No. 99130153 • 100 years 1 month 25 曰 correction replacement page of the liquid crystal alignment azimuth The direction in which the protrusion 510 extends is perpendicular to the direction of the f direction, and changes to a direction perpendicular to the direction in which the inclined portion 520 extends. However, in the aligning area, as will be described later, the matching control is set such that the degree of change (or the maximum angle) of the liquid crystal is adjusted in accordance with the degree of change in the azimuth angle of the liquid crystal. The direction in which P 500 extends, thereby preventing the boundary (disclination line) of the region where the alignment azimuth of the liquid crystal is different at a position where the alignment region is not present. The Y plane ′ describes the relationship between the direction in which the alignment control unit 5i)G of the present embodiment extends and the position of the liquid aa in the _pixel region. . Since the liquid crystal molecules have no characteristic difference between the upper and lower directions in the long axis direction, the alignment azimuth angle of the liquid crystal controlled by the protrusion portion of the penetration region = 21 以及 and the inclination portion 520 of the gap adjustment portion 340 intersecting the = portion 510 t are controlled. The liquid: the angular difference of the azimuth angle of the day b匕90 degrees is small' in the example of Fig. 3. The angle of intersection of p 510t and the inclined portion 52A by the gap adjusting portion 34 is about 135 degrees, and the difference in the azimuth angle of the liquid crystal is 45 degrees. Further, here, the month in which the protrusion 51 〇t and the gap adjustment unit 34 are crossed is described as an example, but there is also a case where there is no physical crossover. In the present specification, the term “intersection” refers to each extension. The line crossings, in addition, when disposed on different substrates, refer to the intersection of the respective extension lines toward the same substrate plane. In addition, the angle of intersection between the inclined portion 520 of the gap adjusting portion 340 and the side of the pixel electrode 200 of the penetration region 21 is used (however, since the inclined portion 520 and the pixel electrode 2 are not formed on the same substrate, Therefore, at this time, the angle of intersection of the projection line of the slab and the slab is not the same as that of the plane of the substrate. In the example of Figure 3, 317,049 D1D1 (Revised Edition) 19 1354833, Patent Application No. 99130153, the revised page of October 25, 100, It is about 45 degrees. The alignment azimuth angle of the liquid crystal controlled by the inclined portion 520 and the alignment azimuth angle of the liquid crystal controlled by the edge of the pixel electrode 200 are still 90 degrees or less, which is an angle smaller than 45 degrees. The angle of intersection of the protrusion 510t near the lower end of the penetration region 210 and the edge of the pixel electrode 200 on the projection line toward the substrate plane is 45 degrees here, because the liquid crystal molecules have no upper and lower characteristics difference as described above, so that the vicinity of the intersection is The difference in the azimuth angle of the liquid crystal is smaller than 90 degrees, and here, it is 45 degrees or less. There is also a region in the penetration region 210 where the sides of the pixel electrode 200 cross each other. In the example of Fig. 3, the side extending in the vertical scanning direction is the side extending from the vertex crossing the protrusion 510 toward the side along the vertical scanning direction, and the angle of intersection between the two sides is larger than 90 degrees. This is 135 degrees. The difference in the azimuth angle of the liquid crystal at the intersection is still due to the fact that the liquid crystal molecules have no difference in upper and lower characteristics, and therefore are also smaller than 90 degrees and are 45 degrees. Similarly, in the reflection region 220, the projection line (including the extension line) of the alignment control unit 500 toward the substrate plane and the other alignment control unit 500 intersect the projection line (including the extension line) of the same substrate plane to make the liquid crystal The alignment control unit 500 is provided such that the difference in the azimuth angle is smaller than 90 degrees. In other words, first, the protrusions 510r that are vertically divided in the alignment direction in the reflection region 220 are intersected with the inclined portion 520 of the gap adjustment portion 340 that intersects the end portion of the pixel electrode 200 at an angle of less than 90 degrees, and the intersection region The angular difference of the alignment azimuth of the liquid crystal is controlled to be less than 45 degrees below 90 degrees. The protrusion 510r and the edge 20 of the pixel electrode 200 of the reflective region 220 317049D1D1 (Revised Edition) Patent Application No. 99130153, October 25, 100, revised the intersection of the father of the replacement page and the angle of projection C toward the substrate plane Also controlled to be less than 90 degrees, the angular difference of the alignment azimuth of the liquid crystals of the intersections is also controlled to be less than 45 degrees less than 90 degrees. As described above, when the alignment control unit 500 intersects the projection lines on the plane of the substrate, the difference in the azimuth angles of the liquid crystals controlled by the alignment control units 5 is less than 9 degrees. The alignment control unit 5 (the protrusion 510, the inclined portion 52 〇, and the electrodeless portion (the shape of the pixel electrode 200 in the example of Fig. 3) 53 〇) are determined. Thereby, it is possible to surely prevent the occurrence of the disclination line at an indefinite position in one of the areas divided by the alignment control unit 500. Further, 'the position where the sides of the pixel electrodes 2 反射 of the reflection region 220 intersect each other (in the vicinity of the apex of the uppermost portion in the vertical scanning direction of the pixel electrode 2 第 in FIG. 3 ) and the gap adjusting portion Mo The intersection of the inclined portions 520 with each other (near the joint of the V-shape), in the example of Fig. 3, the parent angle is 90 degrees. Of course, it is better to set the crossing angle to be less than 9 或者 or more than 90 degrees from the above viewpoint, but since the area of the diamond-shaped reflecting area 220 itself is small compared with the penetrating area 21 ,, it can be prevented from being indefinite The position produces a disclination line. Since the liquid crystal in the reflection region 220 strongly receives the alignment control by the side of the protrusion portion 51〇r, the inclined portion 420, and the pixel electrode 2〇〇, the intersection and the side of the electrode 2〇〇 connected to the reflection region 220 are utilized. There is no physical alignment control unit 5 on the oblique line of the rhombic reflection region 220 at the intersection of the slope portion 520 of the gap adjustment portion 340. However, the adjacent alignment control unit 500 receives the equal control, and the continuous body double 317049D1D1 (corrected version) 21 1354833 _ 99130153 patent which is controlled to the liquid crystal in the vertical direction with respect to the extending direction of the protrusion 510r. Application - On October 25, 100, the effect of the replacement page was corrected. 'The plane component of the liquid crystal pointing 410 at this position is as shown in Fig. 3' and becomes the direction along the vertical scanning direction. Then, along with from that position

像素電極之水平掃描方向之端部靠近,液晶受到像素電極 200之邊(530)及間隙調整部340之斜面520之延伸方向與 突起部510r之影響,而被控制成朝向從與該等延伸方向垂 直之方向偏離少許之角度(未滿90度,在第3圖之例子中 為小於45度)。因此,即使在反射區域220内也可防止在 不定位置產生向錯線。 其次’如第6圖所示,對像素電極200及與該像素電 極連接之薄膜電晶體TFT之構成及製造方法加以說明。在 本貝知形態中’如上所述’係為各像素具有薄膜電晶體之 所謂主動矩陣型LCD,而如第6圖所示’形成於第1基板 側之像素電極200與基板100之間係形成有該薄膜電 a體TFT。另外由於係為了儘量在一像素區域内高效率地 配置穿透區域210及反射區域220,尤其是不使穿透區域 210之開D率降低,因此係將在穿透型LCD中一般亦形成 2遮光區域之TFT配置於即使設置有該TFT也不會對開口 率產生影響之反射區域220。 在本實施形態中,係採用頂閘極型作為TFT,另外, 姓用將非結晶石夕(a — Si)用雷射退火而多結晶化得到之多 =曰曰石夕(p、&)作為主動層20。當然,TFT不限定於頂閘極 p、si ’也可為底閘極型,主動層也可採用a—si。TFT 主動層20之源極·沒極區域2〇s、20d所搀雜之雜質可為 導電型、p導電型中之任意一種,但在本實施形態中’係 22 317049D1D1(修正版) 1354833 . 第99130153號專利申請案 | 100年丨0月25曰修正替換頁 . 採用換雜有填等η導電型雜質的n —〇h型之TFT。 TFT之主動層20由閘極絕緣膜3〇予以覆蓋,閘極絕 膜30上开)成有由cr、等高溶點金屬材料構成、並兼 作閘極線之閘極電極32。且,該閘極電極32形成後,將 5 、〗極电極32作為遮罩而在主動層2〇中形成將上述雜質 :以摻雜之源極及汲極區域2〇s、2〇d,以及形成不摻雜雜 貝之通道區域20c。其次,覆蓋該全部之TFT110而形成層 •間絕_ 34 ’在該層p视緣膜34形成接觸孔後,形成電 極材料,透過該接觸孔而分別將源極電極4〇連接於上述pThe end portions of the pixel electrode in the horizontal scanning direction are close to each other, and the liquid crystal is affected by the extending direction of the edge 530 of the pixel electrode 200 and the slope 520 of the gap adjusting portion 340 and the protrusion portion 510r, and is controlled to be oriented toward and from the extending direction. The direction of the vertical is offset by a small angle (less than 90 degrees, less than 45 degrees in the example of Figure 3). Therefore, it is possible to prevent the occurrence of the disclination line at an indefinite position even in the reflection area 220. Next, as shown in Fig. 6, the configuration and manufacturing method of the pixel electrode 200 and the thin film transistor TFT connected to the pixel electrode will be described. In the present invention, 'as described above' is a so-called active matrix type LCD in which each pixel has a thin film transistor, and as shown in FIG. 6 'between the pixel electrode 200 formed on the first substrate side and the substrate 100 The thin film electric a body TFT is formed. In addition, in order to efficiently dispose the penetration region 210 and the reflection region 220 in a pixel region as much as possible, in particular, the opening D ratio of the penetration region 210 is not lowered, so that it is generally formed in the transmissive LCD. The TFT of the light-shielding region is disposed in the reflective region 220 which does not affect the aperture ratio even if the TFT is provided. In the present embodiment, the top gate type is used as the TFT, and the surname is obtained by laser annealing and amorphizing the amorphous crystals (a - Si). ) as the active layer 20. Of course, the TFT is not limited to the top gate p, si ' or the bottom gate type, and the active layer may also be a-si. The impurities doped in the source/drain regions 2〇s and 20d of the TFT active layer 20 may be either a conductive type or a p-conductive type, but in the present embodiment, 'system 22 317049D1D1 (revision) 1354833 . Patent Application No. 99130153 | 100 years 丨 0 曰 25 曰 Correction replacement page. The n-〇h type TFT which is filled with an impurity such as η conductivity type is used. The active layer 20 of the TFT is covered by a gate insulating film 3, and the gate insulating film 30 is opened. The gate electrode 32 is made of a metal material having a high melting point and a gate line. After the gate electrode 32 is formed, the impurity electrode is formed in the active layer 2 by using the 5 and the electrode 32 as a mask. The dopant and the drain region are 2〇s, 2〇d. And a channel region 20c forming an undoped shell. Then, the TFTs 110 are formed to cover the entire surface of the TFTs 110. After the contact holes are formed in the p-view film 34, an electrode material is formed, and the source electrodes 4 are respectively connected to the p through the contact holes.

Si主動層20之源極區域2〇s,並將沒極電極36連接於 汲極區域20d。再者,在本實施形態中,没極電極36兼作 向各TFT11G供給與顯示内容相應之資料信號之信號線。另 -一方面’源極電極40如後所述’與作為像素電極之第ι電 極2〇0相連接。再者,及極電極36及源極電極4〇均使用 咼導電性之例如A1等。 =極電極40及沒極電極36形成後,覆蓋基板全面而 ΓΓ稀酸樹脂等樹脂材料構成之平坦化絕緣賴。其 二孔該化絕緣膜38之源極電極4〇之形成區域形成 ^ 孔中形成連接用金屬層42,而連接源 極電極40與該金屬層42。源極電極 = 由金屬層42採用Mo等金屬㈣^ 1更用A1 4時,藉 屬戶42之、,屬材枓’使源極電極40與該金 接觸,而M 與TFTU()切主動層2〇相 接觸W。4金射與如此之㈣歸料^確立歐姆接 317049D1D1(修正版) 23The source region of the Si active layer 20 is 2 〇s, and the electrodeless electrode 36 is connected to the drain region 20d. Further, in the present embodiment, the electrodeless electrode 36 also serves as a signal line for supplying a data signal corresponding to the display content to each of the TFTs 11G. On the other hand, the 'source electrode 40' is connected to the first electrode 2?0 which is a pixel electrode as will be described later. Further, as the electrode electrode 36 and the source electrode 4, for example, A1 or the like is used. After the formation of the electrode electrode 40 and the electrodeless electrode 36, the substrate is covered with a flat layer of a resin material such as a dilute resin. The formation region of the source electrode 4 of the two-hole insulating film 38 is formed. The connection metal layer 42 is formed in the hole, and the source electrode 40 and the metal layer 42 are connected. Source electrode = When metal layer 42 is made of metal such as Mo (4) ^ 1 and A1 4 is used, the material 枓 ' makes the source electrode 40 contact the gold, and M and TFTU() are active. Layer 2 is in contact with W. 4 gold shot and so (four) return ^ establish ohmic connection 317049D1D1 (revision) 23

第99130153號專利申請案 100年10月25日修正替換頁 八f二接用金屬層42之層疊·圖案化後,首先在基板 κ; 1· I、鍍、機錢等層疊反射層用A1_Nd合金、A1等Patent Application No. 99130153, October 25, 100, revised, replacement page VIII, f-joining metal layer 42 lamination and patterning, first on the substrate κ; 1 · I, plating, machine money, etc. A1_Nd alloy for laminated reflective layer , A1, etc.

$ ' ^較好之反射材料層。層疊之該反射材料層從TFT 之二、!區域附近(金屬㉟&之形成區域)進行關去除俾 不妨礙金屬層4·?$ ' ^ Better reflective material layer. Laminated the layer of reflective material from the TFT, the second! The vicinity of the area (the formation area of the metal 35 &) is removed. 俾 Does not hinder the metal layer 4·?

次後面形成之像素電極2〇〇與TFT之接 觸且同4進行餘刻去除俾不殘存於穿透區域別,而將 如上述第3圖所不之外形在各像素之反射區域挪形成菱 七圖案之反射層44。再者,為了防止向tft(尤其是通道區 域20c)“、、射光而產生洩漏電流之情形,且為了儘量擴大可 反射區域(即顯示區域>’而在本實施形態中,如第1圖所 示將反射層44也積極形成於TFT110之通道上方區域。The pixel electrode 2〇〇 formed after the second time is in contact with the TFT and is removed by the same 4, and does not remain in the penetration region, but is formed in the reflection region of each pixel as shown in the above FIG. A reflective layer 44 of the pattern. Further, in order to prevent a leakage current from being generated by "lighting" in the tft (especially the channel region 20c), and in order to maximize the reflectable region (i.e., the display region >', in the present embodiment, as shown in Fig. 1, The reflective layer 44 is also actively formed in the region above the channel of the TFT 110.

在進订该種反射層44之圖案化時,由上述M〇等構成 之金屬層42具有足夠之厚度(例如:G. 2_),且對融刻液 具有足夠之耐性。因此,將金屬層42上之反射層44進行 餘刻去除後’該金屬層42也可未完全被去除而殘存於接觸 孔内。另外,在很多情況中,源極電極40等係由與反射層 44相同之材料(A1等)構成,故當不存在上述金屬層42時, 源極電極40會被反射層44之㈣液祕而產生斷線等。 但,本實施形態藉由設置金屬層42,而可耐受反射層44 之圖案化,並可維持與源極電極4〇之良好的電性連接。 在反射層44之圖案化後’藉由濺鍍層疊透明導電層而 將含有反射層44之基板全部表面予以覆蓋。在此,如上所 述’由A1等構成之反射層44之表面此時以絕緣性之自然 24 317049D1D1(修正版)When the patterning of the reflective layer 44 is made, the metal layer 42 composed of the above M 〇 or the like has a sufficient thickness (e.g., G. 2_) and is sufficiently resistant to the immersion liquid. Therefore, after the reflective layer 44 on the metal layer 42 is removed, the metal layer 42 may not be completely removed and remain in the contact hole. In addition, in many cases, the source electrode 40 or the like is composed of the same material (A1 or the like) as the reflective layer 44, so when the metal layer 42 is not present, the source electrode 40 is affected by the (four) liquid layer of the reflective layer 44. And a broken line is generated. However, in the present embodiment, by providing the metal layer 42, the patterning of the reflective layer 44 can be withstood, and a good electrical connection with the source electrode 4 can be maintained. After the patterning of the reflective layer 44, the entire surface of the substrate including the reflective layer 44 is covered by sputtering a laminated transparent conductive layer. Here, the surface of the reflective layer 44 composed of A1 or the like as described above is naturally insulated at this time. 24 317049D1D1 (Revised Edition)

I3548JJ 第99130153號專利申請案 1〇〇年10月25日修正替換黃 氧化膜覆蓋,而M〇等高熔點金雇 1 —— 表面也不會氧化。因此,在接 W暴露於錢鍍環境中其 層疊於該金屬層42上之像素^域露出之金屬層42可與 姆接觸。再者,透明導電層H用透明導電層之間有歐 且在一傍去、 成祺後,係獨立於每一像素, 上述第3 /内共通於反射區域與穿透區域,並例如如 示’圖案化成細長之六角形形狀,由此得到I3548JJ Patent Application No. 99130153 On October 25, 1999, the replacement of the yellow oxide film was replaced, and the high melting point of M〇 was hired 1 - the surface was not oxidized. Therefore, the exposed metal layer 42 of the pixel layer laminated on the metal layer 42 in the exposed light exposure environment can be in contact with the solder. Furthermore, the transparent conductive layer H has a transparent conductive layer between the two, and is separated from each pixel after being removed, and the third/inner common to the reflective area and the transparent area, and for example, 'patterned into a slender hexagonal shape, which results in

1豕京电極2〇〇。另外,續德本泰, J 蓋基板全部表 ° /、極200進行圖案化後,覆 從而— ^ 聚醯亞胺等構成之配向膜260, 二:圖 =:、後 間隙調整部34n s^ 8之4>色遽光層、共通電極320 ' 等亓杜° 4〇及犬起部510«l〇r、510t)、以及覆蓋該 ❿形成之配向膜260,再將第2基板300與該第1 二反100以—Μ隔分離並在基板之周邊部分貼合,且在 基板間封入液晶,從而得到LCD。 300 再者’在第1圖及第2圖之例子中’形成於第2基板 則之共通電;^ 320係、形成於間隙調整部34〇之上層, 於=共^電極320之期望位置則形成有突起部51〇。相對 如第4圖所示’共通電極320亦可如第4圖所示般 300 間、隙調整部34Q之下方(實際上,為形成於第2基板1豕Beijing electrode 2〇〇. In addition, the continuation of the surface of the J-covered substrate, the surface of the J-covered substrate, and the alignment of the electrode 200, and the alignment film 260 composed of polyimine, etc., two: Figure =:, back gap adjustment portion 34n s ^ 8 of 4> a color light layer, a common electrode 320', etc., and a dog-shaped portion 510 «l〇r, 510t), and an alignment film 260 formed by covering the crucible, and the second substrate 300 and the The first two-reverse 100 is separated by a septum and bonded to the peripheral portion of the substrate, and liquid crystal is sealed between the substrates to obtain an LCD. 300 Further, in the examples of FIGS. 1 and 2, 'the second substrate is co-energized; the ^320 system is formed on the upper layer of the gap adjusting portion 34, and the desired position of the common electrode 320 is A protrusion 51〇 is formed. As shown in Fig. 4, the common electrode 320 may be 300 as shown in Fig. 4 and below the gap adjusting portion 34Q (actually, formed on the second substrate).

Mo上t彩色渡光層與間隙調整部340之間)。間隙調整部 成妓非吊厚時,如第4圖所示,在間隙調整部34G下方形 較低$電極320後’對液晶層410所施加之實效電壓變得 極20(/里在將十分高之電壓施加於共通電極320與像素電 之間的情形中’或是間隙調整部340不太厚的情況 25 317049D1D1(修正版) 第99130153號專利申請案 100年10月25日修正替換頁 中,也可採用第4圖所示之構成。 下面對本實施形態之半穿透型LCD之各像素之結構之 其他例子加以說明。第7圖為其他例子之半穿透型LCD之 基本平面構成,第8圖為沿第7圖之C — C’線之基本剖面 結構。再者,沿第7圖之D—D’線之基本剖面結構與上述 第5圖所示之基本剖面結構相同。 與上述第3圖所示之結構不同之點在於,首先像素電 極240之形狀在第7圖中之例子中為長方形,且在穿透區 域210及反射區域220之各四角形之區域内,在相當於其 四角形斜邊之位置形成有略X字狀之突起部510t、510r作 為配向控制部500。藉由該種配向控制部500,在穿透區域 210及反射區域220内以各突起部510t、51 Or為境界,分 別形成液晶之配向方向不.同之4個區域,從而進一步擴大 視角。 另外,在一像素區域内之穿透區域210之交界,如上 所述,在第2基板300侧構成利用間隙調整部340之斜面 部520之配向控制部500,同時將與該斜面部520並列、 向水平掃描方向延伸之無電極部(狹縫:窗530s)530形成 於像素電極200。因此,在穿透區域210與反射區域220 之交界區域中’在第2電極側係藉由間隙調整部340之斜 面(傾斜部520)將液晶之初期配向控制為與該斜面垂直之 方向,同時在第1基板側係藉由無電極部530s之如第8圖 所示之弱電場之傾斜,將液晶之配向控制為以該無電極部 530s為交界之不同之方向角。因此,可更加確實地進行在 26 317049D1D1(修正版) 1354833 穿透區域210與反射電極22〇 割。 第99130153號專利申請案 1〇〇年10月25日修正替換頁 之交界附近之液晶之配向分Mo is between the t color light-passing layer and the gap adjusting portion 340). When the gap adjusting portion is not thick, as shown in FIG. 4, after the gap adjusting portion 34G lowers the square electrode $320, the effective voltage applied to the liquid crystal layer 410 becomes extremely 20 (/ In the case where a high voltage is applied between the common electrode 320 and the pixel power, or the gap adjusting portion 340 is not too thick, 25 317049D1D1 (Revised Edition) Patent Application No. 99130153, October 25, 1995 Further, a configuration shown in Fig. 4 can be employed. Next, another example of the configuration of each pixel of the transflective LCD of the present embodiment will be described. Fig. 7 is a view showing a basic plane configuration of a semi-transmissive LCD of another example. Fig. 8 is a basic sectional structure taken along the line C-C' of Fig. 7. Further, the basic sectional structure along the line D-D' of Fig. 7 is the same as the basic sectional structure shown in Fig. 5. The structure shown in FIG. 3 is different in that the shape of the pixel electrode 240 is first rectangular in the example of FIG. 7, and is equivalent to the square of each of the penetration region 210 and the reflection region 220. The position of the quadrangular oblique side is formed with a slight X word. The protrusions 510t and 510r are used as the alignment control unit 500. The alignment control unit 500 forms the alignment direction of the liquid crystal in the penetration region 210 and the reflection region 220 with the protrusions 510t and 51 Or as the boundary. In addition, in the four regions, the viewing angle of the slanting portion 520 of the gap adjusting portion 340 is formed on the second substrate 300 side as described above. 500, at the same time, an electrodeless portion (slit: window 530s) 530 which is juxtaposed with the slope portion 520 and extends in the horizontal scanning direction is formed on the pixel electrode 200. Therefore, in the boundary region between the penetration region 210 and the reflection region 220' On the second electrode side, the initial alignment of the liquid crystal is controlled by the inclined surface (inclined portion 520) of the gap adjusting portion 340 so as to be perpendicular to the inclined surface, and the first substrate side is the eighth electrode by the electrodeless portion 530s. The inclination of the weak electric field shown in the figure controls the alignment of the liquid crystal to a different direction angle at which the electrodeless portion 530s is at the boundary. Therefore, it is possible to more reliably perform the penetration at 26,317,049 D1D1 (revision) 1354833. Domain 210 and the reflective electrode 22〇 cutting. Patent Application No. 99130153 1〇〇 amended on October 25, the liquid crystal near the boundary of alignment of the replacement page points

及d = 之邊緣、上述突起部5W ^數1也與上《3圖所示之形態有所不同,但在第了 二立It形態中由某配向控制部500控制之液晶之配向 方位角亦與由具有與該配向_部_朝基板平面上之投And the edge of d = and the protrusion 5W ^ 1 is different from the form shown in the above figure 3, but the alignment azimuth of the liquid crystal controlled by the alignment control unit 500 in the second Erit It form is also And having the alignment with the alignment _ portion _ toward the plane of the substrate

影線相交讀影狀其倾向控㈣5⑼所㈣之液晶之 配向方位角之角度差在無論在哪個交點都未滿⑽度。因此 可確實防止在所㈣之各配向區如在不定位置產生向錯 線。另外,藉由採用上述第3圖及該第7圖所示之配向控 制部5G0之圖帛’可透過最小限度之配向控制部咖之形 成達成最大限度之配向分割數量及確實進行配向分割。本 實施形態中採用之垂直配向型液晶中,為在電壓非施加狀 態(亦即垂直配向狀態)下顯示為黑色,而不僅像素電極2〇〇 之間隙正上方,還有在其他配向控制部5〇〇(突起部51〇、 傾斜部520及狹縫530s)之正上方位置,即使在共通電極 320與像素電極200之間施加充分之電壓之狀態,液晶之 配向狀態亦幾乎不會從垂直配向狀態改變,而不影響顯 示。因此,無用之配向控制部5〇〇之配置會使LCD之開口 率下降。但,如果為上面說明之第3圖、帛7圖所示之設 計’就可將開π率抑制在最小限度,且可擴大視角並提高 顯不品質。 第9圖及第10圖分別表示上述第3圖所示構成之其他 27 317049D1D1(修正版) 1354833 第99130153號專利申請案 100年10月25日修正替換頁 變形例。 • 首先,在第9圖中,將全部德备^ .形狀,其令反射區域220之平妝错極250形成為箭羽 _*同點在於’在其餘之c圖相同,但 .方向之鼓型或略沙漏形狀,或圖案係為配置成橫 該突起部51Gt朝平面上下相反聯結之形狀。 線相交之透明區域21 〇之像二極2:同-平面上之投影 大之角度(在此為135度)交又250之2邊均以比9〇度 鲁在長軸方向上下沒有特性# 所述’因為液晶分子 方位角之角度差仍==區域之液晶之配向 部510t之交又 ^ ^外,分別從與上述突起 oc-n ^ ? ^ 朝者垂直拎描方向延伸之像专雷搞 .25G之2邊之下端延伸之像素電極25() 之像素電極 沿該垂直掃描方向之像 =之下权2邊,與 度,在該區域中"〃 250之邊之交又角度不到90 (在第9圖之例子中,比45声η :最大差也不到90度 内之2個配向$ 又小)°因此’在穿透區域210 在第ι〇Λ 在不定心產生向錯線。 區域210之升^ ’像素電極252之形狀為箭羽形狀,穿透 形狀之像素及㈣與第3圖相同,但箭羽 .用以分割該區_之液^ 220之形狀,以及 置有所不同。g 起部51〇Γ之形成位 長度較短在第1〇圖之例子中,反射區域⑽也為 交界係由ηΓ狀,在反射區域220與穿透區域21〇之 割,在連^網整部340 ^字狀傾斜部520進行配向分 钱該V字狀之頂點與反射區蜮220内之像素電極 317049D1D1(修正版) 28 第99130153號專利申請案 100年10月25曰修正替換頁 252之相同V子狀之頂點之沿垂直掃描方向之線上,在第2 基板側(間隙調整部上)形成突起邹51()r,以該突起部5i〇r 為交界使反射區域220在水平掃掠方向形成有左右2個之 配向區域纟該種構成中’無論由哪個配向控制部控 制之液晶之配向方位角與由具有與該配向控制部_朝基 板平面之投料交叉之投料之其他配向控制部_所控 制之液晶之配向方位角之角度差係毅未滿⑽度之關 係’故可進行良好之配向分割。 其次,對本實施形態之垂直配向型半穿透⑽之驅動 電壓與穿透率及纽長线雜加㈣^ 第11圖表示向液晶施加之施加電壓(v)與穿透率(任 意單位)之關係’而係為以(del—她…⑴表示之垂直 配向液晶盒之光學特性,換言之,為改變液晶盒之結構時 之施加電壓與穿透率之關係。其中,在第U圖中,wli 55〇nm(綠色)。在上述⑴式中,(del-ro為液晶層之複折 射(即折射率異向性)(△〇,d為液晶層之厚度(液晶盒間 隙)’ wl為人射光之波長。在搭载於攜帶用機 器等例如手 機上之小型LCD等中’係期望更加降低電力消耗、並降低 驅動電壓等’而從第U圖可知,在例如上述⑴之值為ι 〇 之U ’用以實現最大穿透率之施加電壓係Μ左右即 可如果立曰大其值為1.1、12時可使驅動電壓為未滿 3V。透過調整d值而使用同樣之液晶材料、同—光源時, 也可進灯非*低之電壓驅動,d值如第i _、第2圖等所 示’可由間隙調整部34G、彩色遽光詹謂或平坦化絕緣 317049D1D1(修正版) 29 1354833 ____ 第 99130153 號專^ - 100年10月25曰修正替換^ 層38之厚度予以調整。 另外,徒式(i)具有“wl”成分理解可知,在本實施形 • 態之LCD中’其穿透特性具有波長依存性。第12圖中,在 • 將R、G、B之各像素之全部液晶層之厚度(液晶盒間隙)d 設為一定時,相對於施加電壓之穿透率特性對於 R(630nm)、G(550nm)、B(460nm)光之相異點。相對此,第 13圖表示如第1圖所示藉由在每一 R、G、B改變例如彩色 濾光層330r、330g、33〇b(可由間隙調整部340之厚度予 以調整)之厚度而調整了液晶盒間隙d之值之LCD施加電壓 與穿透率之關係。由第13圖可知,藉由將晶盒間隙d於r、 G、B分別設定為期望之值,而可對R、G、B任意光對於所 對應之各像素之施加電壓之穿透率特性均相同。因此,採 用β種構成’可知可||由如上述第u圖所示之不到3V之 ^加電壓’且可將RG、B以同—振幅之顯示信號驅動。 另外’第14圖及苐15圖表示色度(CIE之X — Y座標) •之施加電壓依存性。其中第14圖為如第12圖所示,使液 晶盒間隙在R、G、B 4目同時之LCD中,將施加於液晶之電 壓設定為1.5V、2.0V、2.3V、2. 6V、3. 〇v時之色度之變化, 第15圖為如第13圖所示,在R、G、B分別調整液晶盒間 隙而對於施加電壓之穿透率變化之色度依存性之内之咖 •中’將施加於液晶之電聲同樣設為1. 5V、2. 0V、2. 3V、2. 6V、 ^ ον時之色度之變化。由第14圖與第15圖之比較可知, 藉由在R、G、Β分別調整液晶盒間隙,可改善改變色度之 施加電壓依存性’亦即施加電壓時之色度偏離,而在各種 30 317049D1D1(修正版) 1354833 第99130153號專利申請案 100年10月25日修正替換頁 電壓範圍内驅動時均可實現色度偏離較小之LCD。 [實施形態2] 接著,說明本發明之實施形態2,即謀求在色彩顯示 中提高顯示品質之態樣。以下,以垂直配向型液晶顯示裝 置之色彩顯示為例進行說明。 垂直配向型液晶顯示裝置,具有廣視角特性,以及高 對比度特性,並具有不需要配向膜的磨擦處理之優點。 在相關垂直配向型液晶顯不裝置中*由於液晶具有負 介電率異向性之特性’因此構成液晶之液晶分子具有朝向 與電場方向垂直之方向之特性。這種液晶顯示裝置係採用 垂直配向膜作為控制液晶之初期配向之配向膜,並使用例 如聚驢亞胺(polyimide)、聚臨胺(polyamide)等有機材料 作為該垂直配向膜之材料。在垂直配向型液晶顯示裝置 中’在沒有施加於液晶之電場時,液晶分子係措由垂直配 向膜而被控制成朝向垂直配向膜所形成之基板之法線方 向。而當在像素電極與共通電極間施加電壓,從而產生基 板之法線方向之電場時’有运些電場控制之區域的液晶分 子則倒向垂直於電場之方向。 藉此,傳送至液晶中之入射光之相位會發生變化。當 將炎住液晶之基板間之距離(間隙)當做d、將液晶之折射 率當做Δη、將光波長當做Λ,則傳送至液晶中之入射光之 相位變化為Αικί/λ。接著,藉由使穿透過液晶之光通過貼 附於前述基板之偏光板,可使入射光之穿透率變化,而可 獲得所希望之液晶顯示。在這種情況中,例如,係設定前 31 317049D1D1(修正版) 1354833 __ 第99130153號專利申請案 ' 丨00年10月25日修正替換頁 •述偏向偏光板,俾在無電壓施加時進行黑顯示,並在電壓 *施加時,以一定電壓(白電壓White)使入射光之穿透率為 • 最大。 ㈣該種垂直配向型液晶顯示裝置,最近亦正開發復 具有RGB3原色之像素之全彩之垂直配向型液晶顯示裝置。 但是,全彩垂直配向型液晶顯示裝置中,由於通過依 RGB3原色各像素不同之顏色之彩色滤光層之光的波長又, 係根據各像素不同而不同,因此無法以一定電麼使穿透率 為最大。亦即’如第17C圖所示’依各RGB像素,ν τ特 性(穿透率對液晶施加電壓之特性)係不同。ν_τ特性中, 穿透率Τ隨著液晶施加電麈ν的增加而增加,若超出最大 .值,則轉向減少。-般在RGB中,係配合以最低電壓而穿 透率T變高之B(藍),而設定白電壓Vwhite作為液晶施加 電壓V。 在施加該白電壓Vwhite時’由於〇(綠)與R(紅)沒有 鲁達到100%之穿透率’因此產生白色會被識認為偏藍之問 題。因此,使R像素之液晶施加電壓(驅動電壓)變高,雖 可改善此種色偏之問題,但將產生液晶顯示裝置之消費電 力增大的問題。 、 第16圖係有關本發明之實施形態2之垂直配向型液晶The hatching intersects the reading mode and its tendency to control (4) 5 (9) (4) The angular difference of the azimuth angle of the liquid crystal is not (10) degrees at any intersection. Therefore, it is possible to surely prevent the occurrence of the disclination line in each of the alignment areas of (4), such as at an indefinite position. Further, by using the map 帛' of the alignment control unit 5G0 shown in the third figure and the seventh figure, the minimum number of alignment divisions can be achieved and the alignment division can be surely performed by the minimum alignment control unit. The vertical alignment type liquid crystal used in the present embodiment is black in a voltage non-applied state (that is, a vertical alignment state), and is not only directly above the gap of the pixel electrode 2, but also in the other alignment control portion 5 The position directly above the 〇〇 (protrusion 51 〇, the inclined portion 520 and the slit 530 s), even if a sufficient voltage is applied between the common electrode 320 and the pixel electrode 200, the alignment state of the liquid crystal hardly changes from the vertical alignment. The status changes without affecting the display. Therefore, the arrangement of the unnecessary alignment control unit 5 causes the aperture ratio of the LCD to decrease. However, if it is the design shown in Fig. 3 and Fig. 7 described above, the opening π ratio can be minimized, and the viewing angle can be enlarged and the quality can be improved. Fig. 9 and Fig. 10 respectively show another modification of the configuration shown in Fig. 3, the above-mentioned Fig. 3, 317,049, D1, D1 (Revised), 1 354, 833, and No. 99,130, 153. • First, in Figure 9, the shape of the whole surface is made, which makes the flat makeup fault 250 of the reflective area 220 form as an arrow feather _* the same point is 'the same as the rest of the c picture, but the direction of the drum The shape or the slightly hourglass shape, or the pattern is a shape that is disposed so as to be laterally oppositely connected to the plane of the protrusion 51Gt. The intersection of the transparent area of the line 21 〇 二 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Because the angle difference between the azimuth angles of the liquid crystal molecules is still == the intersection of the alignment portions 510t of the liquid crystals of the region, the image is extended from the vertical direction of the projections oc-n ^ ^ ^ Engage the pixel electrode of the pixel electrode 25() on the lower side of the 2G side of the 25G. The image of the pixel electrode along the vertical scanning direction = the right side, and the degree, in this area, the angle of the edge of the circle is not To 90 (in the example of Fig. 9, the ratio is 45 to η: the maximum difference is not within 90 degrees of the two alignments $ is smaller). Therefore, 'in the penetration area 210 at the ι〇Λ in the uncentered direction Wrong line. The shape of the region 210 is as follows: the shape of the pixel electrode 252 is an arrow feather shape, the pixel of the penetrating shape and (4) are the same as those of the third figure, but the arrow feather is used to divide the shape of the liquid ^ 220 of the area, and set different. g The length of the forming portion of the starting portion 51 is shorter. In the example of the first drawing, the reflecting region (10) is also an intersection of the η-shaped shape, and the cutting region 220 and the penetrating region 21 are cut and cut. The portion 340 ^ font-shaped inclined portion 520 performs the aligning of the V-shaped apex and the pixel electrode 317049D1D1 in the reflection area 蜮 220 (revision) 28 Patent Application No. 99130153, October 25, pp. A vertex 51()r is formed on the second substrate side (on the gap adjusting portion) along the line perpendicular to the scanning direction of the apex of the same V sub-shape, and the reflecting portion 220 is horizontally swept with the protruding portion 5i〇r as a boundary. In the configuration, there are two right and left alignment regions. In this configuration, the alignment azimuth of the liquid crystal controlled by any alignment control unit and the other alignment control unit having the charge intersecting with the alignment control unit _ toward the substrate plane The angle difference between the azimuth angles of the liquid crystals controlled by _ is the relationship of less than (10) degrees, so a good alignment can be performed. Next, the driving voltage and transmittance of the vertical alignment type semi-transmissive (10) of the present embodiment and the addition of the long line (4)^11 show the applied voltage (v) and the transmittance (arbitrary unit) applied to the liquid crystal. The relationship 'is the relationship between the applied voltage and the transmittance of the vertical alignment liquid crystal cell represented by (del—her...(1), in other words, the relationship between the applied voltage and the transmittance when changing the structure of the liquid crystal cell. Among them, in the U-picture, wli 55 〇 nm (green). In the above formula (1), (del-ro is the birefringence of the liquid crystal layer (ie, refractive index anisotropy) (Δ〇, d is the thickness of the liquid crystal layer (cell gap)' wl In the small LCD such as a mobile phone that is mounted on a portable device or the like, it is desirable to reduce power consumption and reduce the driving voltage, etc. From the U-picture, for example, the value of (1) above is ι 〇 U 'The applied voltage is used to achieve the maximum penetration rate. If the value is 1.1 or 12, the driving voltage can be less than 3 V. By adjusting the d value, the same liquid crystal material is used. When the light source is used, it can also be driven by a non-low voltage. , d value as shown in the ith _, the second figure, etc. 'can be adjusted by the gap adjustment unit 34G, color 詹 詹 or flattened insulation 317049D1D1 (revision) 29 1354833 ____ No. 99130153 special ^ - 100 years October 25 曰The thickness of the replacement layer 38 is corrected and adjusted. In addition, the understanding of the "wl" component of the formula (i) shows that the transmittance characteristic of the LCD of the present embodiment has wavelength dependence. In Fig. 12, • When the thickness (cell gap) d of all the liquid crystal layers of each of the R, G, and B pixels is constant, the transmittance characteristics with respect to the applied voltage are R (630 nm), G (550 nm), and B (460 nm). In contrast, FIG. 13 shows that, as shown in FIG. 1, for example, the color filter layers 330r, 330g, and 33b are changed at each of R, G, and B (by the gap adjusting portion 340). The relationship between the LCD applied voltage and the transmittance is adjusted by the thickness of the liquid crystal cell gap d. It can be seen from Fig. 13 that the cell gap d is set to be desired by r, G, and B, respectively. The value of the R, G, B arbitrary light has the same transmittance characteristics for the applied voltage of each pixel. Therefore, it is known that the β-type composition can be driven by a voltage of less than 3 V as shown in the above-mentioned U-th diagram, and RG and B can be driven by the same-amplitude display signal. Figure 15 shows the chromaticity (X-Y coordinate of CIE) • The voltage dependence is applied. The 14th picture shows the liquid crystal cell gap in the R, G, B 4 mesh LCD as shown in Fig. 12. The voltage applied to the liquid crystal is set to 1.5V, 2.0V, 2.3V, 2. 6V, 3. 色v when the chromaticity changes, Figure 15 is as shown in Figure 13, adjusted in R, G, B respectively 5V,2. 3V,2. 6V, 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 ^ The change in the chromaticity of ον. As can be seen from the comparison between Fig. 14 and Fig. 15, by adjusting the cell gaps in R, G, and Β, it is possible to improve the applied voltage dependence of changing the chromaticity, that is, the chromaticity deviation when the voltage is applied, and in various 30 317049D1D1 (Revised Edition) 1354833 Patent Application No. 99130153 October 25, 1995 Correction of an LCD with a small chromaticity deviation when driving in a voltage range of a replacement page. [Embodiment 2] Next, a second embodiment of the present invention will be described, that is, an aspect in which display quality is improved in color display. Hereinafter, the color display of the vertical alignment type liquid crystal display device will be described as an example. The vertical alignment type liquid crystal display device has wide viewing angle characteristics, high contrast characteristics, and has the advantage of eliminating the need for the rubbing treatment of the alignment film. In the related vertical alignment type liquid crystal display device, the liquid crystal molecules constituting the liquid crystal have a characteristic of being oriented perpendicular to the direction of the electric field because the liquid crystal has a characteristic of negative dielectric anisotropy. This liquid crystal display device employs a vertical alignment film as an alignment film for controlling the initial alignment of the liquid crystal, and uses an organic material such as polyimide or polyamide as the material of the vertical alignment film. In the vertical alignment type liquid crystal display device, when no electric field is applied to the liquid crystal, the liquid crystal molecules are controlled by the vertical alignment film to be oriented in the normal direction of the substrate formed by the vertical alignment film. When a voltage is applied between the pixel electrode and the common electrode to generate an electric field in the normal direction of the substrate, the liquid crystal molecules in the region where the electric field is controlled are reversed to the direction perpendicular to the electric field. Thereby, the phase of the incident light transmitted to the liquid crystal changes. When the distance (gap) between the substrates of the liquid crystal is taken as d, the refractive index of the liquid crystal is taken as Δη, and the wavelength of light is taken as Λ, the phase change of the incident light transmitted to the liquid crystal is Αικί/λ. Then, by passing the light that has passed through the liquid crystal through the polarizing plate attached to the substrate, the transmittance of the incident light can be changed, and a desired liquid crystal display can be obtained. In this case, for example, the first 31 317049D1D1 (revision) 1354833 __ Patent Application No. 99130153 丨 10 10 10 10 10 10 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Display, and when the voltage* is applied, the transmittance of the incident light is maximized with a certain voltage (white voltage White). (4) This type of vertical alignment type liquid crystal display device has recently been developed as a full-color vertical alignment type liquid crystal display device having pixels of RGB3 primary colors. However, in the full-color vertical alignment type liquid crystal display device, since the wavelength of the light passing through the color filter layer of the color different from each pixel of the RGB3 primary color is different depending on each pixel, it is impossible to penetrate with a certain amount of electricity. The rate is the highest. That is, as shown in Fig. 17C, the ν τ characteristic (the characteristic of the transmittance applied to the liquid crystal) differs depending on each RGB pixel. In the ν_τ characteristic, the transmittance Τ increases as the liquid crystal applied electric 麈 ν increases, and if the maximum value is exceeded, the steering decreases. In the RGB, the B (blue) with the lowest transmittance and the transmittance T is increased, and the white voltage Vwhite is set as the liquid crystal application voltage V. When the white voltage Vwhite is applied, 'because 〇 (green) and R (red) do not reach 100% transmittance, the white color is recognized as being blue. Therefore, the liquid crystal application voltage (driving voltage) of the R pixel is increased, and the problem of such color shift can be improved, but the problem of an increase in the power consumption of the liquid crystal display device arises. Figure 16 is a vertical alignment type liquid crystal according to Embodiment 2 of the present invention.

' 裔員 TfC St 5E 装置之剖面圖。其中,與前述實施形態1(特別是第1 2 )共通構成者係附上相同符號,並省略說明。本實施形態 輿前述實施形態1相同,係以在作為RGB3原色之顯示用 之各姻相應像素内,具備穿透區域以及反射區域,而無論 32 317049D1D1(修正版) “54833 _— 、 第99130153號專利申請案 100年10月25日修正替換^ ; 周圍環境是明亮或昏暗都方便觀察之半穿透型LCD為例進 行説明,然而也適用於具備RGB3原色之像素之穿透型lcd 或反射型LCD。 在第一玻璃基板100上’在RGB3原色之各像素内,分 別形成有液晶驅動用TFT20,並形成有覆蓋這些液晶驅動 用TFT20之層間絕緣膜(在其上形成平坦化絕緣膜則更 佳)34。該層間絕緣膜34上之各像素區域内,形成有像素 鲁 電極200。在穿透區域係由ΙΤ0構成之透明電極21〇形成 像素電極200,在反射區域則由例如鋁等具良好反射特性 之材料構成之反射電極220形成像素電極200。 在B像素中,反射電極220(b)係透過形成於層間絕緣 膜34之接觸孔與液晶驅動用TFT20之源極或汲極相連接, 反射電極220並與透明電極210接觸並電性連接。同樣, 在G像素、R像素中’反射電極220亦分別透過形成於層 間絕緣膜34之接觸孔而連接於液晶驅動用TFT20之源極或 >及極’反射電極220並與透明電極210接觸並電性連接。 當反射電極220與透明電極210之直接接觸有困難之情 況’如前述對第6圖所做之說明,較宜將反射電極220實 際上與TFT20絕緣,並直接覆蓋反射電極220而在i像素 區域全體形成由透明導電性金屬氧化物構成之透明電極 210 ’透明電極210係透過接觸孔與TFT20連接。 形成由例如聚醯亞胺、聚醯胺等有機材料構成之第一 垂直配向膜262,覆蓋各像素之透明電極21〇、反射電極 220。 。 33 317049D1D1 (修正版) 1354833 _ 第99130153號專利申請案 ·' 100年10月25日修正替換頁 此外’與前述第一玻璃基板100相對之第二玻璃基板 300係配置成與基板100平行。在第二玻璃基板300之與 • 第一破璃基板100之相對面,對應於RGB3原色之各像素, 而將來自第二基板300側或來自如第1圖所示之配置於第 一基板100侧之光源、或是來自第二基板3〇〇侧之外光之 光源之入射至液晶層400,並射向第二玻璃基板200的入 射光進行過濾。且形成有使藍色光透過之B色濾光層 332b、使綠色光透過之g色濾光層332g、以及使紅色光透 ®過之R色遽光層332r。 並且,在各像素之各反射區域中,對應B色濾光層332b 之反射區域之區域係形成有由感光性樹脂形成之突出部 340b’對應G色濾光層332g之反射區域之區域係形成有由 感光性樹脂形成之突出部340g、對應R色濾光層332r之 反射區域之區域係形成有感光性樹脂形成之突出部340r。 這些突起部340(340b、340g、340r)係為在實施形態1中 ^ 亦有說明之在反射區域與穿透區域中,用於調整所要求之 間隙之間隙調整層(間隙調整用突出部),藉由將該間隙調 整層340選擇性地設置於反射區域,使反射區域之第一玻 璃基板100與第二玻璃基板300之相向距離(間隙)比透明 區域更小,使反射特性良好(在反射區域之顯示特性)。此 外,在本例中,在R、G、B之各像素中,突出部340之厚 度係設為共通。 再者,覆蓋分別設置有突出部340之B色濾光層332b、 G色濾光層332g以及R色濾光層332r,而形成由ITO構成 34 317049D1DK 修正版) 1354833 - 第99130153號專利申請案 _ 100年10月25曰修正替換頁 _ 之透明共通電極320,再覆蓋該共通電極320而形成由例 * 如聚醯亞胺、聚醯胺等有機係材料構成之第2垂直配向膜 • 264。然後,在第一玻璃基板100與第二玻璃基板300間之 • 空間,封入具有負介電率異向性之液晶400。 第一玻璃基板100之背面(光之射出面)係貼附有作為 相位差板之λ/4板111以及偏光板112。同樣,在第二玻 璃基板200之背面(光射出面)係貼附有作為相位差板之Λ /4板111以及偏光板112。藉此,設定成:依據像素電極 • 以及共通電極214之電壓設定,在液晶400無電壓施加時, 朝液晶層400射入之入射光不會從第二玻璃基板300側向 外部射出通過,從而實現黑顯示;而當電壓施加於液晶層 400時,對應該電壓之來自第二玻璃基板300側而向外部 射出之光會增加,亦即入射光於液晶層之穿透率會增加。 在本實施形態2中,其特徵為B、G、R之各彩色濾光 層之332b、332g、332r之厚度設定。當使B色濾光層332b « φ 之厚度為D-blue、G色濾光層332g之厚度為D-green、R 色滤光層332r之厚度為D-red時。 則滿足D-blue2D-green〉D-red之關係式。在RGB之 各像素之穿透區域中,間隙(夾於兩基板間之液晶厚度)與 各彩色濾光層之大小關係成為相反關係。即,當使B像素 之透明區域之間隙為G-blue(T)、G像素之透明區域之間隙 為G-green(T)、R像素之透明區域之間隙為G-red(T)時, 其關係為 G-red(T)2G-green(T)>G-blue(T)。這樣,將 β 色濾光層201、G色濾光層202、R色濾光層203之厚度設 35 317049D1D1(修正版) 1354833 __ 第99130153號專利申請案 ' 100年10月25日修正替換頁 •定成各不相同,使各像素之間隙(也稱為液晶盒間隙)不 . 同,可使之各像素的V-τ特性均一化。 . 接著,有關RGB之各像素之V-T特性,根據第2圖所 示之實驗結果進行說明。第17A至17C圖中,橫轴為施加 於液晶300之電壓,縱轴為入射光之穿透率。 首先,如第17C圖所示’在D_blue=D_green=D_red之 情況(所有於色/慮光層厚度相同之情況),各尺⑶之ν_τ特 性大大不同’如第ηΑ圖所示,若設定為D-blue〉D-green〉 D-red,則B、R像素之V-T特性接近G像素之V-T特性。 並且,藉由B色濾光層332b、G色濾光層332g、以及β色 濾光層332ι•之厚度設定,將之各間隙設定為 G-red(T)=4. 8 // m、G-green(T)=4· 〇 " m、G_blue(T)=3 3 //m’從而可使RGB之V-T特性為大致相同。藉此,藉由選 擇適當的白電壓White(例如’使穿透率為最大之電壓v), 可在低電壓驅動下’獲得無色偏之顯示。 • 此外,如第ΠΒ圖所示,若設定為D-blue=D-green〉 D-red’則B、G像素之V-T特性與第17C圖相同,而以象 素之V-T特性係接近G像素之v-T特性。這樣,與第pc 圖之V-T特性相比,由於在R像素可藉由更低之電壓v獲 得高穿透率,這樣可改善色偏問題。 另一方面,在反射區域中,設有各RGB像素之間隙調 整層(突起部)340r、340g、340b,而前述b、g、R之各色 濾光層332b、332g、332r係同時存在於穿透區域以及反射 區域。因此藉由如前所述地分別設定這些色渡光層332b、 36 317049D1D1(修正版) 1354833 ___ 第99130153號專利申請案 ' 100年10月25曰修正替換頁 332S、332Γ之厚度,使反射區域之間隙大小關係也與穿透 區域之關係成為相同之關係。亦即,若使反射區域之B像 . 素間隙為G-blue(R)、G像素之間隙為〇_21^611(1〇、1^像素 之間隙為G-red(R),而突起部211、212、213之高度為相 同的話,則成為 G-red(R)>G-green(R)2G-blue(R)之關 係。於是,根據本實施形態2 ’ RGB之各像素之V-R特性(反 射率對液晶施加電壓特性)也更均一,因而同樣可獲得在低 電壓驅動下之無色偏顯示。 其次,說明有關前述R、G、B之各色濾光層332r、332g、 332b之形成方法。各色濾光層基本上係將包含該色顏料之 感光性樹脂旋轉塗布(Spin coat)於第二玻璃基板300上, 並藉由曝光以及顯影,將圖形留在預定區域即可。但是, 本實施形態2中’由於各色濾光層厚度並非完全相同,如 果厚的色濾光層,例如β色濾光層332b先形成,則第二玻 璃基板300表面之凹凸會變大,而使其他彩色濾光層,例 φ 如R色濾光層332r的形成產生困難。 於此’首先形成最薄之r色濾光層332r,之後以G色 濾光層332g、B色濾光層332b之順序形成,這種製造步驟 較容易實現’且較為理想。在B色滤光層3321}與G色滤光 •層332g厚度相同之情況下,該厚度相同之2種色濾光層, 其形成順序任意。 [實施形態3] 接著,參照圖進行有關本發明之實施形態3的說明。 第18圖係有關本實施形態3之垂直配向型液晶顯示裝置之 37 317049D1D1(修正版) 1354833 _ 第99130153號專利申請案 ' 100年10月25日修正替換頁 概略剖面構造示思圖。有關與前述實施形態2共通之構成 ‘ 係附上相同符號,並省略說明。 . 在實施形態3中,在R、G、B之各像素,為了將各個 間隙G設為最適當之不同厚度,除了形成於第二玻璃基板 300側之R、G、B之色濾光層330r、330g、330b、以及用 於調整穿透區域與反射區域之間隙差之突起部34〇(34〇r、 340g、340b)外,還具備用於調整R、G、B用之間隙差之調 φ 整層(間隙層)350。具體而言,在液晶盒間隙G係要求比R 像素區域更小之B、G像素區域中,將各個感光性樹脂層 350b、350g選擇性的形成於B色濾光層33〇b上、以及G 色;慮光層330g上,而作為調整層350。於此,使B色滤光 • 層33牝上之感光性樹脂350b之厚度為ti,G色濾光層330g 上之感光性樹脂350g之厚度為t2。此外,如果使B像素 之穿透區域之間隙(兩基板間之液晶厚度)為G_blue(T), 則設定為tl 2 t2。若使G像素之穿透區域之間隙為 • G—greenCT),R像素之穿透區域之間隙為G_red(T),則滿 足: G-red(T)>G-green(T) 2 G、blue(T)之關係。 此外,在本實施形態3中,如第18圖所示,使在各 色滤光層330r、330g、330b之厚度分別相同,且突出部 340r、34Gg、鳩之厚度也分別相等之情況下,在制2 時’液晶盒間隙滿足G-green=G、blue。 运樣’在必要色區域選擇性形成感級樹脂層35〇, 將各像素之間隙(又稱為液晶盒間隙)依R、G、B分別設為 317049D1D1(修正版) 38 1354833 __ 第99130153號專利申請案 、 100年10月25日修正替換頁 不同之最適合之值’可使RGB之各像素之V_T特性均一化。 其次根據第19Α圖至第19C圖所示之實驗結果,對有 . 關RGB之各像素之ν-τ特性進行說明。在第19Α圖至第19C 圖中’橫轴係施加於液晶400之電壓,縱軸係入射光之穿 . 透率。 首先,如第19C圖所示,在G〜red(T)=G_green(T)= G-blue(T)之情況(不設感光性樹脂層25〇g、250b之情況) 中’各RGB之V-T特性係大不相同。相對此,如第IgA圖 所示,若設定為Sectional view of the TfC St 5E device. It is to be noted that the same components as those in the first embodiment (particularly in the first embodiment) are denoted by the same reference numerals and will not be described. This embodiment is the same as the first embodiment, and includes a penetration region and a reflection region in each pixel corresponding to the display of the RGB 3 primary colors, regardless of 32 317049 D1D1 (corrected version) "54833 _-, 99130153 The patent application was amended on October 25, 100. The surrounding environment is bright or dim. The semi-transmissive LCD is easy to observe. However, it is also applicable to the penetrating lcd or reflective type of pixels with RGB3 primary colors. In the first glass substrate 100, a liquid crystal driving TFT 20 is formed in each of the RGB3 primary colors, and an interlayer insulating film covering the liquid crystal driving TFTs 20 is formed (on which a planarizing insulating film is formed) Preferably, the pixel electrode 200 is formed in each of the pixel regions on the interlayer insulating film 34. The transparent electrode 21 is formed by the transparent electrode 21 in the transparent region, and the pixel electrode 200 is formed by, for example, aluminum. The reflective electrode 220 made of a material having good reflection characteristics forms the pixel electrode 200. In the B pixel, the reflective electrode 220(b) transmits through the contact hole formed in the interlayer insulating film 34. The source or the drain of the liquid crystal driving TFT 20 is connected, and the reflective electrode 220 is in contact with and electrically connected to the transparent electrode 210. Similarly, in the G pixel and the R pixel, the 'reflective electrode 220' is also formed through the interlayer insulating film 34. The contact hole is connected to the source of the liquid crystal driving TFT 20 and/or the pole 'reflecting electrode 220, and is in contact with and electrically connected to the transparent electrode 210. When the reflective electrode 220 is in direct contact with the transparent electrode 210, it is difficult to be as described above. For the description of FIG. 6, it is preferable to insulate the reflective electrode 220 from the TFT 20 and directly cover the reflective electrode 220 to form a transparent electrode 210' transparent electrode 210 made of a transparent conductive metal oxide in the entire i pixel region. It is connected to the TFT 20 through a contact hole. A first vertical alignment film 262 made of an organic material such as polyimide or polyimide is formed, and the transparent electrode 21A and the reflective electrode 220 of each pixel are covered. 33 317049D1D1 (Revised version) 1354833 _ Patent No. 99130153, 'Revised replacement page on October 25, 100, and 'the second glass substrate 300 opposite to the first glass substrate 100 described above Arranging parallel to the substrate 100. On the opposite side of the second glass substrate 300 from the first glass substrate 100, corresponding to each pixel of the RGB3 primary color, from the second substrate 300 side or from the first figure The light source disposed on the first substrate 100 side or the light source from the light outside the second substrate 3 is incident on the liquid crystal layer 400, and the incident light that is incident on the second glass substrate 200 is filtered. The B color filter layer 332b that transmits blue light, the g color filter layer 332g that transmits green light, and the R color calender layer 332r that passes the red light. Further, in each of the reflection regions of the respective pixels, a region corresponding to the reflection region of the B color filter layer 332b is formed with a region in which the protruding portion 340b' formed of the photosensitive resin corresponds to the reflection region of the G color filter layer 332g. A protruding portion 340g formed of a photosensitive resin and a protruding portion 340r formed of a photosensitive resin are formed in a region corresponding to the reflective region of the R color filter layer 332r. The protrusions 340 (340b, 340g, and 340r) are the gap adjustment layers (gap adjustment protrusions) for adjusting the required gap in the reflection area and the penetration area as described in the first embodiment. By selectively providing the gap adjusting layer 340 in the reflective region, the opposing distance (gap) of the first glass substrate 100 and the second glass substrate 300 of the reflective region is made smaller than that of the transparent region, so that the reflection characteristics are good (in Display characteristics of the reflective area). Further, in this example, in each of the pixels of R, G, and B, the thickness of the protruding portion 340 is made common. Further, the B color filter layer 332b, the G color filter layer 332g, and the R color filter layer 332r respectively provided with the protrusions 340 are formed to be formed of ITO. 34 317049D1DK Rev. 1354833 - Patent No. 99130153 _ The transparent common electrode 320 of the replacement page _ of October 25, 100, and then covering the common electrode 320 to form a second vertical alignment film composed of an organic material such as polytheneimine or polyamine. . Then, a liquid crystal 400 having a negative dielectric anisotropy is sealed in a space between the first glass substrate 100 and the second glass substrate 300. The λ/4 plate 111 as a phase difference plate and the polarizing plate 112 are attached to the back surface (light emitting surface) of the first glass substrate 100. Similarly, a Λ/4 plate 111 as a phase difference plate and a polarizing plate 112 are attached to the back surface (light emitting surface) of the second glass substrate 200. Therefore, according to the voltage setting of the pixel electrode and the common electrode 214, when the liquid crystal 400 is applied without voltage, the incident light incident on the liquid crystal layer 400 is not emitted from the second glass substrate 300 side to the outside, thereby When the voltage is applied to the liquid crystal layer 400, the light that is emitted to the outside from the side of the second glass substrate 300 corresponding to the voltage increases, that is, the transmittance of the incident light to the liquid crystal layer increases. In the second embodiment, the thickness of each of the color filter layers 332b, 332g, and 332r of B, G, and R is set. When the thickness of the B color filter layer 332b « φ is D-blue, the thickness of the G color filter layer 332g is D-green, and the thickness of the R color filter layer 332r is D-red. Then the relationship of D-blue2D-green>D-red is satisfied. In the penetration region of each pixel of RGB, the relationship between the gap (the thickness of the liquid crystal sandwiched between the two substrates) and the color filter layers is inversely related. That is, when the gap between the transparent regions of the B pixels is G-blue (T), the gap between the transparent regions of the G pixels is G-green (T), and the gap between the transparent regions of the R pixels is G-red (T), The relationship is G-red(T)2G-green(T)>G-blue(T). Thus, the thickness of the β color filter layer 201, the G color filter layer 202, and the R color filter layer 203 is set to 35 317049D1D1 (revision) 1354833 __99130153 Patent Application '100 October 25 Revision Replacement Page • The settings are different, so that the gaps of the pixels (also called the cell gap) are not uniform, and the V-τ characteristics of each pixel can be made uniform. Next, the V-T characteristics of each pixel of RGB will be described based on the experimental results shown in Fig. 2. In Figs. 17A to 17C, the horizontal axis represents the voltage applied to the liquid crystal 300, and the vertical axis represents the transmittance of incident light. First, as shown in Fig. 17C, in the case of D_blue=D_green=D_red (all cases where the thickness of the color/lighting layer is the same), the ν_τ characteristics of each ruler (3) are greatly different, as shown in the figure η, if set to D-blue>D-green> D-red, the VT characteristics of B and R pixels are close to the VT characteristics of G pixels. Further, by setting the thickness of the B color filter layer 332b, the G color filter layer 332g, and the β color filter layer 332, the respective gaps are set to G-red (T) = 4. 8 // m, G-green(T)=4· 〇" m, G_blue(T)=3 3 //m' so that the VT characteristics of RGB are approximately the same. Thereby, by selecting an appropriate white voltage White (e.g., 'the voltage having the highest transmittance v), the display of the colorless shift can be obtained under low voltage driving. • In addition, as shown in the figure, if D-blue=D-green>D-red' is set, the VT characteristics of B and G pixels are the same as those of 17C, and the VT characteristics of pixels are close to G pixels. The vT feature. Thus, compared with the V-T characteristic of the pc map, since the R pixel can obtain a high transmittance by a lower voltage v, the color shift problem can be improved. On the other hand, in the reflection region, gap adjusting layers (projections) 340r, 340g, and 340b of the respective RGB pixels are provided, and the respective color filter layers 332b, 332g, and 332r of b, g, and R are simultaneously present. Permeable area and reflective area. Therefore, the thickness of the replacement page 332S, 332 is corrected by the color passage layer 332b, 36 317049D1D1 (revision) 1354833 ___ Patent Application No. 99130153, as described above. The gap size relationship also has the same relationship with the penetration area. That is, if the boundary of the B image of the reflection region is G-blue (R), the gap of the G pixel is 〇_21^611 (the gap between the pixels of 1〇 and 1^ is G-red(R), and the protrusion When the heights of the portions 211, 212, and 213 are the same, the relationship is G-red (R) > G-green (R) 2G-blue (R). Thus, according to the second embodiment, the pixels of the RGB are The VR characteristic (reflectance is applied to the liquid crystal voltage characteristic) is also more uniform, so that the colorless display under low voltage driving can also be obtained. Next, the color filter layers 332r, 332g, and 332b of the above R, G, and B colors will be described. The color filter layer basically spin-coats the photosensitive resin containing the color pigment on the second glass substrate 300, and leaves the pattern in a predetermined area by exposure and development. In the second embodiment, since the thicknesses of the respective color filter layers are not completely the same, if a thick color filter layer, for example, the β color filter layer 332b is formed first, the unevenness of the surface of the second glass substrate 300 becomes large, and Other color filter layers, such as φ, such as the formation of the R color filter layer 332r, are difficult to generate. The thinnest r color filter layer 332r is formed in the order of the G color filter layer 332g and the B color filter layer 332b. This manufacturing step is easier to implement and is more desirable. In the B color filter layer 3321 When the thickness of the G color filter layer 332g is the same, the two color filter layers having the same thickness are formed in any order. [Embodiment 3] Next, a description will be given of Embodiment 3 of the present invention with reference to the drawings. Figure 18 is a schematic diagram of a schematic cross-sectional structure of a modified replacement page of a vertical alignment type liquid crystal display device according to the third embodiment, 37 317049D1D1 (revision) 1354833 _ Patent No. 99130153. The configuration of the second embodiment is the same as the same reference numerals, and the description thereof is omitted. In the third embodiment, in addition to the respective thicknesses of the respective gaps G, R, G, and B are formed. R, G, B color filter layers 330r, 330g, 330b on the second glass substrate 300 side, and protrusions 34 (34〇r, 340g, 340b for adjusting the gap difference between the penetration area and the reflection area) In addition, it is also used to adjust R, G, and B. The gap difference is φ the entire layer (gap layer) 350. Specifically, in the B and G pixel regions where the cell gap G is required to be smaller than the R pixel region, the respective photosensitive resin layers 350b and 350g are selectively selected. It is formed on the B color filter layer 33〇b and the G color; the light-reducing layer 330g is used as the adjustment layer 350. Here, the thickness of the photosensitive resin 350b on the B-color filter layer 33 is ti. The thickness of the photosensitive resin 350g on the G color filter layer 330g is t2. Further, if the gap of the penetration region of the B pixel (the liquid crystal thickness between the two substrates) is G_blue (T), it is set to t1 2 t2. If the gap between the penetration areas of the G pixels is • G—greenCT), and the gap between the penetration areas of the R pixels is G_red(T), then: G-red(T)>G-green(T) 2 G , blue (T) relationship. Further, in the third embodiment, as shown in Fig. 18, when the thicknesses of the respective color filter layers 330r, 330g, and 330b are the same, and the thicknesses of the protruding portions 340r, 34Gg, and 鸠 are also equal, When making 2, the 'cell gap' satisfies G-green=G, blue. The sample 'selectively forms the sensing resin layer 35 必要 in the necessary color region, and sets the gap of each pixel (also referred to as the cell gap) according to R, G, and B as 317049D1D1 (revision) 38 1354833 __ No. 99130153 The patent application, the most suitable value for the replacement page on October 25, 100, can make the V_T characteristics of each pixel of RGB uniform. Next, the ν-τ characteristic of each pixel having RGB is explained based on the experimental results shown in Figs. 19 to 19C. In the 19th to 19thth drawings, the horizontal axis is the voltage applied to the liquid crystal 400, and the vertical axis is the transmittance of the incident light. First, as shown in Fig. 19C, in the case of G to red (T) = G_green (T) = G-blue (T) (in the case where the photosensitive resin layers 25 〇 g and 250 b are not provided) The VT characteristics are very different. In contrast, as shown in the IgA diagram, if set to

G-red(T)>G-green(T)>G-blue(T) ’ 則 B、R 像素之 V-T 特性係接近G像素之特性(無修正情況下,r、g、b之各特 性係分別如第19A圖中的()所示)。更具體而言,藉由將 RGB 之各間隙設定為 G-red=4. 8 # m、G-green=4. 〇 〆 m、 G-blue=3.3#m’可使RGB之V-T特性大致相同。這樣,藉 由選擇適當白電壓Vwhite(例如,穿透率成為最大之電壓 V),則可在低電壓驅動下’獲得無色偏之顯示。 此外,如第19B圖所示,若設定為G_red(T)>G_green (T)=G-blue(T) ’則B、G像素之V-T特性與第i9C圖相同, 而R像素之V-T特性係接近G像素之ν_τ特性。這樣,與 第19C圖之V-T特性相比’在R像素中,由於可在更低電 壓V下獲得高穿透率,因此可改善色偏問題。 另一方面,在反射區域中,RGB之各像素設有突起部 340 ’由於係將該突起部340之厚度依R、〇、b而設定成相 等,反射區域之間隙大小關係亦為與穿透區域之前述關係 317049D1D1(修正版) 39 ^54833 第99130153號專利申請案 100年10月25日修正替換頁 相同之關係。亦即,使反射區域之β像素之間隙為 G-blueOO、G像素之間隙為G-green(R)、R像素之間隙為 G-red(R)的話’則成為: G-red⑻>G-green⑻ $G_blue(R)之關係。 於是’根據本實施形態,由於篇 性(反射率對液晶施加鹤 像素之V尺特 壓驅動下,獲得無色偏之顯示。為:’ _可在低電 【圖式簡單說明】 〃° 第1圖係表示本發明 透LCD之概略剖面構成的示^形態1之垂直配向型半穿 第2圖係表示本發明 透LCD之其他概略剖面構成之垂直配向型半穿 第3圖係表示本發明 ^ 型⑽之概略平面構成示意^形態1之更具體之半穿透 第4圖沿著第3圖之 之概略剖面構朗示意圖。'A狀位置之半穿透型LCD 第5圖沿著第3圖之 之概略剖面構成的示B狀位置之半穿透型LCD 第6圖係表示第3圖所 及與其連接之TFT構成之概 =圖透·之像素電極以 第7圖係有關本發明之實施形態,並與第3圖不同之 半穿透LCD之概略平面構成示意圖。 第8圖係沿著第7圖之C-C,、線之位置之半穿透型LCD 之概略剖面構成的示意圖。 40 317049D1DH 修正版) 第99130153號專利申請案 100年10月25日修正替換頁 弟9圖你本-杜„ 、不第3圖之半穿透型LCD之變形例之概略 千面構成的示意圖。 恤喊? 1〇圖係表示第3圖之半穿透型LCD之其他變形例之 概略,面構成的示意圖。 相料第Y圖係本實施形態1之垂直配向型半穿透型LCD之 圏。⑽加電壓之穿透率特性與單it構造之關係之示意 相2圖係本實施形態1之垂直配向型半穿透型LCD之 第,广電壓之穿透率特性之波長依存性之示意圖。G-red(T)>G-green(T)>G-blue(T) ' The VT characteristics of the B and R pixels are close to the characteristics of the G pixel (without correction, each of r, g, and b) The characteristics are as shown in () of Figure 19A, respectively). More specifically, by setting each gap of RGB to G-red=4. 8 # m, G-green=4. 〇〆m, G-blue=3.3#m', the VT characteristics of RGB are substantially the same. . Thus, by selecting the appropriate white voltage Vwhite (e.g., the voltage V at which the transmittance becomes the maximum), the display without color shift can be obtained under low voltage driving. In addition, as shown in Fig. 19B, if G_red(T)>G_green(T)=G-blue(T)' is set, the VT characteristics of the B and G pixels are the same as those of the i9C picture, and the VT characteristics of the R pixels. It is close to the ν_τ characteristic of the G pixel. Thus, compared with the V-T characteristic of Fig. 19C, in the R pixel, since the high transmittance can be obtained at a lower voltage V, the color shift problem can be improved. On the other hand, in the reflective region, each of the RGB pixels is provided with a protrusion 340' because the thickness of the protrusion 340 is set to be equal by R, 〇, b, and the gap size relationship of the reflection area is also penetrated. The aforementioned relationship of the area 317049D1D1 (revision) 39 ^54833 Patent application No. 99130153, October 25, 100, corrects the same relationship of the replacement page. In other words, when the gap between the β pixels of the reflection region is G-blueOO, the gap between the G pixels is G-green (R), and the gap between the R pixels is G-red (R), then: G-red (8) > G- Green(8) $G_blue(R) relationship. Therefore, according to the present embodiment, due to the fact that the reflectance is driven by the V-foot pressure of the liquid crystal on the liquid crystal, the display of the colorlessness is obtained. It is: ' _ can be in low power [simple description of the drawing] 〃 ° 1 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a schematic configuration of a transparent cross-sectional view of a liquid crystal according to a first aspect of the present invention. FIG. 1 is a view showing a vertical alignment type half-through of another schematic cross-sectional view of the present invention. The schematic plane of the type (10) constitutes a more detailed schematic diagram of the semi-transparent pattern of Figure 1 along the schematic cross-sectional view of Figure 3. The semi-transmissive LCD of the A-shaped position is shown in Figure 5. A semi-transmissive LCD showing a B-shaped position, which is a schematic cross-sectional view of the figure, is shown in Fig. 3, and the pixel electrode connected to the TFT connected thereto is shown in Fig. 7 in relation to the present invention. A schematic plan view of a semi-transparent LCD having an embodiment different from that of Fig. 3. Fig. 8 is a schematic diagram showing a schematic cross-sectional configuration of a transflective LCD along the line CC of Fig. 7. 317049D1DH Revised Edition) Patent Application No. 99130153 October 25, 100 Japanese Correction Replacement Page 9: You are a schematic diagram of the schematic configuration of the variant of the semi-transparent LCD of Figure 3, which is not the third embodiment. A schematic diagram of a surface configuration of another modification of the LCD. The phase Y is the 垂直 of the vertical alignment type semi-transmissive LCD of the first embodiment. (10) The relationship between the transmittance characteristic of the applied voltage and the single-it structure The schematic phase 2 is a schematic diagram showing the wavelength dependence of the transmittance characteristics of the wide voltage in the vertical alignment type semi-transmissive LCD of the first embodiment.

圖係本實施形態1之垂直配向型半穿透型LCD 隹泳亦 、13調整液晶盒間隙後,相對於施加電壓之 ;特性之波長依存性之示意圖。 第 1 Λ lcd 圖係表示本實施形態1之垂直配向型半穿透型 =色度之相對於施加電壓之依存性之色度座標。 第丨5圖係表示本實施形態丨之垂直配向型半穿透型 中在以R、G、B調整液晶盒間隙後,色度之相對於 施加電壓之依存性之色度座標。 第16圖係有關本發明之第2實施形態之垂直配向型液 晶顯示裝置之剖面圖。 第17A、17B、17C圖係表示各RGB像素之ν_τ特性與 液晶盒間隙關係之示意圖。 第18圖係有關本發明之實施形態3之垂直配向型液晶 顯示裝置之剖面圖。 第19A、19B、19C圖係表示RGB像素之ν_τ特性與液 317049D1D1(修正版) 41 1354833 第99130153號專利申請案 100年10月25日修正替換頁 晶盒間隙關係之不意圖。 【主要元件符號說明】The figure is a schematic diagram of the wavelength dependence of the characteristics of the vertical alignment type transflective LCD of the first embodiment and 13 after adjusting the gap of the liquid crystal cell with respect to the applied voltage. The first Λ lcd diagram shows the chromaticity coordinates of the vertical alignment type semi-transmissive type = chromaticity of the first embodiment with respect to the dependence of the applied voltage. Fig. 5 is a view showing the chromaticity coordinates of the dependence of the chromaticity with respect to the applied voltage after the liquid crystal cell gap is adjusted by R, G, and B in the vertical alignment type semi-transmissive type of the present embodiment. Figure 16 is a cross-sectional view showing a vertical alignment type liquid crystal display device according to a second embodiment of the present invention. Figs. 17A, 17B, and 17C are views showing the relationship between the ν_τ characteristics of each RGB pixel and the cell gap. Figure 18 is a cross-sectional view showing a vertical alignment type liquid crystal display device according to Embodiment 3 of the present invention. 19A, 19B, and 19C show the ν_τ characteristic of the RGB pixel and the liquid 317049D1D1 (revision) 41 1354833 Patent Application No. 99130153, October 25, 1995. [Main component symbol description]

20 主動層 30 閘極絕緣膜 32 閘極電極 34 層間絕緣膜 36 沒極電極 38 平坦化絕緣膜 40 源極電極 42 金屬層 44 反射層 100 第一玻璃基板 110 圓偏光板 111 λ /4板 112 偏光板 200 像素電極 210 透明電極 220 反射電極 260 配向膜 300 第二玻璃基板 310 相位差板 320 透明共通電極 330、 330r 、 330g 、 330b 彩色濾光層 330BM 黑色遮光層 340 間隙調整部 400 液晶層 410 液晶指向 500(530)配向控制部 510 、510t、510r 突起 520 傾斜部 600 光源 42 317049D1D1(修正版)20 active layer 30 gate insulating film 32 gate electrode 34 interlayer insulating film 36 electrodeless electrode 38 planarizing insulating film 40 source electrode 42 metal layer 44 reflective layer 100 first glass substrate 110 circular polarizing plate 111 λ / 4 plate 112 Polarizing plate 200 pixel electrode 210 transparent electrode 220 reflective electrode 260 alignment film 300 second glass substrate 310 phase difference plate 320 transparent common electrode 330, 330r, 330g, 330b color filter layer 330BM black light shielding layer 340 gap adjusting portion 400 liquid crystal layer 410 Liquid crystal pointing 500 (530) alignment control portion 510, 510t, 510r protrusion 520 inclined portion 600 light source 42 317049D1D1 (revision)

Claims (1)

1354833 七、申請專利範圍 :i公告本 第99130153號專利申請案 100年10月25日修正替換頁 1. 一種液晶顯示裝置,係具備複數個像素,並在具有像素 電極之第一基板與具有共通電極之第二基板間,封入有 垂直配向型液晶,其中, 各像素的形狀係行方向長度比列方向長度長; 各像素係藉由沿列方向延伸、彎曲成V字狀的分界 線而分割成面積相異的第一像素區域與第二像素區域; 前述第一像素區域的端係切入前述第二像素區域 而形成; 前述第一像素區域的優先視角與前述第二像素區 域的優先視角間具有90度或90度以下的角度差。 2. 如申請專利範圍第1項之液晶顯示裝置,其中,前述第 一像素區域的優先視角係垂直於行方向;前述第二像素 區域的優先視角係垂直於列方向。 3. 如申請專利範圍第1項之液晶顯示裝置,其中,在前述 第一像素區域中,液晶配向方向被分割成為兩個不同區 域,並且,在前述第二像素區域中,液晶配向方向被分 割成為兩個不同區域。 4. 如申請專利範圍第3項之液晶顯示裝置,其中,在前述 第一像素區域中,液晶配向方向被控制成朝向垂直於行 方向之方向,在前述第二像素區域中,液晶配向方向被 控制成朝向垂直於列方向之方向。 5. 如申請專利範圍第2項或第3項之液晶顯示裝置,其 中,前述第一像素區域的面積比前述第二像素區域的面 43 317049D1D1(修正版) 1354833 第99130153號專利申請案 100年10月25日修正替換頁 6. —種液晶顯示裝置,係具備複數個像素,並在具有像素 電極之第一基板與具有共通電極之第二基板間,封入有 垂直配向型液晶,其中, 各像素的形狀係行方向長度比列方向長度長; 各像素係藉由沿列方向延伸的分界線而分割成面 積相異的第一像素區域與第二像素區域; 在前述第一像素區域中,液晶配向方向被分割成為 四個彼此間具有90度或90度以下的角度差的區域,並 且,在前述第二像素區域中,液晶配向方向被分割成為 四個彼此間具有90度或90度以下的角度差的區域。 7. 如申請專利範圍第6項之液晶顯示裝置,其中,前述第 一像素區域中的四個配向方向與前述第二像素區域中 的四個配向方向相同。 8. 如申請專利範圍第6項之液晶顯示裝置,其中,前述第 一像素區域的四個區域與前述第二像素區域的四個區 域中的液晶的優先視角相同。 9. 如申請專利範圍第6至8項中任一項之液晶顯示裝置, 其中,前述第一像素區域的面積比前述第二像素區域的 面積小。 44 317049D1D1(修正版) 1354833 第99130153號專利申請案 100年〗0月25日修正替換頁 四、指定代表圖·· - (一) 本案指定代表圖為··第(3 )圖。 (二) 本代表圖之元件符號簡單說明·· 200 像素電極 210 透明電極 220 反射電極 410 液晶指向 500 配向控制部 510 突起部 520 傾斜部 本案右有化學式時,請揭示最能顯示發明特徵的化學式: 本案無代表化學式1354833 VII. Patent Application Range: i. Announcement Patent Application No. 99130153, October 25, 100, revised replacement page 1. A liquid crystal display device having a plurality of pixels and having commonality on a first substrate having pixel electrodes A vertical alignment type liquid crystal is sealed between the second substrates of the electrodes, wherein the shape of each pixel is longer than the length in the column direction, and each pixel is divided by a boundary line extending in the column direction and bent into a V shape. a first pixel region and a second pixel region having different areas; the end of the first pixel region is formed by cutting into the second pixel region; and the preferential viewing angle of the first pixel region and the priority viewing angle of the second pixel region It has an angular difference of 90 degrees or less. 2. The liquid crystal display device of claim 1, wherein the preferential viewing angle of the first pixel region is perpendicular to the row direction; and the preferential viewing angle of the second pixel region is perpendicular to the column direction. 3. The liquid crystal display device of claim 1, wherein in the first pixel region, the liquid crystal alignment direction is divided into two different regions, and in the second pixel region, the liquid crystal alignment direction is divided. Become two different areas. 4. The liquid crystal display device of claim 3, wherein, in the first pixel region, the liquid crystal alignment direction is controlled to be oriented in a direction perpendicular to the row direction, and in the second pixel region, the liquid crystal alignment direction is Control is oriented in a direction perpendicular to the column direction. 5. The liquid crystal display device of claim 2, wherein the area of the first pixel region is larger than the surface of the second pixel region 43 317049D1D1 (revision) 1354833 Patent Application No. 99130153 October 25, the replacement page 6. The liquid crystal display device has a plurality of pixels, and a vertical alignment type liquid crystal is sealed between the first substrate having the pixel electrode and the second substrate having the common electrode, wherein each The shape of the pixel is longer than the length of the column direction; each pixel is divided into a first pixel region and a second pixel region having different areas by a boundary line extending in the column direction; in the first pixel region, The liquid crystal alignment direction is divided into four regions having an angular difference of 90 degrees or less between each other, and in the second pixel region, the liquid crystal alignment direction is divided into four having 90 degrees or less between each other. The area of the angle difference. 7. The liquid crystal display device of claim 6, wherein the four alignment directions in the first pixel region are the same as the four alignment directions in the second pixel region. 8. The liquid crystal display device of claim 6, wherein the four regions of the first pixel region and the liquid crystal regions of the four regions of the second pixel region have the same preferential viewing angle. 9. The liquid crystal display device of any one of claims 6 to 8, wherein the area of the first pixel region is smaller than the area of the second pixel region. 44 317049D1D1 (Revised Edition) 1354833 Patent Application No. 99130153 100 Years Announcement Replacement Page on October 25 IV. Designated Representative Map·· - (1) The representative representative of the case is (3). (2) A brief description of the component symbols of the representative drawing. · 200 pixel electrode 210 Transparent electrode 220 Reflecting electrode 410 Liquid crystal pointing 500 Alignment control unit 510 Projection portion 520 Inclined portion When there is a chemical formula on the right, please disclose the chemical formula that best shows the characteristics of the invention. : This case does not represent a chemical formula 317049D1D1(修正版) 2317049D1D1 (revision) 2
TW99130153A 2004-11-30 2005-05-20 Liquid crystal display device TWI354833B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004347905A JP2006011362A (en) 2004-05-21 2004-11-30 Transflective liquid crystal display device

Publications (2)

Publication Number Publication Date
TW201109786A TW201109786A (en) 2011-03-16
TWI354833B true TWI354833B (en) 2011-12-21

Family

ID=44836060

Family Applications (2)

Application Number Title Priority Date Filing Date
TW098112965A TWI349139B (en) 2004-11-30 2005-05-20 Liquid crystal display device
TW99130153A TWI354833B (en) 2004-11-30 2005-05-20 Liquid crystal display device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW098112965A TWI349139B (en) 2004-11-30 2005-05-20 Liquid crystal display device

Country Status (1)

Country Link
TW (2) TWI349139B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407340B (en) 2009-12-22 2013-09-01 Au Optronics Corp Touch display panel
JP6126775B2 (en) 2010-06-25 2017-05-10 株式会社半導体エネルギー研究所 Display device
US10490122B2 (en) 2016-02-29 2019-11-26 Samsung Display Co., Ltd. Display device
KR102605283B1 (en) 2016-06-30 2023-11-27 삼성디스플레이 주식회사 Display device
KR102613863B1 (en) 2016-09-22 2023-12-18 삼성디스플레이 주식회사 Display device
KR102611958B1 (en) 2016-09-23 2023-12-12 삼성디스플레이 주식회사 Display device
KR20180061568A (en) * 2016-11-29 2018-06-08 삼성디스플레이 주식회사 Display device
KR102559096B1 (en) 2016-11-29 2023-07-26 삼성디스플레이 주식회사 Display device
KR20180096875A (en) 2017-02-21 2018-08-30 삼성디스플레이 주식회사 Display device
KR102417989B1 (en) 2017-05-23 2022-07-07 삼성디스플레이 주식회사 Display device

Also Published As

Publication number Publication date
TW201109786A (en) 2011-03-16
TW200944884A (en) 2009-11-01
TWI349139B (en) 2011-09-21

Similar Documents

Publication Publication Date Title
TWI354833B (en) Liquid crystal display device
US8089596B2 (en) Transflective liquid crystal display device and color liquid crystal display device
CN100465722C (en) Semi penetration type liquid crystal display and colorful liquid crystal display device
TWI296345B (en) Liquid crystal display and method of manufacturing the same
TWI255379B (en) Liquid crystal display device and fabrication method therefor
TWI299098B (en)
KR100787356B1 (en) Liquid crystal display device
TWI338173B (en) Liquid crystal device
KR100513610B1 (en) Liquid crystal display
US10429703B2 (en) Liquid crystal display device
TWI334052B (en) Pixel structure incorporating display and method for making the same
JP4813050B2 (en) Display plate and liquid crystal display device including the same
TW200405100A (en) Liquid crystal display device
JP2004212952A (en) Reflection transmission liquid crystal display device and its manufacturing method
KR20070003412A (en) Liquid crystal display and method for fabricating the same
TW201039004A (en) Liquid crystal display device
TW200811517A (en) Transflective LCD panel, transmission LCD panel, and reflection LCD panel
JP2005157105A (en) Transflective liquid crystal display device
JP2006011362A (en) Transflective liquid crystal display device
JP2006119568A (en) Transflective liquid crystal display device
JP2006154583A (en) Transflective color liquid crystal display apparatus and its manufacturing method
JP2007199671A (en) Display substrate and method for manufacturing same, and display device having same
KR101308353B1 (en) liquid crystal display device and method of fabricating the same
JP2009150952A (en) Liquid crystal display device
JP2006285252A (en) Liquid crystal display device and method for manufacturing the same