JP2006005980A - 電源回路 - Google Patents
電源回路 Download PDFInfo
- Publication number
- JP2006005980A JP2006005980A JP2004176795A JP2004176795A JP2006005980A JP 2006005980 A JP2006005980 A JP 2006005980A JP 2004176795 A JP2004176795 A JP 2004176795A JP 2004176795 A JP2004176795 A JP 2004176795A JP 2006005980 A JP2006005980 A JP 2006005980A
- Authority
- JP
- Japan
- Prior art keywords
- power
- transformer
- supplied
- supply circuit
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
【課題】 本発明は、電源回路に関し、「軽負荷状態」や「過電流防止状態」の時間率の如何にかかわらず、効率が高く維持される電源回路を提供することを目的とする。
【解決手段】 入力された第一の直流電力と、トランスの補助巻き線に誘起した交流電力に応じて生成された第二の直流電力との双方または一方で駆動され、そのトランスの一次巻き線にこの直流電力を断続して供給するスイッチング手段を有し、このトランスの二次巻き線を介して外部に電力を供給する電源回路において、補助巻き線に誘起した交流電力を整流し、第三の直流電力を生成する整流手段と、第一の直流電力の内、スイッチング手段の駆動に供される直流電力が既定の閾値を上回る期間に、その電力変換制御手段に第三の直流電力を供給する電力補充手段とを備えて構成される。
【選択図】 図1
【解決手段】 入力された第一の直流電力と、トランスの補助巻き線に誘起した交流電力に応じて生成された第二の直流電力との双方または一方で駆動され、そのトランスの一次巻き線にこの直流電力を断続して供給するスイッチング手段を有し、このトランスの二次巻き線を介して外部に電力を供給する電源回路において、補助巻き線に誘起した交流電力を整流し、第三の直流電力を生成する整流手段と、第一の直流電力の内、スイッチング手段の駆動に供される直流電力が既定の閾値を上回る期間に、その電力変換制御手段に第三の直流電力を供給する電力補充手段とを備えて構成される。
【選択図】 図1
Description
本発明は、入力された直流電力をスイッチングすることによって直流または交流の電力を生成し、その電力を負荷に供給する電源回路に関する。
入力端子と出力端子との間における絶縁が図られ、かつ直流電力をスイッチングすることによって効率的に負荷に所望の電力を供給可能なコンバータ方式の電源回路は、その電源回路に適用されるトランス等の小型化だけではなく、熱設計、実装および動作環境にかかわる制約が少ないために、多様な電子装置およびシステムに広く適用されている。
図3は、コンバータ方式の電源回路の構成例を示す図である。
図3は、コンバータ方式の電源回路の構成例を示す図である。
図において、入力端子31pは、抵抗器32およびコンデンサ33の一方の端子と、トランス34の一次巻き線の一方の端子とに接続される。入力端子31nは、コンデンサ33の他方の端子とFET35のソース端子とに併せて、不平衡回路として構成される制御部40の接地端子に接続される。トランス34の二次巻き線の一方の端子はダイオード51dのアノード端子に接続され、そのダイオード51dのカソード端子はダイオード51fのカソード端子とインダクタ52の一方の端子とに接続される。このインダクタ52の他方の端子は、コンデンサ53および抵抗器54の一方の端子と、監視部55の入力とに併せて、出力端子56pに接続される。トランス34の二次巻き線の他方の端子は、ダイオード51fのアノード端子と、コンデンサ53および抵抗器54の他方の端子と、出力端子56nとに接続される。
制御部40は、下記の要素から構成される。
・ 上述した抵抗器32の他方の端子にコレクタ端子が接続されたNPN型のトランジスタ41
・ このトランジスタ41のベース端子に接続された陽極端子を有し、かつ陰極端子が接地された直流電圧源42
・ トランジスタ41のエミッタ端子に接続された電源端子を有し、かつFET35のゲート端子に接続された制御出力端子を有するPWMコントローラ43
・ そのPWMコントローラ43の電源端子と共にトランジスタ41のエミッタ端子に一方の端子が接続されたコンデンサ44およびインダクタ45
・ トランス34の補助巻き線の一方の端子にアノード端子が接続されたダイオード46d
・ そのダイオード46dのカソード端子と共にインダクタ45の他方の端子にカソード端子が接続され、かつアノード端子がPWMコントローラ43の接地端子およびコンデンサ44の他方の端子と共に、トランス46の補助巻き線の他方の端子に接続されたダイオード46f
このような構成の電源回路には、入力端子31p、31nを介して既定の電圧(Vin)で直流電力が供給される。始動時には、トランジスタ41は、直流電圧源42によってベース端子に印加される既定の電圧に応じて動作点が決定されることによって、PWMコントローラ43に規定の電圧(=V0)で直流電力(以下、「起動用補助電力」という。)を供給する(図4(1))。
・ 上述した抵抗器32の他方の端子にコレクタ端子が接続されたNPN型のトランジスタ41
・ このトランジスタ41のベース端子に接続された陽極端子を有し、かつ陰極端子が接地された直流電圧源42
・ トランジスタ41のエミッタ端子に接続された電源端子を有し、かつFET35のゲート端子に接続された制御出力端子を有するPWMコントローラ43
・ そのPWMコントローラ43の電源端子と共にトランジスタ41のエミッタ端子に一方の端子が接続されたコンデンサ44およびインダクタ45
・ トランス34の補助巻き線の一方の端子にアノード端子が接続されたダイオード46d
・ そのダイオード46dのカソード端子と共にインダクタ45の他方の端子にカソード端子が接続され、かつアノード端子がPWMコントローラ43の接地端子およびコンデンサ44の他方の端子と共に、トランス46の補助巻き線の他方の端子に接続されたダイオード46f
このような構成の電源回路には、入力端子31p、31nを介して既定の電圧(Vin)で直流電力が供給される。始動時には、トランジスタ41は、直流電圧源42によってベース端子に印加される既定の電圧に応じて動作点が決定されることによって、PWMコントローラ43に規定の電圧(=V0)で直流電力(以下、「起動用補助電力」という。)を供給する(図4(1))。
PWMコントローラ43は、このような直流電力に応じて稼働を開始し、FET35を遮断領域と飽和領域(活性領域)とに交互に移行させることによって上述した直流電力を交流電力に変換し、その交流電力をトランス34の一次巻き線に供給する。したがって、トランス34の二次巻き線には、その二次巻き線のターン数n2に比例した電圧で極性が交互に反転する交流電力が得られる。
ダイオード51d、51fおよびインダクタ52は、そのダイオード51fがフライホイールダイオードとして作動することによって、上述した交流電力を直流電力の整流と平滑とを行い、かつ出力端子56p、56nを介して負荷にこのような平滑の結果として得られた直流電力を所定の電圧Vout で供給する(図4(2))。
一方、トランス34の補助巻き線には、そのトランス34の二次巻き線に上述したように交流電力が定常的に誘起される状態(以下、「定常状態」という。)では、この補助巻き線のターン数n3に応じて決定される電圧の交流電力(以下、「補助交流電力」という。)が得られる。ダイオード46d、46fおよびインダクタ45は、そのダイオード46fがフライホイールダイオードとして作動することによって、このような補助交流電力の整流と平滑とを行い、このような平滑の結果として得られた直流電力(以下、「補助直流電力」という。)をPWMコントローラ43に所定の電圧(=v>v0)で供給する(図4(3))。
一方、トランス34の補助巻き線には、そのトランス34の二次巻き線に上述したように交流電力が定常的に誘起される状態(以下、「定常状態」という。)では、この補助巻き線のターン数n3に応じて決定される電圧の交流電力(以下、「補助交流電力」という。)が得られる。ダイオード46d、46fおよびインダクタ45は、そのダイオード46fがフライホイールダイオードとして作動することによって、このような補助交流電力の整流と平滑とを行い、このような平滑の結果として得られた直流電力(以下、「補助直流電力」という。)をPWMコントローラ43に所定の電圧(=v>v0)で供給する(図4(3))。
したがって、PWMコントローラ43は、始動時には、上述した「起動用補助電力」が供給されることにより稼働を開始し、かつ既述の定常状態には、このような補助直流電力に代わる「補助直流電力」が供給されることによって動作を続行する(図4(4))。
さらに、PWMコントローラ43は、このような稼働の過程では、監視部55によって監視され、かつ出力端子56p、56nを介して負荷に印加される電圧が所望の精度で規定の値に保たれる値に、FET35を介してトランス34の一次巻き線に電力が供給される時間率をPWM制御方式に基づいて維持する。
さらに、PWMコントローラ43は、このような稼働の過程では、監視部55によって監視され、かつ出力端子56p、56nを介して負荷に印加される電圧が所望の精度で規定の値に保たれる値に、FET35を介してトランス34の一次巻き線に電力が供給される時間率をPWM制御方式に基づいて維持する。
なお、抵抗器54の抵抗値は、監視部55とPWMコントローラ43との連係の下でFET35が間欠的にオン状態となる場合であっても、負荷に供給される電力に過大なリップル成分が含まれない程度に小さな値が予め設定される。
また、本発明に関連した先行技術としては、例えば、後述する特許文献1に開示されるように、「スイッチング制御回路に起動電流を与える起動抵抗に直列にスイッチ回路が設けられ、トランスの励磁検出巻き線の出力電圧に応じて起動電流の導通/遮断が行われるスイッチングレギュレータ」がある。
特開平5−64438号公報(要約)
また、本発明に関連した先行技術としては、例えば、後述する特許文献1に開示されるように、「スイッチング制御回路に起動電流を与える起動抵抗に直列にスイッチ回路が設けられ、トランスの励磁検出巻き線の出力電圧に応じて起動電流の導通/遮断が行われるスイッチングレギュレータ」がある。
しかし、上述した従来例では、フライホイールダイオード51fがフライホイールとして作動する期間に、「先行してインダクタ52に蓄積されたエネルギー」が負荷に絶え間なく供給されない程度に、その負荷が軽くなった状態(以下、「軽負荷状態」という。)では、PWMコントローラ43によって行われるPWM制御の下でトランス34の一次巻き線に電力が供給される時間率も著しく小さくなり、そのために、このトランス34の補助巻き線に誘起される「補助交流電力」も減少する。
すなわち、このような「軽負荷状態」では、ダイオード46d、46fおよびインダクタ45によってPWMコントローラ43に供給される「補助直流電力」の電圧vが既述の「起動用補助電力」の電圧v0を下回る(図4(5))ために、そのPWMコントローラ43の稼働は、この「起動用補助電力」によって保証される(図4(6))。
したがって、入力端子31p、31nを介して直流電力が供給される電圧Vinと既述の「補助直流電力」の電圧vとの差Δ(=Vin−v)と、PWMコントローラ43の消費電力と、上述した「軽負荷状態」の時間率とが大きいほど、抵抗器32およびトランジスタ41では、大きな電力が消費され、総合的な効率が大幅に低下する可能性が高かった。
したがって、入力端子31p、31nを介して直流電力が供給される電圧Vinと既述の「補助直流電力」の電圧vとの差Δ(=Vin−v)と、PWMコントローラ43の消費電力と、上述した「軽負荷状態」の時間率とが大きいほど、抵抗器32およびトランジスタ41では、大きな電力が消費され、総合的な効率が大幅に低下する可能性が高かった。
また、このような効率の低下は、上述した「軽負荷状態」だけではなく、例えば、監視部55とPWMコントローラ43とが連係することによって実現される垂下特性(過負荷防止機能)により、負荷に印加される電圧Vout が小さな値に設定された状態(以下、「過電流防止状態」という。)(図4(7))でも、同様に発生し得る。
さらに、抵抗器32およびトランジスタ41については、上述した「軽負荷状態」や「過電流防止状態」の時間率が大きいほど、「損失が許容される最大の電力」が大きく設定されなければならないために、放熱器が装着され、あるいは物理的な寸法が増加する可能性が高かった。
さらに、抵抗器32およびトランジスタ41については、上述した「軽負荷状態」や「過電流防止状態」の時間率が大きいほど、「損失が許容される最大の電力」が大きく設定されなければならないために、放熱器が装着され、あるいは物理的な寸法が増加する可能性が高かった。
したがって、小型化、低廉化が妨げられることなく熱設計にかかわる制約が少ない電源回路の実現が要望されていた。
本発明は、基本的な構成が大幅に変更されることなく、「軽負荷状態」や「過電流防止状態」の時間率の如何にかかわらず、効率が高く維持される電源回路を提供することを目的とする。
本発明は、基本的な構成が大幅に変更されることなく、「軽負荷状態」や「過電流防止状態」の時間率の如何にかかわらず、効率が高く維持される電源回路を提供することを目的とする。
請求項1に記載の発明では、入力された第一の直流電力と、トランスの補助巻き線に誘起した交流電力に応じて生成された第二の直流電力との双方または一方で駆動され、そのトランスの一次巻き線にこの直流電力を断続して供給するスイッチング手段を有し、このトランスの二次巻き線を介して外部に電力を供給する電源回路において、整流手段は、補助巻き線に誘起した交流電力を整流し、第三の直流電力を生成する。電力補充手段は、前記第一の直流電力の内、スイッチング手段の駆動に供される直流電力が既定の閾値を上回る期間に、その電力変換制御手段に前記第三の直流電力を供給する。
すなわち、スイッチング手段の駆動に供される第二の直流電力は、「上述した第一の直流電力の内、そのスイッチング手段の駆動に供される直流電力」がその第二の直流電力の減少に応じて増加したときには、整流手段によって生成された第三の直流電力で代替される。
したがって、スイッチング手段は、外部に接続され、かつトランスの二次巻き線を介して電力が供給される負荷が著しく軽くなり、あるいは著しく重くなったために、上述した補助巻き線に誘起する交流電力が減少しても、既述の第三の直流電力で駆動されることによって安定に稼働し続ける。
したがって、スイッチング手段は、外部に接続され、かつトランスの二次巻き線を介して電力が供給される負荷が著しく軽くなり、あるいは著しく重くなったために、上述した補助巻き線に誘起する交流電力が減少しても、既述の第三の直流電力で駆動されることによって安定に稼働し続ける。
請求項2に記載の発明では、入力された第一の直流電力と、トランスの補助巻き線に誘起した交流電力に応じて生成された第二の直流電力との双方または一方で駆動され、そのトランスの一次巻き線にこの直流電力を断続して供給するスイッチング手段を有し、このトランスの二次巻き線を介して外部にで電力を供給する電源回路において、整流手段は、補助巻き線に誘起した交流電力を整流し、第三の直流電力を生成する。電力補充手段は、前記第二の直流電力の内、スイッチング手段の駆動に供される直流電力が既定の閾値を下回る期間に、その電力変換制御手段に前記第三の直流電力を供給する。
すなわち、スイッチング手段の駆動に供される第二の直流電力は、「上述した第二の直流電力の内、スイッチング手段の駆動に供される直流電力」が減少したときには、整流手段によって生成された第三の直流電力で代替される。
したがって、スイッチング手段は、外部に接続され、かつトランスの二次巻き線を介して電力が供給される負荷が著しく軽くなり、あるいは著しく重くなったために、上述した補助巻き線に誘起する交流電力が減少しても、既述の第三の直流電力で駆動されることによって安定に稼働し続ける。
したがって、スイッチング手段は、外部に接続され、かつトランスの二次巻き線を介して電力が供給される負荷が著しく軽くなり、あるいは著しく重くなったために、上述した補助巻き線に誘起する交流電力が減少しても、既述の第三の直流電力で駆動されることによって安定に稼働し続ける。
請求項3に記載の発明では、入力された第一の直流電力と、トランスの補助巻き線に誘起した交流電力に応じて生成された第二の直流電力との双方または一方で駆動され、そのトランスの一次巻き線にこの直流電力を断続して供給するスイッチング手段を有し、このトランスの二次巻き線を介して外部に電力を供給する電源回路において、整流手段は、補助巻き線に誘起した交流電力を整流し、第三の直流電力を生成する。電力補充手段は、外部に供給される電力が既定の閾値を下回る期間に、その電力変換制御手段に第三の直流電力を供給する。
すなわち、スイッチング手段の駆動に供される第二の直流電力は、上述した外部に供給される電力が減少したときには、整流手段によって生成された第三の直流電力で代替される。
したがって、スイッチング手段は、外部に接続され、かつトランスの二次巻き線を介して電力が供給される負荷が著しく軽くなり、あるいは著しく重くなったために、上述した補助巻き線に誘起する交流電力が減少しても、既述の第三の直流電力で駆動されることによって安定に稼働し続ける。
したがって、スイッチング手段は、外部に接続され、かつトランスの二次巻き線を介して電力が供給される負荷が著しく軽くなり、あるいは著しく重くなったために、上述した補助巻き線に誘起する交流電力が減少しても、既述の第三の直流電力で駆動されることによって安定に稼働し続ける。
請求項4に記載の発明では、請求項3に記載の電源回路において、スイッチング手段は、前記入力された第一の直流電力の断続の形態に基づいて外部に供給される電力が既定の閾値を下回る期間を識別する。
すなわち、スイッチング手段の駆動に供される第二の直流電力が既述の第三の直流電力で代替される契機は、スイッチング手段のハードウエアが活用されることによって間接的に識別される。
すなわち、スイッチング手段の駆動に供される第二の直流電力が既述の第三の直流電力で代替される契機は、スイッチング手段のハードウエアが活用されることによって間接的に識別される。
したがって、構成の簡略化に併せて、低廉化、小型化および節電が図られる。
請求項5に記載の発明では、請求項1ないし請求項4の何れか1項に記載の電源回路において、整流手段と電力補充手段とは、上述した期間に稼働するシリーズレギュレータとして構成される。
すなわち、トランスの二次巻き線に誘起する電圧が変動する場合であっても、スイッチング手段には、第二の直流電力に代わる第三の直流電力が所望の電圧で精度よく安定に供給される。
請求項5に記載の発明では、請求項1ないし請求項4の何れか1項に記載の電源回路において、整流手段と電力補充手段とは、上述した期間に稼働するシリーズレギュレータとして構成される。
すなわち、トランスの二次巻き線に誘起する電圧が変動する場合であっても、スイッチング手段には、第二の直流電力に代わる第三の直流電力が所望の電圧で精度よく安定に供給される。
したがって、負荷には、所望の電圧や歪率で安定に電力が供給される。
上述したように請求項1ないし請求項3に記載の発明では、スイッチング手段は、外部に接続され、かつトランスの二次巻き線を介して電力が供給される負荷が著しく軽くなり、あるいは著しく重くなったために、上述した補助巻き線に誘起する交流電力が減少しても、既述の第三の直流電力で駆動されることによって安定に稼働し続ける。
また、請求項4に記載の発明では、構成の簡略化に併せて、低廉化、小型化および節電が図られる。
また、請求項4に記載の発明では、構成の簡略化に併せて、低廉化、小型化および節電が図られる。
さらに、請求項5に記載の発明では、負荷には、所望の電圧や歪率で安定に電力が供給される。
したがって、本発明が適用された電子機器やシステムでは、性能に併せて、総合的な信頼性が高められる。
したがって、本発明が適用された電子機器やシステムでは、性能に併せて、総合的な信頼性が高められる。
以下、図面に基づいて本発明の実施形態について詳細に説明する。
図1は、本発明の一実施形態を示す図である。
本実施形態の構成の特徴は、図3に示す従来例に下記の要素から構成される付加回路10が付加された点にある。
・ ダイオード46dのアノード端子と共に、トランス34の補助巻き線の一方の端子にアノード端子が接続されたダイオード11
・ 入力端子31pにエミッタ端子が接続されたトランジスタ12
・ トランジスタ41のコレクタ端子と共に抵抗器32の他方の端子に一方の端子が接続され、かつ上述したトランジスタ12のベース端子に他方の端子が接続された抵抗器13
・ 入力端子31nにアノード端子が接続されたツェナーダイオード14
・ ダイオード11のカソード端子に一方の端子が接続され、かつ他方の端子が接地されたコンデンサ15
・ ツェナーダイオード14のカソード端子とトランジスタ12のコレクタ端子との双方にベース端子が接続され、かつコレクタ端子が上述したコンデンサ15の一方の端子と共にダイオード11のカソード端子に接続されたトランジスタ16
・ このトランジスタ16のエミッタ端子に一方の端子が接続され、かつ他方の端子が接地された抵抗器17
・ 抵抗器17の一方の端子と共にトランジスタ16のエミッタ端子にアノード端子が接続され、かつカソード端子がトランジスタ41のエミッタ端子と共にPWMコントローラ43の電源端子に接続されたダイオード18
図2は、本実施形態の動作を説明する図である。
図1は、本発明の一実施形態を示す図である。
本実施形態の構成の特徴は、図3に示す従来例に下記の要素から構成される付加回路10が付加された点にある。
・ ダイオード46dのアノード端子と共に、トランス34の補助巻き線の一方の端子にアノード端子が接続されたダイオード11
・ 入力端子31pにエミッタ端子が接続されたトランジスタ12
・ トランジスタ41のコレクタ端子と共に抵抗器32の他方の端子に一方の端子が接続され、かつ上述したトランジスタ12のベース端子に他方の端子が接続された抵抗器13
・ 入力端子31nにアノード端子が接続されたツェナーダイオード14
・ ダイオード11のカソード端子に一方の端子が接続され、かつ他方の端子が接地されたコンデンサ15
・ ツェナーダイオード14のカソード端子とトランジスタ12のコレクタ端子との双方にベース端子が接続され、かつコレクタ端子が上述したコンデンサ15の一方の端子と共にダイオード11のカソード端子に接続されたトランジスタ16
・ このトランジスタ16のエミッタ端子に一方の端子が接続され、かつ他方の端子が接地された抵抗器17
・ 抵抗器17の一方の端子と共にトランジスタ16のエミッタ端子にアノード端子が接続され、かつカソード端子がトランジスタ41のエミッタ端子と共にPWMコントローラ43の電源端子に接続されたダイオード18
図2は、本実施形態の動作を説明する図である。
以下、図1および図2を参照して本実施形態の動作を説明する。
本実施形態の特徴は、既述の「定常状態」から「軽負荷状態」や「過電流防止状態」に移行したことを検出し、かつ下記の通りに応答する付加回路10の動作にある。
ダイオード11はトランス34の補助巻き線に誘起した「補助交流電力」を半波整流し、コンデンサ15はその半波整流の結果として得られた直流電流を積分(平滑)することによって直流の電力(以下、「代替直流電力」という。)を生成する。
本実施形態の特徴は、既述の「定常状態」から「軽負荷状態」や「過電流防止状態」に移行したことを検出し、かつ下記の通りに応答する付加回路10の動作にある。
ダイオード11はトランス34の補助巻き線に誘起した「補助交流電力」を半波整流し、コンデンサ15はその半波整流の結果として得られた直流電流を積分(平滑)することによって直流の電力(以下、「代替直流電力」という。)を生成する。
なお、このような「代替直流電力」で充電されたコンデンサ15の端子電圧(トランジスタ16のコレクタ端子の電位)は、例えば、消費電力が著しく小さいMOS型の集積回路としてPWMコントローラ43が構成され、そのPWMコントローラ43のインピーダンスに比べて十分に大きな値に抵抗器17の抵抗値が予め設定された場合には、トランス34の補助巻き線に「補助交流電力」として誘起する交流電圧の先頭値にほぼ等しい値となる。
一方、「定常状態」から「軽負荷状態」または「過電流防止状態」に移行する(図2(a))と、「補助直流電力」の電圧vが既述の「起動用補助電力」の電圧v0を下回るために、抵抗器32における電圧降下も増加する。
トランジスタ12は、この電圧降下の増加に応じてベース端子の電位が低下するため、遮断領域から飽和領域(活性領域)に移行する。したがって、トランジスタ16のベース端子の電位は、このように飽和領域(活性領域)に移行したトランジスタ12を介してツェナーダイオード14に流れる電流と、そのツェナーダイオード14のツェナー電圧とで定まる電位に上昇する。
トランジスタ12は、この電圧降下の増加に応じてベース端子の電位が低下するため、遮断領域から飽和領域(活性領域)に移行する。したがって、トランジスタ16のベース端子の電位は、このように飽和領域(活性領域)に移行したトランジスタ12を介してツェナーダイオード14に流れる電流と、そのツェナーダイオード14のツェナー電圧とで定まる電位に上昇する。
トランジスタ16はこのようなベース端子の電位の上昇に応じて「遮断領域」から「飽和領域(活性領域)」に移行するので、コンデンサ15に蓄積され、かつトランス34の補助巻き線からダイオード11を介して補充される「代替直流電力」は、トランジスタ16およびダイオード18を介してPWMコントローラ43に供給される(図2(b))。
また、「軽負荷状態」または「過電流防止状態」から「定常状態」に復旧する過程では、上述した「代替直流電力」は、トランス34の補助巻き線に「補助交流電力」が定常的に伝達される時点まで、「起動用補助電力」に代わってPWMコントローラ43に供給される(図2(c))。
また、「軽負荷状態」または「過電流防止状態」から「定常状態」に復旧する過程では、上述した「代替直流電力」は、トランス34の補助巻き線に「補助交流電力」が定常的に伝達される時点まで、「起動用補助電力」に代わってPWMコントローラ43に供給される(図2(c))。
すなわち、「軽負荷状態」または「過電流防止状態」であっても、PWMコントローラ43の駆動電力は、既述の「補助直流電力」に代わって、『入力端子31pから供給される高い電圧の入力直流電力に応じて抵抗器32とトランジスタ41が生成する「起動用補助電力」』ではなく、『トランス34の補助巻き線に誘起した補助交流電力が半波整流(ピーク検波)されることによって高い電圧で生成された「代替直流電力」』によって、中断されることなく供給される。
したがって、負荷が大幅に変動し、あるいは頻繁に「過電流防止状態」となり得る場合であっても、「定常状態」における負荷の変動に対する応答性が基本的に変更されることなく電力効率が向上し、かつ高く維持される。
また、このような電力効率の向上に応じて削減される電力は、従来例との対比においては、例えば、抵抗器32およびトランジスタ41を介してPWMコントローラ43に供給される電流と、付加回路10を介してそのPWMコントローラ43に供給される電流の値とがほぼ同じであると見なされる場合には、入力端子31p、31nに外部から供給される電圧(=Vin)と、トランス34の補助巻き線と一次巻き線とのターン数の比n(=(n3/n1)<1)とに対して下式で示される係数kに比例した値となるので、その電圧(=Vin)とトランス34の一次巻き線のターン数n1とが大きいほど、かつこのトランス34の補助巻き線のターン数n3が小さいほど増加する。
k=Vin・(1−n)=Vin・(1−n3/n1)
なお、本実施形態では、始動時には「起動用補助電力」がPWMコントローラ43に供給され、かつ「定常状態」から「軽負荷状態」や「過電流防止状態」に移行したときには、「代替直流電力」がPWMコントローラ43に供給されている。
また、このような電力効率の向上に応じて削減される電力は、従来例との対比においては、例えば、抵抗器32およびトランジスタ41を介してPWMコントローラ43に供給される電流と、付加回路10を介してそのPWMコントローラ43に供給される電流の値とがほぼ同じであると見なされる場合には、入力端子31p、31nに外部から供給される電圧(=Vin)と、トランス34の補助巻き線と一次巻き線とのターン数の比n(=(n3/n1)<1)とに対して下式で示される係数kに比例した値となるので、その電圧(=Vin)とトランス34の一次巻き線のターン数n1とが大きいほど、かつこのトランス34の補助巻き線のターン数n3が小さいほど増加する。
k=Vin・(1−n)=Vin・(1−n3/n1)
なお、本実施形態では、始動時には「起動用補助電力」がPWMコントローラ43に供給され、かつ「定常状態」から「軽負荷状態」や「過電流防止状態」に移行したときには、「代替直流電力」がPWMコントローラ43に供給されている。
しかし、このようにPWMコントローラ43に供給される電力の全てまたは一部は、例えば、図2に点線で示すように、「起動用補助電力」と「代替直流電力」との双方によって供給されてもよい。
また、このような場合には、「定常状態」から「軽負荷状態」や「過電流防止状態」に移行したときと、これらの「軽負荷状態」や「過電流防止状態」から「定常状態」に復旧した時点移行の過渡的な応答の過程では、トランス34の補助巻き線のターン数n3、またはその補助巻き線に誘起される交流電圧の先頭値の不足分を補うために、「代替直流電力」としてPWMコントローラ43に供給される電力量の一部が積極的に「起動用補助電力」によって補填されてもよい。
また、このような場合には、「定常状態」から「軽負荷状態」や「過電流防止状態」に移行したときと、これらの「軽負荷状態」や「過電流防止状態」から「定常状態」に復旧した時点移行の過渡的な応答の過程では、トランス34の補助巻き線のターン数n3、またはその補助巻き線に誘起される交流電圧の先頭値の不足分を補うために、「代替直流電力」としてPWMコントローラ43に供給される電力量の一部が積極的に「起動用補助電力」によって補填されてもよい。
さらに、本実施形態では、トランス34の二次側にフライホイールダイオードとして作動するダイオード51fを含んで構成された整流回路および平滑回路が備えられたフォワード型コンバータに、本発明が適用されている。
しかし、本発明は、このようなフォワード型コンバータに限定されず、上述した整流回路や平滑回路としてどのような方式の回路が備えられたフォワード型コンバータにも適用可能であり、かつ直流電力を交流電力に変換するインバータにも適用可能である。
しかし、本発明は、このようなフォワード型コンバータに限定されず、上述した整流回路や平滑回路としてどのような方式の回路が備えられたフォワード型コンバータにも適用可能であり、かつ直流電力を交流電力に変換するインバータにも適用可能である。
また、本実施形態では、トランス34の一次巻き線にFET35を介して供給される電力のスイッチングがPWM方式に基づいて行われている。
しかし、このようなスイッチングは、PWM方式以外の方式に基づいて行われてもよく、かつ上述したインバータに本発明が適用される場合には、「方形波を共振回路を用いて波形成形が行われるCVT方式」、「多重インバータ方式」その他のどのよう方式に基づいて行われてもよい。
しかし、このようなスイッチングは、PWM方式以外の方式に基づいて行われてもよく、かつ上述したインバータに本発明が適用される場合には、「方形波を共振回路を用いて波形成形が行われるCVT方式」、「多重インバータ方式」その他のどのよう方式に基づいて行われてもよい。
さらに、本実施形態では、付加回路10は、抵抗器32の電圧降下が所定の閾値を超えた時点(起動用補助電力の供給が開始された時点)で、PWMコントローラ43に対する「代替直流電力」の供給を開始している。
しかし、このような時点は、例えば、下記の時点の何れとして検出されてもよい。
・ トランス34の補助巻き線からダイオード46d、46fおよびインダクタ45を介してPWMコントローラ43に対する「補助直流電力」の供給が中断されつつある時点
・ 出力端子56p、56nを介して負荷に供給される電力(電流)が規定の閾値を下回った時点
・ その負荷に印加される電圧が規定の閾値を下回った時点
・ PWMコントローラ43がPWM方式等に基づいて上記の時点の何れかを識別し、その旨を示す信号がこのPWMコントローラ43によって出力された時点
また、本実施形態では、トランジスタ16は、PWMコントローラ43に対する「代替直流電力」の供給を断続するスイッチとして作動している。
しかし、このような時点は、例えば、下記の時点の何れとして検出されてもよい。
・ トランス34の補助巻き線からダイオード46d、46fおよびインダクタ45を介してPWMコントローラ43に対する「補助直流電力」の供給が中断されつつある時点
・ 出力端子56p、56nを介して負荷に供給される電力(電流)が規定の閾値を下回った時点
・ その負荷に印加される電圧が規定の閾値を下回った時点
・ PWMコントローラ43がPWM方式等に基づいて上記の時点の何れかを識別し、その旨を示す信号がこのPWMコントローラ43によって出力された時点
また、本実施形態では、トランジスタ16は、PWMコントローラ43に対する「代替直流電力」の供給を断続するスイッチとして作動している。
しかし、本発明はこのような構成に限定されず、例えば、付加回路10は、ツェナーダイオード14のツェナー電圧に応じて出力電圧が定まるシリーズレギュレータとした構成されてもよい。
さらに、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲において多様な形態による実施形態が可能であり、かつ構成装置の一部もしくは全てに如何なる改良が施されてもよい。
さらに、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲において多様な形態による実施形態が可能であり、かつ構成装置の一部もしくは全てに如何なる改良が施されてもよい。
10 付加回路
11,18,46d,46f,51d,51f ダイオード
12,16,41 トランジスタ
13,17,32,54 抵抗器
14 ツェナーダイオード
15,33,44,53 コンデンサ
31p、31n 入力端子
34 トランス
35 FET
40 制御部
42 直流電圧源
43 PWMコントローラ
45,52 インダクタ
55 監視部
56p,56n 出力端子
11,18,46d,46f,51d,51f ダイオード
12,16,41 トランジスタ
13,17,32,54 抵抗器
14 ツェナーダイオード
15,33,44,53 コンデンサ
31p、31n 入力端子
34 トランス
35 FET
40 制御部
42 直流電圧源
43 PWMコントローラ
45,52 インダクタ
55 監視部
56p,56n 出力端子
Claims (5)
- 入力された第一の直流電力と、トランスの補助巻き線に誘起した交流電力に応じて生成された第二の直流電力との双方または一方で駆動され、そのトランスの一次巻き線にこの直流電力を断続して供給するスイッチング手段を有し、このトランスの二次巻き線を介して外部に電力を供給する電源回路において、
前記補助巻き線に誘起した交流電力を整流し、第三の直流電力を生成する整流手段と、
前記第一の直流電力の内、前記スイッチング手段の駆動に供される直流電力が既定の閾値を上回る期間に、その電力変換制御手段に前記第三の直流電力を供給する電力補充手段と
を備えたことを特徴とする電源回路。 - 入力された第一の直流電力と、トランスの補助巻き線に誘起した交流電力に応じて生成された第二の直流電力との双方または一方で駆動され、そのトランスの一次巻き線にこの直流電力を断続して供給するスイッチング手段を有し、このトランスの二次巻き線を介して外部に電力を供給する電源回路において、
前記補助巻き線に誘起した交流電力を整流し、第三の直流電力を生成する整流手段と、
前記第二の直流電力の内、前記スイッチング手段の駆動に供される直流電力が既定の閾値を下回る期間に、その電力変換制御手段に前記第三の直流電力を供給する電力補充手段と
を備えたことを特徴とする電源回路。 - 入力された第一の直流電力と、トランスの補助巻き線に誘起した交流電力に応じて生成された第二の直流電力との双方または一方で駆動され、そのトランスの一次巻き線にこの直流電力を断続して供給するスイッチング手段を有し、このトランスの二次巻き線を介して外部に電力を供給する電源回路において、
前記補助巻き線に誘起した交流電力を整流し、前記第三の直流電力を生成する整流手段と、
前記外部に供給される電力が既定の閾値を下回る期間に、その電力変換制御手段に前記第三の直流電力を供給する電力補充手段と
を備えたことを特徴とする電源回路。 - 請求項3に記載の電源回路において、
前記スイッチング手段は、
前記入力された第一の直流電力の断続の形態に基づいて前記外部に供給される電力の減少分が既定の閾値を上回る期間を識別する
ことを特徴とする電源回路。 - 請求項1ないし請求項4の何れか1項に記載の電源回路において、
前記整流手段と前記電力補充手段とは、
前記期間に稼働するシリーズレギュレータとして構成された
ことを特徴とする電源回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004176795A JP2006005980A (ja) | 2004-06-15 | 2004-06-15 | 電源回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004176795A JP2006005980A (ja) | 2004-06-15 | 2004-06-15 | 電源回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006005980A true JP2006005980A (ja) | 2006-01-05 |
Family
ID=35773909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004176795A Pending JP2006005980A (ja) | 2004-06-15 | 2004-06-15 | 電源回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006005980A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8839414B2 (en) | 2008-05-30 | 2014-09-16 | Irdeto Canada Corporation | Authenticated database connectivity for unattended applications |
-
2004
- 2004-06-15 JP JP2004176795A patent/JP2006005980A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8839414B2 (en) | 2008-05-30 | 2014-09-16 | Irdeto Canada Corporation | Authenticated database connectivity for unattended applications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8339816B2 (en) | Semiconductor device and switching power supply apparatus | |
JP4481879B2 (ja) | スイッチング電源装置 | |
JP4013898B2 (ja) | 電源装置起動方法、電源装置の起動回路及び電源装置 | |
JP4687958B2 (ja) | Dc−dcコンバータ | |
US8194417B2 (en) | Two-stage switching power supply | |
WO2011158284A1 (ja) | スイッチング電源装置および半導体装置 | |
JP2005117814A (ja) | スイッチング電源装置 | |
JP2007142057A (ja) | 発光ダイオード駆動装置および発光ダイオード駆動用半導体装置 | |
WO2012147453A1 (ja) | 直流電源装置 | |
JP2008289336A (ja) | スイッチング電源装置 | |
JP5905689B2 (ja) | Dc/dcコンバータならびにそれを用いた電源装置および電子機器 | |
JP2009153234A (ja) | スイッチング電源装置 | |
JP2008048515A (ja) | スイッチング電源装置 | |
US9318961B2 (en) | Switching power-supply device | |
JP2016146696A (ja) | スイッチング電源装置 | |
JP4093185B2 (ja) | スイッチング電源装置 | |
JP4173115B2 (ja) | スイッチング電源制御用半導体装置 | |
JP2000245150A (ja) | スイッチング電源回路およびスイッチング電源用デバイス | |
JP2001045749A (ja) | スイッチング電源装置およびその動作方法 | |
JP6513546B2 (ja) | Led電源装置 | |
JP4349377B2 (ja) | 負荷駆動装置用二電源型電源装置 | |
JP2006005980A (ja) | 電源回路 | |
JP2006129547A (ja) | スイッチング電源装置 | |
JP4678263B2 (ja) | 同期整流型フォワードコンバータ | |
JP4114047B2 (ja) | スイッチング電源回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090721 |
|
A131 | Notification of reasons for refusal |
Effective date: 20090811 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091208 |