JP2005515230A - 合成ハイドロタルサイトの合成と使用 - Google Patents

合成ハイドロタルサイトの合成と使用 Download PDF

Info

Publication number
JP2005515230A
JP2005515230A JP2003560020A JP2003560020A JP2005515230A JP 2005515230 A JP2005515230 A JP 2005515230A JP 2003560020 A JP2003560020 A JP 2003560020A JP 2003560020 A JP2003560020 A JP 2003560020A JP 2005515230 A JP2005515230 A JP 2005515230A
Authority
JP
Japan
Prior art keywords
hydrotalcite
synthetic hydrotalcite
mixture
acid
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003560020A
Other languages
English (en)
Other versions
JP2005515230A5 (ja
Inventor
フジイ、マサキ
キム、セヒュン
タウンセンド、エドウィン、ビー.、4世
ギャラハー、ジョージ、アール.、ジュニア.
ブリマ、トーマス、エス.
Original Assignee
スノコ, インコーポレイテッド(アール アンド エム)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スノコ, インコーポレイテッド(アール アンド エム) filed Critical スノコ, インコーポレイテッド(アール アンド エム)
Publication of JP2005515230A publication Critical patent/JP2005515230A/ja
Publication of JP2005515230A5 publication Critical patent/JP2005515230A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/175Amines; Quaternary ammonium compounds containing COOH-groups; Esters or salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】
【解決手段】 [M2+1−xM3+x(OH)21x+[An x/n 11H20]xを一般的化学式とし、前記化学式においてM2+が二価カチオンであり、M3+が三価カチオンであり、A°−がC16〜C18酸の直鎖カルボン酸塩と、芳香族酸のカルボン酸塩と、アクリル酸のカルボン酸塩と、メタクリル酸の不飽和カルボン酸塩と、ビニル酢酸の不飽和カルボン酸塩と、C2および窒素、燐、硫黄、ハロゲンのようなヘテロ原子を含むより高級な有機酸のカルボン酸塩とから選択した有機アニオンである合成ハイドロタルサイトを、合成方法および使用方法とともに開示する。

Description

全般として本発明は、新規合成ハイドロタルサイトとそれらの合成および使用に関するものである。本発明の合成ハイドロタルサイトは、Cより長い有機アニオンから作ることも、また、C、C、C10、およびC18直鎖酸飽和カルボン酸塩、安息香酸塩、クロロベンゾエート、ナフソエート、およびp−ヒドロキシベンゾエートのような芳香族、アクリルおよびメタクリルおよびビニル酢酸のカルボン酸塩、およびこれら有機アニオンの混合物を含む官能基を持つ有機アニオンとから作ることもできる。本発明の合成ハイドロタルサイトはまた、Cおよび窒素、硫黄、燐、ハロゲンのようなヘテロ原子を含むより高級な有機酸のカルボン酸塩から作ることもできる。
ハイドロタルサイトは、天然に発生して層を形成する水酸化マグネシウム鉱物であるブルーサイトの誘導体である。層の中に通常存在する一部のマグネシウム・カチオンを、例えばアルミニウムのような三価金属カチオンで置換することによって、合成ハイドロタルサイトを作ることができる。前記マグネシウム・カチオンを、他の二価カチオンで置換することもできる。この置換による差し引きの結果、前記の層にある電荷がプラスとなるため、前記の分子の電荷を中性にするためにアニオンを1つインターカレーションする必要がある。合成ハイドロタルサイトの一般的化学式を以下に記す。

[M2+ 1−x3+ (OH)x+[An− x/n(mHO]x−

前記化学式においてM2+はマグネシウムおよび/または他のニ価カチオン、M3+はアルミニウムおよび/または他の三価カチオン、An−はアニオンである。前記アニオンに加え、水も前記格子構造の一部であることを記しておく。
Schutzらに対して発行され、本発明の譲受人に譲渡された米国特許第5,399,329号で、特異なシート状モルフォロジーを持つハイドロタルサイトの1群について説明されている。Schutzの‘329号特許の全文は、本発明において参照により組み込まれる。Schutzの‘329号特許のハイドロタルサイトは、CからCの飽和カルボン酸から得られるアニオンを有する。Schutzの‘329号特許の一般的な合成方法には、水中におけるカルボン酸とアルミナ源の反応と、その結果得られる混合物とマグネシウム源の反応が含まれる。試薬のモル比はおよそMg2:Al1:アニオン1である。前記アニオンは、使用される酸のカルボン酸塩である。
非カルボン酸塩アニオンのハイドロタルサイトでは六方モルフォロジーが観察されるのが普通だが、Schutzの‘329号特許のカルボン酸塩アニオンのハイドロタルサイトは、前記特許中で「シート状」と称される特異なモルフォロジーを示す。面間隔によって測定されるハイドロタルサイトの層間隔は、インターカレーションするアニオンのサイズに依存する。例えば、Schutz‘329号特許の方法で製造した、以下のアニオンから作られたカルボン酸塩ハイドロタルサイトの面間隔は、ギ酸塩7.64A、酢酸塩12.3A、プロピオン酸塩13.02A、およびイソ酪酸塩15.15Aである。
Schutz‘329号特許では、水性溶媒において約60℃で30分間アルミナをカルボン酸と反応させた後、95℃で約6時間酸化マグネシウムを添加してシート状のハイドロタルサイトを調製する。前記反応生成物を乾燥させると、望ましいゲル状のハイドロタルサイトが得られる。Schultz‘329号特許の方法は、CからCのカルボン酸のような水溶性カルボン酸では比較的成功することがほとんどだが、非水溶性の酸では難しい。事実、Schutz‘329号特許の方法を使ったところ、C酸である酪酸ではある程度の成功しか得られなかった。
ハイドロタルサイトには、触媒あるいは触媒先駆物質、イオン交換体、イオン吸収体、イオン・スカベンジャーのような用途、および制酸剤としての医療用途を含め、多くの用途がある。また、ハイドロタルサイトは、様々な性状を強化するためにポリマーに含めるナノコンポジットとしても使われる。従来技術には、ポリマーと、粘土や雲母のような他の無機構成要素とを合わせたハイブリッド複合材料が機械的性質を向上させたという記述がある。ナノコンポジットと呼ばれるのは、ポリマー・マトリクス中のハイブリッド無機成分のナノ・スケール粒子が分散しているためである。
Mitsui Petrochemical Ind.Ltd.(三井石油化学工業株式会社)に譲渡された日本の特許出願第96−189168号によれば、炭酸塩アニオンを含むハイドロタルサイトは他の添加剤と共にポリプロピレン合成に用いられ、優れたメルト・フロー指数、曲げ弾性率、アイゾッド衝撃力が得られたということである。
フランスのAtoChemに譲渡された欧州特許第0,910,131号によれば、炭酸塩アニオンを含む天然ハイドロタルサイトをエチレン・ビニルアセテート共重合体に用いて、優れた粘着力とバリア性状を持つ膜が生成されたということである。
Du−Pont Mitsui Polychemicals Co.,Ltd.,(三井デュポン・ポリケミカル株式会社)に譲渡された日本の特許出願第86−296799号によれば、炭酸塩アニオンを含む天然ハイドロタルサイトが、リニアで低密度のポリエチレンに用いられ、断熱性と優れた引張強度を持つ膜が生成されたということである。
大半のナノコンポジットポリマー用途に、支柱粘土および/または天然ハイドロタルサイトが用いられる。ナイロン−6と5%粘土ナノコンポジットとの複合組成は、40%高い引張強度と、68%大きい引張係数と、60%高い曲げ強度と、126%の曲げ弾性率を示すことがわかっている(Int‘l.SAMLE Symp.Exhib.1998,43:1053−1066参照)。ナノコンポジットは、以下の2つの方法のいずれかによって、前記ポリマー中で分散するとされている。
1)インターカレーションによるなど、無秩序な方法、あるいは、
2)前記ポリマー中にナノ層が規則的な間隔で並ぶ、剥離作用。剥離作用は、ポリマーの性状を向上させるとされている。
ナノコンポジットを生成するためにポリアミドのような極性ポリマーを組み合わせて改質された様々な粘土に関する参考文献を、特許および科学文献の中に見ることができる。
しかし、ナノコンポジットを生成するためにポリオレフィンのような非極性ポリマーにナノ粒子を導入することは、非極性ポリマーと極性ナノ粒子の適合性の問題から、はるかに困難な作業である。この不適合性によって、ポリマー全体に無機成分が不均等に分散することがしばしばあり、結果的に最善とはいえない性能につながる。典型的に、前記非極性ポリマーを、それに類似していながら化学的に改質されており、適合性を促す分子として作用するための極性機能性を持つポリマー(例えばポリプロピレン−g−MA)と組み合わせることによって、この問題が克服される。前記の改質されたポリプロピレンの極性機能性は、前記ナノ粒子の極性と相互作用を持つことが可能であり、前記の改質ポリプロピレンの非極性部分がポリプロピレン・マトリクスと相互作用する。仮定的には、2つの極性機能性が持つ相互作用が、剥離作用と適合作用の両方を与えることにより、ナノ粒子が均一に分散したナノコンポジットが作られる。
米国特許第5,973,053号は、層間の距離を増やすために、有機オニウム・イオンと第1および第2の有機「ゲスト」分子とを層の間の空間に導入する層状複合粘土材料について記述している。前記有機オニウム・イオンの導入は、前記粘土とポリマーの適合性を増す作用をし、前記ハイブリッド複合材料における粘土の分散を容易にする。
「粘土鉱物/ポリプロピレンのナノコンポジットの機械的性質を調製する要素」Journal of Materials Sciences 35(2000)1045−1050においてOyaらは、ジアセトン・アクリルアミドとマレイン酸で改質した極性モノマーであるポリプロピレンを適合助剤として粘土へインターカレーションすることについて記述している。次に、この有機粘土を従来のポリプロピレンと混合してナノコンポジットを調製する。「ポリ(プロピレン)/有機粘土のナノコンポジットの生成:適合助剤の機能性と有機粘土改質の影響」Macromolecular Material Engineering 275,8−17(2000)において、Reichertらは、ケイ粘土にインターカレーション剤としてアルキル・アミンを使い、無水マレイン酸で改質したポリプロピレンを用いる場合と用いない場合とについて記述している。
本技術分野において、Cより長い有機アニオンから作られる新規合成ハイドロタルサイトの必要性、およびC、C、C10、C18直鎖酸の飽和カルボン酸塩、安息香酸塩、クロロベンゾエート、ナフソエート、p−ヒドロキシベンゾエートのような芳香族、アクリルおよびメタクリルおよびビニル酢酸のカルボン酸塩、およびこれら有機アニオンの混合物を含む官能基を持つ新規合成ハイドロタルサイトの必要性とが存在する。これら合成ハイドロタルサイトは、それらを原料として作られるポリマーに望まれる性状に従ってカスタマイズすることができるので、前述の新規合成ハイドロタルサイトの用途として、たとえばポリマー用途におけるナノコンポジットとしての用途が挙げられる。また、ポリマー・ナノコンポジットに使うことができ、適合助剤を使わずに非極性ポリマーに容易に分散する改質ハイドロタルサイトを、窒素、硫黄、リン、ハロゲンのようなヘテロ原子を含むCおよびそれ以上の有機酸のカルボン酸塩から作る必要性も存在する。
本発明は、

[M2+ 1−x3+ (OH)x+[An− x/n(mHO]x−

を一般的化学式とする合成ハイドロタルサイトを提供するものであり、前記化学式においてM2+はニ価カチオン、M3+は三価カチオン、An−はC〜C18酸の直鎖カルボン酸塩、芳香族酸のカルボン酸塩、アクリル酸のカルボン酸塩、メタクリル酸の不飽和カルボン酸塩、およびビニル酢酸の不飽和カルボン酸塩から選択した有機アニオンである。
本発明はまた、

[M2+ 1−x3+ (OH)x+[An− x/n(mHO]x−

を一般的化学式とする合成ハイドロタルサイトを提供するものであり、前記化学式においてM2+はニ価カチオン、M3+は三価カチオン、An−はC〜C酸の直鎖飽和カルボン酸塩、芳香族酸のカルボン酸塩、アクリル酸のカルボン酸塩、メタクリル酸の不飽和カルボン酸塩、およびビニル酢酸の不飽和カルボン酸塩から成る一群のうち少なくとも2つのメンバーの混合物を有するアニオンである。
本発明はまた、

[M2+ 1−x3+ (OH)x+[An− x/n(mHO]x−

を一般的化学式とする合成ハイドロタルサイトを提供するものであり、前記化学式においてM2+はニ価カチオン、M3+は三価カチオン、An−は窒素、硫黄、燐、あるいはハロゲンのようなヘテロ原子を含むC若しくはそれ以上の酸のカルボン酸塩を有する有機アニオンである。1つの実施形態によれば、前記へテロ原子はアミノ酸の形をした窒素である。この実施形態において、アミノ酸の酸性末端は、アミン末端が溶媒またはポリマー分子と相互作用または反応するように、ハイドロタルサイトの小板のカチオン・サイトに結合している。さらに、マレイン化ポリプロピレンのように酸で改質されたポリマーにおいては、前記アミンは前記ポリマーの酸部分と自由に反応してアミドまたはイミドを生成する。この方法によって、前記合成ハイドロタルサイトは前記ポリマーと直接結合することができる。好ましくは、前記アミノ酸は直鎖アルキルである。より好ましくは、アミノ酸をインターカレーションした前記ハイドロタルサイトは、自己剥離および/または可逆剥離することができる。さらにより好ましくは、前記アミノ酸は4−アミノ酪酸または6−アミノカプロン酸である。本発明に従った改質ハイドロタルサイトまたは有機ハイドロタルサイトはポリマー・ナノコンポジットに用いることができ、前記ポリマー全体のハイドロタルサイトの分散を引き起こすために必ずしも適合助剤を使う必要がない。前記合成ハイドロタルサイトが溶媒において自己剥離可能な実施形態において、合成後の前記合成ハイドロタルサイトは、回収されたり乾燥したりすることなくコロイド懸濁液として維持され得る。
本発明はさらに、

[M2+ 1−x3+ (OH)x+[An− x/n(mHO]x−

を一般的化学式とする合成ハイドロタルサイトを製造する方法を提供するものであり、前記化学式においてM2+はニ価カチオン源、M3+は三価カチオン源、An−はC〜C18酸の直鎖カルボン酸塩、芳香族酸のカルボン酸塩、アクリル酸のカルボン酸塩、メタクリル酸の不飽和カルボン酸塩、ビニル酢酸の不飽和カルボン酸塩、および窒素、燐、硫黄、ハロゲンのようなヘテロ原子を含むC若しくはそれ以上の酸のカルボン酸塩から選択した有機アニオン源であり、前記方法は、前記三価カチオン源を前記有機アニオン源と反応させて中間生成物を生成し、前記中間生成物を前記ニ価カチオン源と反応させて前記合成ハイドロタルサイトを生成する工程を有する。
本発明はさらにまた、重付加重合ポリマーを有する合成ハイドロタルサイト・ポリマー混合物と、

[M2+ 1−x3+ (OH)x+[An− x/n(mHO]x−

を一般的化学式とする合成ハイドロタルサイトとを提供するものであり、前記化学式においてM2+はニ価カチオン、M3+は三価カチオン、An−はC〜C18酸の直鎖カルボン酸塩、芳香族酸のカルボン酸塩、アクリル酸のカルボン酸塩、メタクリル酸の不飽和カルボン酸塩、ビニル酢酸の不飽和カルボン酸塩、および窒素、燐、硫黄、ハロゲンのようなヘテロ原子を含むC若しくはそれ以上の酸のカルボン酸塩から選択した有機アニオンである。1つの好ましい実施形態によれば、前記合成ハイドロタルサイトの有機アニオンはアミノ酸である。より好ましくは、前記アミノ酸は前記ハイドロタルサイトの自己剥離および/または可逆剥離を促進するアミノ酸である。さらに、前記ポリマーは、例えばマレイン酸などによって改質または機能化することができる。酸によって改質または機能化されたポリマーを有する実施形態において、アミノ酸をインターカレーションしたハイドロタルサイトと前記ポリマーを、前記の酸改質ポリマーと前記アミン官能基の反応によって生成したアミドまたはイミドを介して結合することができる。
本発明はさらにまた、前記混合物を得るために、

[M2+ 1−x3+ (OH)x+[An− x/n(mHO]x−

を一般的化学式とする合成ハイドロタルサイトを持つ重付加重合ポリマーを有する乳濁液を混合する工程を有する合成ハイドロタルサイト・ポリマー混合物の製造方法を提供し、前記化学式においてM2+はニ価カチオン源、M3+は三価カチオン源、An−はC〜C18酸の直鎖カルボン酸塩、芳香族酸のカルボン酸塩、アクリル酸のカルボン酸塩、メタクリル酸の不飽和カルボン酸塩、ビニル酢酸の不飽和カルボン酸塩、および窒素、燐、硫黄、ハロゲンのようなヘテロ原子を含むC若しくはそれ以上の酸のカルボン酸塩から選択した有機アニオン源である。1つの好ましい実施形態によれば、前記合成ハイドロタルサイトの有機アニオンはアミノ酸である。より好ましくは、前記アミノ酸は前記合成ハイドロタルサイトの自己剥離および/または可逆剥離を促進するアミノ酸である。さらに、前記ポリマーは、例えばマレイン酸などによって改質または機能化することができる。酸によって改質または機能化されたポリマーを有する実施形態において、アミノ酸をインターカレーションしたハイドロタルサイトと前記ポリマーを、前記の酸改質ポリマーと前記アミン官能基の反応によって生成したアミドまたはイミドを介して結合することができる。
以下、本発明のハイドロタルサイトの合成方法を3段階に分けて説明する。第3段階については2つの代替実施形態がある。
第1工程:三価カチオン源+有機アニオン→中間生成物
60℃〜85℃、4〜8時間
第2工程:中間生成物(水中)+ニ価カチオン源→合成ハイドロタルサイトのゲル
90℃〜95℃、4〜8時間
第3工程:乾燥(蒸発/真空乾燥、または濾過/真空乾燥、またはスプレー乾燥)
または
第3工程:湿潤に保つ(コロイド懸濁液/濃縮するまで蒸発またはペースト)
本発明の合成ハイドロタルサイトの調製の成功は、第1段階の反応、すなわち三価カチオンと前記の特定のカルボン酸との反応に大きく依存する。第1段階の反応を、好ましくは以下の方法のうち1つ以上を活用することによって完成に近づけることにより、Cカルボン酸より長い鎖と、酸を含むヘテロ原子と、非水溶性の芳香族酸とから作られるハイドロタルサイトの調製を達成する。
1)第1段階の反応時間を、Schutz‘329号特許で示されているような30分間から4〜8時間に増やすことができる。
2)前記三価カチオンと共に非水溶性有機カルボン酸の反応媒体として不活性有機溶媒を使うことができる。
3)前記有機アニオンの溶融で第1段階を実行することができる。
本書に記述した実施例には以下の材料を使用した。特に説明がない限り、Vista Chemical Corporationの酸化アルミニウム・一水水酸化物であるCATAPAL(登録商標) アルミナを三価カチオン源として、Martin Magnesia Specialties Inc.のMAGCHEM(登録商標) 200D (高純度、高反応性の酸化マグネシウム粉末)をニ価カチオン源として、Aldrich Chemical Companyのものを酸として、39〜41%の非揮発性物質を含む、POLY EMULSION 43N40(登録商標)(前記ハイドロタルサイト‐ポリプロピレン・混合物の調製に使用)の商標でCHEMCORが出しているものを非イオン系乳化剤を有すマレイン化ポリプロピレン乳濁液として用いた。アミノ酸インターカレーションをしたハイドロタルサイト‐ポリプロピレン・混合物の調製には、UNITE1000(登録商標)の商標を持つAristech社製マレイン化ポリプロピレンを用いた。
アメリカ合衆国ペンシルベニア州モンローヴィルにあるRJ Lee Group,Incが、本発明の合成ハイドロタルサイトのサンプルの走査電子顕微鏡(SEM)分析を行った。前記の分析には、前記サンプルの典型的粒子の2次電子イメージング(SET)と透過電子イメージング(TED)の両方による顕微鏡写真の収集が必要であった。各サンプルから得た3つの異なる代表的粒子を、前記粒子のサイズによって5,000Xから50,000Xの範囲で拡大し、顕微鏡写真を撮った。
吹きつけ乾燥法
好ましくは、以下の設定によるNiro−2流体ノズルスプレー乾燥機を用いて、本発明の合成ハイドロタルサイトのスプレー乾燥を行なうことができる。5.5で加熱、ノズル気圧1バールとし、給液率(毎時4〜5リットル)の変化によって吸気口温度を望ましい設定範囲である200〜230℃に維持。要求される給液率の予測および前回使用の残留物質の除去を行なうために、好ましくは温度が安定した後、前記スプレー乾燥機に給水することができる。
コロイド懸濁液、凝縮懸濁液またはペースト
乾燥を行なう代わりに、前記合成ハイドロタルサイトを湿潤ないし乾いていない状態に維持してもよい。湿潤ないし乾いていない状態に前記ハイドロタルサイトを維持することは、本発明の実施形態の中で前記合成ハイドロタルサイトが溶媒と接触して自己剥離をすることが可能な場合において特に望ましい。自己剥離が可能な合成ハイドロタルサイトの場合、その生成物を、剥離後のハイドロタルサイトのコロイド懸濁液として前記合成から直接に単離し、更なる処理をせずに取り出すことができる。あるいは、前記の懸濁液を蒸発させ、前記懸濁液の濃縮物またはパン生地のような柔らかいペーストにしてもよい。
合成ハイドロタルサイトの調製
前述のように、本発明の前記合成ハイドロタルサイトの調製は3つの工程で行なう。第1工程では、前記有機アニオン源を好ましくは三価カチオン源Al3+と反応させるが、本明細書に参照としてその全文が組み込まれた米国特許第5,518,704号に示されるように、Al3+に、他の三価カチオンであるCr3+およびFe3+のうち少なくとも1つを最高50%合わせた混合物を合成ハイドロタルサイトの調製に用いてもよい。第2工程は、第1工程で得た混合物と好ましくはニ価カチオン源Mg2+との反応だが、本明細書に参照としてその全文が組み込まれた米国特許第5,518,704号に示されるように、Mg2+に、他の二価カチオンであるNi2+、Co2+、Zn2+、Cu2+、およびMn2+のうち少なくとも1つを合わせた混合物を合成ハイドロタルサイトの調製に用いてもよい。第3工程は、その結果得た合成ハイドロタルサイトの乾燥である。あるいは別の第3工程として、前記ハイドロタルサイトを湿潤コロイド懸濁液か、スラリーか、ペーストとして維持する。好ましくは、自己剥離または可逆剥離が可能な合成ハイドロタルサイトを、スラリーまたはペーストとして剥離された状態に維持する。本発明の発明者らは、用いる有機アニオンの水溶性がどの程度かによって、前記調製の第1工程を水中、有機溶媒中、あるいは酸融解液中で実行できることを発見した。第2工程は水中で行なうのが好ましい。
第1工程を改善する前記の3つのアプローチをそれぞれ使った方法によるステアリン酸合成ハイドロタルサイトの調製について、限定するためではなく図解を目的として以下に説明する。
実施例1:水を媒体として実行した第1工程
4リットルビーカーに入れた脱イオン水500mlにCATAPAL(登録商標) アルミナ(0.26モル)を懸濁し、撹拌した懸濁液にステアリン酸(0.23モル)を添加した。前記ビーカーの中で揮発物質を凝縮するために、氷水で満たした結晶皿を取り付けた前記ビーカーを75℃〜85℃に熱し、その温度を4〜8時間保った。この後、酸化マグネシウム(0.44モル)を加え、次に脱イオン水1.5リットルを加えた。前記混合物を90℃〜95℃に熱し、その温度を4〜8時間保った。前記混合物を一晩撹拌しながら室温に冷却した。そうして得た材料を、好ましくは以下の2つの方法のいずれかによって乾燥する。
a)半ば乾燥した固体が得られるまで130℃の空気乾燥機で乾燥し、80℃の真空オーブンでさらに一晩乾燥する。あるいは、
b)吸気口温度を約200℃とし、排気口温度を約100℃としてスプレー乾燥する。
前記材料を乾燥して得られる粉末が、目的の合成ハイドロタルサイトである。
水媒体においては、通常より少量の水を用いるようにしないと、水中のアルミナ懸濁液の上に酸が浮き出し、反応速度を遅めるかもしれない。この反応の生成物は、前記媒体よりも密度の高いベタベタしたオイルであり、前記反応容器の底に沈殿する。前述の媒体において、アルミナおよび遊離酸の一部が閉じ込められ、前記試薬の混合が非常に限られてしまうため、非常にゆっくりと反応するか、全く反応しないかのどちらかになる事がある。この方法によって作られた前記合成ハイドロタルサイトは、前記サンプルの走査電子顕微鏡写真である図1に見られるように、あまり均一ではなかった。
実施例2:有機溶媒で実行した第1工程
前記三価カチオン源と、ステアリン酸のような水と混ざらないカルボン酸との反応を、好ましくは還流ヘキサンのような有機溶媒中で実行する。4リットルビーカーに入れたヘキサン200mlにCATAPAL(登録商標)アルミナ(0.26モル)を懸濁し、撹拌した懸濁液に前記の酸(0.23モル)を添加した。前記ビーカーの中で揮発物質を凝縮するために、氷水で満たした結晶皿を取り付けた前記ビーカーを約65度に熱し、4〜8時間保った。好ましくは、前記溶媒を蒸発または濾過により除去することができる。その結果得られた残留物に水を加えた。次に、激しく撹拌しながら酸化マグネシウム(0.44モル)を加えた。前記混合物を約90℃〜95℃に熱し、その温度を4〜8時間保った。生成物の分離、すなわち乾燥は、上記実施例1で記述した方法で実行した。この方法を用いることにより、図1と図2の比較からわかるように、より大きい面間隔値を有し、走査電子顕微鏡写真で示されるようにより小さい粒径を持つように見える均一な合成ハイドロタルサイトを入手した。
有機溶媒中で第1工程を実行すると、より速い発熱性の反応が起き、前記媒体に可溶な中間生成物が作られる。しかし、この方法の不利な点は、第2工程は水中で行なうのが好ましいため、前記中間生成物と前記二価カチオン源との反応の前に前記溶媒を取り除くことが好ましい点である。
実施例3:酸融解液で実行した第1工程
固体ステアリン酸の必要量を入れたビーカーを、この酸が溶けるまでオイルバスで熱した。前記融液に、化学量論的に望ましい量のアルミナをかき混ぜながら少量ずつ加えた。約2時間若しくはそれ以上、前記温度を保った。前記生成物に水を加え、全体に均一になるまで前記混合物をかき混ぜた。酸化マグネシウムを加えた後、脱イオン水を1.5リットル加えた。前記混合物を90℃〜95℃に熱し、その温度を4〜8時間保った。前記混合物を一晩撹拌しながら室温に冷却した。生成物の分離は、上記実施例1で記述した方法で実行した。
この方法で遭遇した問題は、実施例1と同様、前記生成物がベタベタしていたことであった。しかし、前記の酸融解液法を用いることによる利点は、融液での反応速度が、水中で観察されたに反応速度に比べてずっと速いことである。前記融液を十分かき混ぜることにより、水中の場合よりも完全な反応が期待される。これは、適度な溶融温度を持つ固形脂肪酸の合成ハイドロタルサイトを調製するための経済的な方法となり得る。前記の酸融解液法は、反応速度がより速いため前記の水を使った方法よりも速く、また、第2工程に進む前に有機溶媒を取り除く必要がないため前記の有機溶媒を使った方法よりも速い。それぞれの方法によって作られた合成ハイドロタルサイトの面間隔、層間隔、粒径を表Iにまとめた。
Figure 2005515230
実施例4〜20
以下の有機アニオン源から作る合成ハイドロタルサイトは、本発明の方法によって調製したものであり、これら合成ハイドロタルサイトの性状の一部を表IIにまとめた:ステアリン酸、グリコール酸、酢酸、アクリル酸、y−ブチロラクトン、エタンスルホン酸、乳酸、ヘキサン酸、オクタン酸、デカン酸、安息香酸、クロロ安息香酸、桂皮酸、ナフトエ酸、メタクリル酸、アクリル酸、ビニル酢酸、また、アクリル酸と酢酸とステアリン酸の混合物、および酢酸とヘキサン酸とステアリン酸の混合物。
第1工程の反応時間が長い、以下の有機アニオン源の合成ハイドロタルサイトは、水中で調製可能である。エタンスルホン酸、乳酸、安息香酸、メタクリル酸、アクリル酸、ビニル酢酸。図3〜5はそれぞれ、このグループを代表する3つである、安息香酸、メタクリル酸、アクリル酸のそれぞれの走査電子顕微鏡写真である。
本明細書に記述した合成ハイドロタルサイトをすべて、X線回折分析(XRD)によって分析し、X線ピークの位置と強度と面間隔を調べた。面間隔は、前記ハイドロタルサイトに含まれるアニオンのサイズと形に依存するため、前記ハイドロタルサイトの層間距離を示す。表IIに各合成ハイドロタルサイトの面間隔を示した。より大きい面間隔を持つ合成ハイドロタルサイトは、ポリマーと混合されるか、あるいはポリマー中で剥離するという仮定に基づき、より大きいアニオンまたはより長い炭素鎖を持つアニオンを用いてハイドロタルサイトを合成した。
図6は、前記アニオンに含まれる炭素原子数の増加に伴う前記ハイドロタルサイトの層間距離の伸びを示している。この層間距離は、面間隔から水滑石層の厚さである4.77Aを引いたものである。実際、前記有機アニオンに含まれる炭素原子の数(少なくとも最高C10まで)と前記層間距離はよく相関している。ステアリン酸から作られた合成ハイドロタルサイトの最高層間距離は21.6Aであり、これは図6に基づく予測にあまり近くない。予測では26.0Aとなるはずであり、このことから、ある一定の炭素原子数を超えると、予測との偏差を引き起こすに十分な柔軟性が炭素鎖のバックボーンに生じるのではないかと思われる。
酢酸ハイドロタルサイトの面間隔である12Aもしくはそれ以上の面間隔を持つ合成ハイドロタルサイトをSEM分析し、前記合成ハイドロタルサイトの粒径、粒子全体のサイズ、およびモルフォロジーを測定した。Schutz‘329号特許の場合と同様本発明のハイドロタルサイトの好ましいモルフォロジーは、本明細書において「キャベツ」と称するシート状である。以下のアニオンから調製した合成ハイドロタルサイトは、このモルフォロジーの優れた実施例となった:酢酸、エタンスルホン酸、オクタン酸、安息香酸、クロロ安息香酸、メタクリル酸、アクリル酸、およびビニル酢酸。
その他、本明細書において「セミ・キャベツ」と称するモルフォロジーを持つ合成ハイドロタルサイトが、以下のアニオン源から得られた:ステアリン酸、デカン酸、ナフトエ酸、また、ステアリン酸とアクリル酸と酢酸の混合物、および酢酸とヘキサン酸とステアリン酸の混合物(図7参照)本明細書で言うところの「セミ・キャベツ」とは、顕微鏡写真のために選ばれた前記の3つの代表粒子のうち1つ若しくは2つだけがキャベツ状モルフォロジーを示したことを意味する。
いかなる特定の理論にも限定されることなく、本発明の発明者らは、前記有機アニオンのサイズと形が、結晶構造内に真のキャベツ形状が形成されるのを妨げたことが、このセミ・キャベツ状モルフォロジーの一つの可能な原因と考える。あるいは、前期合成ハイドロタルサイト構造の長い炭素鎖を持つアニオンと層間にある水分子が互いに反発し合うことにより、結晶構造に歪みが生じた可能性がある。また、前記ハイドロタルサイト合成の第1工程における三価カチオンとの不完全反応によって、セミ・キャベツ状モルフォロジーが生ずる可能性がある。
以下のアニオン源から水中で生成されたものは、望ましいモルフォロジーを持つ合成ハイドロタルサイトにならなかった:グリコール酸、y−ブチロラクトン、乳酸。これら水溶性アニオン源から望ましいモルフォロジーを持つ合成ハイドロタルサイトが生成されなかった1つの可能な原因として、固体NMRが示したようなダブル・アニオン(カルボン酸塩とヒドロキシ酸)の存在により層間に生ずる架橋が考えられる。
前記SEM顕微鏡写真が示す定規を用い、前記粒子の平均粒径をミクロン単位で測定した。前記合成ハイドロタルサイトをナノコンポジットに用いることが意図される場合は、より小さい粒径が好ましい。本発明の合成ハイドロタルサイトの粒子は、表IIに含まれるデータからもわかるように、一般にミクロンの範囲である。本発明の合成ハイドロタルサイトの乾燥方法は、粒径になんら影響を与えないようであった。
比較実施例22〜24
瞬間焼成アルミナ(FCA。LaRoche Industriesより入手可能)を三価カチオン源として用い、市販のハイドロタルサイト(LaRoche、アセテート・アニオンHTC−0498−10)、メタクリル酸、アクリル酸から生成した合成ハイドロタルサイトは、せいぜいセミ・キャベツ状としか呼べないようなモルフォロジーであった。SEMにより、FCAには2つ以上のアルミニウム化合物が存在する、もしくは前記酸とFCAの反応性がCATAPAL(登録商標)に比べて低いことが示された。表IIを参照するとわかるように、本特許譲渡者の実験室でCATAPAL(登録商標)アルミナと酢酸(実施例5)から生成した同様の合成ハイドロタルサイトの面間隔が12.0Aであったのに比べ、HTC−0498−10(比較実施例22)の面間隔は9.7Aであった。
Figure 2005515230
前記ハイドロタルサイトの一部(実施例1、4、6、8、12、16、17、18)を固体CP−MAS C13NMR解析したところ、大半の事例において、前記の調製に用いられた酸が、実際に前記カルボン酸塩の形態の中に存在する事が示された。しかし、いくつかの例(実施例4、6、8)において、それに対応するアニオンと共に非常に少量の遊離酸が存在することから、第1工程の反応が不完全である事が示された。
実施例25:4−アミノ酪酸を用いた合成
還流冷却器と撹拌器を備えた500mlのフラスコに入った脱イオン水50mlに一水酸化アルミニウム(0.26モル)を懸濁し、前記の撹拌した懸濁液に4−アミノ酪酸(0.26モル)を加えた。前記材料を75℃〜85℃に熱し、その温度を4〜8時間保った。この後、酸化マグネシウム(0.52モル)を加え、次に脱イオン水150mlを加えた。前記混合物を90℃〜95℃に熱し、その温度を4〜8時間保った。前記材料を10重量%の呼称固体濃度に濃縮するために、前記還流冷却器を取り除いた。次に前記混合物を一晩撹拌しながら室温に冷却した。その結果得られたスラリーは安定な粘性懸濁液であり、前記の固体成分は沈殿しなかった。
そうして得たスラリーのアリコートを、半ば乾燥した固体が得られるまで130℃の空気乾燥機で乾燥し、80℃の真空オーブンでさらに一晩乾燥した。前記材料を乾燥して得られた粉末が、目的の合成ハイドロタルサイトである。前記乾燥粉末を試験管に0.5g入れ、4.5mlの水で再度濡らした。前記試験管を激しく1分間振って得たスラリーを一晩寝かせた。前記スラリーもやはり安定な粘性懸濁液となり、前記の固体成分は沈殿しなかった。
実施例26:6−アミノカプロン酸を用いた合成
4−アミノ酪酸の代わりに6−アミノカプロン酸を使う以外は、実施例25と同じ手順に従った。その結果得られたスラリーは安定な粘性懸濁液であり、前記の固体成分は沈殿しなかった。前記材料を乾燥して得られた粉末が、目的の合成ハイドロタルサイトである。前記の再度濡らした粉末もやはり安定した懸濁液となった。
実施例27:4−アミノ安息香酸を用いた合成
4−アミノ酪酸の代わりに4−アミノ安息香酸を使う以外は、実施例25および26と同じ手順に従った。凝縮したスラリーはすばやく沈殿して粉末層となり、透明の上澄み層が作られた。前記材料を乾燥して得られた粉末が、目的の合成ハイドロタルサイトである。再度濡らした粉末は安定した懸濁液にはならず、沈殿粉末層と透明の上澄み層とに分かれた。
濡れた状態と乾燥した状態でHTサンプルのXRDを撮り、基準ピークに何らかの違いが見られるか調べた。結果を表IIIに示す。4−アミノ酪酸の場合、乾燥したハイドロタルサイトでは5.70°(層間隔15.49Aに相当)で見られた2シータのピークが、濡れたサンプルでは見られなかったことは、前記ハイドロタルサイトが濡れた状態で剥離することを示している。6−アミノカプロン酸でも同様の結果が見られた。このことは、これら有機ハイドロタルサイトが溶媒に加えられて自己剥離することを示している。4−アミノ安息香酸で得られたデータは、この有機ハイドロタルサイトが溶媒に加えられて自己剥離しないことを示している。
Figure 2005515230
比較例28〜32:市販のハイドロタルサイト−ポリプロピレン混合物の調製
以下の2通りの方法により、市販のハイドロタルサイトとCHEMCOR(登録商標)ポリプロピレン乳濁液の混合物を調製した。
1)前記の乾燥したハイドロタルサイトを水で再度ゲル化し、前記乳濁液と混合した後、スプレー乾燥した。
2)スプレー乾燥をする前に、前記乳濁液を前記ハイドロタルサイトに加えて前記混合物を得た。
表IVが示すように、ポリプロピレンの固体重量に5〜81重量%のHTC−0498−10(LaRoche)を混ぜた混合物を調製し、XRD、SEM、示差走査熱量測定法(DSC)、熱重量分析(TGA)による分析を行った。市販のハイドロタルサイト、HTC−0498−10の再ゲル化濃度は温水で約3%と限りがある。この量は、スプレー乾燥前のバージン・ゲルで8%〜10%というメーカーの主張よりはるかに低い。混合物の調製にこの方法を用いれば、低い再ゲル化濃度のため、大きい反応器が必要となるだろう。
Figure 2005515230
前記の市販ハイドロタルサイト、HTC−0498−10から作った前記混合物のXRD分析は、表IVから分かるように、ポリプロピレンの量が60%を超えるにつれ、面間隔の実質的減少(約9.7Aから6.3A)を示したが、そのレベルが19%のときは増加した。いかなる特定の理論にも限定されることなく、本発明の発明者らは、この減少は、前記ポリマー・マトリクスにおける前記合成ハイドロタルサイトの剥離もしくは分散によるものではないかと考える。
ハイドロタルサイトを81%含む混合物である実施例32のSEM顕微鏡写真である図8は、混合物の元としたハイドロタルサイトのモルフォロジーよりも明確なキャベツ状モルフォロジーを示した。しかし、図9が示すように、5%のハイドロタルサイトを含む同様の混合物である実施例28のSEMは、本明細書で発明者らが「ドーナッツ状」と称するモルフォロジーを示した。いかなる特定の理論にも限定されることなく、本発明の発明者らは、前記合成ハイドロタルサイトの親水性部分が環状の核を形成し、前記ポリマー・マトリクスに混ざったステアリン酸塩あるいはオクタン酸塩のアニオンを有す疎水性部分がその核を囲むことによって、前記ドーナッツ状モルフォロジーが生じるのではないかと考える。前記ドーナッツ状粒子の半径は2〜3ミクロンの範囲であった。実施例28の混合物のハイドロタルサイトは前記ポリマー・マトリクスに非常によく分散しているため、層状構造を有していない。
市販のハイドロタルサイトであるHTC−0498−10とポリプロピレンから作った混合物の熱重量分析は、前記材料中に含まれるハイドロタルサイトの量を示す残留分のパーセンテージを示している。表Vが示すように、前記材料中のハイドロタルサイトのパーセンテージと共に前記残留分のパーセンテージが増加しているが、これは前記サンプルを加熱して温度を上昇させた後に残っている非揮発性材料を示している。
DSC転移温度は、前記混合物において相の変化が起きる温度を表し、ポリマー用途においてこれらの材料を加工するために必要な最低温度を示している。第1の相転移温度は、前記混合物では約150℃で生じた。これらの材料のいくつかは、より低い転移温度を示したが、これは水の損失が原因である可能性がある。
実施例33〜38:合成ハイドロタルサイト−ポリマー混合物の調製
比較実施例28〜32で用いた上述の調製方法1を用い、ステアリン酸、オクタン酸、ビニル酢酸、および酢酸とヘキサン酸とステアリン酸の混合物を原料に用いた、本発明の一部の合成ハイドロタルサイトから作られた混合物を調製した。これら合成ハイドロタルサイトは、市販のハイドロタルサイトであるHTC−0498−10を用いて濃度が3%を超えたときに非常に撹拌が難しくなるという再ゲル化の問題を示さなかった。また、スプレー乾燥前にハイドロタルサイト調製の最終工程として前記ポリプロピレン乳濁液を加えるという第2の方法も、メタクリル酸とアクリル酸から調製した合成ハイドロタルサイトで試みられた。
重量の約3%になるように、前記合成ハイドロタルサイトを水に加えた。この混合物の温度を約40℃〜60℃に上昇させ、望まれる混合物の組成に従ってポリプロピレン乳濁液の必要量を前記ゲルに激しく撹拌しながらゆっくり加えた。前記混合物を流体として維持するために、十分な水を加えた。前記混合物を約80℃に熱し、その温度で約1時間維持した後、一晩継続的に撹拌しながら室温に冷却した。前記混合物を吸気口温度230度、排気口温度90℃〜105℃でスプレー乾燥した。各混合物をXRD、SEM、TGA、DSCにより分析した。実施例30〜35の結果を表Vにまとめた。
ステアリン酸、オクタン酸、メチルメタクリル酸、アクリル酸を使った合成ハイドロタルサイトとポリプロピレンの混合物も、分離前の合成ハイドロタルサイトへの前記ポリプロピレン乳濁液の添加を要する方法で調製した。その結果作られた混合物を、上述の方法によりスプレー乾燥して分離した。
Figure 2005515230
より長い炭素鎖の合成ハイドロタルサイトを用いた混合物組成が面間隔に与える影響は様々であった。表Vからわかるように、ステアリン酸、ビニル酢酸、アクリル酸の合成ハイドロタルサイトの混合物を用いると、ハイドロタルサイト組成が38%〜57%の範囲であっても、面間隔がそれぞれ35.2%、12.4%、17.5%減少した。オクタン酸、混合酸(酢酸、ヘキサン酸、ステアリン酸)、メタクリル酸を用いた混合物の面間隔は、前記混合物の原料とした合成ハイドロタルサイトに比べ、それぞれ16.3%、3.7%、17.4%上昇した。いかなる特定の理論にも限定されることなく、本発明の発明者らは、前記プリプロピレンを用いた合成ハイドロタルサイトが均一に混合物しにくいか、あるいは前記有機アニオンの構造が前記混合物の面間隔に対して異なる影響を持つことをこれらの結果が示唆し得るものと考える。オクタン酸および混合酸(酢酸、ヘキサン酸、ステアリン酸)を原料とした合成ハイドロタルサイトとポリプロピレンの混合物のSEM顕微鏡写真は、ドーナッツ状モルフォロジーを示した。
メタクリル酸を原料とした合成ハイドロタルサイトとポリプロピレンの混合物である実施例34のSEM顕微鏡写真である図10は、前述のドーナッツ状モルフォロジーを示さず、また、セミキャベツ状と称するものでもなかった。メタクリル酸を原料とした合成ハイドロタルサイトとポリプロピレンの混合物の粒径は平均5X3オングストロームであった。
表Vが示すように、アセテート以外のアニオンから作った合成ハイドロタルサイトのTGAから得た残留分は、前記アニオンの重量の寄与に基づく相関をした場合、前記ハイドロタルサイトの残留分と相関する。これら材料のDSC転移温度はHTC−0498−10を原料とした材料と類似しており、第1転移温度は148℃〜152℃の範囲であった。従って、これらの材料を通常の温度でポリマーを用いて加工することができる。
ポリプロピレンを用いた例を挙げて本発明のハイドロタルサイトと重付加重合ポリマーの混合物方法を図面で示しているが、当業者には、ポリエチレン、ポリブテン−1、ポリ‐4−メチル‐ペンテン‐1、ポリスチレン、ポリ塩化ビニルなど他の重付加重合ポリマーを本発明に用いることができることを容易に理解するであろう。
実施例39〜41:合成メタクリル酸から生成されたハイドロタルサイトを用いたメチル・メタクリレートの重合
撹拌速度を400rpmとし20psigの窒素下で1リットルのCHEMCO(登録商標) 反応器の中で反応させた。表VIは、メチル・メタクリレート、メタクリル酸から生成したハイドロタルサイトの量、および反応温度を示す。いずれの例においても、水460mlとメチルメタクリレート100gとメタクリル酸から生成したハイドロタルサイトの適当量を反応器に入れた。まず反応器を窒素でパージした後、加圧した。メチル・メタクリレート470gに開始剤AIBN(2,2−アゾビスイソブチルニトリル)0.5gと界面活性剤(Cytec Industriesより入手可能なAerosol OT 75%を2.5g)を溶解した溶液を、70℃に加熱しておいた前記反応器に毎時88mlにてポンプ給液した。固体生成物の塊の形成によって撹拌が困難になるまで前記反応を続けた。その時点で、前記のメチル・メタクリレートの給液を停止し、残留メチル・メタクリレートをすべて反応させるために温度を約30分間維持した。前記反応器を室温に冷ました後、ポリマー片を取り出し、室温で空気乾燥した(好ましくはドラフトの下で行なう)。その結果得たポリマーの量を表VIに示す。
Figure 2005515230
メタクリル酸から生成された合成ハイドロタルサイトをメチル・メタクリレートを用いて共重合することで、マスター・バッチ材料が作られる可能性が示された。そうすることにより、ポリプロピレンのような重付加重合ポリマーとの混合物をこれらマスター・バッチから調製することができる。前記Aerosol OT界面活性剤を用いることで、前記反応が行なわれる水において前記共重合体が均一に撹拌されると期待された。すべての実施例において、スラリーの生成は重合の始まりにだけ起きた。前記ポリマーの量が増えるにつれ、懸濁した粒子が球状もしくは塊になり、撹拌が困難になったため重合を早期に停止せざるを得なかった。結果的に得られた生成物は、黄褐色で堅いポリマーであった。
前記生成物をTGA分析したところ、表VIが示すように、残留物のパーセンテージに基づくメチルメタクリル酸より生成したハイドロタルサイトのレベル(1.6%〜8%)は様々であった。このパーセンテージは、前記サンプル中のすべての炭素源が揮発した後に残されたアルミナとマグネシウムの量を示している。開始時のハイドロタルサイトの重量%が最も高い実施例が、最も高い残留分となった。第1のDSC転移温度(114℃〜122℃)は小さい拡散ピークしか示さなかったので、真のポリマー転移温度を示すものではないかもしれない。370℃での第2の転移は前記共重合体の相変化によるものと見込まれるため、ポリマー用途においては、より高い加工温度が必要なのかもしれない。トルエンおよびエチル・アセテートにおいて、またある程度は塩化メチレンにおいて、これらポリマーは溶解するか透明なゲルとなる。メタクリル酸から生成した合成ハイドロタルサイト(TGA残留分1.6%)の量が最小の共重合体が、トルエンに最も可溶であった。この共重合体を含む溶液を乾燥し、優れた粘着性を持つ透明の膜を得た。
実施例42:マレイン化ポリプロピレンを用い、アミノ酸をインターカレーションしたハイドロタルサイトの化合
本発明に従いアミノ酸インターカレーションをした合成ハイドロタルサイトは、本発明に従った無機ポリマー・混合物の生成に特に有用である。好ましい実施形態において、アミノ酸インターカレーションをした前記合成ハイドロタルサイトは、溶媒中で自己剥離することができる。好ましくは、この実施形態に従い、前記アミノ酸インターカレーション合成ハイドロタルサイトを合成から単離し、スラリーか懸濁液かペーストとして維持する。この実施形態において、前記アミノ酸インターカレーションをしたハイドロタルサイトを合成から単離し、剥離状態に維持する。あるいは、前記アミノ酸インターカレーションをしたハイドロタルサイトを単離後乾燥し、後に溶媒に加えて自己剥離を誘導してもよい。いずれの実施形態においても、前記ハイドロタルサイトをスラリーか懸濁液かペーストとして溶融ポリマーに加える。前記アミノ酸インターカレーションをしたハイドロタルサイトは自己剥離を起こすことができるので、適合助剤を用いることなくポリマー混合物に、より容易に分散することができる。適合助剤の必要はないが、本発明のこの実施形態に従うアミノ酸インターカレーション合成ハイドロタルサイトに、適合助剤となる分子を用いてもかまわない。
1つの実施形態において、改質重付加重合ポリマーを用いて前記アミノ酸インターカレーション合成ハイドロタルサイトを化合する。好ましくは、前記改質重付加重合ポリマーは、マレイン化ポリプロピレンのような、酸で改質したポリオレフィンである。前記の酸改質ポリマーを単独で用いるか、改質ポリマーと非改質ポリマーの混合を用いて、前記ハイドロタルサイトを化合することができる。1つの好ましい実施形態によれば、マレイン化ポリプロピレンのような、溶融酸で改質したポリオレフィンを用いて前記アミノ酸インターカレーション合成ハイドロタルサイトを化合し、アミノ酸インターカレーション合成ハイドロタルサイトと酸改質ポリオレフィンの「マスター・バッチ」を生成する。次に非改質重付加重合ポリマーを用い、この「マスター・バッチ」を化合して最終的なナノコンポジットを生成することができる。
理論による限定は受けないが、前記アミノ酸インターカレーションをしたハイドロタルサイトのアミン基が、前記改質ポリオレフィンの酸部分と反応して、アミドまたはイミドを生成するものと考えられる。この方法により、前記ハイドロタルサイトは実際に前記ポリマーに結合し、前記ナノコンポジットにおける前記ハイドロタルサイトの分散を向上する。
加熱ジャケットに入れた600mlの金属ビーカーに入った、名目上6重量%(10.0g)の6−アミノカプロン酸をベースとしたハイドロタルサイト・スラリー166.7gに、UNITE1000(登録商標)マレイン化ポリプロピレン10gを加えた。混合速度を調製することができるように様々な変圧器に差し込んだ高速(最高8000rpm)Gifford−Woodホモミキサーを用いて混合した。次に、前記混合物を撹拌しながら加熱する。前記混合物が、ねっとりしたペースト状になるまで混合・加熱を続ける。次にこの材料をビーカーから取り出して空気乾燥する。空気乾燥後の材料の一部を挽いてXRD分析した。
UNITE 1000(登録商標)およびUNITEとハイドロタルサイトを50/50で混合したものを挽いて得たサンプル、および8重量%のスラリーに生成したハイドロタルサイトのバッチから得た空気乾燥後のハイドロタルサイトをXRD分析した。6重量%のスラリーの粘着性は濡れ状態でXRDを行なうには不十分なため、この比較には8重量%の調製を用いた。前記の6重量%および8重量%のハイドロタルサイト・スラリーは同じ方法で調製したので、これら2つのスラリーに真の違いがあるとは思われない。
図11は下から順に未乾燥ハイドロタルサイトの8重量%スラリーと、8重量%スラリーから作ったハイドロタルサイトの空気乾燥サンプルと、UNITE 1000(登録商標)のサンプルと、UNITEとハイドロタルサイトの50/50混合物のサンプルのXRDスキャンである。図11を見ると、各スキャンにおいて興味深いのは約6°のところである。前記ハイドロタルサイトの空気乾燥サンプルのスキャン(下から2番目)では、この部分に強い塩基ピークが見られ、剥離されていない状態を示しているのではないかと思われる。このピークが8重量%スラリーのスキャン(一番下)にはなく、これは剥離状態にあるハイドロタルサイトを示している。UNITEとハイドロタルサイトの50/50混合物(一番上)のスキャンには、前述の塩基ピークが全くないことが見て取れる。小さなピークが見られるが、これはUNITE1000(登録商標)樹脂によるものである。
比較のために、図12は加熱による前記ハイドロタルサイトの進化を示す。図12は下から順に、前記未乾燥ハイドロタルサイトの10重量%スラリーと、10重量%スラリーから作ったハイドロタルサイトの空気乾燥サンプルと、100℃で乾燥した10重量%スラリーのサンプルと、150℃で乾燥した10重量%スラリーのサンプルのXRDスキャンである。空気乾燥サンプル(下から2番目)において、6−アミノカプロン酸によるピークは約12°から約37°の範囲に現れている。100℃(上から2番目)および150℃(一番上)で乾燥したサンプルのスキャンでは、加熱処理が増すにつれ、6−アミノカプロン酸によるピークが徐々に消え、前記ハイドロタルサイトの構造(ブルーサイト層+層間隔)のピークのみがあとに残されているのがわかる。加熱するにつれ、ハイドロタルサイト構造が破壊されるまで、約6°にある塩基ピークが急になっていくのが見て取れる。
再び図11に戻り、UNITEとハイドロタルサイトの50/50混合物(一番上)のスキャンを見ると、6−アミノカプロン酸を示すピークがまだある。これは、50/50混合物の調製において、ハイドロタルサイトの構造が破壊されなかったことを示す。さらに、約6°における強い塩基ピークがないことは、前記ハイドロタルサイトが完全に剥離されていることを示す。前記のUNITEとハイドロタルサイトの50/50混合物が、剥離されていないハイドロタルサイトと前記ポリマーとの単なる物理的な混合物であったなら、約6°のピークはなお残っていただろう。よって、前記のUNITEとハイドロタルサイトの50/50混合物は真のナノコンポジットである。
本発明の実施形態を示す前述の図面は、限定することではなく、説明を目的として提示しているものである。当業者であれば、本発明の意図と範囲から逸脱することなく、本書に記述された実施形態を様々な方法で改質もしくは変更できることを容易に理解するであろう。本発明の範囲はここに添付される請求項によって定められる。
以下、図解を目的として本発明を説明するが、以下の図によって本発明が限定されることはない。
図1は、実施例1で作られた合成ハイドロタルサイトの顕微鏡写真である。 図2は、実施例2で作られた合成ハイドロタルサイトの顕微鏡写真である。 図3は、安息香酸誘導による合成ハイドロタルサイトの顕微鏡写真である。 図4は、メタクリル酸誘導による合成ハイドロタルサイトの顕微鏡写真である。 図5は、アクリル酸誘導による合成ハイドロタルサイトの顕微鏡写真である。 図6は層間距離とアニオン中の炭素原子の数の関係を予測し、図に示したものである。 図7は、アセチル酸、ヘキサン酸、ステアリン酸誘導による合成ハイドロタルサイトの顕微鏡写真であり、「セミ・キャベツ」状モルフォロジーを示している。 図8は約81%のハイドロタルサイトとポリプロピレンの混合物の顕微鏡写真であり、好ましい「キャベツ状モルフォロジー」を示している。 図9は約5%のハイドロタルサイトとポリプロピレンの混合物の顕微鏡写真であり、「ドーナッツ」状モルフォロジーを示している。 図10は、メタクリル酸誘導による合成ハイドロタルサイトとポリプロピレンの混合物の顕微鏡写真である。 図11は前記の未乾燥ハイドロタルサイトの8重量%スラリーと、8重量%スラリーから取ったハイドロタルサイトの空気乾燥サンプルと、UNITE 1000(登録商標)のサンプルと、UNITEとハイドロタルサイトの50/50混合物のサンプルのXRDスキャンである。 図12は前記の未乾燥ハイドロタルサイトの10重量%スラリーと、10重量%スラリーから取ったハイドロタルサイトの空気乾燥サンプルと、100℃で乾燥した10重量%スラリーのサンプルと、150℃で乾燥した10重量%スラリーのサンプルのXRDスキャンである。

Claims (70)

  1. 以下を一般的化学式とする合成ハイドロタルサイトであって、

    [M2+ 1−x3+ (OH)x+[An− x/n(mHO]x−

    前記化学式においてM2+はニ価カチオン、M3+は三価カチオン、An−は窒素、燐、硫黄、およびハロゲンから成る一群から選択されたヘテロ原子を少なくとも1つ含む酸のカルボン酸塩を有する少なくとも1つの有機アニオンである。
  2. 請求項1の合成ハイドロタルサイトにおいて、前記二価カチオン源であるM2+は本質的にMg2+から成るものである。
  3. 請求項1の合成ハイドロタルサイトにおいて、前記二価カチオン源であるM3+は本質的にAl3+から成るものである。
  4. 請求項1の合成ハイドロタルサイトにおいて、少なくとも1つの有機アニオンである前記An−はアミノ酸を有するものである。
  5. 請求項4の合成ハイドロタルサイトにおいて、前記アミノ酸は4−アミノ酪酸を有するものである。
  6. 請求項4の合成ハイドロタルサイトにおいて、前記アミノ酸は6−アミノカプロン酸を有するものである。
  7. 請求項1の合成ハイドロタルサイトにおいて、前記ハイドロタルサイトは自己剥離能力を有するものである。
  8. 請求項7の合成ハイドロタルサイトにおいて、前記ハイドロタルサイトは可逆剥離能力を有するものである。
  9. 請求項1の合成ハイドロタルサイトにおいて、前記ハイドロタルサイトは可逆剥離能力を有するものである。
  10. 請求項1の合成ハイドロタルサイトにおいて、前記二価カチオンであるM2+は、Mg2+と、最大50%までのNi2+、Co2+、Zn2+、Cu2+、およびMn2+から選択された少なくとも1つの二価カチオンとを有するものである。
  11. 請求項1の合成ハイドロタルサイトにおいて、前記三価カチオンであるM3+は、Al3+と、最大50%までのA13+、Cr3+、およびFe3+から選択された少なくとも1つの三価カチオンとを有するものである。
  12. 合成ハイドロタルサイトを生成する方法であって、

    [M2+ 1−x3+ (OH)x+[An− x/n(mHO]x−

    を一般的化学式とする合成ハイドロタルサイトであり、前記化学式においてM2+はニ価カチオン、M3+は三価カチオン、An−は窒素、燐、硫黄、およびハロゲンから成る一群から選択されたヘテロ原子を少なくとも1つ含む酸のカルボン酸塩を有する少なくとも1つの有機アニオンであり、前記方法は、
    中間生成物を生成するために前記三価カチオン源であるM3+を前記有機アニオン源であるAn−と反応させる工程と、
    前記合成ハイドロタルサイトを生成するために水中で前記中間生成物を前記二価カチオン源であるM2+と反応させる工程とを有するものである。
  13. 請求項12の方法において、前記三価カチオン源であるM3+を前記有機アニオン源であるAn−と反応させる工程は水中で行なうものである。
  14. 請求項13の方法において、前記三価カチオン源であるM3+を前記有機アニオン源であるAn−と反応させる工程の反応時間は、温度約75℃〜85℃において約4時間から約8時間である。
  15. 請求項12の方法において、前記ニ価カチオン源であるM2+を前記中間生成物と反応させる工程の反応時間は、温度90℃において約4時間から約8時間である。
  16. 請求項12の方法において、前記三価カチオン源であるM3+を前記有機アニオン源であるAn−と反応させる工程は、を有機溶媒中で行なうものである。
  17. 請求項12の方法において、前記三価カチオン源であるM3+を前記有機アニオン源であるAn−と反応させる工程は、酸融解液中で行なうものである。
  18. 請求項12の方法において、前記三価カチオン源であるM3+は本質的にAl3+から成るものである。
  19. 請求項12の方法において、前記三価カチオン源であるM3+は、Al3+と、Cr3+およびFe3+のうち少なくとも1つの最大50%までとを有するものである。
  20. 請求項12の方法において、前記二価カチオン源であるM2+は本質的にMg2+から成るものである。
  21. 請求項12の方法において、前記二価カチオン源であるM2+は、Mg2+と、Ni2+、Co2+、Zn2+、Cu2+、およびMn2+のうち少なくとも1つの最大50%までとを有するものである。
  22. 請求項12の方法において、少なくとも1つの有機アニオンである前記An−はアミノ酸を有するものである。
  23. 請求項22の方法において、前記アミノ酸は4−アミノ酪酸を有するものである。
  24. 請求項22の方法において、前記アミノ酸は6−アミノカプロン酸を有するものである。
  25. 請求項12の方法であって、この方法は、さらに、前記合成ハイドロタルサイトを固体として単離する工程と、前記合成ハイドロタルサイトを乾燥する工程とを有するものである。
  26. 請求項25の方法において、前記乾燥はスプレー乾燥機で行なうものである。
  27. 請求項12の方法において、前記合成ハイドロタルサイトは自己剥離能力を有するものである。
  28. 請求項27の方法であって、この方法は、さらに、前記合成ハイドロタルサイトを溶媒中のコロイド懸濁液として単離する工程を有するものである。
  29. 請求項28の方法において、前記溶媒は水である。
  30. 請求項28の方法において、前記溶媒はアルコールである。
  31. 請求項28の方法であって、この方法は、さらに、前記合成ハイドロタルサイトの凝縮懸濁液を生成するために前記溶媒の一部を蒸発させる工程を有するものである。
  32. 請求項28の方法であって、この方法は、さらに、前記合成ハイドロタルサイトのペーストを生成するために前記溶媒の一部を蒸発させる工程を有するものでる。
  33. 合成ハイドロタルサイトと重付加重合ポリマーの混合物であって、
    少なくとも1つの重付加重合ポリマーと、

    [M2+ 1−x3+ (OH)x+[An− x/n(mHO]x−

    を一般的化学式とする合成ハイドロタルサイトとを有し、前記化学式においてM2+はニ価カチオン、M3+は三価カチオン、An−は窒素、燐、硫黄、およびハロゲンから成る一群から選択されたヘテロ原子を少なくとも1つ含む酸のカルボン酸塩を有する少なくとも1つの有機アニオンである。
  34. 請求項33の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記二価カチオンであるM2+は本質的にMg2+から成るものである。
  35. 請求項33の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記三価カチオンであるM3+は本質的にAl3+から成るものである。
  36. 請求項33の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記重付加重合ポリマーは少なくとも1つ、ポリプロピレン、ポリエチレン、ポリブテン−1、ポリ−4−メチル・ペンテン−1、ポリ塩化ビニル、およびポリスチレンから成る一群から選択されるものである。
  37. 請求項33の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記の少なくとも1つの重付加重合ポリマーはマレイン化ポリオレフィンを有するものである。
  38. 請求項37の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記マレイン化ポリオレフィンはマレイン化ポリプロピレンを有するものである。
  39. 請求項33の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記有機アニオンであるAn−はアミノ酸を有するものである。
  40. 請求項39の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記アミノ酸は4−アミノ酪酸を有するものである。
  41. 請求項39の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記アミノ酸は6−アミノカプロン酸を有するものである。
  42. 請求項39の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記の少なくとも1つのポリマーはマレイン化ポリオレフィンを有するものである。
  43. 請求項42の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記マレイン化ポリオレフィンはアミドの形で前記アミノ酸と結合するものである。
  44. 請求項42の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記マレイン化ポリオレフィンはイミドの形で前記アミノ酸と結合するものである。
  45. 請求項33の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記ハイドロタルサイトは自己剥離能力を有するものである。
  46. 請求項45の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記ハイドロタルサイトは可逆剥離能力を有するものである。
  47. 請求項33の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記ハイドロタルサイトは可逆剥離能力を有するものである。
  48. 請求項33の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記二価カチオンであるM2+は、Mg2+と、Ni2+、Co2+、Zn2+、Cu2+、およびMn2+から選択された少なくとも1つの二価カチオンの最大50%までとを有するものである。
  49. 請求項33の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記三価カチオンであるM3+は、Al3+と、Cr3+およびFe3+から選択された少なくとも1つの三価カチオンの最大50%までとを有するものである。
  50. 合成ハイドロタルサイトと重付加重合ポリマーの混合物を製造する方法であって、前記方法は、
    混合物を得るために、以下の化学式のハイドロタルサイトを有する重付加重合ポリマーを少なくとも1つ有する乳濁液を混合する工程を有し、

    [M2+ 1−x3+ (OH)x+[An− x/n(mHO]x−

    前記化学式においてM2+はニ価カチオン、M3+は三価カチオン、An−は窒素、燐、硫黄、およびハロゲンから成る一群から選択されたヘテロ原子を少なくとも1つ含む酸のカルボン酸塩を有する少なくとも1つの有機アニオンである。
  51. 請求項50の方法において、前記の少なくとも1つの重付加重合ポリマーは、ポリプロピレン、ポリエチレン、ポリブテン−1、ポリ−4−メチル・ペンテン−1、ポリ塩化ビニル、およびポリスチレンから成る一群から選択されるものである。
  52. 請求項50の方法において、前記の少なくとも1つの重付加重合ポリマーはマレイン化ポリオレフィンを有するものである。
  53. 請求項52の方法において、前記マレイン化ポリオレフィンはマレイン化ポリプロピレンを有するものである。
  54. 請求項50の方法であって、この方法は、さらに、前記混合物を乾燥する工程を含むものである。
  55. 請求項54の方法において、前記乾燥する工程はスプレー乾燥を有するものである。
  56. 請求項50の方法において、前記有機アニオンであるAn−はアミノ酸を有するものである。
  57. 請求項56の方法において、前記アミノ酸は4−アミノ酪酸を有するものである。
  58. 請求項56の方法において、前記アミノ酸は6−アミノカプロン酸を有するものである。
  59. 請求項56の方法において、前記の少なくとも1つの重付加重合ポリマーはマレイン化ポリオレフィンを有するものである。
  60. 請求項59の方法において、前記マレイン化ポリオレフィンは前記アミノ酸と反応してアミドを形成するものである。
  61. 請求項59の方法において、前記マレイン化ポリオレフィンは前記アミノ酸と反応してイミドを形成するものである。
  62. 請求項50の方法において、前記ハイドロタルサイトは自己剥離能力を有するものである。
  63. 請求項62の方法において、前記ハイドロタルサイトは可逆剥離能力を有するものである。
  64. 請求項50の方法において、前記ハイドロタルサイトは可逆剥離能力を有するものである。
  65. 合成ハイドロタルサイトと重付加重合ポリマーの混合物であって、
    マレイン化ポリオレフィンと、少なくとも1つの非改質重付加重合ポリマーと、

    [M2+ 1−x3+ (OH)x+[An− x/n(mHO]x−

    を一般化学式とする合成ハイドロタルサイトとを有し、前記化学式においてM2+はニ価カチオン、M3+は三価カチオン、An−はアミノ酸のカルボン酸塩を有する少なくとも1つの有機アニオンである。
  66. 請求項65の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記アミノ酸は4−アミノ酪酸を有するものである。
  67. 請求項65の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記アミノ酸は6−アミノカプロン酸を有するものである。
  68. 請求項65の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記マレイン化ポリオレフィンはアミドの形で前記アミノ酸と結合するものである。
  69. 請求項65の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記マレイン化ポリオレフィンはイミドの形で前記アミノ酸と結合するものである。
  70. 請求項65の合成ハイドロタルサイトと重付加重合ポリマーの混合物において、前記の少なくとも1つの非改質ポリマーは、ポリプロピレン、ポリエチレン、ポリブテン−1、ポリ−4−メチル・ペンテン−1、ポリ塩化ビニル、およびポリスチレンから成る一群から選択されるものである。
JP2003560020A 2002-01-11 2003-01-08 合成ハイドロタルサイトの合成と使用 Pending JP2005515230A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/044,360 US6846870B2 (en) 2001-08-23 2002-01-11 Hydrotalcites, syntheses, and uses
PCT/US2003/000478 WO2003059917A1 (en) 2002-01-11 2003-01-08 Synthetic hydrotalcites, syntheses and uses

Publications (2)

Publication Number Publication Date
JP2005515230A true JP2005515230A (ja) 2005-05-26
JP2005515230A5 JP2005515230A5 (ja) 2005-12-22

Family

ID=21931952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003560020A Pending JP2005515230A (ja) 2002-01-11 2003-01-08 合成ハイドロタルサイトの合成と使用

Country Status (8)

Country Link
US (3) US6846870B2 (ja)
EP (1) EP1472262A1 (ja)
JP (1) JP2005515230A (ja)
CN (1) CN1615312A (ja)
AU (1) AU2003216043A1 (ja)
CA (1) CA2471032A1 (ja)
TW (1) TW200413397A (ja)
WO (1) WO2003059917A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518265A (ja) * 2005-12-06 2009-05-07 アクゾ ノーベル ナムローゼ フェンノートシャップ 有機修飾された層状複水酸化物を調製する方法
JP2012526864A (ja) * 2009-05-13 2012-11-01 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング 改善された光学的特性を有する効果水性ベースコート
JP2012526865A (ja) * 2009-05-13 2012-11-01 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング 高耐衝撃性塗膜を形成させるための塗料
JP2018028481A (ja) * 2016-08-18 2018-02-22 国立研究開発法人物質・材料研究機構 メタノール含有判定材料

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846870B2 (en) * 2001-08-23 2005-01-25 Sunoco, Inc. (R&M) Hydrotalcites, syntheses, and uses
JP4139792B2 (ja) * 2003-09-12 2008-08-27 ニッポン・ペイント(ユーエスエイ),インコーポレーテッド プラスチックをコーティングするためのナノクレーで改質された水系組成物、およびその製造方法
JP4572289B2 (ja) * 2004-02-27 2010-11-04 独立行政法人産業技術総合研究所 コロイド粒子化水酸化物系樹脂配合剤およびそれを含有する樹脂組成物
EP1762545A4 (en) 2004-03-16 2012-11-07 Univ Waseda HYDROTALCITE-TYPE SUBSTANCE, PROCESS FOR PRODUCTION OF SAID SUBSTANCE, AND METHOD FOR IMMOBILIZATION OF HAZARDOUS SUBSTANCE
EP1785186B1 (en) * 2004-06-07 2014-09-03 National Institute for Materials Science Adsorbent for radioelement-containing waste and method for fixing radioelement
JP2008504384A (ja) * 2004-06-23 2008-02-14 アクゾ ノーベル ナムローゼ フェンノートシャップ ポリマー含有組成物、その調製方法および使用方法
CA2511002C (en) * 2004-07-06 2012-10-23 Minh-Tan Ton-That Hot-melt adhesive
CN1769355A (zh) * 2005-11-03 2006-05-10 北京化工大学 含双键有机阴离子插层水滑石及将其用作热稳定剂
JP2009518487A (ja) * 2005-12-06 2009-05-07 アクゾ ノーベル ナムローゼ フェンノートシャップ ゴム及び変性された層状の複水酸化物を含むナノコンポジット物質、その製造方法及びその使用
CA2632654A1 (en) * 2005-12-06 2007-06-14 Akzo Nobel N.V. Clay comprising charge-balancing organic ions and nanocomposite materials comprising the same
CN101360782A (zh) * 2005-12-06 2009-02-04 阿克佐诺贝尔股份有限公司 包含橡胶和改性层状双氢氧化物的纳米复合材料,其制备方法及其用途
CN100406388C (zh) * 2005-12-19 2008-07-30 北京化工大学 纳微复合结构垂直取向类水滑石薄膜及其制备方法
KR100775602B1 (ko) * 2006-10-24 2007-11-15 신원화학 주식회사 하이드로탈사이트의 제조방법
US8071715B2 (en) * 2007-01-31 2011-12-06 Georgia-Pacific Chemicals Llc Maleated and oxidized fatty acids
DE102007054247A1 (de) * 2007-11-14 2009-05-20 Basf Coatings Ag Verfahren zur Herstellung hochschlagfester Schichten
ES2432521T3 (es) 2007-11-27 2013-12-04 Basell Poliolefine Italia S.R.L. Materiales nanocompuestos de poliolefina
EP2231513A2 (en) * 2007-12-21 2010-09-29 Akzo Nobel N.V. A process to make a clay comprising charge-balancing organic ions, clays thus obtained, and nanocomposite materials comprising the same
EP2249967B1 (en) * 2008-01-31 2019-03-13 Ingevity South Carolina, LLC Oxidized and maleated derivative composition
WO2011022175A2 (en) * 2009-08-17 2011-02-24 Basf Se Compositions with improved dirt pickup resistance comprising layered double hydroxide particles
CN102172529B (zh) * 2011-02-14 2012-08-22 北京化工大学 基于可见光响应的水滑石光催化剂及其制备方法
ITMI20111921A1 (it) * 2011-10-24 2013-04-25 Nice Filler S R L Processo di preparazione di una composizione polimerica comprendente idrotalciti intercalate con molecole attive, composizione cosi' ottenuta e articoli formati comprendenti la stessa.
CN102650065B (zh) * 2012-05-08 2014-09-10 淄博职业学院 原位生长于铝基底上的杯芳烃插层水滑石薄膜及其制备方法
CN103774498B (zh) * 2014-02-18 2016-03-23 齐鲁工业大学 一种改性水滑石稳定的akd乳液施胶剂及其制备方法
US10336850B2 (en) 2015-02-23 2019-07-02 Hallibunon Energy Services, Inc. Methods of use for crosslinked polymer compositions in subterranean formation operations
CN105175785B (zh) * 2015-10-21 2018-08-21 浙江百纳橡塑设备有限公司 一种磷氮化合物插层水滑石及其制备方法
CN105199146B (zh) * 2015-10-21 2018-04-03 浙江百纳橡塑设备有限公司 一种水滑石复合阻燃剂及其制备方法
US10214632B2 (en) 2015-12-17 2019-02-26 Indian Oil Corporation Limited Crystallinity modifier for polyolefins
CN107987312A (zh) * 2017-12-07 2018-05-04 中国科学院青海盐湖研究所 一种光稳定剂的制备方法、耐光老化聚丙烯复合材料
CN108047490A (zh) * 2017-12-07 2018-05-18 中国科学院青海盐湖研究所 一种光稳定剂及其制备方法、耐光老化聚丙烯复合材料
CN112426897B (zh) * 2020-10-31 2021-09-21 大连理工大学 一种用于气体分离的体型缩聚咪唑类聚合物混合基质膜及其制备方法
CN114806674A (zh) * 2022-04-24 2022-07-29 北京化工大学 一种稠化剂插层水滑石及制备方法和作为润滑脂稠化剂的应用

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3539306A (en) 1966-07-25 1970-11-10 Kyowa Chem Ind Co Ltd Process for the preparation of hydrotalcite
JPS57200433A (en) 1981-06-05 1982-12-08 Mitsui Petrochem Ind Ltd Polyolefin resin composition
JPS5813643A (ja) 1981-07-20 1983-01-26 Showa Denko Kk ポリオレフイン組成物
JPS5911308A (ja) 1982-07-12 1984-01-20 Mitsui Toatsu Chem Inc アタクチツクポリプロピレンの精製方法
JPS606619A (ja) 1983-06-27 1985-01-14 Kyowa Chem Ind Co Ltd 鉄分欠乏症処置剤及びその製法
SE458047B (sv) * 1986-01-24 1989-02-20 Asea Stal Ab Saett att reglera en pfbc-anlaeggning vid driftstoerning i gasturbinaggregat samt en pfbc-anlaeggning med utrustning foer saadan reglering
EP0318099A3 (en) 1987-11-25 1989-11-15 Union Carbide Corporation Monoalkylene glycol production using mixed metal framework compositions
US4774212A (en) 1987-12-22 1988-09-27 Amoco Corporation Pillared hydrotalcites
US5280065A (en) 1990-02-01 1994-01-18 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Saponified ethylene-vinyl acetate copolymer composition and the use thereof
US5177138A (en) 1990-02-01 1993-01-05 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Resin composition including a saponified ethylene-vinyl acetate copolymer, polyolefin, a graft copolymer and hydrotalcite
US5214090A (en) 1990-02-01 1993-05-25 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Resin composition and use thereof
US5075089A (en) 1990-03-20 1991-12-24 Aluminum Company Of America Method of making pillared hydrotalcites and associated products
DE4133621A1 (de) 1991-10-10 1993-04-22 Inst Neue Mat Gemein Gmbh Nanoskalige teilchen enthaltende kompositmaterialien, verfahren zu deren herstellung und deren verwendung fuer optische elemente
US5216058A (en) 1992-04-02 1993-06-01 Vista Chemical Company Stabilizer compositions for halogen-containing polymers and polymer compositions containing same
US5399329A (en) 1993-07-06 1995-03-21 Aristech Chemical Corporation Hydrotalcite-like materials having a sheet-like morphology and process for production thereof
US5507980A (en) 1993-07-06 1996-04-16 Aristech Chemical Corporation Basic inorganic binders
US5518704A (en) 1993-07-06 1996-05-21 Aristech Chemical Corporation Nickel and cobalt containing hydrotalcite-like materials having a sheet-like morphology and process for production thereof
JP3448906B2 (ja) 1993-07-30 2003-09-22 住友化学工業株式会社 徐放化薬剤組成物
US5578286A (en) 1994-04-29 1996-11-26 Aluminum Company Of America Two powder synthesis of hydrotalcite-like compounds with divalent or polyvalent organic anions
US5728366A (en) 1994-04-29 1998-03-17 Aluminum Company Of America Two powder synthesis of hydrotalcite and hydrotalcite-like compounds with monovalent organic anions
US5728364A (en) 1994-04-29 1998-03-17 Aluminum Company Of America Two powder synthesis of hydrotalcite and hydrotalcite like compounds
IT1269953B (it) * 1994-06-27 1997-04-16 Ciba Geigy Spa Films di poliolefine o copolimeri di olefine con migliorata stabilita' alla luce e resistenza agli insetticidi
EP1029823A3 (en) 1995-06-05 2001-02-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite clay rubber material, composite clay material and processes for producing same
US5698624A (en) 1995-06-07 1997-12-16 Amcol International Corporation Exfoliated layered materials and nanocomposites comprising matrix polymers and said exfoliated layered materials formed with water-insoluble oligomers and polymers
US5849830A (en) 1995-06-07 1998-12-15 Amcol International Corporation Intercalates and exfoliates formed with N-alkenyl amides and/or acrylate-functional pyrrolidone and allylic monomers, oligomers and copolymers and composite materials containing same
US5760121A (en) 1995-06-07 1998-06-02 Amcol International Corporation Intercalates and exfoliates formed with oligomers and polymers and composite materials containing same
US5844032A (en) 1995-06-07 1998-12-01 Amcol International Corporation Intercalates and exfoliates formed with non-EVOH monomers, oligomers and polymers; and EVOH composite materials containing same
US5962553A (en) 1996-09-03 1999-10-05 Raychem Corporation Organoclay-polymer composites
AU743581B2 (en) * 1997-07-04 2002-01-31 Kyowa Chemical Industry Co., Ltd. Synthetic resin composition having resistance to thermal deterioration and molded articles
US5910523A (en) 1997-12-01 1999-06-08 Hudson; Steven David Polyolefin nanocomposites
JP4004160B2 (ja) * 1998-09-21 2007-11-07 協和化学工業株式会社 ウラン(u)含量の少ないハイドロタルサイト類化合物およびその製造法
US6437049B1 (en) * 2001-02-27 2002-08-20 P. Group S.R.L. Process for modifying polypropylene with maleic anhydride
US6979708B2 (en) * 2001-08-23 2005-12-27 Sunoco, Inc. (R&M) Hydrotalcites, syntheses, and uses
US6846870B2 (en) * 2001-08-23 2005-01-25 Sunoco, Inc. (R&M) Hydrotalcites, syntheses, and uses

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518265A (ja) * 2005-12-06 2009-05-07 アクゾ ノーベル ナムローゼ フェンノートシャップ 有機修飾された層状複水酸化物を調製する方法
JP2012526864A (ja) * 2009-05-13 2012-11-01 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング 改善された光学的特性を有する効果水性ベースコート
JP2012526865A (ja) * 2009-05-13 2012-11-01 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング 高耐衝撃性塗膜を形成させるための塗料
JP2018028481A (ja) * 2016-08-18 2018-02-22 国立研究開発法人物質・材料研究機構 メタノール含有判定材料

Also Published As

Publication number Publication date
US20050080177A1 (en) 2005-04-14
WO2003059917A1 (en) 2003-07-24
US20030114699A1 (en) 2003-06-19
US6846870B2 (en) 2005-01-25
CA2471032A1 (en) 2003-07-24
EP1472262A1 (en) 2004-11-03
AU2003216043A1 (en) 2003-07-30
CN1615312A (zh) 2005-05-11
TW200413397A (en) 2004-08-01
US20050080178A1 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP2005515230A (ja) 合成ハイドロタルサイトの合成と使用
US7786202B2 (en) Process for preparing organically modified layered double hydroxide
US7244498B2 (en) Nanoparticles modified with multiple organic acids
EP2794486B1 (en) Modification of layered double hydroxides
Du et al. Thermal properties and combustion characterization of nylon 6/MgAl-LDH nanocomposites via organic modification and melt intercalation
US6979708B2 (en) Hydrotalcites, syntheses, and uses
KR102173253B1 (ko) 마그네슘 아다만탄 카복실산염 및 산화물 나노복합체의 합성
JP2009518265A (ja) 有機修飾された層状複水酸化物を調製する方法
JP2009062214A (ja) 水酸化マグネシウム微粒子及びその製造方法
Kovanda et al. Layered double hydroxides intercalated with organic anions and their application in preparation of LDH/polymer nanocomposites
WO2009005190A1 (en) Hyperbranched organic modifier, method of preparing thereof and organo-modified clay using the same
Rives et al. Layered double hydroxides as nanofillers of composites and nanocomposite materials based on polyethylene
JP7239492B2 (ja) ハイドロタルサイト粒子及びその製造方法、並びにそれからなる樹脂安定剤及び樹脂組成物
Ma et al. Synthesis of PMMA Fibers Incorporated with Mg-Al-LDH with Enhanced Flame Retardant Property via Electrospinning Technology
Yoon et al. Polymer nanocomposite of Mg-Al hydrotalcite-type anionic clay modified with organosulfate
Mohammedi et al. Preparation of polypropylene/bentonite composites of enhanced thermal and mechanical properties using L-leucine and stearic acid as coupling agents
Ramazani SA et al. Preparation of polyethylene/layered silicate nanocomposites using in situ polymerization approach
Zubitur et al. Novel nanocomposites based on poly (p‐dioxanone) and organically modified clays
Carrera et al. Effects of preparation methods of organoclays with polyvinyl alcohol in their compatibility with HDPE. Thermal stability
Teh et al. Mechanical and morphological properties of sterate modified layered double hydroxide blend with polyhydroxybutyrate/poly (lactic acid) nanocomposites
Qiu et al. Polymer–Layered Double Hydroxide Nanocomposites by Emulsion and Suspension Polymerization
NL1025641C1 (nl) Anorganische additieven voor Polymeren.
Coiai et al. Organophilic boehmite nanoparticles by ATRP methacrylates polymerization: Synthesis, characterization and dispersion in polypropylene
Focke et al. Poly (vinyl sulphonate) intercalation into stearate-intercalated layered double hydroxides
Yu Tailoring the Third Dimension of Layered Double Hydroxides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060110

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060526

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320