JP2005513767A - 投影露光機における撮像装置 - Google Patents

投影露光機における撮像装置 Download PDF

Info

Publication number
JP2005513767A
JP2005513767A JP2003553336A JP2003553336A JP2005513767A JP 2005513767 A JP2005513767 A JP 2005513767A JP 2003553336 A JP2003553336 A JP 2003553336A JP 2003553336 A JP2003553336 A JP 2003553336A JP 2005513767 A JP2005513767 A JP 2005513767A
Authority
JP
Japan
Prior art keywords
optical component
optical
axis
drive unit
linear drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003553336A
Other languages
English (en)
Inventor
ジョネス リパート
ウォルフガング ハーメル
ユルゲン フィスハー
カール−ユーゲン アウベレ
エリッヒ マルツ
レイナー ラウル
クラウス リーフ
ステファン スコンガルト
マーカス ネウマイアー
バーベル トロスバック
トールセン ラッセル
ウルリッヒ ウエバー
ミハエル ミュールベヤー
ヒューベルト ホルデラー
アレクサンダー コール
ヨーヘン ウエバー
Original Assignee
カール ツアイス エスエムティー アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール ツアイス エスエムティー アーゲー filed Critical カール ツアイス エスエムティー アーゲー
Publication of JP2005513767A publication Critical patent/JP2005513767A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lens Barrels (AREA)

Abstract


本発明は、少なくとも1つの光学部品(10、33、34)と、該光学部品(10、33、34)を操作するための線形駆動部(11)を有する少なくとも1つの調整装置(9)とを備えたミクロリソグラフィに用いられる投影露光機における撮像装置である。上記線形駆動部(11)は運動軸(17)の方向に相互に対応して移動することが可能な駆動部(14)と非駆動部(15)とを有する。駆動部(14)及び非駆動部(15)は、運動軸(17)を有する機能要素(18)と、運動軸(17)に少なくとも略平行な進行方向を有する機能要素(19)とを介して、少なくとも一時的に相互に連結される。

Description

本発明は、少なくとも1つの光学部品と、該光学部品の位置を操作するための線形駆動部を有する少なくとも1つの調整装置とを備えたミクロリソグラフィに用いられる投影露光機における撮像装置に関連する。
略称としてリソグラフィ光学とも呼ばれる、リソグラフィに用いられる投影露光機のための撮像装置において、特定の画像の性質や収差を正確に設定するために、調整中及び/または操作中においてそれぞれの光学部品が機動的に配置できるようにすることは多くの場合好適に働く。このように、例えば回転対称性撮像システムにおいて、例として回転対称性の屈折対物レンズの場合、回転対称を維持しつつ光学部品を調整することで光方向(z軸の方向として定義される)にレンズを移動し、さらに焦点、三次歪曲、フィールド湾曲、線形コマ収差及び一定球面収差において影響することを可能にする。その上、米国特許第4,961,001号及びドイツ特許第37 33 823から周知のように、レンズ加熱における回転対称の要素だけでなく、例えば内部圧力、大気中の湿度、また長期的な温度勾配をも含む温度における大気的な環境圧力などの回転対称特性の環境的影響などの補正も行なうことができる。
回転対称性画像システムの場合、例えば回転対称性の屈折対物レンズにおいて回転対称の取消及び単色対称の発生に関連して光学部品を調整することで、レンズの偏心、または光方向に垂直な軸を中心としたレンズの傾斜とも呼ばれる、レンズがz軸に対して垂直に、とりわけx−y面において進行することを可能とし、また瞳孔及びフィールドに関連する単色のほぼ対称な非回転対称性収差の輪郭において表れる中心化の誤差に影響するっことを可能にする。これに含まれる例としては、画像のずれ、矢状及び接線の2次歪曲、線形画像表面傾斜及び定コマ収差などがある。さらに、例えば環境圧力の勾配、内部圧力、大気中の湿度及び光方向に垂直な温度などの単色対称の環境的影響を補正することができる。
さらに、平面偏光ミラーまたはビーム分割キューブが備わった反射屈折のリソグラフィ光学において、偏光ミラーやビーム分割表面の位置や傾斜角度を操作できるということは非常に有利となる。反射屈折または反射リソグラフィ光学における凹凸のある反射面においては、回転対称性収差や中心化の誤差を正確に設定するためには変換や傾斜に関する自由の程度を操作することが適切となる。
このような調整装置が備わった撮像装置は、従来の技術によって周知の物である。
米国特許第5,822,133号において説明されている設計を参照として、ある調整装置の詳細をここで例として述べる。参照する特許文献の場合には調整装置はあくまでもz調節装置として設計されている。これは、通常「z」として示される光軸の方向に調節が行なわれるという意味である。この設計では、一方の中にもう一方の部品が収められ、様々な具体案において作動装置によって相互に対応して移動されることができる2つの環状部品から構成される。互いに対応する部品を誘導するための手段として重ね板バネが備わってなり、さらなる改良案においては相互に対応する2つの部品の平行移動を確実に行なうためにダイヤフラムが備わってなる。
しかしながら、とりわけ説明されるような様々な作動装置が用いられる場合などにおける具体案によっては、この設計には決定的な不利点が生じる。例えば、空気圧式作動装置が用いられる場合には、設計において比較的低い剛性しか得ることができない。振動が伝導され、例えばミクロリソグラフィや天文学的用途に使用される非常に重いレンズなどの非常に重い光学部品が用いられる際、上記のように調整装置の剛性が低いと、得られる画質に非常に悪い影響が及ぶという深刻な損害につながる。
さらなる改良案においては、油圧式作動装置の使用が提案されている。この作動装置を使用すれば、上記に記載した空気圧式作動装置よりも遥かに高い剛性が確実に得られる。しかし、油圧式差作動装置は万が一漏れが生じると、調整される部品が一般的には油などである油性流体によって汚染されるというリスクをはらんでいる。このような油性流体による汚染は、とりわけミクロリソグラフィなどにおける高性能対物レンズが使用される場合などには深刻な不利点となると考えられる。このような対物レンズは、通常は特定のガス混合物で充満されるか、適切であれば真空処理が施される。特に油などの油性流体がこの超清浄の内部に浸透すると、光学部品の領域に液体または気体として入り込み、その表面に溶着してしまう。こうなると撮像性質はひどく劣ってしまう。また、これに関して行ないうる浄化に伴う支出は非常に高額である。
さらに、上記に記載の文献には圧電式部品やレバー装置から形成される適切な作動装置が代案的な具体案として説明されている。この場合、装置のレバーはとりわけ一体接合部を介して相互に連結される。このような類の作動装置を用いることで上記に挙げた2つの不利点を回避することができる。この場合、これらの作動装置によって非常に良い解像度を得ることができる。しかし、これらの作動装置には、ほんの僅かな進行しか行なえないという大きな不利点がある。特にすでに上記で何度も記載しているような使用用途によっては、ミクロリソグラフィのための撮像装置において非常に良い解像度を得るための必要条件は、多くの場合、達成しうる解像度に関連して非常に大きな進行を行なうための必要条件に付随する。良い画質を得るためには無視することのできないこれらの必要条件は、上記に記載した米国特許において得ることできず、従って上記のような設計では望ましい画質を得ることができない。
しかし、同様または類似する不利点を持つその他の調整装置は、例としてドイツ特許199 10 947 A1によって説明される。この文献では、光学部品の光軸に沿った移動は、例えば圧電部品などの作動装置と、一体接合部を介して接続されたレバーからなる対応する装置とによって行なわれるという設計が開示されている。
光軸に対して垂直な面において光学部品を操作するための装置は、例としてドイツ特許199 10 295 A1において説明されている。この場合、作動装置によって正確な進行を実現するためには、高額で複雑なレバー装置を介して光学部品を運ぶ取付部の内側環状部品に作用する少なくとも2つの作動装置が必要とされる。レバー装置が均一で且つ十分な剛性を有し、それによって取付部の2つの部品を相互に結合されることを保証するだけでなく、また運動の十分な解像度を保証するためには、生産やとりわけ非常に狭い製造公差を考慮して相当な費用が必要となる。
さらに、日本特許第3064327号において、調整装置によって光学部品の第1グループと光学部品の第2グループが光軸に沿って配置することが可能な設計で形成された光学部品を操作するための装置が開示されている。これら2つの光学部品のグループは、調整装置によって光軸に沿って傾斜動作を行なうこともまた可能である。駆動装置として、電わい部品または磁気ひずみ部品が用いられてもよい。この文献においては回転型作動装置の設計は直接的に明白には開示されていない。
さらなる先行技術として、電気工学、電気通信工学及びオートメーションの分野のための線形駆動部が開示された米国特許6,150,750号を参照とする。線形駆動部は、運動軸の方向に相互に対応して進行する駆動部と非駆動部とを有し、この2つの部分は、部分的には昇降圧電子、また部分的には変形圧電子として形成された圧電子を介して少なくとも一時的に相互に連結される。昇降及び変形圧電子を構成するそれぞれの圧電子スタックは、昇降圧電子によって駆動部に対応して摩擦的に把持されるか、またはそれによって持ち上げられることができる。そして実際の動作は、摩擦的に噛み合わさったそれらのスタックの変形圧電子を介して行なわれる。そうするとその他のスタックへと進行することが考えられ、これによって非常に広い範囲での運動の実現が可能となる。
結果としてこのような設計の線形駆動部は、圧電子を介して把持力を及ぼし、運動軸の方向に線形駆動部の2つの部分に作力を伝えることが可能な作動装置において実用可能となる。これにより、圧電子の選択によっては非常に良い解像度を有し、移動することが可能となることに基づいて、動作において非常に広い許容を持つ線形自動こま送り機構を実施することが可能となる。
従って本発明の目的は、非常に硬性な構成で、調整装置によって行なわれる昇降のための動作の非常に良い解像度の比率を得られる調整装置を備えた、ミクロリソグラフィにおける投影露光機のための撮像装置を創出することである。
本発明によると、上記の目的はミクロリソグラフィ工程における投影露光機の撮像装置において、調整手段として運動軸の方向に相互に対応して進行することができ、運動軸に対して少なくとも略垂直な進行方向を有する機能要素と、作動軸に対して少なくとも略平行な進行方向を有する機能要素とを介して、双方の部分が少なくとも一時的に相互に連結される駆動部と非駆動部とを有する線形駆動部を設けることで達成できる。
上記に説明したような線形駆動部を備えた調整装置の設計は,ミクロリソグラフィ工程のための理想的な調整装置となる。この場合、調整がどの方向で行なわれ、調整装置に線形駆動部がいくつ備わるかということは重要ではない。好適な性質は、本質的には線形駆動部自体の種類に由来する。
このような設計を活用して、用いられる機能要素によって、例えばナノメートルの数分の1という僅かの数値に至る非常に高い解像度を有する構成を想像し、また線形駆動部が作動している間に進行が可能となることから、非常に広い運動範囲を実現することが可能となる。この場合、1:75000またはそれ以上の規模の解像度の比率を得ることが可能だと考えられる。
これらの理想的な性質は、100ニュートンを超える達成可能な非常に高い調整力に伴い、毎秒5ナノメートルという非常に高速の調整速度に関連する。
この線形駆動部の設計はそれ自身ですでに非常に高い剛性を有する。しばしば装置を省くことが可能なため、多くの場合さらに剛性を向上させることも可能である。
全体とした作動は、実質的には線形駆動部による熱の発生なしに行なわれる(Q<10mW)。熱の発生やそれに伴う熱膨張は寸法精度や達成すべき精度の面から見ると大問題につながるため、ミクロリソグラフィのための撮像装置の分野において使用される場合、この特性はとりわけ有利tなる。
さらに、線形駆動部は使用寿命が非常に長く、周知の境界条件の元では構成に要する空間は非常に狭小でよい。
本発明のとりわけ好適な発展案において、機能要素は圧電子として設計される。
この場合上記のような圧電式線形駆動部は、冒頭に記載したようなリソグラフィ光学において設定された非常に高く困難な必要条件を、理想的に満たすことができる。
それぞれが変形圧電子及び昇降圧電子として形成された上記の機能要素は、原則的には高いとされる変形圧電子の解像度によって、昇降圧電子を保持する場合において非常に正確な送り込み(フィード)を可能とする。これによって、ナノメートルの数百分の1から数ナノメートルを範囲とする標準的に必要とされる位置決めの精度を得ることができる。数十から100μmの規模での標準的な光学部品の移動が、線形駆動部をステップ・モードで操作する可能性によって問題なく行なうことができる。進行した合計の経路の精度は、上記に記載されたような精度を有するそれぞれの部品の進行した合計の経路の構成により、上記のような規模となる。このため、線形駆動部は設定される収差及び必要とされる設定決めの精度の範囲から、105から107の規模での機器の必要な位置決め精度に関して最大の進行の比率を得ることが可能となる。
10から100ニュートンの規模での必要とされる位置決め力及び、例えば移送する際などにおいて規模が大きくなることもある衝撃荷重より低い保持力は、操作される光学部品やその取付部の質量による。また圧電式線形駆動部は、これらの保持力及び位置決め力を調整する方向への非常に高い剛性として生じさせることも同様に可能である。この高い剛性は、使用の用途によって数N/μmから数百N/μmの範囲を持ち、とりわけ好適な方法においては、数百ヘルツもの光学部品の機器固有周波数を得ることができる。
最大進行幅と圧電式線形駆動部に必要とされる機器の位置決め精度は高比率であるため、とりわけ好適な方法において線形駆動部はギアのない設計で形成されてもよい。これによって、リターン・マッチを回避するか、または最小限に留めることができ、望ましい動作の方向に対して垂直方向への寄生的な動作が抑えられる。
上記の事柄を理想的な方法で実現するためには、駆動部は光学部品にできる限り隣接して配置しなければならず、これによって構成に要する空間は実質的に制限される。よって、例えば屈折装置の場合などでは駆動部が対物レンズの円柱形の外側容器に完全に一体化されることが有利となる。圧電式線形駆動部は、原則的には可能とされる非常にコンパクトな設計により、それぞれの駆動部におけるそれぞれの方向の寸法は僅か数センチメートルである。これによって、一体化はとりわけ好ましい方法で容易に行なうことが
可能となる。
ミクロリソグラフィの分野において必要とされる適切な高画質を得るには、光学部品の領域における熱膨張や圧力はどんなことがあっても回避しなければならず、圧電式線形駆動部をレンズ取付部と一体化して形成することで、結果として熱の発生を低下させることにつながる。周知のように圧電子は熱の発生が低いため、それぞれの圧電式線形駆動部における熱発生を10ミリワット以下に抑えることができる。このような観点から見ても、圧電式線形駆動部を光学部品の領域における撮像装置に組み入れても何ら支障は生じない。
リソグラフィ光学の分野において、通常はそれぞれの露光の合間に数μm/sという調整速度が必要とされる。通常の調整は、圧電式線形駆動部のアナログモード、すなわち変形圧電子または昇降圧電子の上昇動作または下降動作によって行なわれる単純調整で十分なほどの小さな調整経路で行なわれることで、変形圧電子は反応が非常に早くなり、この要件を満たすことが可能となる。
これとは対照的に、10年以上に及ぶ装置の耐用年数の間中、全ての運動範囲における操作が必要とされる。圧電式線形駆動部は移動範囲の一方の端にそれぞれを好適に保持することが電圧に永続的につながれることなくできるため、上記の事柄は圧電式線形駆動部を用いることで達成することが可能である。ここでも同様に、操作状態を大幅に損なうことなく耐用年数に渡って発生する圧電式線形駆動部の電圧の平均を低くなるよう選択することもできる。これらのことは、耐用年数及び長期の信頼性において非常に有利な効果を有する。
さらに、圧電式線形駆動部は自動ロック式に設計されることも可能で、下記に述べられるような、すなわち電圧を受けずとも位置を維持していられるという応用例に応じて設計されているため、移動の際に有利となる
上記に説明したような性能を有する圧電式線形駆動部は、ミクロリソグラフィに用いられる投影露光機の調整作業に不可欠な必要条件を理想的に満たしている。本件では、実際に行なわれる調整作業やそれに関連する運動の方向に関係なく、これらの必要条件は基本的に常に同じである。本発明による圧電式線形駆動部の使用によって、撮像装置で実行しうる実質的に全ての操作工程、とりわけ光学部品のx、y及びz方向の3つの直交方向における操作のみならず、これらの方向に対して傾斜及び/または回転する際において、上記で説明した全ての必要条件に関して、有益性が生まれる。
本発明の好適な発展案や改良案は、従属請求項及び図面を参照として下記に原則的に説明された模範的具体案によって説明される。
ミクロリソグラフィに用いられる投影露光機1は図1において示される。この機器は、写真感光材に覆われた、例えばコンピューターチップなどの一般的には概ねシリコンからなり基板2と呼ばれる基材上に構造体を露光するために用いられる。
この具体例において、投影露光機1は基本的には照射システム3、マスクを保持し正確に配置するための格子型の構造を有する保持体4、基板2に写された後の構造を測定するいわゆる焦点板5、上記基板2を保持し、移動し、正確に配置する保持体6及び撮像装置7から構成される。
この例において、基本的には焦点板5に置かれた構造体は、とりわけ実物の3分の1かそれ以下に縮小して基盤2の上に露光されるという機能原理で作動する。この場合この投影露光機1、中でも撮像装置7に要される解像度に関する必要条件は、サブμmの範囲内であるということである。
露光が行なわれると、焦点板5によってそれぞれ所定された構造を有する複数のフィールドが同一の基板2に露光されるように基板2は移動される。基板2の表面全てが露光されると、基板2は投影露光機1から取り出され、一般的にはエッチングによる物質の除去などの様々な化学的処理工程が行なわれる。適切であれば、上記の露光及び処理工程は基板2に複数のコンピューターチップが作られるまで次々に繰り返されてもよい。投影露光機1における基板2の段階的な送り出し動作から、投影露光機は自動こま送り機構とも呼ばれる。これとは対照に、基板スキャナーの場合、全体とした焦点板構造の撮像を可能にするため、焦点板5は基板2に対応して移動されなくてはならない。
ここでは原則的に例えば光やこれに類似する電磁性放射線などの照射ビーム8が1つのみ描かれているが、照射システム3は焦点板5を基板2に撮像するために必要な照射放射線を発光する。この放射線の元として、レーザーやその類が用いられてもよい。焦点板5に作用する際に照射放射線はテレセントリック光学、均等偏光、領域や角度に関連した線形伝導、相互と対応して可能な限り低いビームの整合性やその類に関連した望ましい性質を有するように、光学部品によって照射システム3において形成される。
焦点板5の画像は照射ビーム8によって生成され、すでに上記で説明したように撮像装置7によって基板2に適切に縮小され伝導される。対物レンズとして示される撮像装置7は、この場合例えばレンズ、鏡、プリズム、平面板やその類の、複数の個々の反射、屈折及び/または回折光学部品から構成される。
また撮像装置7の一部は、ここでは概念的にしか示されていないが、少なくとも1つの調整装置9を形成してなる。この調整装置は、結果として得られる画質を向上させるために、それが連結される光学部品10の位置を操作する機能を持つ。本件においてこの調整装置9は線形駆動部11からなり、この線形駆動部11は光学部品10に永続的に連結され、撮像装置に対応して移動が可能な調整装置9の可動部品12によって、撮像装置7に永続的に連結された固定部品13に対応して移動することが可能となる。
図2において原則的に開示される線形駆動部11は、駆動部14と非駆動部15とから構成される。図面に原則的に示されるように、非駆動部15は固定部品13に永続的に接続される。駆動部14は可動部品12に連結される。本件において可動部品12と駆動部14との連結は、凹部に配置された連結ピン16によって線形駆動部11の運動軸17に対して垂直な動きに関連して連結が分断されるように実施される。
ここで説明される具体案における線形駆動部11において、駆動部14と非駆動部15との連結は8つの異なる機能要素によって行なわれ、その内の少なくとも4つは2つの部品14及び15を摩擦つかみによって一時的に相互に連結する。それぞれの場合において、4つの機能要素は運動軸17に対して垂直な活動方向を有するように設計される。これらの機能要素は図2において参照符号18で示される。運動軸17の方向に沿った進行方向を有するその他の機能要素は、上記の機能要素18と駆動部14及び非駆動部15の間に配置される。これらの機能要素は参照符号19で示される。
特に好適な具体案において、機能要素18,19は圧電子として形成されてもよい。その場合、参照符号18で示される機能要素は昇降圧電子として形成され、参照符号19で示される機能要素は変形圧電子として形成される。このような構成は結果として、図3aから図3fの内容にて以下に説明されるような運動サイクルを可能とする。
ここで説明される模範的具体案において示されるように、駆動部14が非駆動部15に対応して運動軸17の方向に沿って平行運動が行なえるように、2つの領域14及び15の間で平行誘導が生じるのを回避することが可能となる。ここで説明される具体案において平行誘導は、特に一体接合部などの連接部を介して駆動部14及び非駆動部15にそれぞれ連結された2つの棒状部品20から構成される。これによって、駆動部14は非駆動部15に対応して平行方向に、すなわち運動軸17の方向に移動することが保証される。
図3aから3fを参照として、線形駆動部11の運動サイクルは以下にさらに詳細に説明される。
図3aでは、原則的例証として機能要素18、19と共に駆動部14及び非駆動部15が開示されている。4つの昇降圧電子18によって、駆動部14は非駆動部15に関連して固定される。運動サイクルにおける次の工程は図3bにおいて示され,昇降圧電子18がまだ固定されている領域に位置する2つの変形圧電子19によって、駆動部14を非駆動部15に関連して移動することが可能となるように、昇降圧電子18の内の2つが開かれ、すなわち連結が解かれる。この動きは図3cにおいて原則的に示される。図3dにおいては、非駆動部15に関連して駆動部14の非常に大きな運動が望ましい場合における次の工程が示されている。駆動部14は、昇降圧電子18の新たに行なわれる動作によって再びしっかりと固定される。3eにおいて示されるように、その他の2つの昇降圧電子18によって行なわれていた固定は解かれる。そして3fにおいては、これを受けて駆動部14が変形圧電子19の動作によって移動されるという次の工程が示されている。
上記の運動サイクルの原理は、あらゆる望ましい方向で所望なだけ繰り返し行なわれてもよい。固定された状態において、本件における線形駆動部11は非常に高い精度の動作を行い、これは変形圧電子19の精度に由来する。このような極めて高い精度に加えて、昇降圧電子18によって非常に広い範囲での運動を行なうことが可能となり、運動範囲に関して理想的な比率の解像度を得ることが可能となる。
本件において、上記で説明されたような線形駆動部11の動作とは異なる類の動作を考えることは根本的に可能である。線形駆動部11が自動ロック式であることが望ましい場合には、バネ手段(図示なし)を介して機能要素18、19に駆動部14に向かって圧縮応力(プレストレス)が加えられるよう設計されてもよい。これによって、機能要素18,19は常に、すなわち作動していない状態においても、摩擦的に連結した状態に保たれ、固定されることによって非駆動部15に関連した駆動部14の位置を保持する。昇降圧電子18を作動することによって、駆動部14と非駆動部15との間に摩擦的な連結がもはや存在しないまでに、これらの作動する昇降圧電子18の領域において上記の固定は解除される。さらなる工程は、すでに上記に記載した方法で実現できる。それに加えて、圧電子に加えられる圧縮応力によって圧電式の機能要素18、19の耐用年数を引き伸ばすことができるため、この設計はとりわけ好適となる。しかし、駆動部14と非駆動部15との固定が昇降圧電子18の能動通電のみによって行なわれるよう、原則的には他の設計を考慮することもまた可能である。
これによって上記のような線形駆動部11は、関連するのが光軸に垂直な操作であれ、傾斜操作であれ、光軸に垂直な面における操作であれそれとは関係なく、明細書の冒頭部に既に説明されたような、撮像装置7の領域における操作に要されるより高い要求に適する。写真平版の工程において用いられる要素がそれらの位置に関して操作されなければならないミクロリソグラフィにおける実質的に全ての範囲に適した動作を有する上記に記載の線形駆動部11の非常に一般的な適応力に基づいて、以下に説明する図ではミクロリソグラフィのための撮像装置7のフィールドから、線形駆動部11の適用をこれらの特定された操作の用途に制限することのない3つの例証の原理を検証することを目的とする。
図4において開示されるのは、ここで選択された模範的な具体案ではレンズ10とされる光学部品10を操作するために用いられる調整装置9の光軸21に沿った断面図である。光学部品10の、通例的に“z”で示される光軸21の方向への単純運動に付け加えて、光学部品10を傾斜することもまた考慮できる。
操作を行なうために、本例においては光学部品10を運ぶ可動式の内側環状部として示される可動部品12は、本例では固定式の外側環状部として示され撮像装置7に連結される固定部品13の方向に、ここでは原則的に2つしか描かれていないが、例えば3つの線形駆動部11を介して接近されてもよい。
可動部品12を固定部品13に関連して誘導するために、模範的具体案である本例では円周に渡る一体接合部23によって固定部品13と可動部品12の両方に連結された環状部品22が備わる。可動部品12は、光軸21に対して少なくとも略平行に運動軸17が通る線形駆動部11によって固定部品13と関連して移動することができ、環状部品22は運動軸17に垂直な面において偏光が生じないように、可動部品12に誘導されることができる。
誘導部の厳密なる設計は、本例の説明においてはほんの補助的な役割しか持たないので、ここでは環状部品22の壁面は比較的厚く形成されるとしか説明を付さない。結果として、実質的に環状部品22にはどんな類の変形も起こらない。この誘導部の領域で起こる変形の全ては円周における一体接合部23の領域において起こる。これらの一体接合部23は非常に正確で明確な位置に設けられるので、上記のような誘導部の動作は環状部品22から正確に、そして非常に容易に前もって特定することができる。さらにこの設計を非常に高い剛性で形成することも可能であり、これによって非常に高い固有周波数の設計となる。
このように設計された調整装置9の平面図が図5において示される。この例でも再び見られるのは固定部品13と光学部品10と連結された可動部品12である。可動部品12及び固定部品13の誘導は環状部品22を介して行なわれる。環状部品22の下方部に配置されるのは、ここでは三角形で示された3つの線形駆動部11である。これに加えて見受けられるのは、図では楕円形の形状で原則的に示された3つのセンサー24である。センサー24はそれぞれ相互に対しては120度の角度で、線形駆動部11に対しては60度の角度でそれぞれ配置される。固定部品13に関連した可動部品12の正確な位置はセンサー24によって特定することができる。センサー24は、例えばガラス測定スケールによって付加的または絶対的に位置変動を検知できる光学センサー24として形成されてもよい。このようなセンサー24は市販されている部品であるので、その操作形態はここでは詳細には検証しない。
調整装置9の非常に剛性な設計に関連して、3つのセンサー24と、3つの線形駆動部11と誘導部としての環状部品22を組み合わせることで、光学部品10の光軸21の方向における的確に制御可能な位置決め及び/または光軸21に相対的な傾斜を行なうことが可能になる。光軸21に対して垂直な面における光学部品10の位置決めは、本例の場合誘導部によって確実に行なわれ、結果として非常に剛性で固有周波数の領域において振動及び/または励起の影響を受けにくい設計となる。
上記で説明したように設計された調整装置9は、ミクロリソグラフィに用いられる投影露光機1本例では、とりわけ撮像装置7において必要とされる非常に高い要件を満たすことが可能である。この設計において理想的な補助部品となるのは、一方では非常に高い精度を有し、また一方では非常に広い運動範囲を有し、すなわち非常に大きな運動行程を行なうことが可能な線形駆動部11である。ミクロリソグラフィにおける使用において調整装置9をこのようにz−及び/または傾斜する場合、解像度に要される必要条件は、±80から200μmの移動に対して大体0.3から0.8ナノメートルである。本例におけるどの場合においても、達成すべき剛性は12−18N/μmよりも大きくなくてはならない。本件においては必要とされる調整力は100ニュートン以上とされるが、線形駆動部11をもってすれば問題ではない。本件の使用のためには線形駆動部11は自動ロックが可能に設計されなくてはならないのだが、これは上記ですでに説明したように圧電子18、19に適切に圧縮応力を加えるという理想的な設計を用いることで、何ら問題なく実現可能である。この自動ロックは、例えば衝撃荷重などの場合において、調整力の6倍から8倍の規模での作力で働くことが要される。
これら全ての前提条件は、上記に説明した設計に対応した組み合わせによって理想的に達成することができる。
上記の模範的具体案において光学部品10として示したレンズに加えて、例えば鏡などの他の光学部品10を用いた類似的な設計を考慮することももちろん可能である。多少粗い解像度でより広い運動範囲である場合には、このような使用の目的のために概ね同等の境界条件が得られる。しかし、この場合必要とされる剛性は高くなくてはならない。しかい、おおよそ8から12ナノメートルの粗い解像度に関連して、ブランク20の領域における一体接合部の適切な設計によって得ることができる。
図6は、光軸21に対して垂直な面における光学部品10を操作するための調整装置9のさらなる具体案の平面図を示す。本例では例としてレンズとする光学部品10は、内側環状部品、すなわち調整装置9の可動部品12の変形によって分断されるような周知の方法で、突起部によって支持される。本例では外側環状部とされる固定部品13と内側環状部12はここで示される例においては一体として形成され、内側環状部12と外側環状部13との間のフレキシブルな連結部は、内側環状部12と外側環状部13の間に形成された円周の溝部25とその間に備わったL字型の形状を有する接続部品26とのシステムによって形成される。L字型の形状を有する接続部品26は、一体接合部として形成される。原則的に示された旋回接合部27及び2つの線形駆動部11に加えて、上記のシステムは内側環状部12と外側環状部13との間の唯一の接続を構成する。
円周の分断切込部によって一体成形の基本形態に組み込まれる溝部25は、L字型の形状を有し僅かな間隔をもって互いの隣に配置される2つの分断切込部によって等間隔で中断され、この結果として接続部品26はL字型の切込部の間におけるウェブとして形成される。さらに、旋回接合部27もこれと同様に円周の溝部25をずらしたり重ね合わせたりすることで形成され、旋回接合部27はこの領域において重なり合った円周の溝部25との間にウェブを有する。ここで描かれる内側環状部12と外側環状部13は一体化された構成を有する代わりに、溶接、接着またはハンダ付けされる部品の形態の接合部によって連結を行なうこともまた可能である。
外側環状部13と内側環状部12の間における比較的大きな切欠部(本例では図示されていない)の構成によって、円周における溝部25は2つの相反する点において中断される。いずれの場合にも線形駆動部11のうち1つは2つの切欠部に配置される。またいずれの場合も駆動部14は外側環状部13に連接され、非駆動部15は内側環状部12に連接される。図6に原理を示した例証においては詳細には示されていないが、このような設計は調整装置9の操作モードを変更することなく、全く逆の方法で設計されることも可能である。調整装置9は、最適化された力の閉鎖(クロージャ)及び安全性を有する構成で設計される。
以下に記載の条件及び配置は、x−/y−面における外側環状部13に関連して内側環状部12の設定された望ましい配置を行なうために考慮されたい。
線形駆動部11の運動軸17の作用点において、接線T1とT2とが旋回接合部27におけるT3に交差するよう内側環状部12を移動させるために、旋回接合部27は線形駆動部11の2つの作用点の間に配置される。この場合上記の2つの交差点は、第1に一方の線形駆動部11によって内側環状部12をx方向へ移動させるための回転中心点を形成し、第2にもう一方の線形駆動部11によって内側環状部12をy方向へ移動させるための回転中心点29を形成する。これに併せて、回転中心点28及び回転中心点29から中点または光軸21までのそれぞれの2つの半径30、31は、相互に対して直角になるよう構成される。光軸21の周辺の少なくとも狭小な領域32(図6の点線で図示された個所)において、2つの半径30、31は2つの調整軸となり、半径31はx軸を形成し半径32はy軸を形成する。
第1線形駆動部11が作動する際は、内側環状部12は回転中心点28の周りを回転し、第2線形駆動部11が調整を行なう間は、内側環状部12は回転中心点29の周りを回転する。これは厳密に言うと、線形のx運動またはy運動は結果として生じず、半径30、31の半径は本質的に想定された調整動作よりも大きくなるため、x−y面における準線形運動は、内側環状部12の移動面に対応するすでに上記で説明した領域32において行なわれるということを意味する。さらなる特別な荷重のために調整動作を再設定して剛性を上げるために、適切であれば一方の端部が外側環状部13によって支持された重ね板バネ(図示なし)がそれぞれ内側環状部12に作用するよう設計することも可能である。
円周の溝部25及び連結部品26の配置及び構成は、結果として光軸21(x軸)に対して垂直な面(x−y面)において高い弾性を生む。さらに、z方向への高い剛性が備わる。これはとりわけ、z方向へ適切な長さを有することでz方向への高い剛性を保証する連結部品26のL字形状に由来する。連結部品26のように、旋回接合部はこの模範的な具体案において一体接合部を構成する。しかし、外側環状部13に関連して内側環状部12の移動を行なうために、他の類の接合部を用いることももちろん可能である。ここでは,旋回接合部の代わりに第3の線形駆動部11を用いることが特に考えられる。これによって規定された面における2つの軸x及びyの角度位置は可変となる。
直角に移動する性質を要しない場合には、回転中心点28、29及び旋回接合部27の配置だけでなく、適切であれば第3線形駆動部11の上記のような配置を、異なる方法で行なってもよい。
上記で説明したような方法で設計された調整装置9は、ミクロリソグラフィに用いられる投影露光機1の領域、本件においては特に撮像装置において要される非常に高い必要条件を満たすことができる。このような設計において理想的な補助部品となるのは、一方では非常に高い精度を有し、一方では非常に広い範囲での運動行程が可能となる非常に広い運動範囲を有する線形駆動部11である。ミクロリソグラフィにおいて用いられるこのようなx/y調整装置9の場合、±1から2ミリの移動のために要される解像度は大体15から25ナノメートルである。要される剛性は、いずれの場合も5N/μm以上である。この場合要される調整力は30ニュートン以上であるのだが、線形駆動部11をもってすればこれは問題なく達成できる。この場合の使用のために、線形駆動部11は自動ロック式に設計されることが可能でなければならないが、すでに上記で説明したように圧電子18、19に適切な圧縮応力を加える理想的な形態を用いることで問題なく行なうことができる。また例えば衝撃荷重などの場合において、自動ロックは調整力の6倍から8倍の規模での作用力を有することが要される。
これら全ての前提条件は上記に記載したような設計に応じた組み合わせによって理想的に達成することが可能となる。
次に図7において説明されるのは、本例においては鏡とされる光学部品10を操作する働きを持つ更なる調整装置9である。本例では調整装置9の設計は基本原理に戻って非常に簡略化されており、この例証となる具体案では光学部品10のカルダン式懸架(cardanic suspension)が含まれてなる。調整装置9における光学部品10のカルダン式懸架は、線形駆動部11が光学部品10を固定された支持点を中心に移動し、このようにして光学部品10を傾斜させる場合における調整装置9の全ての種類における原理のほんの一例として示しただけである。
さらに光学部品10は、ここで示した平面鏡に加えて、凹面鏡、プリズム、ビーム分割キューブ、またはその類のものであってもよく、投影露光機1における撮像装置7の操作モードを最適化するためにはその操作、中でもとりわけ傾斜操作が必要とされる。
図7及び図8において描写される模範的な具体案における調整装置9は、本例ではその光学部品10が支持部及び旋回点33を介して可動式の中間クレーム34に連結される可動部品12に永続的に連結されるように設計される。この中間フレーム34はさらなる2つの支持部及び旋回点35を介して調整装置9の固定部品13に連結される。相互に関連したそれぞれの支持点33,35の接続線の図7で見られるような直角の構造は、結果としてそれ自体が周知であるカルダン式懸架を形成し、図8で見られるように光軸21に対する光学部品10の傾斜を可能にする。この場合、必要な線形駆動部11は、図7においてこれより前の図と同様に三角形によって原則的に示される。
図8における断面図の原理において、線形駆動部11はその運動軸17と共に今一度さらに詳細に図示されている。中間フレーム34は、線形駆動部11の1つを介して支持点35によって形成された回転軸を中心に操作することができる。ここで原則的に示した模範的な具体案において、中間フレーム34を線形駆動部11に対して押圧し、これによって線形駆動部11と中間フレーム34との間の接続を断続的に再設定し、ゼロ反動することを可能にするバネ装置36が示されている。中間フレーム34と可動部品12の間に配置される線形駆動部11もこれと同様の機能を持つ。復元力をその他の手段によって作り出すことももちろん考えられる。例えば、重力を用いて回転軸の偏心的な配置を再設定することも可能である。
図7及び図8によって表された設計は、線形駆動部11の使用の可能性を原則的に示すことを意図とし、前述の図面に関連して説明したように1つまたはそれ以上の線形駆動部11が支持点として機能する場合、或いは1つまたはそれ以上の固定支点または支持点33、35を中心として光学部品10を操作するのに線形駆動部11が用いられる場合におけるその他のあらゆる設計を考えることももちろん可能である。
以下の図9aから10bでは、撮像装置7の領域においてより高い画質を得るためのさらなる可能性を示している。
本発明者によって行なわれたレンズ加熱による収差の分析によって、軸外フィールドを有する光学部品10の場合、例えば正方形のフィールド輪郭におけるフィールド湾曲や非点収差などの回転対称の誤差の後に生じるエラーの最大の割合を占めるのはアナモルフィック歪曲などの二色型収差ではなく、例えば矢状及び接線の歪曲や定コマ収差などの単色収差であることが判明した。以下に記載の説明はコマ収差に関する。
図9aにおいて2つのレンズ10及び10'から構成される光学システムが開示される。物点Oをスタート点として、レンズ10、10'を通過する光線の経路が図示されている。光束の範囲を定めるためにダイヤフラム37が備えられる。この例において、レンズ10'は光軸21に垂直な軸に対して約12度の角度で傾斜される。光線が2つのレンズ10、10'を通過し終わったら、光線は再び物点O'において交差する。その他の収差に加えて、レンズ10'の傾斜によって軸点O'のコマ収差が誘発される。
像点O'の周辺における焦線の拡大図が図9bにおいて示される。レンズ10'の傾斜に関連して物点Oはレンズ10及び10'によって点状の方法では撮像できないことがここで明白に分かる。全幅38と縁桁39は焦点または像点O'では交差しない。この結果として生じるのは、またの名をコマ収差とも呼ばれるコメット・テールを表す物点O'の非対称で不明確な画像である。
これらの収差に加えて横断歪曲も補正するために、本発明において新たに開発されたz調整装置9を傾斜する方法をここで役立てることが可能となる。これはレンズ10がz調整装置として設計されている図10aにおいて実行されている。この例示とした具体案においては光線の経路の描写を簡略化するためにレンズ10に対応するz調整装置9の図解は省略されている。まずレンズ10は0.75度の角度で傾斜される。図10bで示されるように、このような光学システムの設計はレンズ10'を傾斜することによって光軸21において生じるコマ収差を広い範囲で補正する。図10bにおける拡大された焦線は、全幅38と縁桁39が像点O'において交差するため、実質的には補正されたコマ収差を表す。このシステムに関しては、2つのレンズ10及び10'が激しく傾斜されることでその他の収差が起こることが予想できる。しかし、光学コンピューター・プログラムを用いて事前にシミュレーション計算を実施することでこれを防ぐことができる。
詳細には、定コマ収差または横断歪曲などの非対称レンズ加熱による収差は、光軸21に垂直にレンズ10を移動するか、またはレンズ10を傾斜することで補正することが可能となる。
使用の目的によって、操作されるレンズはそのための設計に特別に製造されたものとする。感度分析を実施して、その結果を検討することで、z調整装置9としても、傾斜によって単色の誤差(コマ収差、歪曲)を補正するにも両方に適したレンズを選択することが可能である。これらを使用することで、本質的により良い画質を得ることができる。
本発明によるz調整装置9は、さらに従来の調整装置の不完全な操作によって、システムに不注意で起こってしまった誤差を補正することを可能とする。
このように、上記のような調整装置9を用いることで同様に単色収差までも補正することが可能となる。レンズ10の操作は、光軸21に沿ったレンズ10のz配置またはレンズ10の傾斜によって単独的にまたは組み合わせて行なうことができる、これによって、レンズ加熱によって生じる非対称収差を補正することもまた可能となる。
写真感光材に覆われた基板に構造体を露光するために使用される、ミクロリソグラフィ工程に用いられる投影露光機を原則的に示した概略図である。 線形駆動部を原則的に示した図である。 図2に対応した線形駆動部の作動原理を示した図である。 光学部品をその光軸方向に操作するための調整装置の原理を示した図である。 図4に対応した調整装置の平面図である。 光学部品をその光軸に対して垂直な面において操作するための調整装置の原理を示した図である。 2つの軸を中心に鏡を操作するための可能な装置の原理を示した平面図である。 図7においてVIII−VIIIで示される線に対応した断面図である。 コマ収差が補正されていない場合における2つのレンズを備えた光学装置を示した図である。 図9aで示されたコマ収差の焦線の拡大図を示した図である。 コマ収差が概ね補正された場合における図9aで示された光学装置を示した図である。 図10aで示された概ね補正されたコマ収差の焦線の拡大図を示した図である。
符号の説明
1 投影露光機
2 基板
3 照射システム
4 保持体
5 焦点板
6 保持体
7 撮像装置
8 照射ビーム
9 調整装置
10 光学部品
11 線形駆動部
12 可動部品
13 固定部品
14 駆動部
15 非駆動部
16 連結ピン
17 運動軸
18 昇降圧電子
19 変形圧電子
20 棒状部品(ガイド手段)
21 光軸
22 環状部品
23 一体接合部
24 センサー
25 溝部
26 接続部品
27 旋回接合部
28 回転中心点
29 回転中心点
30 半径
31 半径
32 領域
33 支持点
34 中間フレーム
35 支持点
36 バネ装置
37 ダイヤフラム
38 全幅
39 縁桁
1 接線
2 接線
3 接線
O 物点
O' 像点

Claims (8)

  1. 少なくとも1つの光学部品(10)と、該光学部品(10)の位置を操作するための線形駆動部(11)を有する少なくとも1つの調整装置(9)とを備え、
    上記線形駆動部(11)は、運動軸(17)の方向に相互に対応して進行することが可能な駆動部(14)と非駆動部(15)とを有し、該駆動部(14)及び非駆動部(15)は上記運動軸(17)に対して少なくとも略垂直の進行方向を有する機能要素(18)と、運動軸(17)に対して少なくとも略平行の進行方向を有する機能要素(19)とを介して、少なくとも一時的に相互に連結されることを特徴とする半導体製造におけるミクロリソグラフィ工程に用いられる投影露光機における撮像装置。
  2. 上記機能要素(18、19)は圧電子として形成されることを特徴とする請求項1に記載の撮像装置。
  3. 上記駆動部(14)及び非駆動部(15)はガイド手段(棒状部品20)を介して相互に連結されることを特徴とする請求項1または2に記載の撮像装置。
  4. 上記光学部品(10)は可動部品(12)に永続的に接続され、該可動部品(12)は撮像装置(7)に永続的に接続される固定部品(13)に少なくとも1つの線形駆動部(11)を介して接続されることとし、このような構成によって上記光学部品(10)が位置操作されることを特徴とする請求項1〜3のいずれか1項に記載の撮像装置。
  5. 上記調整装置(9)は、光学部品(10)における光軸(21)に対して少なくとも略平行に位置する運動軸(17)を有する3つの線形駆動部(11)を備え、上記光学部品(10)の位置は少なくとも3つのセンサー(24)によって探知され、上記光学部品(10)の位置操作は光軸(21)方向の動作のみによって制御することが可能であることを特徴とする請求項1〜4のいずれか1項に記載の撮像装置。
  6. 上記調整装置(9)は、上記光学部品(10)における光軸(21)に対して少なくとも略平行に位置する運動軸(17)を有する3つの線形駆動部(11)を備え、上記光学部品(10)の位置は少なくとも3つのセンサー(24)によって探知され、上記光学部品(10)の位置操作は傾斜動作によって制御することが可能であることを特徴とする請求項1〜5のいずれか1項に記載の撮像装置。
  7. 上記調整装置(9)による上記光学部品(10)の操作は、光学部品(10)における光軸(21)に対して垂直な面に位置する動作線を有する少なくとも2つの線形駆動部(11)によって行なわれ、上記光学部品(10)の操作は光軸(21)に垂直面と同一面、または垂直面と平行面において行なわれることを特徴とする請求項1〜4のいずれか1項に記載の撮像装置。
  8. 上記光学部品(10)は、少なくとも1つの線形駆動部(11)を介して光学部品(10)が取り付けられた点または軸(支持点33または35)を中心に回転することが可能であることを特徴とする請求項1〜4のいずれか1項に記載の撮像装置。
JP2003553336A 2001-12-19 2002-12-17 投影露光機における撮像装置 Pending JP2005513767A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10162289 2001-12-19
DE10225266A DE10225266A1 (de) 2001-12-19 2002-06-07 Abbildungseinrichtung in einer Projektionsbelichtungsanlage
PCT/EP2002/014380 WO2003052511A2 (de) 2001-12-19 2002-12-17 Abbildungseinrichtung in einer projektionsbelichtungsanlage

Publications (1)

Publication Number Publication Date
JP2005513767A true JP2005513767A (ja) 2005-05-12

Family

ID=7709733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003553336A Pending JP2005513767A (ja) 2001-12-19 2002-12-17 投影露光機における撮像装置

Country Status (8)

Country Link
US (5) US7304717B2 (ja)
EP (1) EP1456891B1 (ja)
JP (1) JP2005513767A (ja)
KR (1) KR100895833B1 (ja)
CN (2) CN101308333B (ja)
AU (1) AU2002363876A1 (ja)
DE (1) DE10225266A1 (ja)
WO (1) WO2003052511A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205428A (ja) * 2006-11-07 2008-09-04 Carl Zeiss Smt Ag 位置の操作および/または決定のための運動部材を有する光学装置
CN102207686A (zh) * 2010-03-29 2011-10-05 卡尔蔡司Smt有限责任公司 投射照明系统的光学布置的定位方法
JP2011528857A (ja) * 2008-07-22 2011-11-24 カール・ツァイス・エスエムティー・ゲーエムベーハー アクチュエータおよび投影露光システム
JP2014517525A (ja) * 2011-05-30 2014-07-17 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ用の投影露光装置の光学素子を動かす方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10225266A1 (de) 2001-12-19 2003-07-03 Zeiss Carl Smt Ag Abbildungseinrichtung in einer Projektionsbelichtungsanlage
US7486382B2 (en) * 2001-12-19 2009-02-03 Carl Zeiss Smt Ag Imaging device in a projection exposure machine
EP1643543B1 (en) 2003-07-09 2010-11-24 Nikon Corporation Exposure apparatus and method for manufacturing device
US6977461B2 (en) * 2003-12-15 2005-12-20 Asml Netherlands B.V. System and method for moving an object employing piezo actuators
WO2006000352A1 (de) 2004-06-29 2006-01-05 Carl Zeiss Smt Ag Positioniereinheit und vorrichtung zur justage für ein optisches element
US7782440B2 (en) * 2004-11-18 2010-08-24 Carl Zeiss Smt Ag Projection lens system of a microlithographic projection exposure installation
KR101332497B1 (ko) 2005-01-26 2013-11-26 칼 짜이스 에스엠테 게엠베하 광학 조립체를 포함하는 마이크로-리소그래피의 투사 노광기
WO2006133800A1 (en) 2005-06-14 2006-12-21 Carl Zeiss Smt Ag Lithography projection objective, and a method for correcting image defects of the same
US20070013889A1 (en) * 2005-07-12 2007-01-18 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby having an increase in depth of focus
JP5069232B2 (ja) * 2005-07-25 2012-11-07 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光装置の投影対物レンズ
DE102006039821A1 (de) * 2006-08-25 2008-03-13 Carl Zeiss Smt Ag Optisches System, insbesondere ein Projektionsobjektiv oder ein Beleuchtungssystem
DE102008047562B4 (de) 2008-09-16 2012-11-08 Carl Zeiss Smt Gmbh Vorrichtung zur Dämpfung von Schwingungen in Projektionsbelichtungsanlagen für die Halbleiterlithographie
DE102009009221A1 (de) 2009-02-17 2010-08-26 Carl Zeiss Smt Ag Projektionsbelichtungsanlage für die Halbleiterlithographie mit einem Aktuatorsystem
US8711186B2 (en) * 2011-05-02 2014-04-29 Microvision, Inc. Scanning projection apparatus with tangential compensation
WO2013050081A1 (en) 2011-10-07 2013-04-11 Carl Zeiss Smt Gmbh Method for controlling a motion of optical elements in lithography systems
FI20116111L (fi) * 2011-11-10 2013-05-11 Sensapex Oy Mikromanipulaattorijärjestely
DE102013201082A1 (de) 2013-01-24 2014-03-13 Carl Zeiss Smt Gmbh Anordnung zur Aktuierung eines Elementes in einer mikrolithographischen Projektionsbelichtungsanlage
DE102013201604B4 (de) * 2013-01-31 2014-10-23 Picofine GmbH Kippvorrichtung und Verfahren zum Kippen
WO2014140143A2 (en) 2013-03-15 2014-09-18 Carl Zeiss Smt Gmbh Piezo drive unit
DE102015209078A1 (de) 2015-05-18 2016-11-24 Carl Zeiss Smt Gmbh Sensoranordnung und verfahren zur ermittlung einer jeweiligen position einer anzahl von spiegeln einer lithographieanlage
DE102015209077A1 (de) 2015-05-18 2016-11-24 Carl Zeiss Smt Gmbh Sensoranordnung und verfahren zur ermittlung einer jeweiligen position einer anzahl von spiegeln einer lithographieanlage
DE102015209259A1 (de) 2015-05-20 2016-11-24 Carl Zeiss Smt Gmbh Positonssensorvorrichtung und verfahren zum ermitteln einer position zumindest eines spiegels einer lithographieanlage
WO2017207016A1 (en) * 2016-05-30 2017-12-07 Carl Zeiss Smt Gmbh Optical imaging arrangement with a piezoelectric device
US10816026B2 (en) * 2017-08-09 2020-10-27 Raytheon Company Separable physical coupler using piezoelectric forces for decoupling
CN213457488U (zh) * 2020-06-30 2021-06-15 诚瑞光学(常州)股份有限公司 镜头模组及电子设备
DE102022116699A1 (de) * 2022-07-05 2024-01-11 Carl Zeiss Smt Gmbh Optisches Element und Projektionsbelichtungsanlage für die Halbleiterlithographie
DE102023200329B3 (de) 2023-01-17 2024-05-02 Carl Zeiss Smt Gmbh Optische Baugruppe, Verfahren zur Montage der optischen Baugruppe und Projektionsbelichtungsanlage

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115226A (ja) 1982-12-14 1984-07-03 株式会社クボタ 解袋機
JPS61182112A (ja) * 1985-02-06 1986-08-14 Rion Co Ltd 精密変位駆動装置
DE3733823A1 (de) 1987-10-07 1989-04-20 Zeiss Carl Fa Verfahren zur kompensation des einflusses von umweltparametern auf die abbildungseigenschaften eines optischen systems
US4928030A (en) 1988-09-30 1990-05-22 Rockwell International Corporation Piezoelectric actuator
JP2730200B2 (ja) 1989-08-02 1998-03-25 住友化学工業株式会社 反応染料組成物およびセルロース系繊維材料の染色または捺染方法
JP3064372B2 (ja) 1990-09-27 2000-07-12 株式会社ニコン 投影露光装置、投影露光方法および回路製造方法
JP3894509B2 (ja) * 1995-08-07 2007-03-22 キヤノン株式会社 光学装置、露光装置およびデバイス製造方法
RU2101840C1 (ru) * 1996-06-10 1998-01-10 Санкт-Петербургская государственная академия аэрокосмического приборостроения Шаговый двигатель
GB2316222B (en) 1996-08-05 1998-07-01 Karrai Haines Gbr Inertial positioner
DE19715226A1 (de) * 1997-04-11 1998-10-15 Univ Schiller Jena Verfahren und Vorrichtung zur hochgenauen Mikropositionierung
US5923473A (en) * 1997-05-06 1999-07-13 Agfa Corporation Multi-size spot beam imaging system and method
JPH11274031A (ja) * 1998-03-20 1999-10-08 Canon Inc 露光装置およびデバイス製造方法ならびに位置決め装置
EP1293832A1 (en) * 1998-06-08 2003-03-19 Nikon Corporation Projection exposure apparatus and method
US5986827A (en) * 1998-06-17 1999-11-16 The Regents Of The University Of California Precision tip-tilt-piston actuator that provides exact constraint
JP2000173467A (ja) * 1998-12-10 2000-06-23 Toshiba Corp カラー陰極線管の蛍光面形成用露光装置
JP2000216078A (ja) * 1999-01-22 2000-08-04 Nikon Corp 露光方法
DE19910295C2 (de) 1999-03-09 2002-06-20 Storz Karl Gmbh & Co Kg Medizinisches oder technisches endoskopisches Instrument
DE19910947A1 (de) 1999-03-12 2000-09-14 Zeiss Carl Fa Vorrichtung zum Verschieben eines optischen Elementes entlang der optischen Achse
JP4945845B2 (ja) * 2000-03-31 2012-06-06 株式会社ニコン 光学素子保持装置、鏡筒及び露光装置並びにマイクロデバイスの製造方法。
US20040042094A1 (en) 2000-12-28 2004-03-04 Tomoyuki Matsuyama Projection optical system and production method therefor, exposure system and production method therefor, and production method for microdevice
US6815875B2 (en) * 2001-02-27 2004-11-09 Hewlett-Packard Development Company, L.P. Electron source having planar emission region and focusing structure
US7035056B2 (en) * 2001-11-07 2006-04-25 Asml Netherlands B.V. Piezoelectric actuator and a lithographic apparatus and a device manufacturing method
DE10225266A1 (de) * 2001-12-19 2003-07-03 Zeiss Carl Smt Ag Abbildungseinrichtung in einer Projektionsbelichtungsanlage
US7486382B2 (en) 2001-12-19 2009-02-03 Carl Zeiss Smt Ag Imaging device in a projection exposure machine
JP2003243282A (ja) 2002-02-14 2003-08-29 Nikon Corp ステージ装置及び露光装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205428A (ja) * 2006-11-07 2008-09-04 Carl Zeiss Smt Ag 位置の操作および/または決定のための運動部材を有する光学装置
JP2011528857A (ja) * 2008-07-22 2011-11-24 カール・ツァイス・エスエムティー・ゲーエムベーハー アクチュエータおよび投影露光システム
CN102207686A (zh) * 2010-03-29 2011-10-05 卡尔蔡司Smt有限责任公司 投射照明系统的光学布置的定位方法
JP2011211201A (ja) * 2010-03-29 2011-10-20 Carl Zeiss Smt Gmbh 投影照明システムの光学装置用の位置合わせ方法
US8810934B2 (en) 2010-03-29 2014-08-19 Carl Zeiss Smt Gmbh Positioning method for an optical arrangement of a projection illumination system
JP2014517525A (ja) * 2011-05-30 2014-07-17 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ用の投影露光装置の光学素子を動かす方法

Also Published As

Publication number Publication date
US8514371B2 (en) 2013-08-20
US20110199597A1 (en) 2011-08-18
CN101308333B (zh) 2013-08-07
AU2002363876A1 (en) 2003-06-30
EP1456891A2 (de) 2004-09-15
US20090040487A1 (en) 2009-02-12
CN1620731A (zh) 2005-05-25
US7710542B2 (en) 2010-05-04
CN101308333A (zh) 2008-11-19
WO2003052511A3 (de) 2004-02-05
US20090141258A1 (en) 2009-06-04
EP1456891B1 (de) 2012-05-30
KR20040065287A (ko) 2004-07-21
US7304717B2 (en) 2007-12-04
US20080174757A1 (en) 2008-07-24
CN100413112C (zh) 2008-08-20
WO2003052511A2 (de) 2003-06-26
DE10225266A1 (de) 2003-07-03
KR100895833B1 (ko) 2009-05-06
US7961294B2 (en) 2011-06-14
US20040263812A1 (en) 2004-12-30
AU2002363876A8 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
JP2005513767A (ja) 投影露光機における撮像装置
US7486382B2 (en) Imaging device in a projection exposure machine
US7420752B2 (en) Holding apparatus
TW517279B (en) Optical element holding device for exposure apparatus
US8199315B2 (en) Projection objective for semiconductor lithography
US20040189969A1 (en) Drive mechanism, exposure device, optical equipment, and device manufacturing method
JP4468980B2 (ja) リソグラフィ投影装置及びデバイス製造方法
US20060072219A1 (en) Mirror holding mechanism in exposure apparatus, and device manufacturing method
JP2002131605A (ja) 保持装置、光学素子保持装置、鏡筒及び露光装置並びにマイクロデバイスの製造方法
JP5820905B2 (ja) スキャナ
JPH11295031A (ja) 位置決めステージ装置とその位置計測方法および位置決めステージ装置を備えた露光装置ならびにデバイス製造方法
KR102193387B1 (ko) 보유 지지 장치, 투영 광학계, 노광 장치 및 물품 제조 방법
US20050063288A1 (en) Technique for positioning optical system element
JPH11251409A (ja) 位置決め装置、及び露光装置
JP2005276933A (ja) 光学部材保持装置、光学ユニット及び露光装置
JP2005236258A (ja) 光学装置およびデバイス製造方法
JP2007201342A (ja) 光学部材保持装置、光学ユニット、及び露光装置
CN116472499A (zh) 场分面系统和光刻设备
JP2006128212A (ja) 光学素子保持装置、鏡筒及び露光装置並びにデバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804