JP2005500479A - 制動機用操作装置 - Google Patents

制動機用操作装置 Download PDF

Info

Publication number
JP2005500479A
JP2005500479A JP2003521009A JP2003521009A JP2005500479A JP 2005500479 A JP2005500479 A JP 2005500479A JP 2003521009 A JP2003521009 A JP 2003521009A JP 2003521009 A JP2003521009 A JP 2003521009A JP 2005500479 A JP2005500479 A JP 2005500479A
Authority
JP
Japan
Prior art keywords
force
operating
operating device
brake
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003521009A
Other languages
English (en)
Other versions
JP4437311B2 (ja
Inventor
ヘニング フオルステル,
トーマス グレツツインゲル,
デトレフ グラーデルト,
ペーテル バイエル,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF CV Systems Hannover GmbH
Original Assignee
Wabco GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27438003&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2005500479(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wabco GmbH filed Critical Wabco GmbH
Publication of JP2005500479A publication Critical patent/JP2005500479A/ja
Application granted granted Critical
Publication of JP4437311B2 publication Critical patent/JP4437311B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/741Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on an ultimate actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • F16D2023/126Actuation by rocker lever; Rocker levers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/38Slack adjusters
    • F16D2065/386Slack adjusters driven electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/22Mechanical mechanisms converting rotation to linear movement or vice versa acting transversely to the axis of rotation
    • F16D2125/24Rack-and-pinion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/22Mechanical mechanisms converting rotation to linear movement or vice versa acting transversely to the axis of rotation
    • F16D2125/28Cams; Levers with cams
    • F16D2125/32Cams; Levers with cams acting on one cam follower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/58Mechanical mechanisms transmitting linear movement
    • F16D2125/64Levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/58Mechanical mechanisms transmitting linear movement
    • F16D2125/64Levers
    • F16D2125/645Levers with variable leverage, e.g. movable fulcrum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/58Mechanical mechanisms transmitting linear movement
    • F16D2125/66Wedges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2127/00Auxiliary mechanisms
    • F16D2127/007Auxiliary mechanisms for non-linear operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18888Reciprocating to or from oscillating
    • Y10T74/1892Lever and slide
    • Y10T74/18928Straight line motions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18888Reciprocating to or from oscillating
    • Y10T74/18984Inclined ramp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2101Cams
    • Y10T74/2107Follower

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Braking Arrangements (AREA)
  • Braking Systems And Boosters (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

本発明は、レバー(1)、及びレバー(1)の縦軸線に関して作用角(α)をなして力(FFeder)をレバー(1)へ加える力発生器(7)を持ち、入力量(F)に応じて制動力を発生する手段(40,41,42,43,50)へ出力力Fを与える制動機40,41,43,50用操作装置に関する。これから出発して、直接操作する装置に比較して出力及びエネルギの需要の著しい減少を可能にする制動機用の代わりの操作装置が提示される。これは、操作装置の構造的構成及び/又は使用される材料の選択により生じる摩擦の少ない操作特性により可能にされる。本発明の好ましい使用分野は商用車両において電気的に作動せしめられる制動システムである。

Description

【0001】
本発明は、請求項1の上位概念に記載の制動機用操作装置に関する。
【0002】
このような操作装置は、国際公開第WO01/44677号から公知である。
【0003】
公知の操作装置では、制動機の摩擦素子がレバーを介して操作される。レバーの可変な個所に作用しかつ予荷重をかけられるばねを持つ力発生器は力作用点の変化により、調節可能な力をレバー従って制動ライニングへ及ぼすことができる。力発生器の作用点は、サーボモータ例えば電動機を介して動かされることができる。この構造の利点は、直接の電動操作に比較して著しく少ない電動機の電力消費が、同時に比較的速い操作従って制動毎に少ないエネルギ需要において可能なことである。その際制動機の釈放及びそれに伴って行われる力発生器のばねの再度の撓みのために必要なエネルギの主要部分が制動機のライニング及び別の部分に弾性変形のため蓄えられるエネルギから取られる。
【0004】
公知の操作装置は、電力消費及びエネルギ消費に関して高い効率と、有利な操作特性とを持っている。本発明の基礎になっている課題は、直接に操作する装置に比較して消費及びエネルギ消費の著しい減少を同様に可能にする代わりの制動機用操作装置を提示することである。
【0005】
この課題は、請求項1に記載されている本発明によって解決される。本発明の展開及び有利な構成は従属請求項に示されている。
【0006】
本発明は、作用角の広い範囲において操作装置の安全かつ確実な機能が保証される、という利点を持っている。
【0007】
本発明の有利な展開では、作用角の調節により出力力が所望の値に調節可能であるように、入力量に応じて作用角を変化する手段が設けられている。これは、レバーへの力伝達点を一定に保つことができるという利点を持っている。なぜならば、出力力の変化が、今やレバーへの力発生器の作用角の変化により調節可能だからである。これによりレバー及びレバー構造を包囲するハウジングを小形に保持することができる。別の利点は、力発生器の力作用と操作力を発生するため入力量から誘導される入力力との相互援助が実現可能なことである。
【0008】
本発明の有利な展開では、入力量−力変換装置により発生される操作装置用入力力が、力発生器によりレバーへ及ぼされる力成分に関して操作方向に援助するように作用するので、操作力として制動ライニングへ作用する合成力が増大される。これにより効率のそれ以上の改善が行われる。更に力発生器は、入力量−力変換装置により援助される程度だけ小さく構成することができる。
【0009】
本発明のこの構成の別の著しい利点は、力発生器により援助される力成分の望ましくない減少を生じる可能性のある力発生器の故障の際、入力量−力変換装置により発生される力成分により、制動装置の一種の非常作動が維持されることである。その場合更に車両の制動が可能であるけれども、通常可能な最大操作力に比較して減少された操作力従って減少した減速度で制動が可能である。非常作動により、制動装置の作動安全性の改善を行うことができる。更にこのような構成は、純電気的な電子制御される制動装置(ブレーキ・バイ・ワイヤ)の改善に寄与する。
【0010】
本発明の有利な展開によれば、入力量−力変換装置が、レバーの角度位置を変化する装置を介して、レバーへ作用する。更に有利なようにレバーの角度位置を変化する装置が、作用角を変化する手段の構成部分である。これにより構造全体即ち操作装置及び入力量−力変換装置が、特に少ない構造部分により製造可能であり、従って特に小形に重量を少なくして構成される。これは、特に車両のばね下質量の望ましい減少に関しても重要であり、これにより走行快適さの改善が行われる。別の利点は、少数の必要な構造部分のため、簡単な組立て及び少ない故障確率である。
【0011】
レバー角度位置を変化する手段の好ましい構成として、歯車とこの歯車に係合しかつ湾曲ラックに類似な固定扇形歯車との組合わせがあげられ、この扇形歯車がレバーに固定的に結合されている。摩擦車構造又はレバー関節に結合される送りねじを使用することも可能である。
【0012】
本発明の有利な展開では、入力量及び/又は入力力の欠除の際、レバーが所定の角度位置へ可動である。これによりなんらかの理由で入力量又は入力力の制御による出力力の取消しが実行不可能な場合、停止制動又は停止状態における固定制動を回避することができる。これは、以下更に詳述するように、力発生器における輪郭の特定の構成により簡単に実現することができる。特に制動機の自動釈放する特性が実現可能である。
【0013】
本発明の別の有利な構成では、レバーが、力発生器により及ぼされる力成分により、入力力の作用なしでも所定の終端位置へ可動である。これは、所定の終端位置を規定する機械的ストッパに特に関連して、現在の操作位置又はレバー位置の検出なしでも、また入力量のための特別な制御手段なしでも、所定の機械的終端位置従って入力量の制御倫理に関しても所定の論理的終端位置が設定可能である、という利点を持っている。特にこの状態において、機械的終端位置と論理的終端位置との整合を行うことができる。これにより例えば時間的に又は熱的に生じる値の範囲の変化を、例えばレバー角の検出の際補償することができる。
【0014】
本発明の別の局面は、制動機用の既に述べた操作装置における操作力の設定方法に関する。
【0015】
車輪制動機用操作力の設定方法は、例えば国際公開第99/16650号又はドイツ連邦共和国実用新案第2962787号から公知である。これら及び類似の刊行物に共通なことは、これらが電動機及び送りねじを介して作動せしめられる。車輪制動操作器に関することである。費用の理由から、またセンサを節約するため、実際に設定される操作力ができるだけ電動機電流から求められる。しかしそこに設けられる操作装置の構造は、比較的大きい摩擦損失及びその結果制動機の操作と釈放との間に生じるヒステリシスを伴うので、その機械的構造に合わされる特別な解決手段が示されている。
【0016】
しかし本発明は、操作装置の異なる機械的構造から出発しており、この操作装置は、操作行程を設定するための制御可能な操作器、及び援助する操作力成分を発生するための力発生器を持ち、操作行程のため操作器を介して第1の操作力成分が制動機へ供給可能である。このような構造により、供給されるエネルギ特に電気エネルギの要求が、公知の構造に比較して感じられる程度に減少可能である。別の利点は、操作装置の著しく少ないヒステリシスである。
【0017】
前述した改良された種類の操作装置に対してできるだけ簡単に実現可能で精確に動作する、所定目標値に従って操作力を設定する方法の要求がある。
【0018】
本発明の有利な展開によれば、制動機へ供給される操作力の実際値が、第1の操作力成分及び援助する操作力成分から計算され、操作力の実際値が所定目標値に等しいように、操作器が制御される。
【0019】
これは、所定の目標値に従って操作力を設定するために、作動のためいずれにしても必要なセンサ以外のセンサを必要としないという利点を持っている。従って方法は安価に使用可能であり、なるべく電子制御装置にあるソフトウエアプログラムブロックにより実現することができる。
【0020】
操作装置を操作する操作器の種類に応じて、操作器を制御する操作信号又はいずれにせよ存在するセンサの信号が、操作器において又は制動装置においても、操作力を求めるために使用可能である。特別な力センサ又は圧力センサはなくすことができる。
【0021】
本発明の構成において、操作力は操作行程から求めることができる。このためなるべく制動機用制御装置において、記憶されている特性曲線が利用される。更に釈放遊隙が、ドイツ連邦共和国特許出願公開第19536695号明細書から公知のように、例えば操作運動の評価によりまず求められねばならない。操作行程は、例えばステップモータの原理により動作する電動機を使用する場合、機械的変速係数例えば変速機変速比に関連して、多数の操作段階により生じる。例えば赤外線光電装置を持つ電動機を使用することも可能で、この光電装置は電動機の回転角についての情報を与える。これも同様に操作行程及び釈放遊隙の推論を可能にする。
【0022】
電動機が操作器として使用される場合、操作力を求めるため本発明の別の有利な構成として、電動機が消費する電流を評価することができる。この場合電動機電流と電動機の出力操作装置へ供給されるトルクを求めることができる。
【0023】
有利なやり方で本発明は、操作力を求めるすべての前述した方式及び以下の実施例にあげる別の方式の論理結合を可能にする。特に力発生器により寄与されて援助する操作力成分と操作器により発生される操作力成分との簡単な論理結合が可能である。本発明の有利な構成によれば、前述したように求められて制動機へ供給される操作力の実際値が、制御の仕方で所定目標値に合わされる。このためP制御器を使用するのが有利である。なぜならば、この制御器は簡単に実現可能であり、制御区間の積分動作とよく調和するからである。この積分動作のため、更に全制御回路における制御偏差は現われない。
【0024】
本発明の有利な展開によれば、所定目標値の設定後操作力の保持段階中に、第1の操作力成分が所定の程度だけ減少される。この所定の程度はなるべくヒステリシス範囲内にあるので、制動機が意に反して再び釈放されることはない。これにより操作器として使用される電動機のエネルギ消費従って車載電源の負荷を著しく減少することができる。更に電動機及び付属する電子制御装置は、僅かしか加熱されず、これにより保護される。別の利点は、電力消費の少ない比較的小形の電動機を使用することができることである。その結果電子制御装置も小さい電力消費用に設計することができ、それにより安価に製造することができる。電動機の全体として少ない付勢時間のため、電動機を更に小さい許容付勢時間に設計することができる。
【0025】
本発明の有利な構成によれば、操作力の実際値を検出するため、操作運動中に電気駆動装置を周期的に停止し、操作力を求め、所望の操作力に達しない場合電気駆動装置を再び操作することが考慮される。この過程は、所望の操作力に達するまで、段階的に反覆される。この場合電気駆動装置により発生されるトルクも別個に検出することができる。この方式は、特に電気駆動装置を使用する場合に有利であり、操作中に、発生される力を同時に消費電流から求めないか、又は電流を測定しないようにすることができる。
【0026】
本発明の別の局面は、車両の制動機用釈放遊隙操作器の制御方法に関する。
【0027】
釈放遊隙操作器の制御方法はドイツ連邦共和国特許第19521401号明細書から公知である。
【0028】
この公知の方法は、圧縮空気で操作される制動機用の操作装置及びそれとは無関係に外力により操作可能な制動遊隙設定器を持つ車両用制動装置の制御に用いられる。公知の方法では、車両制動機の作動方式において、まず制動要求を確認し、それから制動遊隙の自動的乗り越えを行い、続いて車両制動機を操作し、制動要求の終了後、車両制動機を釈放し、最後に制動釈放遊隙を自動的に設定することが考慮されている。
【0029】
前述した種類の車両の制動機用釈放遊隙操作器の制御に関連して、釈放遊隙操作器を制御するための改善された方法を提示する必要があり、この方法は、特にブレーキ・バイ・ワイヤ方式の将来の制動装置、特に圧縮空気の代わりに電気エネルギで操作される制動装置において使用するのに特に適し、このような制動装置の知的制御を行うことができる。
【0030】
本発明の有利な展開によれば、釈放遊隙操作器の部分機能の上位の制御のための釈放遊隙管理が意図され、部分機能が、次の機能の少なくとも1つ、即ち操作行程に関する入力力の特性曲線推移の変化、最大に利用可能な釈放遊隙の検出、及び釈放遊隙操作器により多数の所定の作動方式から制動機の1つの作動方式の選択を含んでいる。
【0031】
これは、調節可能な釈放遊隙操作器の可能な機能の上位の考察態様のため、制動装置の知的釈放遊隙管理を可能にするという利点を持っている。釈放遊隙管理は、有利なように、車輪に関係して即ち例えば車輪制動操作機器の水準に関しても、制動装置全体に関しても、実働化することができる。実働化の仕方に応じて、実施例の以下の説明により更に詳細に説明するように、種々の別の利点が生じる。
【0032】
本発明の別の局面は、電気制動操作器の実施形態を求めるか、又はもっと詳細には電気操作器の運動方向と電気的に操作可能な車両制動機用制動操作機の構成部分である電気操作器に機械的に連動する操作装置の運動方向との対応関係を求める方法に関する。
【0033】
このように電気的に操作可能な制動操作器は、例えば最初にあげた国際公開第WO01/44677号から公知である。純電気的に制御されかつ電気エネルギを供給されるいわゆるブレーキ・バイ・ワイヤ形式の将来の制動システムでは、車両の各車輪に、また商用車両では各車輪群に、それぞれ1つの制動操作器が付属せしめられる。例えば前車軸に、一般に左前輪に制動操作器が設けられ、右前輪に制動操作器が設けられるであろう。車両の左側用の制動操作器は、例えば構造空間の理由から、操作装置の機械的構成に関して、右側に設けるべき制動操作器に対して鏡像的に構成されるであろう。制動操作器をできるだけ経済的に製造するため、左及び右の制動操作器に対してできるだけ多くの同じ部分、例えば伝達機構の部分(変速機)、電気操作器(電動機)、及び電気操作器を制御する電気制御装置を使用するのが望ましい。この場合制動操作器の構成形態に応じて、左の制動操作器に設けられる電気操作器が、例えば左回転して制動機を操作し、右回転して再び釈放し、右の制動操作器では、同じ形式の電気操作器がちょうど逆の回転方向で動作し、即ち右回転して制動機を操作し、左回転して再び釈放することが、必要である。
【0034】
これから出発して、電気操作器の運動方向とこの電動操作器に機械的に連動する操作装置の運動方向との対応関係を求める方法を提示する必要があり、この方法が例えば前述した電子制御装置により実施可能である。
【0035】
本発明の有利な展開によれば、前述した対応関係を求めるため、次の段階即ち電気操作器が第1の運動方向に動かされる所定の検査サイクルを電気操作器へ作用させる、第1の運動方向への電気操作器の操作により、操作装置が操作方向への運動を行うか否かを検査する、操作装置が操作方向への運動を行う時、電気操作器と操作装置との第1の運動方向における対向関係を記憶する、操作装置が操作方向への運動を行わない時、電気操作器と操作装置との第2の運動方向における対応関係を記憶することが、考慮される。
【0036】
この展開は、電気操作器の電気制御のため制動操作器にいずれにせよ設けられている電気制御装置における僅かな費用で、僅かなプログラム段階により実現できるという利点を持っている。これにより、左及び右の制動操作器に対して同じに構成される制御装置を使用することが可能であり、その場合これらの制御装置は、例えば車両における制動装置の最初の動作開始又は始動で、両運動の対応を行う。
【0037】
本発明の有利な展開によれば、必要な場合に行われる操作運動により制動釈放遊隙を乗り越えることができないように、検査サイクルが設定され、これは、実際の実現において、例えば検査サイクルの期間の限定によって行うことができる。これにより、本発明による方法を実施する際、制動機の場合によっては望ましくない動作を回避することができる。別の利点は、望ましくない制動のためなんらかの不利な影響を生じることなしに、走行作動中にもこの方法を実施できることである。
【0038】
特定の場合例えば修理の範囲内で制動機の部品の交換の際、検査サイクルが制動釈放遊隙を超過する運動を含むこともできる。
【0039】
本発明の有利な展開によれば、可能な対応関係が既に記憶されていない時、対応関係処置が自動的に行われる。これは、制動装置の最初の動作開始後対応関係が自動的に求められ、対応処置を開始するための手動介入が必要でない、という利点を持っている。これにより、制動操作器及びこれを装備した車両を製造する際の労働時間及び費用を節約することができる。
【0040】
本発明の別の有利な展開によれば、記憶されている対応関係を証明するため、第2の運動方向における第2の検査サイクルの範囲内で電気操作器が操作される。その際、操作装置がどの運動を行うかが観察される。これにより、対応関係を検出する際一層大きい安全性が得られる。特にまず実施される検査サイクルが、操作装置の完全な釈放位置で始まる時、釈放方向における電気操作器の作用が、操作装置の引続く釈放をもはや生じることができない。その結果操作装置の運動は観察されず、従って電気操作器の第1の運動方向が釈放方向に関連しているか否か、又は例えば電気操作器が故障しており、そのため操作装置の運動を開始しないか否かを、確実に区別することができない。第2の運動方向における第2の検査サイクルにより、制動操作器が故障してない場合、操作装置の運動が観察される。運動が観察されない場合、故障の検出及び表示を行うことができる。
【0041】
本発明の別の有利な展開によれば、検査サイクル及び/又は第2の検査サイクルが、電気操作器の操作時間及び/又は操作電流の限定を含んでいる。これにより、電気操作器、操作装置及び他の制動機部分の損傷を回避することができる。更に本発明による方法は、操作時間の限定により、遅くとも所定の予見可能な時点に終了せしめられ、それから対応関係又は場合によっては制動操作器の電気操作器又は他の部分の故障についての情報を与える。
【0042】
本発明の有利な発展によれば、操作電流の電流限界値の超過が、操作装置が操作方向への運動を行わないことの表示として使用される。特に前述したように操作装置が既に完全に釈放位置にある場合、引続く釈放はもはや不可能なので、これにより電気操作器が拘束され、その結果拘束されない場合におけるより大きい消費電流を持つ。これは本発明の前記の展開により有利に検出されるので、電動機の比較的速やかな遮断を行い、損傷を回避することができる。
【0043】
別の利点をあげながら、本発明が以下に図面を使用して実施例により以下に詳細に説明される。
【0044】
図において互いに対応する部分、信号及び他の量に対して同じ符号が使用されている。
【0045】
入力量特に入力力に応じて出力力を発生する機械的装置は、技術においてなるべくレバー構造により実現される。有効レバー長を介して、入力力と出力力との所望の比を設定することができる。このようなレバーに作用するトルクの合計平衡は、周知のように値零を生じなければならないので、出力力は入力力に等しく、入力力が作用するレバー腕長からの比と乗算され、出力力が取出されてレバー腕長により除算されるものと仮定される。このようなレバーは、一般に図1〜9にも示されているように、支点に掛けられ、そこに回転可能に支持されるので、レバー長は一般にこの支点に関して決定される。
【0046】
出力力を変化するために、直接操作する装置に比較して出力消費及びエネルギ消費を可能にする次の可能性がある。
1. 入力力が変化される。出力力のこのような変化のため、1つの例が図5に示されている。レバー1は支点2に取付けられ、そこに回転可能に掛けられている。力発生点3において、レバー1は出力力を力消費装置4,5へ与える。力消費装置4,5は、原理のみを示す図1〜9の概略図に、ばね4及び定置ストッパ5として示されている。力伝達点6において、ここでは入力量も形成する入力力がレバー1へ導入される。
この場合入力力は、力発生器7から力変調機構8を介して力伝達点6へ伝達される。力発生器は、図1〜9では簡単化して、予荷重をかけられるばねとして示されている。力発生器の他の実施形態も考えられ、以下に更に後述するように有利に使用可能である。
力変調機構8は、力発生器7から力伝達点6へ伝達される入力力を調節するために用いられる。このため図5による実施形態では、互いに固定的に結合される2つの傾斜面が設けられて、水平に可動である。これらの面は、その傾斜に関して互いに逆向きに設けられている。一方の面は、力伝達点でレバー1に支持され、他方の面は、力発生器7に対して固定的に設けられるローラに支持される。これらの面の移動の際、力伝達点6へ伝達される力従って出力力は、それに比例して増大し、固定的なローラへ伝達される力は同時に減少する。レバーの腕の長さは、機械的装置のこの実施形態では一定である。
2. 出力力に影響を及ぼす別の可能性は、レバー腕長の変化であり、入力力を伝達するレバー腕、出力力を伝達するレバー腕又は両方のレバー腕の変化が考えられる。図1〜4には、入力力を伝達するレバー腕の変化が示されている。この場合力発生器7により発生される力が、調節可能な機構を介して、固定せず従って変化する力伝達点6においてレバー1へ伝達される。この目的のためにレバー1に特定の輪郭10が設けられ、この輪郭10の各点が可能な力伝達点である。この輪郭10に、力発生器7により応力をかけられかつなるべく輪郭10に沿って走行可能なローラから成る並進装置9が当接している。図1の実施形態では、並進装置9は、その角度を調節可能な棒11に取付けられている。力伝達点6の移動は、図1〜4による実施形態では、入力量を示す。図2〜4の実施形態では、力発生器7の力をレバー1へ伝達する機械的補助手段12も設けられている。
3. 出力力を変化する第3の可能性は、力発生器7からレバー1へ与えられる力の力作用角の変化のみである。このため図6〜9に好ましい実施形態が示されている。すべての実施形態に共通なことは、レバー1にある力作用点18が固定的に選択可能なことであり、即ち力作用点18と支点2との間の有効レバー腕長が一定である。以下の実施例では、力作用点18は、支点8から遠い方にあるレバー1の輪郭の範囲に設けられている。
【0047】
図6では、力発生器7とレバー1との間に、力伝達片13及び並進装置9が設けられている。力発生器7は力伝達点6において並進装置9に作用する。一方並進装置9は、同時にレバー1と並進装置9との機械的結合点である力作用点18において、レバー1へ作用する。
【0048】
力伝達片13は、そのレバー1に近い方の側に輪郭10を持っている。この輪郭10は、一般的に表現すれば、この輪郭に沿って動かすべき点、即ち力伝達点6の立体的軌道曲線とみなすこともできる。輪郭10は、この輪郭に沿って並進装置9が運動可能であるように考慮されている。並進装置9は、本発明の好ましい実施形態では、レバー1に固定的に設けられて回転可能なローラとして構成され、このローラの回転中心は力作用点18である。並進装置9の別の有利な実施形態として、あらゆる種類の滑り軸受又はころがり軸受、若干の例のみをあげるため、例えば滑り子、滑りブロック、滑りレール又は玉軸受が問題となる。
【0049】
輪郭10上に並進装置9を動かすため、図6〜9に両方向矢印により示すように、レバー1が支点2の周りに揺動可能である。図6に示すレバー1の位置で、力作用点18及び支点2を通る直線と考えられるレバー1の縦軸線が、力発生器7の力発生方向と一直線をなしている。まず所定の死点を表わす零位置から始まって、レバー1の揺動の際、力発生器7がレバー1へ力を与え、この力が、力発生器7の力発生方向の角変化のため、支点2の周りのモーメントを生じる。それにより角変化のため、図10により以下に更に説明するように、″仮想レバー腕″が生じる。レバー1の揺動方向に輪郭10を適当に設計すると、トルクが作用し、即ちレバー1の揺動のため外部からレバー1へ作用する入力力が、力発生器7により発生される力成分を援助する。
【0050】
死点から始まってレバー揺動の増大と共に、力発生器7も、増大する傾斜角で力伝達点6へ作用するので、仮想レバー腕の長さが増大し、これにより力発生器7の援助する力成分も同様に増大する。輪郭10の適当な設計により、一方では力発生器7の援助作用の開始点が規定され、更にレバー1の揺動角についての力援助特性を、それぞれの使用目的に合わせることができる。
【0051】
図7に示す実施形態では、力伝達片13が同様に力発生器7と力作用点18との間に設けられているけれども、図6に対して力発生器7の逆向きの力発生方向で設けられている。輪郭10も、同様に力作用点18に近い方にある力伝達片13の側に設けられている。この実施形態は、操作装置の特にこじんまりした構造を可能にする。
【0052】
図8による実施形態では、力伝達片13と力作用点18との間に力伝達モジュール14が設けられている。この力伝達モジュール14は、そのレバー1に近い方の側で、力作用点18においてレバー1に関節結合されている。力伝達片13に近い方の側で、力伝達モジュール14に並進装置9が取付けられて、輪郭10に沿って運動可能になっている。
【0053】
図9による別の実施形態では、力発生器7が、力作用点18と輪郭10を持つ固定配置された支持体15との間に設けられている。この場合力発生器7は、その一方の側においてレバー1に力作用点18で関節結合されている。力発生器の他方の側に並進装置9が設けられて、輪郭10に沿って運動可能になっている。
【0054】
図10により、本発明による操作装置の原理的作用を説明するが、図6による実施形態から出発している。説明は、図7〜9の実施形態及び以下の図について更に説明される本発明の構成に対して、同じように当てはまる。
【0055】
原理的作用の説明のために、まず若干の数学的量が規定される。
入力力
レバー1へ作用するばねの力の成分
Feder ばねの全体の力
Feder 力伝達片13の移動行程
支点2の周りにおけるレバー1のモーメント
Ω レバー1の揺動角
Ω 死点角
α 作用角
β 揺動角Ωの零位置からの力作用FFederの角度偏差
支点2から力作用点18までのレバー腕長
支点2から入力力F の作用点までのレバー腕長
L 仮想レバー腕21の長さ
【0056】
力伝達片13は、支点2から遠い方の側で、力発生器7の力FFederを加えられる。力FFederの作用方向は、以下において、角度位置Ω=0におけるレバー1の縦軸線に対する平行線に対して角βだけずれているものに仮定する。平行線は上下に重なっていてもよい。
【0057】
輪郭10が力FFederの作用線に対して直角に延びる仮定角度位置Ω=Ωから始まって、支点2の周りにモーメントを及ぼす力の影響は、力発生器7からレバー1へ及ぼされない。この位置はレバー1の死点位置とも称される。この位置は、図10に、破線で示す力伝達片13によって示されている。
【0058】
値Ω=Ωからもっと大きい値へレバー1が揺動する際、並進装置9は、輪郭10に沿って動き、力伝達点6が並進装置9と共に移動する。図10に示す輪郭10では、更に支点2の方へ、力発生器7の力FFederの作用方向に対して平行に、行程部分SFederだけ力伝達片13の移動が行われる。その場合力伝達片13は、実線で示す位置をとる。レバー1の揺動の際並進装置9の運動推移は、図10に、並進装置9の所で終わる破線で示されている。
【0059】
レバー1のこの揺動の際力発生器7が応力を除かれるので、レバー角Ωの増大と共に力FFederが減少する。更に角Ωだけレバー1が揺動することにより、レバー角Ω=Ωでα=0に規定されている作用角αが増大する。作用角αで、力発生器7の力FFederの力成分Fがレバー1へ伝達される。
【0060】
図10からもわかるように、図示したレバー位置において、長さLを持つ仮想レバー腕21が現われる。この仮想レバー腕21を、力発生器7からレバー1へ与えられる力成分Fの作用方向に対して直角であるものと考える。即ち仮想レバー腕21の長さLは、力成分Fにより援助される支点2周りのモーメントを求めるための有効レバー腕長である。その際レバー1と仮想レバー腕21との間に、90°−α−Ω+Ωの角が形成される。仮想レバー腕21の長さLは次のように計算される。
L=L・sin(α+Ω−Ω) (1)
レバー1の揺動角を制御するため、力作用点20に入力力Fが作用する。従ってレバー1により全体として発生される利用可能な出力モーメントMは、入力力Fにより発生されるモーメントと、力発生器7の力成分Fにより発生されるモーメントから合成され、次のように計算することができる。
Figure 2005500479
角αは、それぞれ選ばれる輪郭10とレバー角Ωとに関係し、従ってΩの関数である。
α=FKontur(Ω) (3)
出力モーメントMは、従って既知の輪郭又は既知の関数FKonturでは、また場合によっては、力F及びFFederでは、可変レバー角Ωから求めることができる。
【0061】
値Ω=Ωからもっと小さい値へのレバー1の揺動の際、図10に示す輪郭では、力発生器7からレバー1へモーメントが及ぼされず、これが輪郭10の円弧状構成によって行われる。円弧の推移は、Ω<Ωにおいて並進装置9の破線で示す運動推移に実質的に相当する。
【0062】
図6〜10についてまず説明された角度変化について出力力が与えられる別の有利な実施形態が、図11〜13により詳細に説明される。図11〜13にはそれぞれ同じ実施形態が示されているが異なる操作位置で示されている。更に車両の車輪制動機用の操作装置としての具体的な使用が、図11〜13により詳細に説明される。異なる操作位置は、走行位置(操作されない)、部分制動及び全制動を示している。
【0063】
図11に走行位置で示す車両制動機用制動操作器は、図6〜10により説明した原理による操作装置を持っている。操作装置は、既に説明した部分1,2,6,7,9,10,13,18のほかに、支点2から遠い方の端部でレバー1に設けられる湾曲ラックに類似な扇形歯車70を持っている。扇形歯車70は、入力量−力変換装置72,73,74に設けられる歯車71に係合している。歯車71は、回転の際、レバー1の揺動即ちレバー1の角度位置Ωの変化を行う。
【0064】
歯車71は、変速機72を介して、なるべく電動機として構成される駆動モータ74を持つ駆動ユニット73に連動している。駆動ユニット73は、実施形態に応じて、例えば電動機74を制御するための半導体素子又は電動機74の消費電流を検出するための電気抵抗のような別の部材を含んでいる。本発明の有利な実施形態では、駆動ユニット73は、電動機の駆動軸の回転位置用の位置検出装置例えば赤外線光電変換器も持っている。駆動ユニット73は、導線を介して、データ及び情報を交換しかつエネルギを供給する電子制御器75に接続されている。
【0065】
本発明の有利な展開では、電動機74は例えば開閉されるレラクタンスモータの形のステップモータとして構成されている。この場合位置検出装置をなくすことができる。なぜならば、電動機74の段階的駆動を介して、駆動軸の回転位置が制御器75に分かるからである。
【0066】
図1〜9に示す装置の力消費装置4,5は、図11〜16による実施形態では、制動円板50の両側に設けられてそれぞれ摩耗範囲40,42と背板41,43から成る2つの制動ライニング40,41,42,43として構成されている。特に摩耗範囲40,42は特定の弾性を持ち、制動円板50及び背板41,42は比較的僅かに弾性的である。
【0067】
制動ライニング40,41,42,43を介して制動円板50への力の導入は、操作装置の出力力Fと当接面30を介してそれに対向する制動ライニング40,41へ及ぼす押し棒31を介して行われる。制動円板50の反対側に設けられる制動ライニング42,43は、出力力Fとは逆向きに、操作装置のハウジング60に結合されるハウジング部分61に支持される。
【0068】
図1に示す操作装置では、当接面30は、制動ライニング40,41の背板41に対して特定の所定間隔を持っている。この間隔は釈放遊隙とも称される。実際に釈放遊隙は、原理的には制動円板50の両側に均一に現われる。説明を一層簡単にするため、以下の説明では、すべての遊隙間隔は、押し棒31と背板41との間のただ1つの合成遊隙として示されている。
【0069】
押し棒31は、ハウジング60の壁65を貫通する棒32を介して、釈放遊隙調節装置90,91,92,93,94,95,96,97に結合され、この釈放遊隙調節装置は、その外側でねじ96を介して回転可能に押圧片33に結合されている。押圧片33は、出力力Fを押し棒31へ伝達するのに役立つ。
【0070】
レバー1は、支点2の範囲にある端部で、出力力発生装置80に結合され、この出力力発生装置は、レバー1の角度位置Ωの変化の際、押圧片33従って押し棒31の特定の行程変化を行う。図11に示す零位置から角度Ωが増大すると、例えば背板41の方へ押し棒31の運動が行われる。この場合押し棒31が背板41へ当接するまで、まず釈放遊隙が減少する。角度Ωの引続く増大の際、制動力が発生される。
【0071】
出力力発生装置80は、例えば偏心輪として構成することができる。特に有利な実施形態では、装置80と押圧片33との間にインボリュート輪郭が設けられ、このインボリュート輪郭により、押圧片33の進んだ行程と角度Ωとの間の実質的に直線的な関係が得られる。これにより特に簡単な解析関係が得られ、これは、制御器75において制動力制御のため行われるアルゴリズムを簡単に保持できるという利点を持っている。更に構造に比較して摩耗が少ない。
【0072】
出力力発生装置80は、押圧片33とハウジング60の一部との間に、例えば玉軸受又はころ軸受81により少ない摩擦で支持されている。
【0073】
力発生器7は、図11〜13の実施形態では、予荷重をかけられるばね16を持ち、このばねは、ハウジング60にあるハウジング固定ストッパ面66に一端を支持されている。ばね16の他端は、力伝達片13に固定的に結合されている保持板17を押している。力伝達片13は既に述べた輪郭10を持ち、この輪郭を介してばね16の予荷重が、並進装置9を経てレバー1の力作用点18へ作用する。
【0074】
図11からもわかるように、輪郭10は、以下死点とも称される頂点19を持っている。角度Ωの零位置から始まって、特定の死点角Ωでこの死点19が得られる。死点角Ωより小さい角度位置では、入力量−力変換装置72,73,74から歯車71を介してレバー1へ及ぼされる力Fの遮断又は消失の際、零位置Ω=0へのレバー1の自動的な戻しが行われる。
【0075】
死点角Ωを超過すると、所定の関数に従ってまず弱くそれから強く低下する輪郭10のため、操作方向における力発生器7の増大して援助する力の影響が行われる。援助する力の影響により、入力量−力変換装置72,73,74のエネルギ消費を比較的少なく保つことができる。更に輪郭10の適当な設計により、弾性のため力消費装置4,5又は制動機40,41,42,43,50に蓄えられるエネルギを利用して、零位置への操作装置の戻しを行うことが可能なので、全操作範囲における自動釈放制御特性が実現可能である。
【0076】
棒32を包囲する密封片34は、ハウジング60の内部を汚れに対して保護し、更に潤滑材がハウジング60から出るのを防止する。力消費装置4,又は制動機40,41,42,43,50により戻し力をもはや生じることができない釈放遊隙の範囲において押し棒31を戻すため、ハウジング60の壁65と押圧片33との間に支持される戻しばね35が、レバー1により規定される長さに押し棒31を戻す。
【0077】
ハウジング60は、ハウジング固定のフランジ62により、ねじ63を介して取付け点64に結合されている。取付け点64は、制動すべき車軸に固定的に結合される公知の構造の制動機担体の構成部分である。図示した取付け方式は著しく簡単化して示されている。実際には、例えば2つのボルト案内部を使用することができる。
【0078】
ハウジング60内で出力力発生装置80のそばに設けられる釈放遊隙調節装置90,91,92,93,94,95,96,97は、電動機として構成される調節モータ90を持ち、この調節モータが導線を介して制御器75に接続されている。制御器75の適当な制御信号を介して、所定の角度だけ一方又は他方の方向へ調節モータ90を動かすことができる。
【0079】
調節モータ90は、変速機91を介して調節機構92,93,94,95,96,97に結合されている。変速機91は、同時にトルクを増大しながら調節モータの回転数の減少を行う。ハウジング91内において出力側に調節角検出装置が設けられ、その信号が導線を介して制御器75へ与えられる。調節角検出装置の信号により、制御器にねじ96のピッチがわかっている場合、制御器75が常に調節ねじ軸95の移動行程、従って適当なアルゴリズムにより設定される釈放遊隙を検出することができる。調節角検出装置として、調節モータ90にいずれにせよ存在するセンサ例えば符号器を使用することが、実際に有利である。電子的に切換えられるモータにおいて、レゾルバ又は切換えセンサの使用も有利である。これにより、調節角検出のための別個のセンサを省くことができる。
【0080】
変速機91の出力側にスプライン軸92が設けられ、スプライン93を介して調節ねじ軸95に係合している。スプライン93はスプライン軸92に固定的に結合され、調節ねじ軸95内に設けられる溝94内を移動する。スプライン93及び溝94を介して、スプライン軸92の回転運動を、調節モータ90により始動されて、調節ねじ軸95へ伝達することができ、この調節ねじ軸の外側に設けられかつ押圧片33に設けられる内側ねじに係合するねじ96のため、この調節ねじ軸95は、スプライン軸92に対する調節ねじ軸95の縦方向移動を生じることができる。この場合スプライン93は溝94に沿って滑る。
【0081】
調節ねじ軸95の縦方向移動のため、この調節ねじ軸95に固定的に結合された部分31,32を介して、釈放遊隙の減少又は増大が行われる。調節ねじ軸95に固定的に結合されたストッパ片97を介して、釈放遊隙の増大の際調節ねじ軸95の戻し運動が機械的に限定されて、ストッパ片97が押圧片33のストッパ面36へ当たるまでのみ、調節ねじ軸95が繰込み可能である。
【0082】
レバー1の図12に示す位置(Ω=Ω)で、力伝達点6がちょうど輪郭10の死点へ達する。この状態で力発生器7は、一方又は他方の方向におけるレバー1の揺動に適した力援助を行わない。この位置で、本発明の有利な構成によれば、押し棒31が既に制動ライニング40,41の背板41に当接し、即ち釈放遊隙はこの位置で常に乗り越えられている。釈放遊隙の乗り越え後この位置になるまでに必要な操作力は、電動機74により完全に発生される。
【0083】
レバー1の図13に示す位置には、最大移動が示され、従って制動機は最大の操作力を加えられている。力伝達点6は、今や力発生器7の援助作用を生じる輪郭10の部分にある。レバー1のそれ以上の揺動は、力伝達点6を平らにされた輪郭部分へもたらし、この輪郭部分において力発生器7は、死点位置と同じように、援助する力をもはや生じないことになる。この場合レバー1は、弾性的に予荷重をかけられる制動機40,41,42,43,50の戻し力のため戻されることになるので、図示した輪郭により、最大の制動操作において安定な動作点が生じる。
【0084】
図14〜16に種々の操作位置で示されている操作装置の実施形態は、図11〜13について説明した操作装置とは異なり、力発生器の変わった配置を持ち、力伝達片13を保持する保持板17が、支点2の方を示している。動作態様は、力発生器7の鏡像対称配置のみで、図11〜13に示す実施形態に一致している。このような実施形態は、自由なばね16を持つ操作装置とも称することができ、図11〜13による実施形態は拘束されたばね16を持つ操作装置とも称することができる。
【0085】
本発明による操作装置では、釈放遊隙限界Ω=ΩLsに達した際レバー角Ωが同時に死点角Ωの近くにあるように、構造を設計するのが有利である。これにより制動ライニング40,41,42,43が制動力を加えられ、その結果操作エネルギの増大する要求が生じ、この要求の大部分を、力発生器に蓄えられる貯蔵エネルギにより満たすことができる時、操作過程における力発生器7の援助する作用が始まる。しかし自動釈放制動特性のために、釈放遊隙限界Ω=ΩLsは常に死点角Ωとり小さく選ばねばならない。
【0086】
図17には、電動機74から操作装置へ供給されるトルクMの推移が、操作過程の際及び走行位置への戻しの際において示されている。実線で示す曲線推移101,102,103,104,105,113は、釈放遊隙調節装置90,91,92,93,94,95,96,97による釈放遊隙の第1の設定ΩLs1について示されている。破線で示す曲線推移106,107,108,109,110,111,112は、前記の曲線推移に比較して増大された釈放遊隙の別の値ΩLs2について示されている。
【0087】
レバー1の走行位置Ω=Ωminから始まって、レバーが初期モーメントを加えられ、その結果レバーが操作方向へ運動を行う。この場合、即ちΩ=ΩLs1において押し棒31が制動ライニング40,41への当接点へ達するまで、電動機74により発生されるトルクMは比較的小さい。この範囲で、輪郭の平らな範囲がその死点まで乗り越えられ、その際力発生器7は、電動機により発生されるトルクに対する反力を既に生じている。角Ωの増大と共にこの反力は減少する。
【0088】
初期値Mminから始まって、電動機トルクMは曲線部分100に従ってまず少し低下し、それから曲線部分101において急峻に上昇し、死点角Ωに達しかつ超過すると、この上昇は曲線部分102へ続き、それから力発生器7により増大する援助作用のため平らになり、全制動に相当する最大操作角Ωmaxに達するまで、少し低下する。
【0089】
曲線部分103で始まって、制動機が再び釈放され、即ち走行位置の方へ動かされる。図17において曲線部分103からわかるように、電動機トルクMは、レバー1が重要な範囲で運動を行うまで、電動機トルクMがまずヒステリシスに打勝つ。それに続いて例えば初期値Mminのように小さい電動機トルクの範囲にあることが望まれる比較的平らな曲線部分において、レバー1の戻しが行われる。この場合電動機トルクMは、死点角Ωの範囲で再び増大し、それから曲線部分104において小さくなり、曲線部分105,100を経て再び初期値Mminへ戻る。
【0090】
死点Ωの範囲における電動機トルクMの増大は、最大の操作位置から連続的に小さくなる制動ヒステリシスによって行われ、それにより予荷重をかけられる制動機の戻し力の作用を一層容易に生じることができる。特定の操作角Ωを保つため、この範囲において高められる電動機トルククMが必要である。
【0091】
釈放遊隙死点ΩLs2が増大されると、曲線部分100,105の超過後曲線部分106に従って始まる電動機トルクMの急激な上昇が、前述した場合に比べて遅く始まる。小さい釈放遊隙における曲線部分102,102及び大きい釈放遊隙における曲線部分106,107は、実質的に互いに平行に延びて、釈放遊隙の増大する場合、電動機により生じるべき電動機トルクMが同じレバー角Ωにおいて一層小さい。
【0092】
戻し分枝108,109,110,111,112においても、電動機トルクMは、小さい釈放遊隙を持つ場合に比較して小さい。図17により更にわかるように、電動機トルクMが、109の所において電動機トルクMの所望の最小値Mminを下回り、曲線部分110においても、同様にその下に延びている。
【0093】
負の値の範囲における電動機トルクMの推移は望ましくない。なぜならば、その場合自動操作する制動特性が生じることになるからである。図17に示す推移は、実際に望まれる自動釈放制動特性を示している。制動特性は、釈放遊隙の選択を介して特定の範囲で影響を受けて、所望の推移に合わせられることができる。
【0094】
図18には、力発生器17又はそのばね16により制動レバー1へ及ぼされて援助するモーメント成分Mが示されている。図17により既に説明した電動機トルクMは、力発生器により及ぼされるモーメントMとの和で、レバー1へ作用して制動機へ供給可能な操作装置の全出力モーメントMを示している。
【0095】
死点をまだ乗り越えない範囲120において、モーメントMは負の値を持ち、これが零位置Ω=0の方向にレバー1へ戻す影響を及ぼす。この範囲において力発生器7が電動機トルクMに抗して動作し、その結果、電動機74が釈放遊隙の範囲においても、操作方向にレバー1を動かす特定のモーメントを発生せねばならない。死点角Ωに達すると、力発生器7の援助する力又はトルクの作用が曲線推移121に従って始まり、即ち操作の際電動機74が負荷を除かれる。
【0096】
曲線推移121は、典型的な制動機設計に基いて求めることができる所望の目標機能を示している。このため、例えば多数の個別制動機を、その操作特性曲線即ち操作のための所要モーメントに関して、レバー角Ωを介して測定し、実験的に評価することが考えられる。その場合目標関数を、実験的に求められるすべての操作特性曲線より下にありかつこれに接する整合関数として求めるのが有利である。この場合の利点は、自動釈放する制動特性曲線が保証されることである。なぜならば、各レバー位置Ωにおいて、検査されるすべての制動機の最小の所要操作モーメントから出発するからである。
【0097】
目標関数はなるべく例えば補償計算又は補間により求めることができる。曲線推移121は輪郭10に直接関連している。輪郭10は、曲線推移121即ち目標関数に基いて、例えば数値補間法により求めることができる。
【0098】
図19及び20により、輪郭10及び作用角αの対応する関数fKonturの好ましい実施形態が、レバー各Ωに関して説明される。
【0099】
既に図11〜13にも示したように、好ましい輪郭10が図19に曲線部分122,123により示されている。輪郭10の空間的推移は、縦座標hに関して、輪郭の始点X=0から始まって、まず僅かに凸な湾曲でゆるやかに上昇し、レバー角Ωにおいて得られる死点Xから、まず僅かにそれから速やかに下降する強い凸な湾曲の範囲へ移行する。それから値Xmaxにおいて、操作方向におけるレバー1の揺動の最大値Ωmaxに達する。この位置から、レバー1のそれ以上の揺動は望ましくない。しかし輪郭10はXまで更に導かれ、この値Xから輪郭10は実質的に直線的に推移する。輪郭10をこのように更に導くことは、並進装置9の寸法のため必要であり、それにより並進装置は角Ωmaxへ達する前に、輪郭の直線的に推移する範囲X>Xに当ることはない。輪郭の直線的に推移する範囲によって、更にレバー1の揺動の際安定な終点が得られる。
【0100】
曲線部分122,123から構成される輪郭は、なるべく商用車両の制動機用操作装置において使用される。曲線部分122の代わりに、範囲X<Xにある曲線部分125による輪郭も使用することができる。その間にあるすべての輪郭も有利に使用可能である。曲線部分125は例えば実質的に円輪郭上に延び、この円輪郭はこの範囲における並進装置9の軌道曲線に相当している。これによりX<Xの範囲においてレバー1への力発生器7のモーメントの影響が回避される。
【0101】
範囲X>Xにおいて、曲線部分123の代わりに、曲線部分124による輪郭を使用することができる。この輪郭は、曲線部分123に比較して、全体として少し凸な湾曲で、輪郭のまず急峻な下降を対象としている。曲線部分124による輪郭は、例えば乗用車制動装置において、小さい制動作用例えば部分制動の範囲で制動機の特に速い操作及び釈放が望まれる操作装置において有利に使用可能である。
【0102】
図19に示しかつ曲線部分122,123,124,125から構成されるすべての輪郭推移は、当業者の選択による適用事例に応じて有利に使用可能である。
【0103】
図20には、図19に示す曲線部分に相当する曲線部分が、表示α=fKontur(Ω)で示されている。この場合曲線部分126は、曲線部分122と、127は123と、128は125と、129は124と関連している。
【0104】
図20から、レバー角Ωが値Ωmaxに限定されていることがわかる。この値における作用角α=αmaxが現われる、曲線部分128は実質的に横軸の零線上に延びている。
【0105】
電動機74,90の代わりに、他のあらゆる種類、例えば電気式、液圧式又は空気式の操作器も使用できることは明らかである。
【0106】
図21には、例として、図17による既にトルクMとしての表示で、説明したように電動機74から操作装置へ供給される第1の操作力成分FMotの推移100,101,102,103,104が示されている。更に図21には、図18により既にトルクMとしての表示で説明したように力発生器7により発生されて援助する操作力成分FFeの推移120,121が、レバー角Ωについて示されている。制動機の操作と釈放との間に現われて大部分既知の制動ヒステリシスから生じるヒステリシスが図21による表示において、第1の操作力成分FMotの力推移曲線100,101,102,103,104でまとめられ、即ちすべての残り例えば力発生器のヒステリシス成分も、図示を簡単にするためこの1つの曲線においてまとめられている。
【0107】
レバー1の走行位置Ω=Ωminから始まって、このレバーが初期力を加えられ、その結果操作方向に運動を行う。この場合即ち押し棒の当接点がΩ=ΩLsにおいて制動ライニング40,41へ達するまで、第1の操作力成分FMotは比較的小さい。この範囲において、輪郭10の平らな範囲はその死点まで乗り越えられねばならず、力発生器7は、電動機74により発生される第1の操作力成分FMotに対する反力FFeを生じる。曲線部分120に従うこの反力は、角Ωの増大と共に減少する。
【0108】
初期値FMotminから始まって、曲線部分100に従い第1の操作力成分FMotはまず少し低下し、それから曲線部分101において急峻に上昇し、この上昇は死点角Ωに達しかつ超過する際曲線部分102に続き、それから力発生器7による援助作用の増大のため平らになりかつ少し低下し、それから全制動に相当する最大操作角Ωmaxに達する。死点角Ωより上の角範囲では、力発生器7の援助する操作力成分FFeは曲線部分121に従って増大し、その際曲線部分121の推移は、操作装置にとって望まれる設計曲線に従って選ばれている。全操作力は、既に述べたように、第1の操作力成分と援助する捜査力成分との和から得られ、これは、図21の表示によれば、個々の曲線推移の加算によって可能である。
【0109】
曲線部分103で始まって、制動機が再び釈放され、即ち走行位置の方へ動かされる。図21により曲線部分103からわかるように、第1の操作力成分FMotは、レバー1がかなりの範囲の運動を行うまでに、まずヒステリシスを克服せねばならない。それに続いて、例えば初期値FMotminのように小さい電動機力の範囲にあることが望まれる比較的平らに延びる曲線部分において、レバー1の戻しが行われる。この場合死点角Ωの範囲で第1の操作力成分FMotが再び上昇し、それから曲線部分104において小さくなり、曲線部分100にわたって再び初期値FMotminへ戻る。
【0110】
図22には、図21により説明した制動機の操作過程及び戻し過程に類似で電動機74のとる電流IMotの推移が、レバー角Ωについて示されている。この場合電流IMotは瞬時値を表わすのではなく、適当な時間的平均電流の時間的推移からの濾波によって得られる。
【0111】
電流信号の濾波又は処理の仕方は、使用される電動機の種類に関係している。簡単な直流電動機では、一般に費用のかかる濾波は必要でなく、実質的に直接測定される電流値を本発明による方法の使用のために使用することができる。例えば三相交流電動機、開閉されるレラクタンスモータ又はステップモータ原理に従って動作する他の電動機のように交流信号で運転される電動機では、消費される電流IMotの表現可能な値を得るために、一般に電流信号の時間的平均値形成及び/又は濾波が必要になる。
【0112】
図22に示す電流推移曲線140は、その原理的推移から、第1の操作力成分FMotの推移に近似的に一致しているので、本実施例では、近似的に量FMot,IMotの比例性を前提とすることができる。従って電流推移曲線140には、既に説明したヒステリシスも存在する。
【0113】
電流推移曲線140は、制動機の完全な操作運動とそれに続く戻し運動における電流IMotの推移を示している。この場合質量慣性の影響を無視することができる。例えば死点角Ωまでの小さい操作運動では、消費される電流IMotの曲線推移は、値Ω=Ωまで曲線推移140に一致し、ヒステリシスは、曲線部分141により示すように、操作運動のこの反転点Ω=Ωにおいても作用することになる。類似な曲線推移又は曲線部分は、レバー角Ωの他の設定可能なあらゆる値において生じる。図22から更にわかるように、電流IMotの減少は、ヒステリシス範囲においても、戻し方向におけるレバー角Ωの僅かな変化Ωを生じる。以下釈放揺動角と称するこの変化Ωは、以下に説明する方法において考慮される。
【0114】
図23及び24により、操作力を設定するための本発明による方法の好ましい構成を説明する。図23及び24による方法は、制御装置75において、例えばそれぞれ10ミリ秒後周期的に実施される。
【0115】
方法は図23においてブロック160で始まる。次のデータ転送ブロック161において操作力用の所定目標値FSollが読込まれる。この所定目標値FSollは、例えば運転者から、制御ペダルに結合された制動値発信器を介して規定することができる。しかし個々の車輪制動機の所定目標値の規定は、例えば車軸と車両側との間の所望の制動力分布を考慮しかつ摩耗及び車両運動及び場合によってはそれ以外の影響量の観点を考慮して所定目標値を決定する上位の制動機電磁石を介して行うのが、一層有利である。
【0116】
次の分分岐ブロック162において、所定目標値FSollが最大値FGmaxを超過しているか否かが検査される。この最大値FGmaxに達するか又は超過する場合、全制動が要求され、この全制動のため以下詳述するように特別な方法段階が開始される。まず最大値FGmaxに達せず、従って全制動が行われない場合を考察する。この場合配分ブロック163へ分岐し、そこで所定目標値FSollに対応するレバー角目標値ΩSollが、制御器T75に記憶されている対応関係特性曲線ΩSoll=f(FSoll)から求められる。
【0117】
次の方法段階により、レバー角目標値ΩSollへのレバー1の設定を説明する。このため2つの別の量、即ち第1に電動機74のとる電流IMotを減少するためのレバー1の許容釈放揺動角Ω,及び第2にレバー角Ωを設定するための許容公差ΩSollを考慮せねばならない。釈放角揺動角Ωとは、電動機74のとる電流IMotを減少する際電流節約と電動機及び制御装置75の不必要な加熱のため図21及び22について説明したヒステリシス特性を利用して生じるレバー角Ωの変化を意味する。既に説明したように、所望の動作点に達した後電動機電流IMotの減少は、レバー角Ωの比較的小さい減少、従って動作点からの小さい偏差を生じる。この実施例では、この偏差は、操作装置の操作精度を更に最適化するため、有利に考慮される。
【0118】
許容公差ΩTolは、レバー1の揺動に対する一種の増分である。この量のステップの大きさにより、操作力の実際値FIstが所定目標値FSollに実質的に一致するまで、レバー1の揺動が行われる。
【0119】
分岐ブロック164において、レバー角目標値ΩSollが、釈放揺動角Ωの2倍の値と許容公差ΩTolから構成されて実際に実現可能な最小値を超過するか否かが検査される。この値を超過しないと、出力ブロック180へ分岐し、この出力ブロックにおいてレバー1が零位置へ設定され、即ちΩSoll=0が設定される。更に次の出力ブロック181において、電動機74の給電が終了され、即ち電流値IMot=0が設定される。これは一方では電流の節約に役立ち、他方では電動機74及び制御器75の保護及び加熱の減少に役立つ。操作装置の自動釈放特性のため制動機が走行位置へ操作され、そこに保持される。
【0120】
それから段階182で図23による方法が終了する。
【0121】
分岐ブロック164においてレバー角目標値ΩSollが最小値を超過する場合、分岐ブロック166において、レバー角目標値ΩSollが、センサにより検出されるレバー角ΩIstの実際値の範囲における区間ΩIst+Ω−ΩTol,ΩIst+Ω+ΩTol内にあるか否かが検査される。換言すれば、釈放揺動角Ωだけ付加的に修正されるレバー角目標値ΩSollが、負の公差−ΩTolより小さい値だけ、釈放方向にレバー角の実際値ΩIstからずれているか否か、及び釈放角Ωだけ付加的に修正されるレバー角目標値ΩSollが、正の公差+ΩTolより小さい値だけ、操作方向にレバー角の実際値ΩIstからずれているか否か、が検査される。yesの場合レバー1の揺動の必要がないので、図24に示すデータ転送ブロック175への分岐が行われる。
【0122】
しかしレバー角目標値ΩSollがレバー角の実際値ΩIstだけ前記の区間外にある場合、揺動の必要があり、出力ブロック167へ分岐する。出力ブロック167において、レバー角の実際値ΩIstが目標値ΩSollに達するまで、制御器75が適当な信号を電動機75へ与えることによって、制御器75によりレバー角目標値ΩSollがレバー1に設定される。その際レバー角の実際値は、なるべく電動機74に設けられる検出装置12より永続的に検出される。検出装置は、例えば電動機の回転を検出する光電装置とすることができる。
【0123】
次にデータ転送ブロック168において、電動機74の消費電流IMotが検出され、これから配分ブロック170において、制御器75に記憶されている特性曲線FMot=f(IMot)により、電動機74により操作力発生に寄与する成分が、第1の操作力成分FMotとして求められる。配分ブロック169において、制御器75に記憶されている別の特性曲線FFe=f(ΩSoll)を使用して、力発生器7により操作力に寄与する成分が、援助する操作力成分FFeとして求められる。これら両方の成分から、配分ブロック171において、加算により操作力の実際値FIstが求められる。
【0124】
次にブロック172,173,183,184において、操作力の前に求められた実際値FIstの所定目標値FSollへの再制御が行われる。ブロック163において求められるレバー角目標値ΩSollの設定は、温度の影響、制動ライニングの摩耗又は空気湿度のため、所定目標値FSollへの操作力の実際値FIstの精確な設定を必ずしも適切に可能にしないので、再制御により操作力の設定の際更に最適化が行われる。
【0125】
分岐ブロック172,173により操作力の実際値FIstと所定目標値FSollとの間の一種の制御偏差を示す差の値が、操作力公差値FTolより小さいか否かが検査される。操作力公差値FTolは先に既に説明したレバー角Ωに関する許容公差値FTolと一致する。操作力公差値FTolは、制御器75に固定的に記憶されている。この公差値は、例えばブロック163に関連して説明した対応関係特性曲線ΩSoll=f(FSoll)により求めることができる。
【0126】
ブロック172において規定される区間の下限−FTolを下回ると、配分ブロック183へ分岐し、そこで設定すべきレバー角目標値ΩSollが、増分即ち公差値ΩTolだけ増大される。それからプログラムループのように、ブロック167,168,169,170,171の再度の実行が行われ、即ち新たに求められるレバー角の目標値ΩSollが設定され、操作力FIstの実際値が求められ、それからこの実際値が、再びブロック172,173において、所定目標値FSollの周りの区間範囲の維持について検査される。
【0127】
ブロック173において確認される区間の下限Fの超過の確認の際、配分ブロック184へ分岐し、そこでブロック183と同じように、レバー角目標値ΩSollが増分ΩTolだけ減少される。それからプログラムループのように、再びブロック167,168,169,170,171が実行され、操作力の実際値FIstと所定目標値FSollとの間の制御偏差の再度の検査が続く。この制御偏差が許容区間1−F,F内にある限り、図24に示す出力ブロック174へ分岐する。
【0128】
出力ブロック174において、先に設定されたレバー角目標値ΩSollが釈放揺動角Ωだけ再び減少され、即ちレバー1が量Ωだけ戻され、図22からもわかるように、これが電動機74の消費電流IMotの著しい減少を伴う。
【0129】
次のデータ転送ブロック175において、電動機74により消費される電流IMotが再び読込まれる。分岐ブロック176において、この電流値IMotが許容限界値IMotzulと比較される。更に次の分岐ブロック177において、制御器75により自動的に一緒に計算される制動のそれまで存在した持続時間tが、付属の限界値tBzulと比較される。ブロック176,177の両方の場合それぞれの限界値の超過が確認されると、電動機74の保護手段が開始される。なぜならば、そうしないと電動機74の過熱又は過負荷が生じる可能性があるからである。従ってこの場合副プログラム178が呼び出され、制動装置全体のために駐車モードが動作せしめられる。
【0130】
この副プログラム178において、駐車モードの動作又は動作停止についての状況通報を上位の制動機管理へ送るようにすることができる。この制動機管理は、別の車輪制動操作器の状況通報を考慮して、車輪制動操作器の負荷を減少するための適当なアルゴリズムを実施することができる。
【0131】
図23の分岐ブロック162において、全制動が行われていることが確認されると、出力ブロック185へ分岐する。そこで適当な操作信号が電動機74へ与えられ、この電動機によりレバー1が最大に可能な揺動角Ωmaxへ揺動され、従って制動機はできるだけ大きい操作力を加えられる。それから図24に示すように、方法過程がブロック175で続行される。それから方法はブロック179で終了する。
【0132】
図25〜29には、釈放遊隙操作器90,91,92,93,94,95,96,97の調節による、以下単に釈放遊隙ΩLsと称する釈放遊隙限界Ω=ΩLsの変化と、入力力Fの特性曲線の推移へのその影響が、操作行程について示されている。ここで操作行程という概念は、制動機の操作過程の量的特徴づけに適した量を意味する。操作行程として、以下にレバー1の揺動角Ωが使用される。操作装置の別の構成では、例えば行程の大きさも使用することができる。
【0133】
この場合釈放遊隙QLsは、不連続な値ΩLs0,ΩLs1,ΩLs2,ΩLs3,ΩLs4に設定される。値ΩLs0は所望の値に相当し、即ち操作行程について入力力Fの所望の特性曲線推移を生じる。値ΩLs1、は、図25による釈放遊隙の値ΩLs0より小さく選ばれ、ΩLs2,ΩLs3,ΩLs4はΩLs0より小さく選ばれ、値ΩLs2,ΩLs3,ΩLs4はより大きい。
【0134】
図25〜27からわかるように、釈放遊隙の値ΩLs0,ΩLs1,ΩLs2と共に、特性曲線推移が上の曲線分枝及び下の曲線分枝に分割される点は、同じ程度に変化し、これは制動ライニング及び操作装置の別の部分のヒステリシス特性に直接起因する。釈放遊隙の比較的大きい値ΩLs3,ΩLs4では、既に釈放遊撃の乗り越え前即ち制動円板への制動ライニングの当接点の前に、2つの曲線分枝への分割が行われる。この挙動は電動機74のヒステリシス作用によって生じる。
【0135】
釈放遊隙の変化の際における特性曲線推移の部分の水平移動のほかに、上の特性曲線分枝の最大点及び下の特性曲線分枝の最小点が同じ向きに移動せしめられるように、特性曲線推移の垂直移動が同時に行われる。特に釈放遊隙の減少の際、全特性曲線推移の持ち上げが行われ、即ち最大点及び最小点が大きい入力力需要の方へ上昇する。釈放遊隙の増大の際、両方の点は小さい入力力の需要の方へ低下する。充分大きい釈放遊隙ΩLs3,ΩLs4では、最小点は負の入力力需要の範囲へ移動する。釈放遊隙ΩLs4が更に増大すると、最大点は負の入力力需要の範囲内へ達する。この負の入力力需要の範囲には、操作装置の自動操作特性が存在する。
【0136】
更に図25〜29からわかるように、小さい値から大きい値への釈放遊隙の変化の際、上の特性曲線分枝と下の特性曲線分枝の間隔が小さくなり、即ちヒステリシスが小さくなる。
【0137】
既に述べたように、特に大きい操作行程の値Ωが対応する大きい操作力の範囲において、特性曲線推移が入力力の所望の範囲Fmax,Fmin内にあることが望ましい。このような推移が図25に示されている。温度の影響のため、例えば頻繁な制動による操作装置の制動ライニング及び他の部分の加熱によって、例えば値ΩLs1への釈放遊隙の加熱による減少により、図26による曲線推移が変化することが、起こり得る。図26による特性曲線推移では、特性曲線部分200が入力力の最大に望まれる値Fmaxより上に延びているので、図26による特性曲線推移は全体として望ましくない推移をとる。制御器75はこれを検出し、釈放遊隙操作器90,91,92,93,94,95,96,97の制御により釈放遊隙を再びΩLs0に増大するので、それ以後図25による所望の特性曲線推移が再び生じる。
【0138】
同様に、最初は強く加熱される制動機の冷却の際、例えば結果として釈放遊隙を値ΩLs0へ減少することになる温度の低下のため、図27による特性曲線推移の移動が起こる可能性がある。この場合下の特性曲線分枝における特性曲線推移が、所望の範囲外即ち入力力の最小に望まれる値Fminより下へ移動する。特性曲線部分201は最小に望まれる入力力Fminより下にある。制御器75は、所望の特性曲線推移からのこのような偏差を検出し、釈放遊隙が所望の値ΩLs0に減少されるように、釈放遊隙操作器90,91,92,93,94,95,96,97を制御する。その後図25による所望の特性曲線推移が再び生じる。
【0139】
制動機の一層長期の制動が望まれる特定の状態例えば駐車場に車両が停止す場合又は交通信号装置の停止の場合において、エネルギを節約しかつ電動機74をあまり負荷しない制動操作方式が望まれることがある。この作動状態は以下駐車制動作動とも称される。このような場合制御器75は、釈放遊隙の一層大きい値ΩLs2が得られるように、釈放遊隙操作器90,91,92,93,94,95,96,97を制御する。この場合自動的に釈放する制動特性は得られず、これは図28において、上の特性曲線分枝が横座標軸より上に延び、下の特性曲線分枝が横座標軸より下に延びていることによりわかる。その場合制動機の操作のため更に正の入力力Fが必要である。入力力Fの遮断後、下の特性曲線分枝のため操作位置は安定状態にある。制動機の釈放は、操作器に負の入力力Fを加える際に初めて、即ち電動機74を釈放方向に制御することによって、行われる。図28による特性曲線推移は、なるべく車両の短時間の停止段階において、即ち交通信号装置の停止の場合、又は例えば駐車場における車両の停止の場合に行われる。
【0140】
駐車制動作動において、最初に制動機が加熱されている場合、冷却のため図29による特性曲線推移が現われる可能性がある。この状態において、レバー角Ωにおける制動特性は、死点角Ωにおけるより大きく完全に自動操作し、これは上及び下の特性曲線分枝が負の入力力の範囲にあることによりわかる。車両の再作動開始後、制御器75は、再び釈放遊隙操作器90,91,92,93,94,95,96,97により、釈放遊隙を例えば値ΩLS1に設定する。
【0141】
図30には、釈放遊隙操作器90,91,92,93,94,95,96,97の制御による釈放遊隙の設定によって操作行程Ωについて入力力Fの特性曲線推移を合わせる好ましい方法が、フローチャートとして示されている。この方法は、例えば電子制御装置75に設けられる制御プログラムの副プログラムとして実現することができる。方法はブロック210で始まる。
【0142】
分枝ブロック211において、現在制動が行われているか否かが検査される。制動されている場合、ブロック212へ分枝し、そこで、現在の制動の際生じる入力力F及び操作行程Ωの値対の結果が、特性曲線推移として記憶される。ブロック212から直ちにブロック218へ分枝し、このブロックで方法が終了する。
【0143】
ブロック211において、制動が行われていないことが確認される場合、ブロック213へ移行し、そこで、記憶されている特性曲線推移又は場合によっては前に記憶されている複数の特性曲線推移が評価される。この場合原理的に前に記憶されたただ1つの特性曲線推移を評価すれば充分である。しかし一層信頼できる情報は、複数の測定された特性曲線推移の記憶及び評価を与える。複数の特性曲線推移の場合、評価は例えば記憶されている特性曲線推移からの平均値形成を含むことができる。1つの特性曲線推移から又は複数の特性曲線推移の結果生じる1つの特性曲線推移から、特に曲率、最大値、振幅及び/又はヒステリシスに関して特性曲線推移を特徴づけられる特性量が求められる。本実施例では、例えばブロック213において、上の特性曲線分枝の最大値Foben及び特性曲線分枝の最小値Funtenが求められる。
【0144】
それからブロック214,215,216,217により、釈放遊隙の反覆設定が行われて、設定される特性曲線推移と望ましい特性曲線推移との偏差が所定の値を下回るまで、釈放遊隙が段階的に変化される。この場合反覆設定は、図30による方法の数回の実行により行われ、その際再度の各反覆段階のため、新しい特性曲線推移を求めるための全制動が必要である。設定される特性曲線推移と所望の特性曲線推移との偏差の程度として、入力力の所望の範囲Fmax,Fmin内にあるか否かについて検査される最大値Foben,最小値Funtenが使用される。このため分枝ブロック214において、最大値Fobenが最大に望まれる入力力の値Fmaxを超過しているか否かがまず検査される。この超過が確認されると、ブロック215へ分岐して、釈放遊隙操作器90,91,92,93,94,95,96,97の操作による釈放遊隙が所定の増分ΔΩだけ増大される。その後ブロック218において方法が終了する。
【0145】
分岐ブロック214において入力力の最大に望まれる値Fmaxの超過が確認されない場合、分岐ブロック216へ移行する。そこで、入力力の最小に望まれる値Fminを下回るか否かについて最小値Funtenが検査される。下回る場合、ブロック217へ移行して、釈放遊隙が増分ΔΩだけ小さくされる。それからブロック218において方法が終了する。ブロック216において入力力の最小に望まれる値Fminを下回ることが確認されなかった場合、釈放遊隙の調節の必要はない。なぜならば、特性曲線は既に所望の範囲にあるからである。方法はブロック218で終了する。
【0146】
制動装置の動作の際、換言すれば制動の際、操作装置又はその部分の機能消失又は故障が確認される場合、図には示してない代わりのプログラムが実行され、釈放遊隙操作器90,91,92,93,94,95,96,97が繰出され、釈放遊隙操作器90,91,92,93,94,95,96,97により操作力従って制動力が発生される。その際釈放遊隙操作器90,91,92,93,94,95,96,97により発生される制動力は、操作者による規定によって例えば制動ペダルを介して設定される。この場合釈放遊隙操作器90,91,92,93,94,95,96,97により発生可能な制動力は、欠陥のない状態において操作装置により発生可能な制動力の少なくとも20%にすることができる。
【0147】
図31には、釈放遊隙の調節により操作行程Ωについて入力力Fの特性曲線推移を適合させる方法の別の好ましい実施形態が、フローチャートとして示されている。この方法はブロック260で始まる。
【0148】
分枝ブロック261において、現在制動が行われているか否かが検査される。制動されている場合、ブロック269へ分岐して、現在の制動において現われる入力力F及び操作行程Ωの値対が特性曲線推移として記憶される。記憶は、所定数の特性曲線推移例えば最後に生じる10の特性曲線推移を記憶できるメモリとして一種の環状緩衝メモリを使用するやり方で行われる。ブロック269から直ちにブロック268へ移行して、方法が終了する。
【0149】
ブロック261において、制動が行われていないことが確認される場合、ブロック262へ移行して、記憶されている1つの特性曲線推移又は記憶されている10の特性曲線推移が評価される。評価のため10の特性曲線推移から算術平均により求められる平均特性曲線推移がなるべく使用される。これから、入力力Fの所定の上昇が行われる特性曲線の点が求められる。この点において操作行程Ωに関して、釈放遊隙の乗り越えを始めることができ、即ちこの点に存在する操作行程Ωの値を、目下存在する釈放遊隙ΩLsとして使用することができる。それから次のブロック263において、目下存在する釈放遊隙ΩLsと所望の釈放遊隙例えば値ΩLs0との差として、釈放遊隙変化ΔΩLsが計算される。
【0150】
それからブロック264,265,266,267により、残存する釈放遊隙変化ΔΩLsが所望の範囲ΔΩLsmin,ΔΩLsmaxにあるようにするため、釈放遊隙が変化されるように、釈放遊隙の調節が行われる。このため分枝ブロック264において、釈放遊隙変化ΔΩLsが最小に望まれる値ΔΩLsminを下回っているか否かがまず検査される。下回っていることが確認されると、ブロック266へ移行して、釈放遊隙操作器90,91,92,93,94,95,96,97の操作により、釈放遊隙が所定の増分ΔΩだけ増大される。それからブロック268において方法が終了する。
【0151】
分岐ブロック264において釈放遊隙変化ΔΩLsの最小に望まれる値ΔΩLsminを下回らないことが確認される場合、分枝ブロック265へ分岐する。そこで釈放遊隙変化ΔΩLsが、最大に望まれる値ΔΩLsmaxの超過について検査される。超過の場合ブロック267へ移行して、釈放遊隙が増分ΔΩだけ小さくされる。それからブロック268で方法が終了する。ブロック265において、釈放遊隙変化ΔΩLsの最大に望まれる値ΔΩLsmaxの超過が確認されなかった場合、釈放遊隙を調節する必要がない。なぜならば、釈放遊隙は既に所望の範囲ΔΩLsmin,ΔΩLsmaxにあるからである。その場合方法はブロック268で終了する。
【0152】
増分ΔΩは、制動機の作動状態に応じて規定することができる可変な値として有利に形成することができる。強く加熱される制動機の場合、例えば以下に更に説明する極端な走行作動において、増大するライニング摩耗のため、増分ΔΩを通常作動におけるより大きく規定するのが有利である。
【0153】
制御器75において副プログラムとして実現される別の方法が、図32に示されている。図32による方法は、最大に利用可能な釈放遊隙、即ち零位置から制動ライニングが制動摩擦体即ち制動円板へ当接する終端位置まで釈放遊隙操作器90,91,92,93,94,95,96,97の利用可能調節範囲を求めるのに役立つ。
【0154】
分岐ブロック221において、制動が現在行われているか否かがまず検査される。制動されている場合、直ちにブロック230へ分岐し、そこで方法が終了する。なぜならば制動中に釈放遊隙操作器90,91,92,93,94,95,96,97の任意の調節が望まれず可能でもないからである。制動が行われていないと、ブロック222へ分岐する。そこで釈放遊隙操作器90,91,92,93,94,95,96,97が、図11に示す零位置へ動かされる。続くブロック223において、時間計Tが値零にセットされる。更に行程計Wも同様に値零にセットされる。時間計Tは、釈放遊隙操作器の運動開始から時間限界値TGrenzまでの時間の測定に用いられ、時間限界値以後釈放遊隙操作器90,91,92,93,94,95,96,97は恐らく遅くともその終端位置に達していなければならない。行程計Wは、釈放遊隙操作器90,91,92,93,94,95,96,97の進んだ行程区間の測定に用いられ、この実施例で行程区間は、調節モータ90の行った回転角変化として測定される。
【0155】
ブロック224において、調節モータ90の付勢により釈放遊隙操作器90,91,92,93,94,95,96,97が繰出し方向へ動かされる。この運動は、終端位置へ達しない限り、ブロック227における釈放遊隙操作器の停止まで永続的に続行される。この運動中に行程計Wにより、進んだ回転角変化が測定される。分岐ブロック225において、釈放遊隙操作器90,91,92,93,94,95,96,97により発生される力の程度として、調節モータ90により消費される電流Iが測定され、限界値IGrenzと比較される。調節モータ90として従来の電動機を使用すると、釈放遊隙操作器90,91,92,93,94,95,96,97が終端位置へ達する際、電動機の機械的拘束のため、かなりの電流上昇が予想されるので、この問合せにより、終端位置へ達したことを確認することができる。電流限界値IGrenzを超過する場合、ブロック227へ分岐する。そうでない場合分岐ブロック226において、釈放遊隙操作器90,91,92,93,94,95,96,97の繰出しの開始以後経過した時間Tが時間限界値TGrenzを超過したか否かが更に検査される。この時間限界の超過は、釈放遊隙操作器90,91,92,93,94,95,96,97が終端位置へ達したことの表示として評価することもできる。ブロック225,226における2回の問い合わせは、安全上の理由から考慮される。ブロック225,226における両方の検査がnoの結果になる場合、再びブロック224へ分岐し、それにより釈放遊隙操作器90,91,92,93,94,95,96,97の繰出し運動が続行される。
【0156】
そうでない場合ブロック227において、調節モータ90の遮断により釈放遊隙操作器90,91,92,93,94,95,96,97が停止される。ブロック228において、行程計Wの得られた値が利用可能な釈放遊隙として制御器75に記憶される。それからブロック229において、再び通常の釈放遊隙が設定され、即ち操作行程Ωについての入力力Fの特性曲線推移が、例えば図25に示すように、実質的に所望の特性曲線推移をとる。図23による方法はブロック230で終了する。
【0157】
図33の状態移行線には、車両制動操作器の釈放遊隙操作器の有利な作動方式が示されている。実際には別の作動態様が必要で、追加されることができる。図示した作動方式は、一般化して全制動装置の作動方式として使用することができる。
【0158】
図33の図示の出発点は作動方式240である。作動方式240において、少なくとも車輪制動操作器、場合によっては全制動装置も例えば車両の点火開閉器を介して遮断されている。作動方式240を状態移行250によって出ることができ、この状態移行250は、実際にはなべく給電装置の閉成により、例えば点火開閉器閉成によって実現される。状態移行250は、診断作動と称される作動態様241を生じる。診断作動において複数の機能が実現されて、車輪制動操作器の電気的及び機械的検査のため、及び制動装置の別の部分の検査にも役立つ。即ち診断作動において、制御器75から操作器74,90及びセンサへのすべての電気接続が、妥当な信号について検査される。更に短絡又は断線のような望ましくない電気的状態が存在するか否かが検査される。機械的検査の範囲内で、釈放遊隙操作器90,91,92,93,94,95,96,97の操作により最大に利用可能な釈放遊隙が、図32により説明した方法により求められるようにするのがよい。これにより同時に釈放遊隙操作器90,91,92,93,94,95,96,97の動作能力も検査される。最大に利用可能な釈放遊隙を求めた後、診断作動において、制御器において、制御器に記憶されている釈放遊隙の標準値が設定される。
【0159】
診断作動において、まず通常の制動機能が抑制され、即ち運転者による制動ペダルの操作が、まだ制動機の適切な操作を行わない。釈放遊隙を求めた後、診断作動の範囲内で開始される制動機の操作過程により、遊隙操作器の目下存在する特性曲線推移が初めて求められる。第1の特性曲線推移の受入れ後、この特性曲線推移が図30又は31の方法により評価され、釈放遊隙の前述した反覆適合が行われる。診断作動中に、測定された特性曲線推移が所望の特性曲線推移に近づくまで、図30又は31による方法を数回も行うことができる。これにより電動機74が一方では制動機を確実に操作でき、他方では制動機が自動釈放特性を持つようにすることができる。
【0160】
前述した種類の複数の車輪制動操作器を持つ車輪では、特に傾斜した車道において車両が確実に停止されるように関連づけて、制動機を一時的に釈放せねばならない診断作動を実施することが有意義である。このため種々の方法、例えば車輪制動操作器の個々の制御器に診断作動を実施する許可を配分する中央制御が、有利に使用可能である。中央制御は、例えば中央制御器によるか又は車輪制動操作器の制御器の1つによっても行うことができる。診断作動の実施の際、例えば点火装置の閉成後各車輪制動操作器が、診断作動を実施せねばならない規定時間を利用できるように、車輪制動操作器の時間的段階づけを行うのも有利である。その場合車輪制動操作器のための個々の時間範囲は、重ならないように適当に規定すべきである。関連づけの別の有利な可能性は、固定的に規定される車輪制動操作器が診断作動を開始し、その診断作動の終了を他の車輪制動操作器へ通報し、それから他の車輪制動操作器が診断作動を実施し、終了を更に別の車輪制動操作器へ通報するように、一種の連鎖動作又は段階動作である。こうして関連づけは、集中した機能なしでも可能である。
【0161】
所望の特性曲線推移を可能にする釈放遊隙値を設定する別の特に時間を節約する方法は、次のように行うことができる。
操作装置が例えばΩ=15度の操作角に設定され、その際電動機74からレバー1へ作用する入力力Fが例えば電動機74の消費電流により求められ、操作が再び取消され(Ω=0度)、釈放遊隙が入力力Fの求められた値に応じて次のように調節される。
<−5N(ニュートン) 釈放遊隙を1.0mmだけ減少すべきである
<0N 釈放遊隙を0.5mmだけ減少すべきである
<3N 釈放遊隙を0.3mmだけ減少すべきである
<5N 釈放遊隙を0.1mmだけ減少すべきである
<14N 釈放遊隙を0.1mmだけ増大すべきである
<16N 釈放遊隙を0.2mmだけ増大すべきである
これらの段階は、制動機の操作の際Ω=15度の操作角において生じる入力力Fが5〜13Nの範囲にあるまで、反覆される。これが不可能な場合、状態移行251を経て診断作動241から欠陥作動242の作動方式へ交代が行われる。
【0162】
次の段階において全制動即ち最大操作角Ωへの操作が行われ、再び入力力Fが評価される。この場合入力力Fは、操作の際6〜16Nの範囲にあり、制動機の釈放の際所望の自動釈放特性のため常に0Nより大きいようにする。これらの値に達しない場合、釈放遊隙の調節が次のように行われる。
操作の際F<6N 釈放遊隙を0.5mmだけ減少すべきである
操作の際F<16N 釈放遊隙を0.05mmだけ増大すべきである
操作の際F<0N 釈放遊隙を0.05mmだけ減少すべきである
これにより揺動角Ωが求められ、この揺動角において入力力Fが所定の上昇値に達し、かつ記憶される。
【0163】
これにより診断作動が終了し、診断作動において欠陥が確認されなかった場合、状態移行253により作動方式243において作動が続行される。前述した欠陥の場合、状態移行251により欠陥作動242の作動態様へ変えられる。この作動方式において、例えば警報灯の付勢により警報信号が発生される。この場合走行が工場で可能であるようにするため、制動装置が全制動位置に留まらないようにする。欠陥がわかったにもかかわらず、例えば1つの車輪だけが欠陥を示すため、制動装置の充分な全制動力が存在する場合、なるべくこの制動機が釈放位置へもたらされる。この作動方式のリセットは、状態移行252を介して、例えば点火装置の遮断により可能である。これにより車輪制動操作器又は制動装置が再び作動方式240へ達する。
【0164】
作動方式243は通常の走行作動においてとられる。これには、図30及び31により説明したような釈放遊隙操作器90,91,92,93,94,95,96,97の設定とは異なる手段を釈放遊隙調節に関して必要としないすべての状態が属する。通常の走行作動から、状態移行258を介して再び診断作動241へ変わることができる。状態移行258は、例えば診断装置の接続及び制動装置への診断動作指令の送信によって開始することができる。
【0165】
通常の走行作動において、釈放遊隙の再調節は、とりわけ制動ライニングの摩耗を補償するためにも行われる。通常の走行作動から、状態移行254を経て作動方式244へ変わることができる。作動方式244は、制動機の異常に高い負荷の場合例えば長い下り坂走行の場合に起こるすべての作動状態に関し、以下極端な走行作動と称される。通常の走行作動において少なくとも1つの制動機部分特に制動ライニングの温度ζが温度限界値ζmaxを超過すると、状態移行254が行われる。この温度ζは、温度センサにより検出することができる。温度センサを回避し、温度モデル又はエネルギモデルにより温度を求めるのが有利である。この場合温度又はエネルギの値は、制動機の操作時間と操作されない時間(制動機が冷却する)との比から計算により求められる。その代わりに又はそれに加えて、図31のブロック262について既に説明したように、例えば入力力Fの上昇点の監視により、釈放遊隙ΩLsの減少が確認される時、状態移行254を有利に開始することができる。
【0166】
極端な走行作動244において、警報信号例えば警報灯が付勢されて、この状態を車両の運転者に教え、不必要な制動操作の前に警告する。
【0167】
極端な走行作動244において、制動ライニング40,42及び他の制動機部分の温度による膨張により、釈放遊隙が小さくなる。この効果を補償するため、釈放遊隙操作器90,91,92,93,94,95,96,97の調節により釈放遊隙が再び増大され、即ち所望の正常値に設定される。作動方式244から状態移行255を経て、作動方式243への変化を行うことができる。状態移行255は、例えば制動機が所定の時間例えば1時間操作されていない時、時間基準の結果開始される。
【0168】
作動方式243から、状態移行256を介して作動方式245への変化を行うことができる。作動方式245は駐車制動方式とも称される。状態移行256を開始するため、不変な制動操作の持続時間の測定がなるべく行われる。所定の持続時間値を超過すると、状態移行256が行われる。その代わりに、別の操作手段例えば段階づけ可能な装置として構成することができる手動制動レバーによっても、状態移行256を開始することができる。
【0169】
駐車制動作動において、走行作動又は極端な走行作動とは異なり、特別な特徴として、制動力の変化は比較的まれにしか必要でない。駐車制動作動は、傾斜車道においても車両を確実に停止する比較的大きい制動力の設定に用いられる。この場合電動機74の電流消費及び負荷をできるだけ少なくする。その際電動機74は、電動機74の望ましくない加熱又は損傷の原因となる比較的大きい電流値で持続的に給電されないようにする。
【0170】
駐車制動作動において、例えば図28に示すように、釈放遊隙の増大が行われ、制動機は自動釈放しない特徴をとる。例えば釈放遊隙を現在の位置から0.3だけ増大することができる。続いて最大揺動角Ωが設定されるので、全制動が行われる。それから電動機74により発生される入力力Fがそれに応じて減少されるか又は消失せしめられる。
【0171】
駐車制動作動245から、状態移行257を介して通常の走行作動243への変化を行うことができる。状態移行257は、別の操作手段(手動制動レバー)の釈放又は運転者による制動操作希望の変化によっても行うことができる。
【0172】
図32には示してない別の状態移行により、作動方式241,243,244,245の各々から、例えば点火装置を遮断することによって、作動方式240への直接の移行を行うことができる。
【0173】
電気操作器として、以下の実施例において、回転運動を生じることができる従来の電動機を使用することが仮定される。回転運動は2つの運動方向に、例えば左回転及び右回転を行うことができる。これらの運動方向は以下一般に″A″及び″B″と称される。電動機は、例えば最初にあげた従来技術から公知のように、車両用制動機の操作装置に機械的に固定的に結合されている。操作装置も同様に2つの運動方向をとることができる。一方の運動方向は制動機の操作を生じ、以下操作方向と称される。他方の運動方向は制動機の釈放を生じ、以下釈放方向と称される。釈放方向に最大に得られる位置は、完全に釈放される制動機に相当し、釈放位置と称される。
【0174】
図34による方法は、ブロック301で始まる。続く分岐ブロック302において対応関係メモリZが問い合わされる。対応関係メモリZは、本発明による方法の成功した実施後、電動機の可能な運動方向″A″,″B″に電動機に結合される操作装置の操作方向における運動を生ぜしめる情報を含むように、規定されている。従って逆の運動方向は釈放方向における運動を生じる。従って対応関係メモリは、両方の可能な対応関係″A″,″B″の″1″を含むが、又は消去状態で中立の値″0″を含むことができる。この中立の値″0″は、例えば制動操作器の最初の動作開始の際に存在することになる。
【0175】
従って分岐ブロック302において、対応関係メモリZが中立の値″0″を含み、従って可能な対応関係″A″,″B″がまだ記憶されていないか否かが検査される。可能な対応関係″A″,″B″の1つが既に記憶されている場合、直ちにブロック312へ分岐し、方法が終了する。noの場合ブロック303から始まって、対応関係の自動検出が以下に説明するように行われる。
【0176】
ブロック303において、所定の検査サイクルが開始されて、電動機がまずその両方の可能な運動方向″A″,″B″の1つ″A″において始動される。それからブロック304において図35において、図35に詳細に示されている副プログラムが呼び出される。
【0177】
図35による副プログラムは、ブロック320で始まる。続くブロック321において、時間計Tが初期値0にセットされる。それから分岐ブロック322において、図34のブロック303において先に始動された電動機が回転運動を行っているか否かが検査される。これはなるべく電動機に設けられる回転運動検出装置例えば光電装置又は誘導センサにより検出される。電動機が回転しているか否かの検査によって、操作装置が操作方向に運動を行っているか否かが間接的に検査される。本実施例では、初期状態として、操作装置が釈放位置にあり、従ってそれ以上釈放位置に動かされないことが前提とされた。従って操作方向に運動が行われる時にのみ、操作装置従ってそれに結合される電動機が運動を行うことができる。
【0178】
分岐ブロック322において、電動機が回転運動を行っていることが確認される場合、配分ブロック328へ分岐し、そこで結果変数Rが値″A″にセットされる。それからブロック329において電動機が停止され、それから図35による副プログラムがブロック330で終了される。
【0179】
しかし分岐ブロック322において、電動機が回転運動を行っていないことが確認される場合、ブロック323へ分岐する。そこで電動機の消費電Iが、例えば電動機の給電導線にある測定装置により検出される。それから分岐ブロック324において、消費電流Iが電流限界値IGrenzを超過しているか否かが検査される。
【0180】
超過している場合、配分ブロック327へ分岐する電流限界値IGrenzの超過は、操作装置が操作方向に運動を行っていないことの表示として使用される。この場合電動機の運動方向″A″が操作装置の釈放方向に対応していることを前提とすることができる。従ってブロック327において結果変数Rが値″B″にセットされ、この値は電動機の運動方向″B″が操作方向に対応していることを示す。それから図35による副プログラムが既に説明したブロック329,330を経て終了する。
【0181】
しかし分岐ブロック324において、電流限界値IGrenzの超過がないことが確認される場合、配分ブロック325へ分岐し、そこで時間計Tが増分される。次の分岐ブロック326において、時間計Tが持続時間限界値TGrenzの超過について検査される。これにより電動機の最大操作時間が限定される。持続時間限界値TGrenzをまだ超過しない場合、プログラムループのように再び分岐ブロック322へ分岐するので、上述した検査が、分岐ブロック322,324,326において、プログラムループを終了する条件が存在するまで、再び行われる。
【0182】
電動機が回転運動を行っていることが分岐ブロック322において確認されることなく、持続時間限界値TGrenzを超過する場合、電動機の運動方向″A″が操作装置の操作方向に対応せず、釈放方向に対応していることが同様に想定される。従って同様に配分ブロック327へ分岐して、結果変数Rが値″B″にセットされる。既に述べたように、図35による副プログラムは、ブロック329の実施後ブロック330において終了する。
【0183】
それから図34において配分ブロック305が実施される。そこで対応関係メモリZが、図35による副プログラムの結果変数Rの値にセットされる。続く分岐ブロック306において、対応関係メモリZが値″B″を含んでいるか否かが検査される。値″B″が含まれている場合、これは、先に行われた試験サイクルにおいて電動機の運動方向″A″操作に至らず、電動機が運動を行わなかったことを示す。その可能な原因は、釈放位置にある操作装置により電動機が機械的に拘束されたか、又は制動操作器の電動機又は他の部分が欠陥を持っていることにある。欠陥の可能性を知り、危険な要因として制動機の一層遅い作動を防止するため、分岐ブロック306において条件Z=″B″が満たされていると認められた場合、ブロック307において第2の検査サイクルが始められる。
【0184】
第2の検査サイクルにおいて、まずブロック107において電動機が第2の運動方向″B″に始動される。欠陥が存在しない場合、操作装置が操作方向に運動を行うことが予想される。これを証明するため、次にブロック308において再び図35による副プログラムが呼び出される。この副プログラムは、結果として、既に説明したように、結果変数Rを与える。この結果変数は図34の分岐ブロック309において評価される。結果変数Rが値″B″を含んでいると、これは、電動機が新たに回転運動を行わず、従って操作装置も操作方向に運動を行うことができなかったことを示す。このような挙動は欠陥を示唆する。従ってこのような場合ブロック310へ分岐して、欠陥の検出及び表示が行われる。例えば車両の運転者に見える警報灯を付勢することができる。更に運動方向の対応関係を求めることが不可能なので、対応関係メモリが再び中立な値0へセットされる。それから図34による方法がブロック312で終了する。
【0185】
分岐ブロック306において既に条件Z=″B″が満たされない(これは電動機がまず運動を行ったことを意味する)場合、第2の試験サイクルによる電動機の引続く検査は必要でなく直ちにブロック311へ分岐する。このブロック311において、前に操作方向に操作された操作装置が再び釈放位置へ動かされる。それから方法がブロック312で終了する。ブロック307,308を含んで第2の検査サイクルが行われる場合、分岐ブロック309において欠陥が確認されないと、同様にブロック311へ分岐する。これにより制動機が再び釈放位置へもたらされ、それから方法がブロック312で終了する。
【0186】
前述した方法の結果として、電気操作器の運動方向と操作装置の運動との対応関係が求められて、対応関係メモリZに記憶される。この実施例では、対応関係メモリZは、操作方向における操作装置の運動を生じる電動機の運動方向を含んでいる。これにより両方の運動方向の一義的な対応関係が規定されている。
【図面の簡単な説明】
【0187】
【図1】出力力を発生するための機械的装置の原理を原理図で示す。
【図2】出力力を発生するための機械的装置の原理を原理図で示す。
【図3】出力力を発生するための機械的装置の原理を原理図で示す。
【図4】出力力を発生するための機械的装置の原理を原理図で示す。
【図5】出力力を発生するための機械的装置の原理を原理図で示す。
【図6】出力力を発生するための機械的装置の原理を原理図で示す。
【図7】出力力を発生するための機械的装置の原理を原理図で示す。
【図8】出力力を発生するための機械的装置の原理を原理図で示す。
【図9】出力力を発生するための機械的装置の原理を原理図で示す。
【図10】操作装置の作用原理の図を示す。
【図11】電気−機械制動機の第1の実施形態の実施例を1つの操作位置で示す。
【図12】電気−機械制動機の第1の実施形態の実施例を別の操作位置で示す。
【図13】電気−機械制動機の第1の実施形態の実施例を更に別の操作位置で示す。
【図14】電気−機械制動機の第2の実施形態の実施例を1つの操作位置で示す。
【図15】電気−機械制動機の第2の実施形態の実施例を別の操作位置で示す。
【図16】電気−機械制動機の第2の実施形態の実施例を更に別の操作位置で示す。
【図17】入力力を生じる電動機トルクの操作角に関する特性曲線の例を示す。
【図18】力発生器によりレバーへ導入されるトルク成分の操作角に関する有利な推移を示す。
【図19】力発生器の輪郭の好ましい実施形態を示す。
【図20】作用角の好ましい関数推移を示す。
【図21】操作力成分及び電動機電流のレバー角に関する特性曲線を示す。
【図22】操作力成分及び電動機電流のレバー角に関する特性曲線を示す。
【図23】本発明による方法の好ましい実施例をフローチャートで示す。
【図24】本発明による方法の好ましい実施例をフローチャートで示す。
【図25】釈放遊隙の変化の際における入力力のレバー角に関する特性曲線を示す。
【図25】釈放遊隙の変化の際における入力力のレバー角に関する特性曲線を示す。
【図26】釈放遊隙の変化の際における入力力のレバー角に関する特性曲線を示す。
【図27】釈放遊隙の変化の際における入力力のレバー角に関する特性曲線を示す。
【図28】釈放遊隙の変化の際における入力力のレバー角に関する特性曲線を示す。
【図29】釈放遊隙の変化の際における入力力のレバー角に関する特性曲線を示す。
【図30】操作行程に関する入力力のレバー角に関する特性曲線推移を変化する有利な方法のフローチャートを示す。
【図31】操作行程に関する入力力のレバー角に関する特性曲線推移を変化する別の有利な方法のフローチャートを示す。
【図32】最大に利用可能な釈放遊隙を検出する有利な方法のフローチャートを示す。
【図33】釈放遊隙操作器の有利な作動方式の状態移行図を示す。
【図34】本発明による方法の有利な構成をフローチャートで示す。
【図35】本発明による方法の有利な構成をフローチャートで示す。

Claims (68)

  1. 制動力を発生する手段(40,41,42,43,50)へ入力量(F)に応じて出力力(F)を与える制動機用操作装置であって、レバー(1)及びレバー(1)の縦軸線に対し作用角(α)をなして力(FFeder)をレバー(1)へ加える力発生器(7)を有するものにおいて、操作装置の構造的構成及び/又は使用される材料の選択により生じる摩擦の少ない操作特性を特徴とする、操作装置。
  2. 作用角(α)の調節により出力力(F)が所望の値に調節可能であるように、入力量(F)に応じて作用角(α)を変化する手段(9,10,13,70,71)を特徴とする、請求項1に記載の操作装置。
  3. 力発生器(7)が力作用点(18)においてレバーに作用し、かつ変化可能な力伝達点(6)を持ち、この力伝達点の変化により作用角(α)が変化可能であることを特徴とする、先行する請求項の1つに記載の操作装置。
  4. 力発生器(7)が、作用角(α)の調節可能な各値において、同じ力作用点(18)でレバー(1)に作用することを特徴とする、先行する請求項の1つに記載の操作装置。
  5. 変化可能な力伝達点(6)が所定の軌道曲線に沿って変化可能であることを特徴とする、請求項3又は4に記載の操作装置。
  6. 軌道曲線が輪郭(10)として構成され、レバー(1)と特に力伝達点(6)において結合される並進装置(9)が、この輪郭に沿って運動可能であることを特徴とする、請求項5に記載の操作装置。
  7. 並進装置(9)が、作用角(α)を変化する手段(9,10,13,70,71)の構成部分であることを特徴とする、請求項6に記載の操作装置。
  8. レバー(1)が、所定の最小値(Ωmin)特に値零から所定の最大値(Ωmax)までの許容角範囲内で調節可能であることを特徴とする、先行する請求項の1つに記載の操作装置。
  9. 出力力(F)が少なくとも一部弾性的な力吸収装置(4,5)に作用し、出力力(F)の力作用のためこの力吸収装置が反力(F)を発生することを特徴とする、先行する請求項の1つに記載の操作装置。
  10. 入力量が、入力量−力変換装置(72,73,74)を介して、力発生器(7)によりレバーへ及ぼされる力成分(F)に関して操作方向に援助するように作用する操作装置用入力力(F)を発生することを特徴とする、先行する請求項の1つに記載の操作装置。
  11. 入力量−力変換装置(72,73,74)が、レバーの角度位置(Ω)を変化する装置(70,71)を介して、レバー(1)へ作用することを特徴とする、請求項10に記載の操作装置。
  12. レバーの角度位置(Ω)を変化する装置(70,71)が、作用角(α)を変化する手段(9,10,13,70,71)の構成部分であることを特徴とする、請求項11に記載の操作装置。
  13. 入力量−力変換装置(72,73,74)が、力消費装置(4,5)に対して固定的に設けられていることを特徴とする、請求項10〜12の1つに記載の装置。
  14. 力消費装置(4,5)に抗してレバー(1)の繰出し方向に、力発生器(7)が援助するように作用し、これに反し繰入れ方向に、反力(F)が力発生器(7)を戻すため援助するように作用することを特徴とする、請求項9〜13の1つに記載の操作装置。
  15. 少なくとも近似的にエネルギ平衡が、入力力(F)、レバー(1)に及ぼされる力発生器の力成分(F)及び反力(F)により発生されるエネルギ成分から行われることを特徴とする、先行する請求項の1つに記載の操作装置。
  16. 力消費装置(4,5)が車両制動機の構成部分であることを特徴とする、先行する請求項の1つに記載の操作装置。
  17. 許容角度範囲の少なくとも一端(Ωmin)に機械的ストッパが設けられ、このストッパにより操作装置の所定の終端位置が規定されることを特徴とする、先行する請求項の1つに記載の操作装置。
  18. 入力量及び/又は入力力(F)の欠除の際、レバー(1)が所定の角度位置へ可動であることを特徴とする、先行する請求項の1つに記載の操作装置。
  19. レバー(1)が、力発生器(7)により及ぼされる力成分(F)により、入力力(F)の作用なしでも所定の終端位置へ可動であることを特徴とする、先行する請求項の1つに記載の操作装置。
  20. 終端位置が、許容角度範囲の端部に相当していることを特徴とする、請求項19に記載の操作装置。
  21. 制動機の釈放遊隙(ΩLS)を制御可能に変化する釈放遊隙操作器(90,91,92,93,94,95,96,97)が設けられていることを特徴とする、先行する請求項の1つに記載の操作装置。
  22. 操作装置と機械的に連動する電気操作器が設けられて、電気信号を印加される際操作装置を操作しかつ釈放することができることを特徴とする、先行する特許請求の範囲の1つに記載の操作装置を持つ車両制動機用の電気的に操作可能な制動操作器。
  23. 請求項1に記載の制動機揺操作装置における操作力を設定する方法であって、所定の目標値(FSoll)に従って操作力を設定し、操作装置が、操作行程(Ω)を設定するための制御可能な操作器、及び援助する操作力成分(FFe)を発生するための力発生器(7)を持ち、操作行程(Ω)のため操作器を介して第1の操作力成分(FMot)が制動機へ供給可能であり、力発生器が、操作行程(Ω)に対して固定的な関係にある援助操作力成分(FFe)を制動機へ供給し、制動機へ供給される操作力の実際値(FIst)が、第1の操作力成分(FMot)及び援助する操作力成分(FFe)から計算され、操作力の実際値(FIst)が所定目標値(FSoll)に等しいように制御されることを特徴とする、方法。
  24. 制動機へ供給される操作力の実際値(FIst)が、制御の仕方で所定目標値(FSoll)に合わされることを特徴とする、請求項23に記載の方法。
  25. 所定目標値(FSoll)の設定後操作力の保持段階中に、第1の操作力成分(FMot)が所定の程度だけ減少されることを特徴とする、請求項23又は24に記載の方法。
  26. 援助する操作力成分(FFe)が操作行程(Ω)から計算されることを特徴とする、請求項23〜25の1つに記載の方法。
  27. 援助する操作力成分(FFe)の推移が、操作行程(Ω)に関して、非線計関数特に2次又はそれより高次の多項式に従って近似せしめられることを特徴とする、請求項23〜26の1つに記載の方法。
  28. 第1の操作力成分(FMot)が操作行程(Ω)から計算されることを特徴とする、請求項23〜27の1つに記載の方法。
  29. 第1の操作力成分(FMot)の推移が、操作行程(Ω)に関して、非線形関数特に2次又はそれより高次の多項式に従って近似せしめされることを特徴とする、請求項23〜28の1つに記載の方法。
  30. 操作器が電気駆動装置として構成されていることを特徴とする、請求項23〜29の1つに記載の方法。
  31. 第1の操作力成分(FMot)が、電気駆動装置の消費する電流(IMot)から計算されることを特徴とする、請求項30に記載の方法。
  32. 電気駆動装置の受ける電流(IMot)の検出が、電気駆動装置の操作中に永続的に行われることを特徴とする、請求項30又は31に記載の方法。
  33. 電気駆動装置の消費する電流(IMot)の検出のため、電気駆動装置が操作運動中に周期的に停止され、所定目標値(FSoll)に達しない場合電気駆動装置が再び操作されることを特徴とする、請求項30又は31に記載の方法。
  34. 車両制動機のための請求項21に記載の釈放遊隙操作器(90,91,92,93,94,95,96,97)を制御する方法において、釈放遊隙操作器(90,91,92,93,94,95,96,97)の部分機能の上位の制御のための釈放遊隙管理が意図され、部分機能が、次の機能の少なくとも1つ
    a)操作行程(Ω)に関する入力力(F)の特性曲線推移の変化
    b)最大に利用可能な釈放遊隙(W)の検出
    c)釈放遊隙操作器(90,91,92,93,94,95,96,97)により多数の所定の作動方式(240,241,242,243,244,245)から制動機の1つの作動方式の選択
    を含んでいることを特徴とする、方法。
  35. 入力力(F)の特性曲線推移が、操作行程(Ω)に関して、釈放遊隙操作器(90,91,92,93,94,95,96,97)の制御により、所望の特性曲線推移に近似されることを特徴とする、請求項34に記載の方法。
  36. 釈放遊隙操作器(90,91,92,93,94,95,96,97)の制御により制動機の自動釈放特性と自動拘束特性との間の特性曲線推移が変化可能であることを特徴とする、請求項34に記載の方法。
  37. 設定される特性曲線推移と望ましい特性曲線推移との偏差が所定の値を下回るまで、釈放遊隙が段階的に変化されるように、釈放遊隙(ΩLS)の反覆設定が行われることを特徴とする、請求項35又は36に記載の方法。
  38. 釈放遊隙(ΩLS)の調節が、制動又は操作過程の直後、又は制動が予想されない作動段階に行われることを特徴とする、請求項35〜37の1つに記載の方法。
  39. 釈放遊隙操作器(90,91,92,93,94,95,96,97)により、操作力従って制動力が発生可能であることを特徴とする、請求項35〜38に記載の方法。
  40. 操作装置操作器又はその部分の機能消失又は故障の場合、制動力の少なくとも一部が釈放遊隙操作器(90,91,92,93,94,95,96,97)により発生されることを特徴とする、請求項39に記載の方法。
  41. 釈放遊隙操作器(90,91,92,93,94,95,96,97)により発生可能な制動力が、操作装置操作器により発生可能な制動力の少なくとも20%に等しいことを特徴とする、請求項39又は40に記載の方法。
  42. 所望の特性曲線推移を選択するため、先行する制動の頻度及び/又は強さが評価されることを特徴とする、請求項35〜41の1つに記載の方法。
  43. 所望の特性曲線推移を選択するため、測定される現在の特性曲線推移が、特に曲率、最大値、振幅及び/又はヒステリシスに関して評価されることを特徴とする、請求項35〜42の1つに記載の方法。
  44. 複数の測定される特性曲線推移が記憶され、所望の特性曲線推移を選択するため、記憶されている特性曲線推移の変化が評価されることを特徴とする、請求項35〜43の1つに記載の方法。
  45. 最大に利用可能な釈放遊隙(W)が、釈放遊隙操作器(90,91,92,93,94,95,96,97)の規定される操作サイクルにより求められることを特徴とする、請求項34に記載の方法。
  46. 最大に利用可能な釈放遊隙(W)が、釈放遊隙操作器(90,91,92,93,94,95,96,97)の操作により、その零位置から始まって、制動を行う部分相互特に制動円板(50)又は制動ドラムへの制動ライニング(40,42)の当接まで、求められることを特徴とする、請求項45に記載の方法。
  47. 釈放遊隙操作器(90,91,92,93,94,95,96,97)の可動部分の進んだ行程区間、特に駆動装置として使用される調節モータ(90)の進んだ回転角変化が、最大に利用可能な釈放遊隙(W)の程度として求められることを特徴とする、請求項45又は46に記載の方法。
  48. 制動を行う部分の相互当接が、釈放遊隙操作器(90,91,92,93,94,95,96,97)により発生される力、トルク又は消費される電流の評価により求められることを特徴とする、請求項46又は47に記載の方法。
  49. 釈放遊隙操作器(90,91,92,93,94,95,96,97)が、零位置から始まって所定の時間操作され、所定の時間の経過後に進んだ行程区間が最大に利用可能な釈放遊隙(W)の程度として求められることを特徴とする、請求項47に記載の方法。
  50. 釈放遊隙操作器(90,91,92,93,94,95,96,97)の制御のため、少なくとも2つの作動方式(240,241,242,243,244,245)が考慮され、それぞれの作動方式の選択が、操作装置操作器及び/又は制動機の時間条件及び/又は作動条件に基いて行われることを特徴とする、請求項34に記載の方法。
  51. 釈放遊隙操作器(90,91,92,93,94,95,96,97)の制御のため、作動方式としての診断作動(241)、通常走行作動(243)、極端走行作動(244)、駐車制動作動(245)及び誤作動(242)の少なくとも1つが考慮されていることを特徴とする、請求項50に記載の方法。
  52. 診断作動(241)が、車両の作動開始後、特に点火装置の付勢後自動的に行われることを特徴とする、請求項51に記載の方法。
  53. 診断作動(241)において、制動機の操作が操作装置操作器により抑制されることを特徴とする、請求項51又は52に記載の方法。
  54. 診断作動(241)において、特性曲線推移が所望の特性曲線推移を包囲する範囲にあるようになるまで、釈放遊隙(ΩLS)が段階的に変化されるように釈放遊隙(ΩLS)の反覆設定が行われることを特徴とする、請求項51〜53の1つに記載の方法。
  55. 通常走行作動(243)から極端走行作動(244)の区別基準として、少なくとも1つの制動機部分特に制動ライニングの温度、又は温度限界値の超過が使用されることを特徴とする、請求項51〜54の1つに記載の方法。
  56. 温度が、温度モデルにより、制動機の操作時間から計算により求められることを特徴とする、請求項55に記載の方法。
  57. 通常走行作動(243)から極端走行作動(244)の区別基準として、釈放遊隙(ΩLS)の減少が使用されることを特徴とする、請求項51〜56の1つに記載の方法。
  58. 極端走行作動(244)において、警報信号特に警報灯が動作せしめられることを特徴とする、請求項51〜57の1つに記載の方法。
  59. 実質的に不変で最小値を上回る操作力による制動の持続時間が持続時間限界値を上回る時、駐車制動作動(245)が自動的に検出されることを特徴とする、請求項51〜58の1つに記載の方法。
  60. 釈放遊隙操作器(90,91,92,93,94,95,96,97)の制御により、特性曲線推移が制動機の自動釈放特性と非自動釈放特性との間で変化可能であり、駐車制動作動(245)において、制動機の非自動釈放特性が設定されることを特徴とする、請求項51〜59の1つに記載の方法。
  61. 駐車制動作動(245)において入力力(F)が減少又は消失されることを特徴とする、請求項51〜60の1つに記載の方法。
  62. 現在存在する釈放遊隙(ΩLS)を求めるため、入力力(F)の特性曲線推移において入力力(F)の所定の上昇が行われる点が、操作行程(Ω)に関して求められることを特徴とする、請求項34〜61の1つに記載の方法。
  63. 請求項22に記載の電気的に操作可能な制動操作器にある電気操作器の運動方向とこの電動操作器に機械的に連動する操作装置の運動方向との対応関係を求める方法であって、次の段階
    a)電気操作器が第1の運動方向(″A″)に動かされる所定の検査サイクルを電気操作器へ作用させる、
    b)第1の運動方法(″A″)への電気操作器の操作により、操作装置が操作方向への運動を行うか否かを検査する、
    c)操作装置が操作方向への運動を行う時、電気操作器と操作装置との第1の運動方向(″A″)における対応関係を記憶する、
    d)操作装置が操作方向への運動を行わない時、電気操作器と操作装置との第2の運動方向(″B″)における対応関係を記憶する、方法。
  64. 必要な場合に行われる操作運動により制動釈放遊隙を乗り越えることができないように、検査サイクルが設定されていることを特徴とする、請求項63に記載の方法。
  65. 可能な対応関係(″A″,″13″)が既に記憶されていない時、対応関係処置が自動的に行われることを特徴とする、請求項63又は64に記載の方法。
  66. 記憶されている対応関係を証明するため、第2の運動方向(″B″)における第2の検査サイクルの範囲内で電気操作器が操作され、操作装置がどの運動を行うかが観察されることを特徴とする、請求項63〜65の1つに記載の方法。
  67. 検査サイクル及び/又は第2の検査サイクルが、電気操作器の操作時間(T)及び/又は操作電流(I)の限定を含んでいることを特徴とする、請求項63〜66の1つ記載の方法。
  68. 操作電流(I)の電流限界値(IGrenz)の超過が、操作装置が操作方向への運動を行わないことの表示として使用されることを特徴とする、請求項63〜67の1つに記載の方法。
JP2003521009A 2001-08-16 2002-04-24 制動機用操作装置 Expired - Fee Related JP4437311B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10140078 2001-08-16
DE10140953 2001-08-21
DE10161762 2001-12-15
DE10163053 2001-12-21
PCT/EP2002/004522 WO2003016745A2 (de) 2001-08-16 2002-04-24 Zuspanneinrichtung für eine bremse

Publications (2)

Publication Number Publication Date
JP2005500479A true JP2005500479A (ja) 2005-01-06
JP4437311B2 JP4437311B2 (ja) 2010-03-24

Family

ID=27438003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003521009A Expired - Fee Related JP4437311B2 (ja) 2001-08-16 2002-04-24 制動機用操作装置

Country Status (5)

Country Link
US (1) US8100232B2 (ja)
EP (1) EP1421293B2 (ja)
JP (1) JP4437311B2 (ja)
AT (1) ATE514012T1 (ja)
WO (1) WO2003016745A2 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6991075B2 (en) * 2002-07-24 2006-01-31 Delphi Technologies, Inc. Electrically actuated disc brake assembly
DE50309347D1 (de) * 2002-11-23 2008-04-17 Continental Teves Ag & Co Ohg Betätigungseinheit für eine elektromechanisch betätigbare scheibenbremse
DE102004009832A1 (de) 2003-03-03 2004-09-16 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Ausrücksysteme
FR2864027B1 (fr) * 2003-12-19 2006-02-10 Eurocopter France Dispositif de freinage du rotor d'un helicoptere ou analogue associant un mecanisme de freinage principal a disque et un mecanisme de freinage secondaire sous grand vent
DE502006000586D1 (de) * 2005-04-28 2008-05-21 Luk Lamellen & Kupplungsbau Wipphebelaktor, insbesondere zur Betätigung einer Kupplung
DE502006005639D1 (de) * 2005-04-28 2010-01-28 Luk Lamellen & Kupplungsbau Wipphebelaktor, insbesondere zur Betätigung einer Kupplung
DE102006050804A1 (de) 2006-04-06 2007-10-18 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Bremsvorrichtung mit elastischem Energiespeicher
US7712588B2 (en) * 2006-04-10 2010-05-11 Arvinmeritor Technology, Llc Temperature based clearance control for vehicle brake
ATE477429T1 (de) * 2007-06-21 2010-08-15 Luk Lamellen & Kupplungsbau Kupplung mit nachstelleinrichtung
JP5206952B2 (ja) * 2007-08-31 2013-06-12 日立オートモティブシステムズ株式会社 ディスクブレーキ装置
US20090152782A1 (en) * 2007-12-17 2009-06-18 Honeywell International, Inc. User interface with controllable dual spring rate return to null cantilever springs
AT512683A1 (de) * 2012-04-12 2013-10-15 Ve Vienna Engineering Forschungs Und Entwicklungs Gmbh Bremssystem und Bremsverfahren für eine elektrisch betätigte, nicht-lineare Reibungsbremse
FR2994239B1 (fr) * 2012-08-03 2014-08-08 Valeo Embrayages Mecanisme de commande d'une butee d'embrayage, notamment pour un embrayage de vehicule automobile
DE102012108672B3 (de) * 2012-09-17 2014-02-06 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Nachstelleinrichtung einer Scheibenbremse, eine entsprechende Scheibenbremse und Verfahren zum Betreiben einer Verschleißnachstellvorrichtung einer Scheibenbremse
AT513989A1 (de) * 2013-03-11 2014-09-15 Ve Vienna Engineering Forschungs Und Entwicklungs Gmbh Elektrisch betätigte Reibungsbremse
DE102013012448A1 (de) * 2013-07-26 2015-01-29 Kuka Laboratories Gmbh Verfahren und Vorrichtung zum Bremsen einer Roboterachsanordnung
WO2015159316A1 (en) 2014-04-14 2015-10-22 Commscope Italy S.R.L. Same-band combiner for co-sited base stations
US9453546B2 (en) * 2014-08-28 2016-09-27 Shimano Inc. Bicycle braking system
KR101574932B1 (ko) * 2014-09-25 2015-12-08 현대모비스 주식회사 전자식 주차 브레이크의 제어 방법
US10160434B2 (en) * 2015-05-22 2018-12-25 Robert Bosch Gmbh Brake device for a motor vehicle and method for the detection of damage to the brake device
DE102016001577A1 (de) * 2016-02-11 2017-08-17 Wabco Europe Bvba Verfahren zur Lüftspielerkennung bei einer Bremse eines Kraftfahrzeugs, insbesondere Nutzkraftfahrzeugs, Controller sowie Bremse mit selbigem
US9950645B2 (en) * 2016-03-21 2018-04-24 Ami Industries, Inc. Low profile constant force linearly actuated brake assembly for aircraft seating
US10807576B2 (en) * 2016-11-09 2020-10-20 Allison Transmission, Inc. Brake actuator-based prognostic system and method thereof
EP3336374B1 (en) * 2016-12-16 2022-06-22 Ratier-Figeac SAS Mechanical brake
JP6830882B2 (ja) * 2017-10-20 2021-02-17 株式会社シマノ ブレーキ制御装置およびブレーキシステム
US11447108B1 (en) * 2017-10-30 2022-09-20 Creed Monarch, Inc. Braking control system and method to sysnchronize the operation of the braking of a towed vehicle
DE102019119839A1 (de) * 2019-07-23 2021-01-28 WABCO Global GmbH Elektromechanischer Aktuator
US20210241546A1 (en) * 2020-02-04 2021-08-05 XL Hybrids Data extraction apparatuses, systems, and methods
DE102022200191B4 (de) 2022-01-11 2024-06-06 Volkswagen Aktiengesellschaft Bremspedalsystem, Brake-by-Wire-Bremssystem und Kraftfahrzeug

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1754354A (en) * 1926-07-28 1930-04-15 Robert S Gans Brake-control mechanism
US1727742A (en) * 1926-10-06 1929-09-10 Athimon Francis Servo brake
US1760624A (en) 1927-09-12 1930-05-27 Otto J Badertscher Servo-brake mechanism
US2112607A (en) * 1935-09-12 1938-03-29 Frederick W Pooley Lever mechanism
DE1535094A1 (de) * 1964-07-14 1970-02-12 Barmag Barmer Maschf Verfahren und Vorrichtung zum Aufwickeln von Chemiefaeden
DE1480142A1 (de) * 1965-03-01 1969-09-04 Schroeter Hans O Handbremshebel mit veraenderlicher UEbersetzung
CH569114A5 (ja) * 1973-06-01 1975-11-14 Patax Trust Reg
IT1024546B (it) * 1974-04-17 1978-07-20 Fasano Osvaldo Leva a variazione di coppia, causa ta dal aumento della forza resistente delle pompe freno e meccanismi souivalenti degli automezzi esinili
GB1529568A (en) * 1974-12-27 1978-10-25 Girling Ltd Disc brakes
CA1030881A (en) * 1975-04-02 1978-05-09 Donald D. Johannesen Mechanically actuated disc brake
US4069722A (en) * 1976-03-11 1978-01-24 General Motors Corporation Variable ratio brake pedal lever assembly
US4290507A (en) * 1978-02-15 1981-09-22 Brown Lawrence G Actuating system and apparatus for brakes and clutches and the like
US4386537A (en) * 1978-10-10 1983-06-07 Clark Equipment Company Variable ratio brake pedal
DE2916475A1 (de) 1979-04-24 1980-11-06 Knorr Bremse Gmbh Bremseinrichtung fuer schienenfahrzeuge
IT1145145B (it) * 1981-11-26 1986-11-05 Wabco Westinghouse Spa Unita di frenatura azionata tramite un fluido sotto pressione particolarmente per ruote di veicoli ferro viari
US5038824A (en) * 1983-01-24 1991-08-13 Hyde Michael L Mechanical linkage characterizer
DE3344616A1 (de) 1983-12-09 1985-06-20 Knorr-Bremse GmbH, 8000 München Bremseinheit fuer schienenfahrzeuge
US5010782A (en) * 1988-07-28 1991-04-30 Fuji Kiko Company, Ltd. Position adjustable pedal assembly
DE3901599A1 (de) * 1989-01-20 1990-08-02 Heidelberger Druckmasch Ag Greiferanordnung an bogenverarbeitenden maschinen, insbesondere bogenoffsetdruckmaschinen
FR2662215B1 (fr) * 1990-05-15 1994-10-21 Oreal Dispositif de compression, en particulier pour le remplissage sous pression d'un reservoir.
US5771752A (en) * 1991-10-07 1998-06-30 Cicotte; Edmond B. Adjustable automobile pedal system
DE4202635A1 (de) 1992-01-30 1993-08-05 Knorr Bremse Ag Bremszange fuer schreibenbremsen von schienenfahrzeugen
US5299664A (en) * 1992-08-11 1994-04-05 Jack Peters Bicycle brake assembly including crank arm levers which function as second class levers
US5540304A (en) * 1993-06-24 1996-07-30 Hawkins; Rollin D. Single-handled vehicle brake system
DE4330440A1 (de) * 1993-09-08 1995-03-09 Knorr Bremse Ag Krafterzeugungseinrichtung zum Erzeugen eines reversiblen Arbeitshubs
US5544537A (en) * 1994-01-21 1996-08-13 Paper Machinery Corporation Energy balance system configured to compensate for the changes in energy absorbed by a rotating shaft
DE19538695C2 (de) 1994-10-19 2003-05-28 Bosch Gmbh Robert Keramischer elektrischer Widerstand und dessen Verwendung
DE19514463C1 (de) 1995-04-19 1996-11-07 Knorr Bremse Systeme Bremszangeneinheit für Scheibenbremsen von Fahrzeugen, insbesondere Schienenfahrzeugen
DE19521401C1 (de) 1995-06-13 1997-01-09 Lucas Ind Plc Zuspannvorrichtung für eine Fahrzeugbremse und Verfahren zum Betreiben einer Fahrzeugbremse
DE19536695A1 (de) 1995-09-30 1997-04-03 Teves Gmbh Alfred System zum Steuern oder Regeln einer elektromechanischen Bremse
DE19627646C2 (de) * 1996-07-09 1999-11-25 Lucas Ind Plc Aktuatorenbaugruppe für eine Fahrzeugbremse und Fahrzeugbremse mit einer derartigen Aktuatorenbaugruppe
DE29622787U1 (de) 1996-07-09 1997-06-12 Continental Ag Elektrische Bremsanlage für ein Kraftfahrzeug
JP3321045B2 (ja) * 1996-12-20 2002-09-03 株式会社シマノ 自転車の電気的操作装置
JP3742914B2 (ja) * 1997-03-05 2006-02-08 四国化工機株式会社 カム装置
CN1211691A (zh) * 1997-09-12 1999-03-24 陈坤 机械盘式制动器和离合器
DE19742920A1 (de) 1997-09-29 1999-04-01 Itt Mfg Enterprises Inc Verfahren zum Aufbringen definierter Betätigungskräfte
JP3276331B2 (ja) * 1998-03-13 2002-04-22 株式会社ミツトヨ 定圧力機構及び定トルク機構
DE19824771C1 (de) * 1998-06-03 1999-09-23 Lucas Ind Plc Aktuatorenbaugruppe für eine Fahrzeugbremse und Fahrzeugbremse mit einer derartigen Aktuatorenbaugruppe
EP1244879B1 (de) * 1998-12-17 2012-09-05 WABCO GmbH Zuspanneinrichtung für radbremsen
JP3899756B2 (ja) 1999-12-16 2007-03-28 株式会社カネカ 電子写真用ローラ
DE10046981A1 (de) * 2000-09-22 2002-04-25 Bosch Gmbh Robert Radbremsvorrichtung
DE10104665A1 (de) * 2001-02-02 2002-08-22 Zf Sachs Ag Ausrückvorrichtung

Also Published As

Publication number Publication date
US20050029858A1 (en) 2005-02-10
WO2003016745A2 (de) 2003-02-27
ATE514012T1 (de) 2011-07-15
WO2003016745A3 (de) 2003-09-25
EP1421293A2 (de) 2004-05-26
US8100232B2 (en) 2012-01-24
EP1421293B2 (de) 2015-11-04
JP4437311B2 (ja) 2010-03-24
EP1421293B1 (de) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4437311B2 (ja) 制動機用操作装置
US7850255B2 (en) Electro-mechanical brake system and electro-mechanical brake apparatus used therefor
US7227324B2 (en) Parking brake and method for controlling the same
JP6408585B2 (ja) フェールセーフティと利用性の向上した運転アシストシステム
JP4629980B2 (ja) 電気作動式の摩耗後調節装置を制御するための方法及び装置
CN105264254B (zh) 用于操作电操作的摩擦制动器的方法
KR101377388B1 (ko) 전기기계 작동식 주차 브레이크의 조작 방법
KR101960114B1 (ko) 액추에이터 시스템 및 액추에이터 시스템에 대한 동작 방법
US7574296B2 (en) Clutch reference position
KR102096148B1 (ko) 자동차 전기식 주차 브레이크 시스템을 위한 주차 브레이크 작동 방법
JP2005502842A (ja) 電気機械式変速機作動装置付きの変速機
JP2000185647A (ja) 車両のパ―キングブレ―キ装置
JP2005133941A (ja) ディスクブレーキの制御システム及び方法
US7748793B2 (en) Fail-safe concept for an electromechanical brake
CN108026995B (zh) 用于监控行车制动器状态的方法和设备以及制动器和制动系统
JP4483432B2 (ja) 力センサおよび同力センサを用いた電動パーキングブレーキ装置
EP2871102A1 (en) Brake pedal force simulator for vehicle braking system
US11926296B2 (en) Electric brake and control device
US9302665B2 (en) Brake test bench having an electrical brake actuator and method for same
US6554108B1 (en) Method and device for monitoring the movements of an actuator
US10618505B2 (en) Electric brake system and method of setting pressing force-current characteristics
JP6716699B2 (ja) ブレーキ装置を運転するための方法、このようなブレーキ装置のための制御装置、ブレーキ装置およびこのようなブレーキ装置を備えた車両
KR101296084B1 (ko) 전자식 주차 브레이크 시스템 및 그 해제 방법
US20220003288A1 (en) Method for determining design parameters of an electromechanical brake, and electromechanical brake
CN110958963B (zh) 估计制动力的方法、停车-制动方法和停车-制动系统

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090209

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4437311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees