JP2005326145A - 冷媒のための膨張装置 - Google Patents

冷媒のための膨張装置 Download PDF

Info

Publication number
JP2005326145A
JP2005326145A JP2005140199A JP2005140199A JP2005326145A JP 2005326145 A JP2005326145 A JP 2005326145A JP 2005140199 A JP2005140199 A JP 2005140199A JP 2005140199 A JP2005140199 A JP 2005140199A JP 2005326145 A JP2005326145 A JP 2005326145A
Authority
JP
Japan
Prior art keywords
expansion
refrigerant
valve
machine
expansion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005140199A
Other languages
English (en)
Inventor
Peter Horstmann
ペーター ホルストマン
Peter Satzger
ペーター ザッツガー
Gregory Rewers
レヴァース グレゴリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2005326145A publication Critical patent/JP2005326145A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】高圧レベルの調節と回収されたエネルギの提供とが、互いにほぼ無関係なひいては最適な方式で実施可能になるように運転することが可能な、冷媒のための膨張装置を提供する。
【解決手段】冷媒のための膨張装置16において、当該膨張装置16が、少なくとも1つの膨張弁26,27と膨張機械36とを有しているようにした。さらに、空調装置であって、当該空調装置の冷媒回路10を形成するために、適当な形式で接続手段20によって互いに接続されている少なくとも1つのコンプレッサ12と凝縮器またはガス冷却器14と膨張装置16と蒸発器18とが設けられている形式のものにおいて、冷媒回路10の膨張装置16が、少なくとも1つの膨張弁26,27と膨張機械36とを有しているようにした。
【選択図】図3

Description

本発明は、請求項1の上位概念部に記載した形式の、冷媒のための膨張装置、特に空調装置の冷媒回路の高圧レベルを調整するための膨張装置に関する。本発明は、さらに、このような膨張装置を備えた空調装置に関する。
空調装置の標準構成は、一般に、蒸発器と凝縮器もしくはガス冷却器と膨張弁と圧縮機と、場合によっては内部の熱伝達器とから成っている。特に冷媒COが使用される場合、少なくとも若干の環境条件下では、空調装置の冷媒および冷媒回路の超臨界の運転形式が必要とされる。このことは、凝縮器内で冷媒が凝縮されず、ガスが超臨界状態で冷却されるにすぎないことを意味する。この理由から、従来式の冷凍装置において凝縮器と呼ばれかつ作業する熱伝達器は、冷凍装置の超臨界の運転形式では、ガス冷却器とも呼ばれる。
熱力学的な特性に基づき超臨界領域において熱を放出する冷媒を備えた冷凍装置内では、放熱に際して、圧力は温度とは無関係に調節され得る。湿り蒸気領域における放熱を伴う冷媒に比べて付加的なこの自由度を利用できるようにするために、典型的には、調整可能な膨張弁が使用される。したがって、冷媒COにおいて、そのような膨張弁によって冷凍回路の高圧レベルの調整が行われる。これにより、冷凍装置の効率または冷媒回路の冷凍性能は、最適に調節され得る。
冷凍装置の、概略的に示された標準構成の可能な改良手段は、例えば膨張弁を、仕事をする膨張装置、いわゆる膨張機械で代替することにある。これにより、冷凍回路の膨張動作がより効果的に形成されると同時に、膨張仕事が回収されることになる。したがって、冷媒の弛緩エネルギは機械的な仕事に変換され、後置された別のプロセスのために利用される。
公知先行技術に基づいて、膨張機械を実用的に実現するために、種々異なる技術的解決手段が公知である。
ドイツ連邦共和国特許出願公開第19841686号明細書には、冷媒が圧縮機内で超臨界圧力に圧縮され、次いで、ガス冷却器による空気との熱交換によって冷却され、さらに、膨張機械に供給されるようになっている圧縮式冷凍機械(Verdichterkaeltemaschine)が開示されている。ドイツ連邦共和国特許出願公開第19841686号明細書の装置では、臨界圧力レベルにある冷却された冷媒のための膨張もしくは弛緩機械として、歯車モータが使用される。この歯車モータはケーシングを有しており、このケーシングは、相互に回転可能な少なくとも2つの歯車を備えている。
ドイツ連邦共和国特許第10013191号明細書に基づいて、冷媒回路が、斜歯歯列を備えた歯車機械を有しており、この歯車機械が、超臨界の冷媒のための膨張機械として働くようになっている空調装置、特に自動車のための空調装置が公知である。歯車機械によって、冷媒の膨張動作に際してエネルギがとりわけ容積変化仕事の回収によって生ぜしめられ、このエネルギは冷媒回路内で冷媒を圧縮するために再び使用され得る。ドイツ連邦共和国特許第10013191号明細書の空調装置は、冷媒二酸化炭素(CO)が冷媒回路内で超臨界状態から湿り蒸気状態にもたらされるように形成されている。
それぞれ選択されたテクノロジとは無関係に、膨張機械の調整要件は特別な挑発を意味する。
別の問題は、膨張機械が安全機能を果たさなければならないことにある。膨張機械は、システムのあまりにも極度の負荷に際して、システムを安定した状態に戻すことまたは場合によってはシステムを確実にスイッチオフすることを可能にすることが望ましい。したがって、正常な運転状態からほど遠いこの極度の条件を、膨張機械の最適な設計に際して考慮に入れなければならない。これにより、膨張機械の、特に正常運転において最適な設計が困難になる。
ドイツ連邦共和国特許出願公開第19841686号明細書 ドイツ連邦共和国特許第10013191号明細書
本発明の課題は、高圧レベルの調節と回収されたエネルギの提供とが、互いにほぼ無関係なひいては最適な方式で実施可能になるように運転することが可能な、冷媒のための膨張装置を提供することである。
この課題を解決するために本発明の構成では、当該膨張装置が、少なくとも1つの膨張弁と膨張機械とを有しているようにした。
本発明による、冷媒のための膨張装置、特に空調装置の冷媒回路の高圧レベルを調整するためのこのような膨張装置は、少なくとも1つの膨張弁と膨張機械とを有している。膨張装置の、組み合わされたこの構造によって、膨張動作の困難な調整任務の一部、もしくはさらには膨張機械の安全任務の一部が、この膨張機械から膨張弁に委ねられる。したがって、膨張機械はエネルギ回収の任務しか有しておらず、回収されたエネルギを適切な形でさらなる利用に提供するという任務しか有していない。高圧の調節並びに安全機能は、膨張装置の膨張弁によって引き受けられる。
これにより、冷媒のための膨張装置を、高圧レベルの調節と回収されたエネルギの提供とが、互いにほぼ無関係なひいては最適な方式で実施可能になるように運転することが可能になる。したがって、例えば膨張機械の回転数は、調節すべき高圧レベルが顧慮される必要なしに、エネルギ利用および変換に合わせて最適化され得る。
従属請求項に記載の特徴によって、本発明による膨張装置の有利な構成が可能になる。
本発明による膨張装置の有利な実施態様では、膨張機械と調整可能な膨張弁とは、互いに直列に空調装置の冷媒回路内に配置されている。
本発明による膨張装置の択一的な、有利な実施態様では、調整可能な膨張弁と、膨張機械とは、互いに並列に空調装置の冷媒回路内に配置されている。さらに、膨張弁と膨張機械との並列接続によって、膨張機械の寸法設計を簡略化することが可能になる。この膨張機械は、並列接続の事例では、一般的なもしくは最適な質量流のためにしか設計され得ない。その際、増大された質量流が生じる恐れのある場合には、膨張弁が使用されるであろう。
当該膨張装置の本質的な構成部材の、このような並列接続は、さらに冷凍装置の安全に関して、無視できない利点を意味する。例えば膨張機械の故障に際して、膨張弁は「緊急停止モード」に入ることができ、機能不能な膨張機械にもかかわらず冷凍装置の確実なスイッチオフを保証することができる。
有利な実施態様では、膨張弁は、調整可能な弁であり、この弁によって冷媒回路の高圧レベルが調整され得る。この弁は、外部で調整される弁であってもよく、内部で調整される弁であってもよい。膨張弁は、電気式に運転される弁であってよいか、または機械式にまたは熱により調整される弁であってもよい。使用できる膨張弁の可能な1実施態様は、冷媒の予め規定された質量流で開放する溢れ弁にある。
本発明による膨張装置の特別に有利な実施態様では、当該膨張装置の前記調整可能な膨張弁と膨張機械とは、1つの構成ユニットの形で、コンパクトなモジュールにまとめられている。このようなモジュールは、対応する冷凍回路内に簡単に組み込まれ得る。
冷媒回路の高圧レベルの調整は実質的に膨張弁によって行われるので、膨張機械は、回収されたエネルギを適切な形で提供するという任務しか有していない。したがって、膨張機械の駆動軸は、例えば冷媒圧縮機の駆動軸に直接に連結されていてよいかもしくは連結可能であってよい。これは特に、請求する当該膨張装置の有利な実施態様である。なぜならば、当該膨張装置の膨張機械の回転数が、高圧の調整とは無関係に選択され得るからである。したがって、膨張機械の回転数を圧縮機の回転数に適合させることを、自由に行うことができる。
膨張機械が有利には冷媒のための前圧縮装置または後圧縮装置を駆動する場合、生ぜしめられた容積流は任意に調節され得る。なぜならば、この容積流はもはや冷媒の高圧レベルの調整の影響を受けないからである。冷媒回路内の高圧レベルを調節するための膨張機械の調整の任務と、回収可能な機械エネルギの、適切な形での提供とは、有利にはもはや互いに結合されていない。公知先行技術の膨張機械の場合には、これら両任務は膨張機械の回転数に対して種々異なる要求を課したので、従来は、例えば付加的な自由度を得るための制御可能な伝動装置のような、費用のかかる解決手段が必要であった。
本発明による膨張装置の有利な構成は、当該膨張装置の膨張機械が、電気機械、特に発電機に作用接続されているかまたは作用接続可能である場合に得られる。回収されたエネルギが発電機によって電気エネルギに変換されるようにしたい場合、請求する当該膨張装置は、極めて有益である。当該膨張装置の膨張弁が最適な高圧を調節することができるのに対して、膨張機械の特性曲線は、例えば汎用のKFZ(自動車)発電機の特性曲線に対応する。発電機の出力電圧の調整は、前記のような配置形式によって著しく簡単化される。したがって、請求する当該膨張装置の膨張機械の、自由に選択可能な回転数によって、発電機における一定の出力電圧が可能になる。さらに、必須の安全機能が最適化され得る。
本発明による装置の特別に有利な実施態様は、当該膨張装置もしくは、少なくとも当該膨張装置の膨張機械が、電気機械、例えば発電機を備えた1つの構成ユニットの形で形成されていることによって得られる。したがって、両機械、すなわち膨張機械と電気機械とを、典型的には密閉した1つのユニットを形成している共通のケーシング内に配置することが可能である。
本発明による請求する当該膨張装置によって、空調装置、特に自動車のためのダイナミックに運転される空調装置は、有利に構成され得る。空調装置の冷凍回路における膨張装置の構成部材の任務分配によって、冷媒の高圧レベルの調整と、ひいては冷凍回路の効率もしくは冷凍出力とを最適化することができ、付加的にエネルギを膨張機械による膨張プロセスによって得ることができる。これにより得られた付加的なエネルギは、有利には、空調装置もしくは冷凍回路の別の構成部材を運転するために使用され得る。
したがって特に、超臨界領域において熱を放出する(このことは例えば冷媒COについて当てはまる)冷媒のために、冷凍回路とひいてはこのような冷凍回路を伴う空調装置との有利な構成が得られる。
したがって、本発明による膨張装置によって、膨張機械の調整を簡単化することもしくはこのような調整をまず実現することが可能になる。
本発明による膨張装置もしくは、冷媒回路内にこのような膨張装置を備えた本発明による空調装置のさらなる利点および特徴は、以下の幾つかの実施例の説明から得られる。
図面には、本発明による膨張装置の3つの実施例もしくは本発明による膨張装置の使用下での3つの冷媒回路の例を示してある。これらの例を、以下の実施例の説明で詳しく説明したい。図面の図、図面の説明並びに特許請求の範囲には、組み合わされた多数の特徴を記載してある。これらの特徴は当業者によってさらに個別に考察され、有利な別の組合せにまとめられるであろう。したがって、この組合せもやはり開示されたものとみなすべきである。
以下に、本発明の実施の形態を図面につき詳しく説明する。
図1に原理的に示した、空調装置の冷媒回路10は、コンプレッサ12と凝縮器またはガス冷却器14と膨張装置16と蒸発器18とを有している。これらは適宜な接続手段20を介して互いに接続されていて、閉じた冷媒回路を形成している。
この回路の構成部材は、圧縮冷凍回路の形式で運転される。この場合、まず、冷媒、例えば冷媒COの圧縮が圧縮機、いわゆる「空調コンプレッサ」(Klimakompressor)または単純に「コンプレッサ」と呼ばれる圧縮機によって行われ、これにより、冷媒の内部エネルギが高められる。圧縮された冷媒は、次いで、凝縮器または液化器内で熱交換によって冷却される。超臨界領域において熱を放出する(このことは例えば冷媒COについて当てはまる)冷媒の場合、冷媒は凝縮器内で液化されず、ガスとして超臨界状態で冷却されるだけである。この理由から前記熱伝達器14は、冷媒の超臨界の運転形式が利用される場合には、ガス冷却器と呼ばれる。次いで、このようにして冷却された冷媒は膨張装置16によって、より低い圧力に膨張させられ、しかもさらに冷却される。膨張装置16には、通常、蒸発器18が後置されている。この蒸発器18は、冷媒の、自由になった冷熱を別の媒体に伝達するために、熱交換器として運転される。蒸発器を介して、膨張させられた冷たい冷媒と相互作用する前記別の媒体は、例えば、車両暖房もしくは冷房システム(空調装置)に供給される空気であってよい。
冷媒回路の膨張装置における絞り部の制御によって、熱力学的な循環プロセスの高圧側の圧力(高圧レベル)は制御もしくは調整され得る。これにより、空調装置の固有の冷凍性能は、所望の形式で変化させられ得る。したがって、熱力学的な循環プロセスの高圧側の圧力(高圧レベル)が、ガス冷却器出口における温度または周囲温度に依存して、適合された形式で調節されることによって、最大有効成績係数を得ることが可能になる。
特に、熱力学的な特性に基づき超臨界領域において熱を放出する冷媒を備えた冷却装置では、放熱に際して、高圧レベルは温度とは無関係に調節され得る。湿り蒸気領域における放熱を伴う冷媒に比べて付加的なこの自由度を有利に利用するために、制御可能および/または調整可能な膨張装置を利用することができる。
図2には、本発明による膨張装置の使用下での、空調装置のための特別な冷媒回路の第1の実施例を示してある。
図2によるCO空調装置の冷媒回路10は、コンプレッサ12を有している。このコンプレッサ12は例えば電気式に運転されていてよいが、適宜な連結エレメントを介して自動車の内燃機関によって駆動されていてもよい。コンプレッサ12内では、まず、冷媒の内部エネルギを高めるために冷媒、記載の事例ではCOの圧縮が行われる。流れ方向で見て圧縮機12の下流側には、分離器、特にオイル分離器20が設けられている。このオイル分離器20は、ガス状の冷媒に含まれたオイル残滓を分離するために、かつこのオイル残滓を、適宜な接続手段22を介して例えば再びコンプレッサ12に潤滑のために提供するために用いられる。
圧縮されかつ場合によっては不純物除去された冷媒は、後置されたコンデンサもしくはガス冷却器14内で熱交換によって冷却され、しかもその内部熱エネルギの一部を、例えば車両の空調装置に放出する。これにより、冷媒の温度は下がり、冷媒は場合によっては液化する。冷媒として例えばCOのような遷臨界の冷媒が利用される場合、冷媒はガス冷却器14内で凝縮されず、冷却されるだけである。したがって、本事例では「凝縮器」という表現は用いられず、「ガス冷却器」という表現が用いられる。
冷媒の温度をさらに下げるために、図2による冷媒回路10内では、内部の熱交換器24が設けられている。この熱交換器24は、圧縮された、冷却された冷媒を、戻されつつある既に膨張させられかつ冷却された冷媒によってさらに冷却することを可能にする。
圧縮された冷媒は膨張装置16に供給され、この膨張装置16内でより低い圧力レベルに膨張させられる。本発明による膨張装置16は、少なくとも1つの調整される膨張弁26と、膨張機械36とから成っている。図2による実施例では、膨張弁26と膨張機械36とは、冷媒の冷却回路10内で互いに直列に接続されている。この場合、膨張弁26は調整可能な弁であり、この弁は、弁の絞り体の適宜な調節によって、所望の開口横断面を開放することができ、ひいては冷媒回路10の高圧側における圧力レベルを決定する。膨張弁26は、例えば電磁制御される弁であってよいが、純粋に機械式に調整される弁であってもよいか、または熱により調整される弁であってもよい。この弁は、外部で制御される弁であってもよく、内部で制御される弁であってもよい。調整可能な膨張弁26に後置されているのは、膨張機械36である。この膨張機械36は、原理上、仕事をするどのような膨張装置によって形成されていてもよい。
膨張機械として、特に、膨張エネルギを機械的な仕事に有効に転換することを可能にするいわゆる歯車機械が考えられ、かつ有利である。この場合、適宜な軸を介して膨張機械は、自動車の、膨張機械に後置された別の構成部材に作用接続されてよいか、もしくは要求される場合には作用接続され得る。
これにより、膨張装置16内の膨張動作をより有効に形成すると同時に膨張仕事を回収することが可能になる。この場合、冷媒の弛緩エネルギは機械的な仕事に変換され、ひいては別のプロセスのために使用可能になる。例えば、膨張機械36の駆動軸を圧縮機12の駆動軸に連結することによって、膨張機械で得られた仕事を直接に再び冷媒回路内で利用することができる。このために、特別な実施例では、例えば膨張機械36と圧縮機12とは1つの構成ユニットにまとめられ得る。
少なくとも調整可能な膨張弁26とこの膨張弁26に後置された膨張機械36とから成っている膨張装置16を、1つの構成ユニットを成すコンパクトなモジュールとして形成することも、やはり有利であろう。
膨張装置16に後置されているのは蒸発器18である。この蒸発器18は、自由になった冷熱を担体媒体に伝達するために、熱交換器として運転される。前記担体媒体は、例えば、図2には示していない車両暖房もしくは冷房システム(空調装置)に公知の方式で供給される空気であってよい。
蒸発器18に後置されているのは、図2の実施例では、液体分離器もしくは蓄え器として働くいわゆる集合器28である。このような集合器28は、特に、蒸発器18の充填が調整され得ない場合に必要とされる。集合器28は、一つには、蒸発器の下流側でまだ冷媒中に存在する液状成分を分離し、この液状成分を例えばその下側の領域に集合させる。集合器は、さらに、システムの僅かな漏損を補償できるようにするために冷媒を蓄えるという任務を有している。集合器によって、さらに、冷媒の質量流の僅かな不均一性が補償され得る。この不均一性は、例えばコンプレッサの回転数上昇に際して生じるものである。この場合、冷媒の質量流は増大するが、蒸発器18は当初は、より多くの冷媒を蒸発させることができない。蒸発器の下流側でまだ液状の、すなわち蒸発させられなかった冷媒は、集合器28内で分離されかつ蓄えられる。さらに、コンプレッサの回転数低下に際して、液状の冷媒は集合器から再び蒸発器内に搬入されなければならない。このことは、液状の冷媒がコンプレッサによって集合器から吸い上げられ、冷媒回路10内に搬入されることによって行われる。
図3には、冷媒回路10の、本発明による膨張装置16の択一的な構成を示してある。図3の実施例による膨張装置16は、少なくとも1つの調整可能な膨張弁26と、膨張機械36とを有している。図3による実施形態では、膨張弁26と膨張機械36とは互いに並列に冷媒回路10内に配置されている。この配置も、コンパクトなモジュール30によって有利に実現され得る。膨張機械36と膨張弁26との並列接続によって、膨張機械36の寸法設計を簡単化することが可能になる。しかもこの膨張機械36は、本事例では、一般的な質量流のためにしか設計され得ない。しかしながら、増大された質量流が生じた場合には、この質量流は膨張弁によって導出され得る。これにより、コンパクトでかつ単純な膨張機械が使用可能になる。
図3における実施例による並列接続は、さらに、冷凍装置の安全性のための多大な利点を意味する。膨張機械36の故障に際して、膨張弁26は「緊急停止モード」に調整され得る。この「緊急停止モード」によって、冷凍装置の確実なスイッチオフが可能になる。
図3の実施例による冷媒回路10は、その他の構造に関しては、既に説明した図2による冷凍回路に対応している。
紹介した両冷凍回路および特に両冷凍回路の両膨張装置16では、膨張装置16の調整任務の一部が膨張機械36から膨張弁26に委ねられることが考えられている。したがって膨張機械36は、回収可能なエネルギを所望の形で提供するという任務しか有していない。冷凍回路10内の高圧レベルの調整と、ひいては冷凍性能の決定または空調装置の効率とは、膨張弁26によって有利に引き受けられる。
図4には、本発明による空調装置のための冷媒回路10の別の実施例を示してある。図4の実施例による冷凍回路10は、その構造に関しては、既に説明した図3による冷凍回路に対応している。したがって、ここではただ図3に関する対応する説明を参照されたい。図3に示した実施例とは異なって、図4による実施形態における冷凍回路の膨張装置16は、膨張弁として溢れ弁27を有している。この溢れ弁27は、冷媒の予め規定可能な質量流で、もしくは弁の絞り体に対する冷媒の相応の圧力で開放する。この場合、溢れ弁27の絞り体は、弁の流入側にかかっている冷媒の圧力によって、例えばばね弾性的なエレメントの力に抗して調節される。これにより、冷媒回路の高圧側における圧力レベルの調節が、簡単に可能になる。コストがかかりひいてはさらにコスト集約的に電子制御される膨張機構は、本事例では回避され得る。
この場合、溢れ弁27は例えばスプール弁(Schiebesitzventil)として形成されていてよい。従来式のスプール弁のギャップジオメトリの変更によって、このような弁のシール性は、著しく改善され得る。特に、弁ピストンの構成によって、スプール弁の弁ピストン(スプールエレメント)とピストンガイド(スプールの座)との間のギャップジオメトリが最適化され得る。このような変更によって、スプール弁を空調装置内で膨張機構として使用することが可能になる。これにより、良好な調整可能性が、あらゆる運転状態において総じて騒音の少ない運転で実現される。しかしながら、溢れ弁27はスプール弁の構造形式に限定されていない。
空調装置の本発明による冷媒回路、もしくは冷媒のための本発明による膨張装置は、図面に示した実施例に限定されていない。
特に、本発明による空調装置は、冷媒回路内における内部の熱伝達器の使用に限定されていない。
さらに、本発明による膨張装置並びにこれに対応する空調装置は、冷媒としてのCOの使用に限定されていない。
空調装置の冷媒回路を概略的に示す図である。 冷媒回路内に配置された膨張装置の第1の実施例を示す図である。 本発明による膨張装置の第2の実施例並びに所属の空調装置の冷媒回路を示す図である。 本発明による膨張装置の別の実施例並びに所属の空調装置の冷媒回路を示す図である。
符号の説明
10 冷媒回路、 12 コンプレッサ(圧縮機)、 14 ガス冷却器、 16 膨張装置(膨張ユニット)、 18 蒸発器、 20 接続手段、 20 オイル分離器、 22 接続手段、 24 熱交換器、 26 膨張弁、 27 溢れ弁(膨張弁)、 28 集合器、 30 モジュール、 36 膨張機械

Claims (15)

  1. 冷媒のための膨張装置(16)において、当該膨張装置(16)が、少なくとも1つの膨張弁(26,27)と膨張機械(36)とを有していることを特徴とする、冷媒のための膨張装置。
  2. 膨張弁(26)と膨張機械(36)とが、互いに直列に冷媒回路(10)内で運転されるようになっている、請求項1記載の膨張装置。
  3. 膨張弁(26,27)と膨張機械(36)とが、互いに並列に冷媒回路(10)内で運転されるようになっている、請求項1記載の膨張装置。
  4. 膨張弁(26,27)の調整が、緊急停止モードを有しており、該緊急停止モードが、膨張機械(36)の故障に際して、冷媒回路(10)の確実なスイッチオフを可能にするようになっている、請求項3記載の膨張装置。
  5. 膨張弁(26,27)と膨張機械(36)とが、1つの構成ユニット(30)内に組み込まれている、請求項1から4までのいずれか1項記載の膨張装置。
  6. 膨張弁(26)が、調整される弁である、請求項1から5までのいずれか1項記載の膨張装置。
  7. 膨張弁(27)が溢れ弁である、請求項1または3記載の膨張装置。
  8. 膨張機械(36)が軸を有しており、該軸が、被駆動側で、冷媒のための圧縮機の駆動軸に連結可能である、請求項1から7までのいずれか1項記載の膨張装置。
  9. 膨張機械(36)が、冷媒のための前圧縮装置または後圧縮装置を駆動するようになっている、請求項1から8までのいずれか1項記載の膨張装置。
  10. 膨張機械(36)が電気機械に作用接続されている、請求項1から5までのいずれか1項記載の膨張装置。
  11. 空調装置であって、当該空調装置の冷媒回路(10)を形成するために、適当な形式で接続手段(20)によって互いに接続されている少なくとも1つのコンプレッサ(12)と凝縮器またはガス冷却器(14)と膨張装置(16)と蒸発器(18)とが設けられている形式のものにおいて、冷媒回路(10)の膨張装置(16)が、少なくとも1つの膨張弁(26,27)と膨張機械(36)とを有していることを特徴とする空調装置。
  12. 膨張ユニット(16)の前記弁(26,27)が、調整可能な弁である、請求項11記載の空調装置。
  13. 膨張ユニット(16)の前記弁(26,27)が、溢れ弁(27)である、請求項11または12記載の空調装置。
  14. 冷媒回路(10)のための冷媒を備えており、該冷媒が、超臨界領域において熱を放出する、請求項11から13までのいずれか1項記載の空調装置。
  15. 冷媒COが使用される、請求項11から14までのいずれか1項記載の空調装置。
JP2005140199A 2004-05-14 2005-05-12 冷媒のための膨張装置 Withdrawn JP2005326145A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004023834A DE102004023834A1 (de) 2004-05-14 2004-05-14 Expansionseinrichtung für ein Kältemittel

Publications (1)

Publication Number Publication Date
JP2005326145A true JP2005326145A (ja) 2005-11-24

Family

ID=34939039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140199A Withdrawn JP2005326145A (ja) 2004-05-14 2005-05-12 冷媒のための膨張装置

Country Status (3)

Country Link
EP (1) EP1596140A3 (ja)
JP (1) JP2005326145A (ja)
DE (1) DE102004023834A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183089A (ja) * 2006-01-04 2007-07-19 Valeo Systemes Thermiques 2個のエバポレータを備える空調設備用の膨張モジュール

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005058890B4 (de) * 2005-12-09 2007-08-30 Festo Ag & Co. Klimaanlage eines Kraftfahrzeugs
DE102006033747B3 (de) * 2006-07-21 2008-01-10 Thomas Magnete Gmbh Ventilanordnung
DE102008041939A1 (de) * 2008-09-10 2010-03-11 Ago Ag Energie + Anlagen Verfahren zum Betreiben einer Wärmepumpe oder Kältemaschine bzw. einer Kraftmaschine sowie Wärmepumpe oder Kältemaschine und Kraftmaschine
WO2013160929A1 (ja) * 2012-04-23 2013-10-31 三菱電機株式会社 冷凍サイクルシステム
DE102012014967A1 (de) * 2012-07-30 2014-01-30 Isabelle Oelschlägel D.I.O. -device to intelligente generate own electricity Integrierte Vorrichtung zur Stromgewinnung während des Betriebes einer Wärme- bzw. Kältemaschine.
US10132529B2 (en) * 2013-03-14 2018-11-20 Rolls-Royce Corporation Thermal management system controlling dynamic and steady state thermal loads
CN103604239B (zh) * 2013-11-15 2016-01-20 杭州锦华气体设备有限公司 一种大型冷库气体膨胀制冷系统及其制冷方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2309748B (en) * 1996-01-31 1999-08-04 Univ City Deriving mechanical power by expanding a liquid to its vapour
JP2000234814A (ja) * 1999-02-17 2000-08-29 Aisin Seiki Co Ltd 蒸気圧縮式冷凍装置
JP4207340B2 (ja) * 1999-03-15 2009-01-14 株式会社デンソー 冷凍サイクル
EP1046869B1 (en) * 1999-04-20 2005-02-02 Sanden Corporation Refrigeration/air conditioning system
JP2002022298A (ja) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd 冷凍サイクル装置とその制御方法
JP2003074999A (ja) * 2001-08-31 2003-03-12 Daikin Ind Ltd 冷凍機
JP4039024B2 (ja) * 2001-10-09 2008-01-30 ダイキン工業株式会社 冷凍装置
JP4075429B2 (ja) * 2002-03-26 2008-04-16 三菱電機株式会社 冷凍空調装置
JP3897681B2 (ja) * 2002-10-31 2007-03-28 松下電器産業株式会社 冷凍サイクル装置の高圧冷媒圧力の決定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183089A (ja) * 2006-01-04 2007-07-19 Valeo Systemes Thermiques 2個のエバポレータを備える空調設備用の膨張モジュール

Also Published As

Publication number Publication date
EP1596140A3 (de) 2010-04-28
EP1596140A2 (de) 2005-11-16
DE102004023834A1 (de) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4654655B2 (ja) 蒸気圧縮式冷凍機
EP1574698B1 (en) Vehicle exhaust heat recovery system
US6928820B2 (en) Waste heat collecting system having rankine cycle and heating cycle
US7178358B2 (en) Vapor-compression refrigerant cycle system with refrigeration cycle and Rankine cycle
JP2005326145A (ja) 冷媒のための膨張装置
JP5798416B2 (ja) 切替弁および冷却装置
US11391499B2 (en) Heat pump cycle device and valve device
US6941768B2 (en) Ejector cycle having compressor
JP2004012097A (ja) 熱交換器
WO2013051114A1 (ja) 冷却装置の制御方法
US20110100038A1 (en) Refrigerant Circuit And Method For Operating A Refrigerant Circuit
JP4078994B2 (ja) 流体機械および廃熱回収システム
JP2007107860A (ja) 空気調和装置
EP1263619B1 (en) Air conditioning unit and a method of operating an air conditioning unit, both being in particular for motor vehicles
JP4631426B2 (ja) 蒸気圧縮式冷凍機
JP5529432B2 (ja) ヒートポンプ装置
JP2014077582A (ja) 冷却装置
JP3942501B2 (ja) 車両用空調装置
JP4196817B2 (ja) 蒸気圧縮式冷凍機
JP2006017352A (ja) 蒸気圧縮式冷凍機
US20100026011A1 (en) Expansion Circuit
JP5917966B2 (ja) 冷却装置およびそれを備える車両
JP5618011B2 (ja) 冷却装置の制御方法
JP2006010101A (ja) 蒸気圧縮式冷凍機
JP2014088996A (ja) 冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081014