JP2005309174A - 波長可変フィルタ及びその製造方法 - Google Patents

波長可変フィルタ及びその製造方法 Download PDF

Info

Publication number
JP2005309174A
JP2005309174A JP2004127706A JP2004127706A JP2005309174A JP 2005309174 A JP2005309174 A JP 2005309174A JP 2004127706 A JP2004127706 A JP 2004127706A JP 2004127706 A JP2004127706 A JP 2004127706A JP 2005309174 A JP2005309174 A JP 2005309174A
Authority
JP
Japan
Prior art keywords
substrate
movable
movable body
tunable filter
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004127706A
Other languages
English (en)
Inventor
Ryosuke Nakamura
亮介 中村
Shinichi Kamisuke
真一 紙透
Akihiro Murata
昭浩 村田
Mitsuhiro Yoda
光宏 與田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004127706A priority Critical patent/JP2005309174A/ja
Publication of JP2005309174A publication Critical patent/JP2005309174A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 パッケージを施した上で、より高精度、低コストの波長可変フィルタ及びその製造方法を得る。
【解決手段】 可動反射面を有し、可動反射面と垂直な方向に変位することで、所定の波長の光を透過させ、所定の波長の光以外の波長の光を反射させる可動体21a、可動体を変位可能にした上で支持する連結部21b及び支持部21c並びにスペーサ21eが一体形成された可動部2と、可動体21aと静電ギャップEGを有して設けられ、可動体21aの位置を変位させる駆動電極12及び可動反射面と光学ギャップOGを有して設けられ、可動反射面により反射された光をさらに反射する固定反射面を有し、可動反射面と固定反射面とが対向するように、スペーサ21eを形成した側と反対側で可動部2と接合された駆動電極部1と、可動部2のスペーサ21e部分と接合されたパッケージ部3とを備えている。
【選択図】 図1

Description

本発明は、波長分割多重化(WDM:Wavelength Division Multiplexing)光通信網等において、光ファイバ中を伝送する、異なる波長を有する複数の光(ここでいう光は可視光だけに限らない。以下同じ)の中から所望の波長を有する光を取り出すために、光を選択的に透過させる波長可変フィルタ及びその製造方法に関するものである。
従来の波長可変フィルタは、ファブリ・ペロー干渉計の原理を利用したものである。基板上の固定反射面と所定の間隔で平行に可動体の可動反射面を対向配置する(以下、固定反射面と可動反射面との間隔を光学ギャップという)。可動反射面に設けられた可動電極と固定反射面に設けられた固定電極(以下、固定電極と可動電極との間隔を静電ギャップという)との間に電圧を印加することで、可動体が変位(駆動)し、可動反射面が固定反射面に対して相対的に変位する。この静電ギャップは、マイクロマシーニング技術を用いて、固定反射面と可動反射面との間に予め所定の形状及び大きさの犠牲層を設けた後、エッチングにより、犠牲層のすべて、あるいは一部を除去することによって形成している(例えば、特許文献1参照)。
また、従来の波長可変フィルタには、SOI(Silicon on Insulator)基板(ウェハ)の二酸化シリコン(SiO2 )層を犠牲層として用いて、上記静電ギャップを形成しているものもある(例えば、特許文献2参照)。
特開2002−174721公報([請求項9],[0005],[0018],[0037],[0049]〜[0056]、図6) 米国特許6341039号明細書(第6欄〜第7欄、図4A〜図4I)
波長可変フィルタでは可動反射面に設けられた可動電極と固定反射面に設けられた固定電極とにより形成される平行板コンデンサに駆動電圧を印加することにより可動電極(可動反射面)と固定電極(固定反射面)との間に静電力(静電引力)を発生させ、可動反射面を固定反射面に対して変化させ、異なる波長の光を異なるタイミングで取り出している。
ここで、上記のような波長可変フィルタは、例えば光学ギャップ、静電ギャップ間に異物等が混入すると、駆動(変位)が不均一となり、所望の波長の光を所望のタイミングで取り出せない、ショート(短絡)の発生等、様々な問題が発生する。そこで、異物混入を防ぐためにパッケージ化を図り、反射面、駆動する部分等を外部から保護することが望ましい。
このようなパッケージ化を図るための波長可変フィルタの製造方法、形態等は様々考えることができるが、その中でも精度(特に静電ギャップ、光学ギャップの間隔等の精度)がより高くなるような波長可変フィルタ、その製造ができるようにすることが望ましい。さらに時間的、経済的等に、より低コストで製造できるようにすることも望ましい。
そこで、本発明では、パッケージを施した上で、より高精度、低コストの波長可変フィルタ及びその製造方法を得ることを目的とする。
本発明に係る波長可変フィルタは、可動反射面を有し、可動反射面と垂直な方向に変位することで、所定の波長の光を透過させ、所定の波長の光以外の波長の光を反射させる可動体と、可動体を変位可能に支持する支持体と、スペーサと、が形成された可動部と、可動体に対して第1のギャップを有し、可動体の位置を変位させる電極と、可動反射面に対して第2のギャップを有し、可動反射面により反射された光を反射する固定反射面と、を備え、可動反射面と固定反射面とが対向するように、スペーサを形成した側と反対側の可動部と接合された駆動電極部と、スペーサと接合されたパッケージ部とを備えたものである。したがって、可変波長フィルタをパッケージして形成することができ、波長可変フィルタがその機能を果たすための機構部分(可動体、電極等)を含む空間へのパーティクル等の混入を防ぎ、波長可変フィルタの長寿命化を図ることができる。その際、スペーサ側で反射面を対向させず、駆動電極部と可動体との間で反射面を形成し、反射を行わせるようにしたので、光学特性がスペーサの形成精度に依存しない。そのため、設計通りの動作を行うことができる。
また、本発明に係る波長可変フィルタは、駆動電極部を構成する基板又はパッケージ部を構成する基板が、可動部を構成する基板と表面活性化接合が可能な材料で構成される。表面活性化接合を行えるようにすることで、強固な結合を行い、後に各基板が分離してしまうのを防ぐことができる。
また、本発明に係る波長可変フィルタは、駆動電極部を構成する基板又はパッケージ部を構成する基板が、可動部を構成する基板と陽極接合可能なガラス基板で構成される。
陽極接合を行えるようにすることで、強固な結合を行い、後に各基板が分離してしまうのを防ぐことができる。
また、本発明に係る波長可変フィルタは、電極の可動体に対向した領域又は可動体の電極に対向した領域の少なくとも一方が絶縁膜で覆われている。可動体と電極との少なくともどちらか一方を絶縁膜で覆うことにより、短絡等を防ぎ、貼り付き(スティッキング)を防止することができる。
また、本発明に係る波長可変フィルタの製造方法は、固定反射面に対して可動体を垂直方向に変位させ、固定反射面と可動体に設けられた可動反射面との間で反射する光から、固定反射面と可動反射面との間隔に基づいた所定波長の光を透過させる波長可変フィルタの製造方法であって、可動体を変位させるための電極を底面部分に有する第1の凹部及び底面部分に固定反射面を有し、第1の凹部の内側に位置する第2の凹部を形成する第1の工程と、導電性を有する活性層、絶縁層及びベース層が順次積層された第2の基板の活性層側と第1の基板に形成された第1の凹部及び第2の凹部側とを対向させて接合する第2の工程と、絶縁層をエッチングを停止させるための層として第2の基板のベース層をエッチングしてスペーサを形成し、絶縁層を除去した後、活性層をエッチングして可動体及び可動体を支持する支持体を形成する第3の工程と、所望の波長において光透過性を有する第3の基板と第2の基板とをスペーサ側から接合する第4の工程とを有している。したがって、パッケージした可変波長フィルタを製造することができ、波長可変フィルタがその機能を果たすための機構部分(可動体、電極等)を含む空間へのパーティクル等の混入を防ぎ、長寿命化を図ることができる。その際、スペーサ側で反射面を対向させないようにして製造するようにしたので、光学特性がスペーサの形成精度に依存しない。そのため、設計通りの動作を行うことができる。
また、本発明に係る波長可変フィルタの製造方法において、第2の基板は、SOI基板又はシリコン酸化膜が片面に形成された2枚のシリコン基板を各々のシリコン酸化膜を対向させて貼り合わせた基板で構成する。したがって、中央にシリコンのエッチングをストップさせるストッパとしての役割を果たす絶縁層が設けられるので、厚さ精度が高く、光学特性のよい波長可変フィルタを製造することができる。また、SOI基板のベース層等をスペーサ形成に流用することができるので、あらためてスペーサを形成する必要がなく、工程時間の短縮等を図ることができる。
また、本発明に係る波長可変フィルタの製造方法は、活性層、絶縁層及びベース層が順次積層された基板の代わりに、(100)面方位のシリコン基板を第2の基板とし、第3の工程において、可動体及び可動体を支持する支持体を形成する厚さまで異方性エッチング法を行って、スペーサを形成する。したがって、SOI基板等の高価な基板を用いることがないので、経済的なコストを抑えつつ、異方性エッチングを行うことによって、エッチング等の精度を確保することができる。
また、本発明に係る波長可変フィルタの製造方法は、第3の工程の前に、第2の基板を必要な厚さにエッチング又は研磨しておく。したがって、工程時間の短縮を図ることができる。
また、本発明に係る波長可変フィルタの製造方法は、第1の基板と第2の基板との接合又は第2の基板と第3の基板との接合に、陽極接合、低融点ガラス接合、表面活性化接合又は接着剤による接合のうちのいずれかを、少なくとも1回用いて接合を行う。したがって、強固な接合を行うことができ、後に基板が分離してしまうようなことを防ぐことができる。
また、本発明に係る波長可変フィルタの製造方法は、第2の基板と第3の基板とを接合する前に可動体のスペーサ側の面、第3の基板の両面に反射防止膜を形成する工程を有し、さらに第1の基板の第2の凹部を形成した面と反対の面に反射防止膜を形成する工程を有する。したがって、基板と外気の界面等での反射を防止し、入射された光の減衰を抑えることができる。
また、本発明に係る波長可変フィルタの製造方法は、第2の基板と第3の基板とを接合する前に、第2の凹部の底面部分及び第2の基板の活性層に、それぞれ固定反射面、可動反射面となる反射膜を形成する工程をさらに有する。したがって、光の干渉を十分に行わせることができ、波長可変フィルタの機能を十分に発揮することができる。
また、本発明に係る波長可変フィルタの製造方法は、反射膜は絶縁性を有する。したがって、特に可動体にあらためて絶縁膜を形成しなくてもよいので、工程の簡素化、時間短縮を図ることができる。
実施の形態1.
図1は本発明の第1の実施の形態における波長可変フィルタを示す断面図である。図1は波長可変フィルタの略中央の位置における断面図である(図2のA−A' 断面参照)。本実施の形態の波長可変フィルタは、駆動電極部1、可動部2及びパッケージ部3で構成されている。ここで本実施の形態では、図1における上側を上といい、下側を下ということにする。また、各図においては、各構成部材を見やすくさせるため、各部材の厚さ、他の部材との関係における比率は実際のものとは異なる場合がある。
駆動電極部1において、第1の基板となるガラス基板11は、第1の凹部11aと、第1の凹部11aよりも内側に位置し、さらに深い位置に底面が形成された第2の凹部11bとを有している。第1の凹部11aの底面部分には略リング状の駆動電極12が形成されている。そして、駆動電極12の上にさらに絶縁膜13が形成されている。第1の凹部11aにより、後述する可動部2の可動体21aと駆動電極部1の駆動電極12(絶縁膜13)との間は静電ギャップEG(第1のギャップ。約4μm(非駆動時))分の間隔が設けられている(駆動電極12との関係においては可動体21aは可動電極となる)。
一方、第2の凹部11bの底面(固定反射面)には高反射(HR)膜18が設けられている。第2の凹部11bにより、可動部2の可動体21aと駆動電極部1の高反射膜18との間は光学ギャップOG(第2のギャップ。約30μm(非駆動時))分の間隔が設けられている。
ガラス基板11は、例えば、ナトリウム(Na)やカリウム(K)等のアルカリ金属を含有したガラスを材料とする。これは、後述するように駆動電極部1と可動部2とを陽極接合により接合する場合に都合がよいからである。この種のガラスとしては、例えば、アルカリ金属を含有したホウケイ酸ガラス、ソーダガラス、カリウムガラス等がある。また、陽極接合により接合する場合には、ガラス基板11を加熱するため、ガラス基板11は可動部2となるシリコンと熱膨張係数がほぼ等しい方がよい。以上の要求に応えるガラスとして例えばコーニング社製#7740(商品名)があり、ガラス基板11には、このようなガラスを材料として用いることが好ましい。
駆動電極12は、例えば、金(Au)やクロム(Cr)等の導電性金属又は透明導電性材料を1層又は複数層積層することで構成される。透明導電性材料としては、例えば、酸化錫(SnO2 )、酸化インジウム(In2 3 )、あるいは錫ドープ酸化インジウム(ITO:Indium Tin Oxide)等がある。この駆動電極12の厚さは、全体で例えば0.1〜0.2μmとする。また、駆動電極12はガラス基板11の外部に設けられた端子(図示せず)と配線を介して電気的に接続されている。一方、絶縁膜13は、例えば二酸化シリコン(SiO2 )、窒化シリコン(SiNx )等からなり、駆動電極12と可動体21aとのスティッキング(貼り付き)を防止するために成膜されている。
第2の凹部11bの底面部分に設けられた高反射膜18は、二酸化シリコン(SiO2 )の薄膜と五酸化タンタル(Ta2 5)の薄膜とを蒸着法等を用いて交互に積層した多層膜(約2〜40層)からなる。場合によっては、窒化シリコン(SiNx )を用いることもできる。本実施の形態において固定反射面を構成する高反射膜18は、下方から入射した光(波長可変フィルタ外から入射した光)を透過する一方、上方から入射する光(可動部2が有する高反射膜23が反射した光)をさらに反射する。
一方、反射防止(AR)膜19は、波長可変フィルタ外から入射した光がガラス基板11の界面で反射されてしまわないように、ガラス基板11の下側(外側)の面に設けるものである。反射防止膜19は、例えば二酸化シリコン(SiO2 )の薄膜と五酸化タンタル(Ta2 5 )の薄膜とを蒸着法等を用いて交互に積層した多層膜からなる。また、窒化シリコン(SiNx )、シリコンオキシナイトライド(SiON)薄膜等を積層して形成することもできる。ここで、高反射膜18と反射防止膜19とは、その材料は同じであるが、各薄膜の膜厚が異なる。膜厚を調整することにより、所定の波長の光に対して反射膜ともなり得るし、反射防止膜ともなり得る。ここで、本実施の形態では、高反射膜18、反射防止膜19は多層膜で構成しているが、それぞれの機能を果たせるのであれば単層膜で形成してもよい。これは、後述する高反射膜23並びに反射防止膜22、32及び33についても同様である。なお、高反射膜とは例えば所望の波長の光における反射率が95%以上の反射膜をいうものとする。本実施の形態の多層膜では反射率は98%以上ある。
図2は第2の基板となる可動部基板21を上面から見た図である。ただし、絶縁部21d及びスペーサ21eは記載していない。可動部2は、可動部基板21、反射防止膜22及び高反射膜23で構成されている。第2の基板となる可動部基板21は例えばSOI基板を材料としている。ただ、SOI基板でなくても、例えば、片面を酸化膜(例えば二酸化シリコン)で成膜した2枚のシリコン基板を、成膜した側の面を対向させて貼り合わせたものを用いてもよい。
本実施の形態においては、可動部基板21は、可動体21a、可動体21aを空間に吊して保持するための吊り手段となる4個の連結部21b、支持部21c、絶縁部21d及びスペーサ21eとが一体形成されている。ここで、例えば、可動体21a、連結部21b及び支持部21c部分の厚さは約10μmであり、開口され、形成された空間により仕切られて各部に分かれている。可動体21aは、可動部基板21の略中央に略円形(円盤)状をなして形成されている。可動体21aの周縁部分に形成された4個の連結部21b及び支持部21cにより、可動体21aを支持する支持体を構成する。各連結部21bは可撓性(弾性)を有している。可動体21aはこの支持体により支持されており、力を受けることにより、高反射膜23が形成された面(可動反射面)と垂直な方向に変位する。本実施の形態では、駆動電極12(可動体21a)への電荷供給により、駆動電極12と可動体21aとの間に静電力(静電引力)が発生し、可動体21aが変位する。このときの支持体は、例えば外部電極(図示せず)から駆動電極12に供給される電荷とは反対の極性を有する電荷を可動体21aに供給するための導電部分ともなる。4個の連結部21bは、可動体21aの周縁部分において、各々隣接するもの同士が約90度の角度をなした位置に設けられている。
ここで、本実施の形態では可動体21aを円形状で形成しているが、形状はこれに限るものではない。例えば、正多角形等の形状のように、高反射膜23が高反射膜32に対して平行を保ったまま、垂直に変位できる形状であればよい。また、連結部21bの形状やその数については、可動体21aの重量を支えられ、所定の駆動電圧で、所望する可動体21aの変位が行えるのであれば、本実施の形態で示している形状、数に限らない。
絶縁部21dは、例えば二酸化シリコン(SiO2 )を材料として構成された層である。本実施の形態では、主に、可動基板21を形成する際にエッチングをストップさせるストッパとしての役割を果たす。スペーサ21eは、パッケージ部3(ガラス基板31)と可動体21aとの間を所定間隔分空け、波長可変フィルタとしての機能を果たすために駆動する部分、反射面をパッケージし、保護するために設けられている。
反射防止膜22は可動体21aの上面(パッケージ部3側)に形成される。反射防止膜22は、反射防止膜19と同様に例えば二酸化シリコン(SiO2 )の薄膜と五酸化タンタル(Ta2 5 )の薄膜とを蒸着法等を用いて交互に積層した多層膜等で形成される。ここで反射防止膜22を可動体21aの上全面に形成すると、その機能をより発揮させることができる。一方、本実施の形態において可動反射面として構成される高反射膜23は、可動体21aの下面(駆動電極部1側)に形成される。高反射膜23も高反射膜18と同様の膜である。高反射膜23は、高反射膜18側から入射された光を反射することにより、高反射膜18との間で複数回の反射を繰り返して干渉させ、干渉条件を満たした所定の波長の光だけを透過させる。透過させる光は、可動体21aの変位によって変化する光学ギャップOGの間隔によって波長が異なる。したがって、複数の波長の異なる光(信号)に所定のタイミングでデータを含めておいて多重化して送信し、波長可変フィルタにおいて、そのタイミングに合わせて光学ギャップOGの間隔を変化させることによって、信号を分割して取り出すことができる。ここで、高反射膜23についても可動体21aの下全面に形成することで、より機能を発揮させることができる。
パッケージ部3は、ガラス基板31、反射防止膜32及び33で構成されている。第3の基板となるガラス基板31は、本実施の形態では、ガラス基板11と同一の材料(材質)のガラス基板からなり、スペーサ21eと接合される。また、反射防止膜32及び33は反射防止膜18と同様の膜である。ガラス基板31の可動体21aに対向する面には反射防止膜32を設け、その反対の面に反射防止膜33を設けている。
図3〜図6は第1の実施の形態に係る波長可変フィルタの製造工程を表す図である。図3は第1の工程を含む駆動電極部1の作製工程を表す。図4は可動部2となるSOI基板24を処理し、第2の工程を含む、可動部2となるSOI基板24と駆動電極部1との接合構造体の作製工程を表す。図5は第3の工程を含む、接合構造体から可動部2部分の形成工程を表す。また、図6は第4の工程を含む、パッケージ部3を形成し、接合構造体と接合して最終的に波長可変フィルタが作製されるまでの工程を表す。
まず、図3に基づいて駆動電極部1の作製工程について説明する。まず、ガラス基板14(最終的にはガラス基板11となる)の一方の面に、金(Au)/クロム(Cr)等の金属膜等によるマスク15を形成(マスキング)する。マスク15としては、例えばAu/Crのほかに、Au/Ti(チタン)、Pt(白金)/Cr、Pt/Ti等の金属、多結晶シリコン(ポリシリコン)、アモルファスシリコン、窒化シリコン等のシリコン系材料が挙げられる。マスク15にシリコン系材料を用いると、ガラス基板14との密着性が向上する。一方、マスク15に金属を用いるとマスク15の視認性が向上する。マスク15の形成には、例えば、化学的気相堆積(CVD:Chemical Vapor Deposition )法、物理的堆積(PVD:Physical Vapor Deposition )法、めっき法等を用いる。ここで、PVD法を実現する装置としては、例えば、スパッタリング装置、真空蒸着装置、イオンプレーティング装置等がある。
マスク15の厚さを特に限定するものではないが、0.01μmから1μm程度とすることが好ましく、0.09〜0.11μmとすることがより好ましい。マスク15が薄すぎると、マスクとして機能せず、ガラス基板14を十分に保護できない場合があり、一方、マスク15が厚すぎると、内部応力によって剥がれやすくなる場合がある。マスク15をAu/Crで成膜する場合、例えばCrを0.03μm成膜した後、Auを例えば、0.07μm成膜する。
次に、マスク15上の全面にフォトレジスト(図示略)を塗布する。そして、フォトリソグラフィ(Photolithography)法を用いて、マスクアライナーでマスク15上の全面に塗布されたフォトレジストを露光した後、現像液で現像し、ガラス基板14のうち、後にガラス基板11の第1の凹部11a(図1参照)となる部分を形成するためのフォトレジストパターン(図示せず)を形成する。次に、ウェットエッチング法を使用して、例えば、塩酸又は硫酸(クロム膜の場合)、あるいは王水又は酸素や水の存在下でシアン化物イオンを含む溶液(金膜の場合)(以下、エッチング液と呼ぶ。)によりマスク15のうち不要な部分を除去した後、フォトレジストパターンを除去して、エッチングパターン16を得る(図3(1))。ここでウェットエッチング法ではなく、例えばCFガス、塩素系ガス等によるドライエッチング法により、エッチングパターン16を形成することができる。
次に、ウェットエッチング法を用いて、例えばフッ化水素酸(HF)によりガラス基板14のうち不要な部分を除去して、約4μmの深さを有する第1の凹部11aを形成する。ここで、グリセリン等のアルコール(特に多価アルコール)を添加してエッチングすると、形成した第1の凹部11aの表面を極めて滑らかにすることができる。また、第1の凹部11aの形成にドライエッチング法を用いてもよい。
その後、ウェットエッチング法又はドライエッチング法を用いてエッチングパターン16を除去する(図3(2))。ウェットエッチング法では、例えばアルカリ水溶液(例えばテトラメチル水酸化アンモニウム水溶液等)、塩酸+硝酸水溶液、フッ酸+硝酸水溶液等の剥離液(除去液)を用いる。ウェットエッチング法を用いると、一度に容易に効率よくエッチングパターン16を除去することができる。
そして、さらに第1の凹部11aの形成処理と同様に、マスクを形成した後、フォトリソグラフィ法を用いて、マスクの一部を除去することで、第2の凹部11bに対応したエッチングパターン16bを形成する(図3(3))。そして、ウェットエッチング法を用いて、例えばフッ化水素酸(HF)によりガラス基板14のうち不要な部分を除去し、第2の凹部11bを形成する(図3(4))。ここで、第2の凹部11bを形成する場合には、その深さ、径の大きさ等が第1の凹部11aとは異なるため、エッチング時間、温度、エッチング液等、形成条件を第1の凹部11aを形成する際の条件とは異ならせることができる。そして、ガラス基板14をエッチングする場合、これらの条件管理(工程管理)を厳しく行うことができる。また、前述したようにアルコールを添加することにより、エッチングにより形成された表面を滑らかにすることができる。以上のように、ガラス基板14のエッチングは高精度に行うことができ、第2の凹部11bの深さにより決定される光学ギャップOGについても精度よく形成できる。
第2の凹部11bを形成すると、例えば、エッチングパターン16bを付したまま、高反射膜18を形成する(図3(5))。高反射膜18は、前述したCVD法、PVD法等を用いて、二酸化シリコン(SiO2 )の薄膜と五酸化タンタル(Ta2 5 )の薄膜とを蒸着法等を用いて交互に積層する(ここでは例えば10〜20層程度とする)ことで形成する。その後、ウェットエッチング法又はドライエッチング法を用いてエッチングパターン16bを除去する(図3(6))。
次に、第1の凹部11aが形成された底面部分に、CVD法、PVD法を用いて、金(Au)、クロム(Cr)等、駆動電極12となる金属膜17を形成する(図3(7))。ここで金属膜17の膜厚は、例えば全体として0.1〜0.2μmとする。次に、金属膜17上の全面にフォトレジスト(図示せず)を塗布した後、フォトリソグラフィ法を用いて、金属膜17のうち、後に駆動電極12となる部分を残すためのフォトレジストパターン(図示せず)を形成する。そして、例えばドライエッチング法を用いて金属膜18のうち不要な部分を除去した上で、フォトレジストパターンを除去し、駆動電極12を形成する。次に、CVD法等を用いて、駆動電極12上に二酸化シリコン(SiO2 )、窒化シリコン(SiNx )等の絶縁膜13を形成する。
最後にガラス基板14の下面に前述した高反射膜18の形成と同様の方法で、反射防止膜19を形成する(図3(8))。ここで反射防止膜19が実際に必要となるのは高反射膜18に対向する部分であるが、ガラス基板14の下面全面に成膜してもよい。また、反射防止の機能を発揮させるために、反射防止膜19の形成には、高反射膜18の形成のときとは層の厚さ等、形成(成膜)条件を異ならせることが必要である。以上の工程により駆動電極部1の作製が完了する。
次に図4に基づいてSOI基板の処理工程について説明する。ここで本実施の形態では、可動部2の可動部基板21を作製するためにSOI基板24を用いる(図4(1))。SOI基板24は、例えば厚さ約4μmの絶縁層26を挟んで、例えば厚さ約500μmのベース層25と例えば厚さ約10μmの活性層27とが、層を成して構成されている。ベース層25及び活性層27はシリコン(Si)、絶縁層26は二酸化シリコン(SiO2 )を材料としている。可動体21a、連結部21b及び支持部21cとなる部分だけを基板として接合しようとすると、薄くて安定しないため接合が困難となる。そこで、SOI基板24を用いて安定した接合を行った後、活性層27を加工して可動体21a、連結部21b及び支持部21cを形成する。一方、ベース層25は、スペーサ21eとして用いる。そのため、スペーサ21eをあらためて形成する必要はない。一方、SOI基板24の絶縁層26がエッチングのストッパの役割を果たすため、可動体21a、連結部21b及び支持部21cとなる部分について、特に厚さ精度の高い可動部基板21を得られる。
ここで、ベース層25の厚さは約500μmであるが、基板同士を接合するの際の安定を保つことができ、また、スペーサ21eとなる分として、これ程の厚さを必要としなければ、研磨又はエッチングを行って、あらかじめ所定の厚さにしておいてもよい。特に研磨又はウェットエッチングを行う場合は、例えばウェハに形成される複数分の部材(可動部基板21)について一括して処理することができ、時間的に都合がよい。先に研磨等をしておくことで後述するスペーサ21e形成の際、ベース層25のエッチング時間を短縮することができる。特に、本実施の形態の波長可変フィルタにおいては、基本的に、可動体21aとパッケージ部3との距離が、波長可変フィルタの機能に影響することはないので、スペーサ21eの厚さは任意に定めることができる。また、鏡面研磨等を行っておくこともできる。
そして、上記のSOI基板24にレジスト膜とするためのシリコン酸化膜28を形成する。形成方法としては、前述したCVD法、加熱による表面の熱酸化等、様々な方法がある。次に活性層27側(下面)のシリコン酸化膜28を除去する(図4(2))。ここで、シリコン酸化膜を形成する箇所を選択することができる場合には、あらかじめ活性層27側の面にシリコン酸化膜28を形成しなくてもよい。
次に、前述した高反射膜18と同様に、CVD法、PVD法等を用いて、活性層27に対して高反射膜23を形成する(図4(3))。ここで、高反射膜23が実際に必要となるのは高反射膜18に対向する部分(反射防止膜19とは反対側)であるが、この膜は絶縁性を有しているため、光を反射させる部分以外(例えば駆動電極12直上となる部分)にも形成することで、絶縁膜として機能させることもできる。
次に、高反射膜23が形成されたSOI基板24の可動体21aが形成される部分と作製した駆動電極部1の駆動電極12、高反射膜18とが対向するように接合することで接合構造体を形成する(図4(4))。接合方法としては、例えば、陽極接合、接着剤による接合、低融点ガラス接合等を用いることができる。また、本実施の形態では、シリコンとガラスとの接合となるが、例えばシリコン同士の接合の場合、表面が鏡面に仕上げられている場合には表面活性化接合を行うことができる。
ここで、例えば陽極接合は、以下に示す工程を経て行われる。まず、駆動電極部1の第1の凹部11a、第2の凹部11bが形成された面とSOI基板24の高反射膜23が形成された面とを対向して載置させる。そして、直流電源のマイナス側とガラス基板11とを接続するとともに、直流電源のプラス側と活性層27とを接続する。次にガラス基板11を例えば、数百℃程度に加熱しつつ、ガラス基板11と活性層27(SOI基板24)との間に例えば数百V程度の直流電圧を印加する。ガラス基板11を加熱することにより、ガラス基板11に含まれるアルカリ金属のプラスイオン、例えば、ナトリウムイオン(Na+ )が移動しやすくなる。このアルカリ金属のプラスイオンがガラス基板11内を移動することにより、相対的にガラス基板11の活性層27との接合面がマイナスに帯電する。一方、活性層27のガラス基板11との接合面がプラスに帯電する。この結果、シリコン(Si)と酸素(O)とが電子対を共有して共有結合することでガラス基板11と活性層27とを接合する。また、ガラス基板11(ガラス基板14)としていわゆる低融点ガラスを用いた場合には、ガラス界面を融着させて接合することにより、低融点ガラス接合を行うことができる。
表面活性化接合(SAB:Surface Activated Bonding)は、通常、物質の表面に存在する、大気中の酸素との反応による酸化物の層、吸着した気体分子の層を、真空中においてアルゴン(Ar)等の不活性ガスのビームにより物質表面をエッチングすることで除去し、表面を活性化させた状態で重ね合わせて結合させるものである。活性化された表面は他の分子と強い結合力を有するため強固に接合できる。また、表面活性化接合は常温での接合が可能である。この場合、本実施の形態のようなガラス基板11ではなくシリコン基板で構成し、可動部基板21となるシリコンとともにそれぞれの表面を鏡面状態にして活性化させておいて接合させることとなる。
次に図5に基づいて、接合構造体に対する加工処理について説明する。まず、接合構造体からベース層25をエッチングする。ここで、前述したように、本工程でのエッチング時間を短縮するため、先にベース層25を研磨又はエッチングしておくこともあるが、前述の時点ではなく、この時点でその研磨又はエッチングを行うようにしてもよい。
本工程では、先に形成したシリコン酸化膜28に対して、スペーサ21eを形成するためのエッチングパターンを形成しておいてからエッチングを行う(図5(1))。ここで、絶縁層26が、活性層27部分へのエッチングの進行をストップさせるストッパーの役割を果たすため、活性層27がダメージを受けず、歩留まりの高い波長可変フィルタを製造することができる。以下、ウェットエッチング除去法及びドライエッチング除去法について説明する。一括した除去を行えるという点では、ウェットエッチング除去法が適切である。
(1)ウェットエッチング除去法
例えば、1〜40重量%(好ましくは、10重量%前後)の濃度の水酸化カリウム(KOH)水溶液に接合構造体を浸漬することにより、ベース層25の所定の部分をエッチングする。なお、この場合に用いるエッチング液としては、水酸化テトラメチルアンモニウム(TMAH:TetraMethyl Ammonium Hydroxide)水溶液、エチレンジアミン−ピロカテコール−ジアジン(EPD:Ethylenediamine Pyrocatechol Diazine)水溶液、ヒドラジン(Hydrazine )水溶液などもある。ここで、ウェハ単位で複数形成されている場合には、生産条件等をほぼ等しくしつつ、一括した処理(バッチ処理)を行うことができ、生産性を向上させることができる。
(2)ドライエッチング除去法
例えば、ドライエッチング装置のチャンバー内に接合構造体を載置し、真空状態にした後、例えば圧力390Paの二フッ化キセノン(XeF2 )を60秒間チャンバー内に導入することにより、ベース層25をエッチングする。なお、四フッ化炭素(CF4 )や六フッ化硫黄(SF6 )を用いたプラズマエッチング法を用いることもできる。
そして、スペーサ21eを形成した接合構造体について、例えばフッ化水素酸(HF)を用いたウェットエッチング法により、シリコン酸化膜28のエッチングパターン及び絶縁層26の所定の部分を除去する(図5(2))。絶縁層26の残った部分が絶縁部21dとなる。その後、上述した方法と同様の方法で活性層27の上面に反射防止膜22を形成する(図5(3))。活性層27全面にフォトリソグラフィ法等によりフォトレジストパターンを活性層27(反射防止膜22)上の所定の部分に形成する(図5(4))。
そして、異方性ドライエッチング法により、可動体21a及び連結部21bを形成する。異方性ドライエッチングの方法としては、例えば接合構造体をドライエッチング装置のチャンバー(容器)内に載置した後、例えば、エッチングガスとして六フッ化硫黄(SF6 )を流量130cm3 /min(sccm)で6秒間、デポジション(堆積)ガスとして八フッ化シクロブタン(C48)を流量50cm3 /min(sccm)で7秒間交互にチャンバー内に導入することにより行う。ドライエッチングの場合、ウェットエッチングとは異なり、エッチング液の侵入により駆動電極12や絶縁膜13を除去してしまうこともない。また、異方性ドライエッチングのため、フォトレジストパターンでレジストした部分への回り込み(サイドエッチング)を防ぐことができる。特に連結部21bの強度を損なわない。異方性ドライエッチング後、例えば酸素プラズマを用いてフォトレジストパターンを除去する(図5(5))。以上説明した工程により接合構造体に可動部2が作製される。
図6に基づいてパッケージ部3の作製工程及び接合工程について説明する。パッケージ部3を作製するために、例えば、前述したコーニング社製#7740等のガラス基板31を用いる(図6(1))。そして、ガラス基板31の上面(外側となる面)及び下面(可動部2側)に、前述した反射防止膜19と同様の反射防止膜32及び33をそれぞれ形成する(図6(2))。以上説明した製造工程により、パッケージ部3が作製される。
そして、反射防止膜22と反射防止膜32とが平行して対向するように、接合構造体とパッケージ部3とを接合する(図6(3))。この接合には、例えば、上記した陽極接合、表面活性化接合、接着剤による接合又は低融点ガラス接合のうち1つを少なくとも1回用いる。この接合の際、内部が真空になるように真空チャンバー内で接合したり(真空封止)、減圧状態等、最適の圧力中で接合したりしても良い。
波長可変フィルタとなる接合体をウェハ単位で複数一体作製している場合には、ダイシングを行って各波長可変フィルタに切り離す。以上のような工程により波長可変フィルタが製造される。
次に、上記構成の波長可変フィルタの動作について、図1を参照して説明する。駆動電極12と可動体21aとの間には電圧(以下、駆動電圧という)を印加する。この駆動電圧は、例えば60Hzの交流正弦波電圧やパルス状の電圧である。駆動電極12にはガラス基板11の外部に設けられた端子、配線(図示せず)を介して印加し、一方、可動体21aには支持部21c及び連結部21b(図2参照)を介して駆動電極12との間に電位差を与える。駆動電圧による電位差のため、駆動電極12と可動体21aとの間に静電力が発生し、可動体21aが駆動電極12側に変化する、すなわち、静電ギャップEG及び光学ギャップOGが変化する。このとき、連結部21bが弾性を有しているため、可動体21aは弾性的に変化する。
この波長可変フィルタに、複数(例えば、60〜100)に分かれた赤外の波長帯域を有する光(それぞれの波長帯域には例えばデータ信号が含まれている)が図1において駆動電極部1の略中央下方(図1の矢印参照)から入射し、ガラス基板11を透過する。そして、高反射膜18においてほとんど反射されずに下方に高反射膜18、上方に高反射膜23を有する空間(側面は第2の凹部11b等の壁面等で形成される)に進入する。
進入した光は、高反射膜23と高反射膜32との間で反射を繰り返すが、この過程において、光学ギャップOGに対応した干渉条件を満たした波長の光だけが高反射膜23、可動体21a、反射防止膜22を透過して、波長可変フィルタの上方から出射する。一方、干渉条件を満たさない波長の光は急激に減衰する。そのため、可動体21a(可動反射面となる高反射膜23)を変位させて、光学ギャップOGを変化させることにより、透過する光の波長を選択することが可能となる。
以上のように、第1の実施の形態によれば、駆動電極12及び高反射膜18を有した駆動電極部1と可動体21a、支持体(連結部21b、支持部21c)を有する可動部2とを接合し、さらにその反対側からパッケージ部3を接合した波長可変フィルタを製造するようにしたので、可動体21a等をパッケージ化し、保護することにより、波長可変フィルタがその機能を果たすための機構部分(可動体21a、駆動電極12等)を含む空間へのパーティクル等の混入を防ぎ、長寿命の波長可変フィルタを得ることができる。その際、可動体21a、支持体を形成するための基板(例えばSOI基板)を流用して、パッケージ部3との間に空間を設けるためのスペーサ21eを形成できるので、他の部材を用いたスペーサ形成のための工程を必要とせず、プロセスの簡素化を図ることができる。
また、駆動電極12及び高反射膜18を、両方とも駆動電極部1に設けることにより、静電ギャップEGと光学ギャップOGの一部が重複することになるので、その分、小型化を図ることができる。また、厳しい精度管理を行うことができるガラス基板に高反射膜18を形成するようにしたので、設計通りの光学ギャップOGを設けることができ、光学特性を向上させることができる。
可動部2の形成に際しては、SOI基板24を用いているので、その絶縁層26は、スペーサ21eの形成等の際にエッチングのストッパとして機能させることができる。これにより、形成された可動体21aの表面を鏡面に仕上げることができる。また、本実施の形態の場合、スペーサ21e側に光学ギャップOGが設けられておらず、スペーサ21eの間隔によって光学ギャップを決定するという形態ではないため、可動体21aとパッケージ部3との距離(ギャップ)は任意に自由に設計できる。そして、スペーサ21e形成前に、ベース層25をあらかじめエッチング、研磨等をしておけば、時間短縮を図ることもできる。
駆動電極部1又はパッケージ部3と可動部2との接合について、陽極接合、低融点ガラス接合、接着剤による接合又は表面活性化接合による方法のうち、少なくとも1回、いずれかの方法を用いるようにすることで、後に分離することのない確実な接合(パッケージ)を行うことができる。特に陽極接合は、シリコンとガラスとを強固に接合することができる。また、表面活性化接合は、常温で接合することができ、プロセスの自由度を高くすることができる。
また、本実施の形態では、駆動電極12を絶縁膜13で覆うようにしたので、可動体21aと駆動電極12との静電力(静電引力)による貼り付きを防止することができる。
実施の形態2.
上述の実施の形態では、可動部2の可動部基板21を形成するためにSOI基板24を用いた。本発明ではこれに限定されるものではなく、SOS(Silicon On Sapphire :Al2 3 )基板を用いてもよい。また、一方の面に二酸化シリコン(SiO2 )膜が形成されたシリコン基板と、他のシリコン基板とを上面同士を重ねて張り合わせたものを用いても、絶縁部分を有しているため、SOI基板24と同じ効果を有する。
また、上述したSOI基板24等は材料として高価であるため、可動部基板21の厚さを高精度にできるのであれば、シリコン基板を他の基板を研磨したり、エッチングしたりしてスペーサ21eを有する可動部基板21(可動部2)を得るようにしてもよい。これにより、経済的コストを大幅に削減することができる。例えば、このようなシリコン基板として(110)面方位のシリコン基板を用い、可動体21a、連結部21b及び支持部21cを所望の厚さで形成できる厚さになるまで異方性エッチング法でエッチングを行うようにしてもよい。
実施の形態3.
上述の実施の形態では、波長分割多重する光の波長帯域等の関係で、駆動電極部1に高反射膜18、可動部2に高反射膜23を設け、固定反射面又は可動反射面を構成させて光を反射、透過させるようにしていた。本発明ではこれに限定されることなく、通常は形成した方がよいものの、例えば可動体21a、駆動電極基板11の第2の凹部11bの底面が鏡面に仕上げられており、それぞれが反射面としての役割を果たせる(反射面としての機能を有する)のであれば、特に高反射膜18、22を設けなくてもよい。これにより、プロセスの簡素化を図ることができる。これは反射防止面としての機能を有する反射防止膜についても同様である。
実施の形態4.
上述の実施の形態では図面を参照して詳述してきたが、具体的な構成はこの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
例えば、上述の実施の形態においては、駆動電極部1及びパッケージ部3の両方をガラス基板で構成する例を示したが、これに限定されず、駆動電極部1及びパッケージ部3は、赤外等の所望の透過波長帯域の光を透過する材料、例えば、シリコン、サファイヤ、ゲルマニウムなどを基板材料としても良い。
また、上述の実施の形態においては、駆動電極12上に絶縁膜13を形成する例を示したが、これに限定されず、可動体21aの下面であって、少なくとも駆動電極12に対向した領域に絶縁膜を形成しても良い。この絶縁膜の形成方法としては、例えば、シリコンを酸化性雰囲気中で加熱する熱酸化や、TEOS(Tetra Ethyl Ortho Silicate)−CVD装置を使用して、それぞれ二酸化シリコン(SiO2 )膜を形成する方法がある。
また、可動体21aの下面に形成される高反射膜23を構成する二酸化シリコン(SiO2 )膜も五酸化タンタル(Ta2 5 )膜も、ともに絶縁体であるため、高反射膜23を絶縁膜として兼用しても良い。この場合、高反射膜として機能させる部分とそれ以外の部分との層数を同じにする必要はない。さらに、上記絶縁膜13と、可動体21aの下面に形成する絶縁膜との両方を形成しても良い。このように、高反射膜23を絶縁膜として兼用すれば、少ない製造工程で上述の実施の形態と同様の効果を得ることができ、安価に波長可変フィルタを構成することができる。
第1の実施の形態を示す波長可変フィルタの断面図。 波長可変フィルタを構成する可動部基板21の上面図。 駆動電極部1の作製工程を表す図。 SOI基板24の処理工程を表す図。 接合構造体から可動部2を作製する工程を表す図。 パッケージ部3の作製工程及び接合構造体との接合を表す図。
符号の説明
1 駆動電極部、11 ガラス基板(第1の基板)、11a 第1の凹部、11b 第2の凹部、12 駆動電極、13 絶縁膜、14 ガラス基板、15 マスク、16,16b エッチングパターン、17 金属膜、18,23 高反射膜、19,22,32,、33 反射防止膜、2 可動部、21 可動部基板、21a 可動体、21b 連結部、 21c 支持部、21d 絶縁部、21e スペーサ、24 SOI基板、25 ベース層、26 絶縁層、27 活性層、28 シリコン酸化膜、3 パッケージ部、31 ガラス基板、EG 静電ギャップ、OG 光学ギャップ

Claims (12)

  1. 可動反射面を有し、前記可動反射面と垂直な方向に変位することで、所定の波長の光を透過させ、前記所定の波長の光以外の波長の光を反射させる可動体と、前記可動体を変位可能に支持する支持体と、スペーサと、が形成された可動部と、
    前記可動体に対して第1のギャップを有し、前記可動体の位置を変位させる電極と、前記可動反射面に対して第2のギャップを有し、前記可動反射面により反射された光を反射する固定反射面と、を備え、前記可動反射面と前記固定反射面とが対向するように、前記スペーサを形成した側と反対側の前記可動部と接合された駆動電極部と、
    前記スペーサと接合されたパッケージ部と、
    を備えたことを特徴とする波長可変フィルタ。
  2. 前記駆動電極部を構成する基板又は前記パッケージ部を構成する基板が、前記可動部を構成する基板と表面活性化接合が可能な材料で構成されることを特徴とする請求項1記載の波長可変フィルタ。
  3. 前記駆動電極部を構成する基板又は前記パッケージ部を構成する基板が、前記可動部を構成する基板と陽極接合可能なガラス基板で構成されることを特徴とする請求項1記載の波長可変フィルタ。
  4. 前記電極の前記可動体に対向した領域又は前記可動体の前記電極に対向した領域の少なくとも一方が絶縁膜で覆われていることを特徴とする請求項1記載の波長可変フィルタ。
  5. 固定反射面に対して可動体を垂直方向に変位させ、前記固定反射面と前記可動体に設けられた可動反射面との間で反射する光から、前記固定反射面と前記可動反射面との間隔に基づいた所定波長の光を透過させる波長可変フィルタの製造方法であって、
    前記可動体を変位させるための電極を底面部分に有する第1の凹部及び底面部分に固定反射面を有し、第1の凹部の内側に位置する第2の凹部を形成する第1の工程と、
    導電性を有する活性層、絶縁層及びベース層が順次積層された第2の基板の活性層側と第1の基板に形成された第1の凹部及び第2の凹部側とを対向させて接合する第2の工程と、
    前記絶縁層をエッチングを停止させるための層として前記第2の基板のベース層をエッチングしてスペーサを形成し、前記絶縁層を除去した後、前記活性層をエッチングして可動体及び該可動体を支持する支持体を形成する第3の工程と、
    所望の波長において光透過性を有する第3の基板と前記第2の基板とを前記スペーサ側から接合する第4の工程と
    を有することを特徴とする波長可変フィルタの製造方法。
  6. 前記第2の基板は、SOI基板又はシリコン酸化膜が片面に形成された2枚のシリコン基板を各々のシリコン酸化膜を対向させて貼り合わせた基板で構成することを特徴とする請求項5記載の波長可変フィルタの製造方法。
  7. 活性層、絶縁層及びベース層が順次積層された基板の代わりに、(100)面方位のシリコン基板を前記第2の基板とし、前記第3の工程において、前記可動体及び可動体を支持する支持体を形成する厚さまで異方性エッチングを行って、前記スペーサを形成することを特徴とする請求項5記載の波長可変フィルタの製造方法。
  8. 前記第3の工程の前に、前記第2の基板を必要な厚さにエッチング又は研磨しておくことを特徴とする請求項5〜7のいずれかに記載の波長可変フィルタの製造方法。
  9. 前記第1の基板と前記第2の基板との接合又は前記第2の基板と前記第3の基板との接合に、陽極接合、低融点ガラス接合、表面活性化接合又は接着剤による接合のうちのいずれかを、少なくとも1回用いて接合を行うことを特徴とする請求項5記載の波長可変フィルタの製造方法。
  10. 前記第2の基板と前記第3の基板とを接合する前に前記可動体の前記スペーサ側の面、前記第3の基板の両面に反射防止膜を形成する工程を有し、さらに前記第1の基板の前記第2の凹部を形成した面と反対の面に反射防止膜を形成する工程を有することを特徴とする請求項5記載の波長可変フィルタの製造方法。
  11. 前記第2の基板と前記第3の基板とを接合する前に、前記第2の凹部の底面部分及び前記第2の基板の活性層に、それぞれ固定反射面、可動反射面となる反射膜を形成する工程をさらに有することを特徴とする請求項5記載の波長可変フィルタの製造方法。
  12. 前記反射膜は、絶縁性を有することを特徴とする請求項11記載の波長可変フィルタの製造方法。
JP2004127706A 2004-04-23 2004-04-23 波長可変フィルタ及びその製造方法 Withdrawn JP2005309174A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004127706A JP2005309174A (ja) 2004-04-23 2004-04-23 波長可変フィルタ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004127706A JP2005309174A (ja) 2004-04-23 2004-04-23 波長可変フィルタ及びその製造方法

Publications (1)

Publication Number Publication Date
JP2005309174A true JP2005309174A (ja) 2005-11-04

Family

ID=35438016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127706A Withdrawn JP2005309174A (ja) 2004-04-23 2004-04-23 波長可変フィルタ及びその製造方法

Country Status (1)

Country Link
JP (1) JP2005309174A (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093801A (ja) * 2006-10-13 2008-04-24 Matsushita Electric Works Ltd 封止接合性能評価装置、封止接合性能評価装置の製造方法、封止接合性能評価方法、及び封止接合性能評価システム
JP2008105162A (ja) * 2006-10-27 2008-05-08 Hitachi Ltd 機能素子
WO2008091017A1 (en) * 2007-01-24 2008-07-31 Fuji Electric Holdings Co., Ltd. Method of patterning color conversion layer and method of manufacturing organic el display using the patterning method
JP2009071263A (ja) * 2007-08-20 2009-04-02 Casio Comput Co Ltd 半導体装置およびその製造方法
JP2010528888A (ja) * 2007-06-29 2010-08-26 ノースロップ グルマン リテフ ゲーエムベーハー コンポーネントの製造方法およびコンポーネント
JP2011059718A (ja) * 2010-12-10 2011-03-24 Seiko Epson Corp 波長可変フィルタ及びそれを備えたマイクロマシン用デバイス
CN102636828A (zh) * 2011-02-09 2012-08-15 精工爱普生株式会社 波长可变干涉滤波器及其制造方法、光模块、光分析装置
JP2012528345A (ja) * 2009-05-29 2012-11-12 テクノロジアン タトキマスケスクス ヴィーティーティー 調節可能な微小機械ファブリ・ペロー干渉計、中間産物、およびその製造方法
JP2013076727A (ja) * 2011-09-29 2013-04-25 Seiko Epson Corp 波長可変干渉フィルター、光学フィルターデバイス、光学モジュール、及び電子機器
JP2014132303A (ja) * 2013-01-07 2014-07-17 Seiko Epson Corp 波長可変干渉フィルター、波長可変干渉フィルターの製造方法、光学モジュール、及び電子機器
EP2778743A1 (en) 2013-03-14 2014-09-17 Seiko Epson Corporation Interference filter, interference filter manufacturing method, optical module, electronic apparatus, and bonded substrate
JP2015505986A (ja) * 2011-11-29 2015-02-26 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド 二重吸収層を用いた干渉変調器
US8970957B2 (en) 2011-02-17 2015-03-03 Seiko Epson Corporation Tunable interference filter, optical module, and electronic device
US9372293B2 (en) 2012-08-30 2016-06-21 Seiko Espon Corporation Variable wavelength interference filter, optical module, electronic apparatus, and method of manufacturing variable wavelength interference filter
US9658446B2 (en) 2013-03-18 2017-05-23 Seiko Epson Corporation Sealing structure, interference filter, optical module, and electronic apparatus
JP2017181624A (ja) * 2016-03-29 2017-10-05 セイコーエプソン株式会社 電気光学装置、電気光学ユニットおよび電子機器
JP2019085313A (ja) * 2017-11-09 2019-06-06 日本電気硝子株式会社 ガラス板及びこれを用いた波長変換パッケージ
CN115373081A (zh) * 2022-10-26 2022-11-22 上海拜安传感技术有限公司 Mems光纤波长可调谐滤波器及形成方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093801A (ja) * 2006-10-13 2008-04-24 Matsushita Electric Works Ltd 封止接合性能評価装置、封止接合性能評価装置の製造方法、封止接合性能評価方法、及び封止接合性能評価システム
JP2008105162A (ja) * 2006-10-27 2008-05-08 Hitachi Ltd 機能素子
JP4495711B2 (ja) * 2006-10-27 2010-07-07 株式会社日立製作所 機能素子及びその製造方法
US8003193B2 (en) 2006-10-27 2011-08-23 Hitachi, Ltd. Functional device
WO2008091017A1 (en) * 2007-01-24 2008-07-31 Fuji Electric Holdings Co., Ltd. Method of patterning color conversion layer and method of manufacturing organic el display using the patterning method
US8710731B2 (en) 2007-01-24 2014-04-29 Sharp Kabushiki Kaisha Method of patterning color conversion layer and method of manufacturing organic EL display using the patterning method
JP2010528888A (ja) * 2007-06-29 2010-08-26 ノースロップ グルマン リテフ ゲーエムベーハー コンポーネントの製造方法およびコンポーネント
JP2009071263A (ja) * 2007-08-20 2009-04-02 Casio Comput Co Ltd 半導体装置およびその製造方法
JP2012528345A (ja) * 2009-05-29 2012-11-12 テクノロジアン タトキマスケスクス ヴィーティーティー 調節可能な微小機械ファブリ・ペロー干渉計、中間産物、およびその製造方法
JP2011059718A (ja) * 2010-12-10 2011-03-24 Seiko Epson Corp 波長可変フィルタ及びそれを備えたマイクロマシン用デバイス
CN102636828A (zh) * 2011-02-09 2012-08-15 精工爱普生株式会社 波长可变干涉滤波器及其制造方法、光模块、光分析装置
JP2012163912A (ja) * 2011-02-09 2012-08-30 Seiko Epson Corp 波長可変干渉フィルター、光モジュール、光分析装置および波長可変干渉フィルターの製造方法
US9170418B2 (en) 2011-02-09 2015-10-27 Seiko Epson Corporation Variable wavelength interference filter, optical module, optical analysis device, and method for manufacturing variable wavelength interference filter
US8970957B2 (en) 2011-02-17 2015-03-03 Seiko Epson Corporation Tunable interference filter, optical module, and electronic device
JP2013076727A (ja) * 2011-09-29 2013-04-25 Seiko Epson Corp 波長可変干渉フィルター、光学フィルターデバイス、光学モジュール、及び電子機器
US9448176B2 (en) 2011-09-29 2016-09-20 Seiko Epson Corporation Variable wavelength interference filter, optical filter device, optical module, and electronic apparatus
JP2015505986A (ja) * 2011-11-29 2015-02-26 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド 二重吸収層を用いた干渉変調器
US9372293B2 (en) 2012-08-30 2016-06-21 Seiko Espon Corporation Variable wavelength interference filter, optical module, electronic apparatus, and method of manufacturing variable wavelength interference filter
US9588333B2 (en) 2013-01-07 2017-03-07 Seiko Epson Corporation Wavelength tunable interference filter, method for manufacturing wavelength tunable interference filter, optical module, and electronic apparatus
JP2014132303A (ja) * 2013-01-07 2014-07-17 Seiko Epson Corp 波長可変干渉フィルター、波長可変干渉フィルターの製造方法、光学モジュール、及び電子機器
EP2778743A1 (en) 2013-03-14 2014-09-17 Seiko Epson Corporation Interference filter, interference filter manufacturing method, optical module, electronic apparatus, and bonded substrate
US9658446B2 (en) 2013-03-18 2017-05-23 Seiko Epson Corporation Sealing structure, interference filter, optical module, and electronic apparatus
JP2017181624A (ja) * 2016-03-29 2017-10-05 セイコーエプソン株式会社 電気光学装置、電気光学ユニットおよび電子機器
JP2019085313A (ja) * 2017-11-09 2019-06-06 日本電気硝子株式会社 ガラス板及びこれを用いた波長変換パッケージ
JP7280546B2 (ja) 2017-11-09 2023-05-24 日本電気硝子株式会社 ガラス板及びこれを用いた波長変換パッケージ
CN115373081A (zh) * 2022-10-26 2022-11-22 上海拜安传感技术有限公司 Mems光纤波长可调谐滤波器及形成方法
CN115373081B (zh) * 2022-10-26 2023-12-15 上海拜安传感技术有限公司 Mems光纤波长可调谐滤波器及形成方法

Similar Documents

Publication Publication Date Title
JP3786106B2 (ja) 波長可変光フィルタ及びその製造方法
JP4603489B2 (ja) 波長可変フィルタ
JP4561728B2 (ja) 光学デバイス、光学デバイスの製造方法、波長可変フィルタ、波長可変フィルタモジュール、および光スペクトラムアナライザ
JP2005309174A (ja) 波長可変フィルタ及びその製造方法
TWI276847B (en) Wavelength-variable filter and method of manufacturing the same
JP4210245B2 (ja) 波長可変フィルタ及び検出装置
JP2005250376A (ja) 光変調器及び光変調器の製造方法
JP2007219483A (ja) 光学デバイス、波長可変フィルタ、波長可変フィルタモジュール、および光スペクトラムアナライザ
JP4548245B2 (ja) 波長可変フィルタ
JP2007086517A (ja) 波長可変フィルタ
JP2006208791A (ja) 波長可変フィルタおよび波長可変フィルタの製造方法
JP2005309099A (ja) 波長可変フィルタ及びその製造方法
JP5316483B2 (ja) 光学デバイス、光学デバイスの製造方法、波長可変フィルタ、波長可変フィルタモジュール、および光スペクトラムアナライザ
JP2005305614A (ja) 微小構造体の製造方法、微小構造体、波長可変光フィルタ及びマイクロミラー
JP2005055790A (ja) 波長可変光フィルタ及びその製造方法
JP2012234208A (ja) 波長可変フィルタ
JP2013033257A (ja) 波長可変フィルタ
JP4479351B2 (ja) 波長可変フィルタおよび波長可変フィルタの製造方法
JP4831245B2 (ja) 波長可変フィルタ
JP4831242B2 (ja) 波長可変フィルタ
JP2005062386A (ja) 波長可変光フィルタ及びその製造方法
JP2005024825A (ja) 干渉フィルタ、波長可変干渉フィルタ及びそれらの製造方法
JP5013010B2 (ja) 波長可変フィルタ
JP2005062380A (ja) 波長可変光フィルタ及びその製造方法
JP2015092257A (ja) 波長可変フィルタ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703