JP2005243492A - イオン伝導膜 - Google Patents

イオン伝導膜 Download PDF

Info

Publication number
JP2005243492A
JP2005243492A JP2004053385A JP2004053385A JP2005243492A JP 2005243492 A JP2005243492 A JP 2005243492A JP 2004053385 A JP2004053385 A JP 2004053385A JP 2004053385 A JP2004053385 A JP 2004053385A JP 2005243492 A JP2005243492 A JP 2005243492A
Authority
JP
Japan
Prior art keywords
ion conductive
conductive membrane
ion
membrane
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004053385A
Other languages
English (en)
Inventor
Masahiro Yamashita
全広 山下
Satoshi Takase
敏 高瀬
Yoshimitsu Sakaguchi
佳充 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2004053385A priority Critical patent/JP2005243492A/ja
Priority to AT04771020T priority patent/ATE509383T1/de
Priority to PCT/JP2004/010807 priority patent/WO2005013399A1/ja
Priority to CN2004800223292A priority patent/CN1833330B/zh
Priority to EP04771020A priority patent/EP1653541B1/en
Priority to US10/566,218 priority patent/US20080063917A1/en
Publication of JP2005243492A publication Critical patent/JP2005243492A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Polyethers (AREA)

Abstract

【課題】イオン伝導性と安定性が両立される、優れたイオン伝導膜を提供し、信頼性に優れ、高性能な燃料電池を供給する。
【解決手段】本発明は、熱処理により分子鎖が安定化する作用を利用し、イオン伝導膜の安定性を改善することを特徴とするものであり、分子内にシアノ基を含むイオン伝導膜を利用し、200℃以上で熱処理をすることによって、形態安定性を高めたことを特徴とするイオン伝導膜、さらに該イオン伝導膜を利用した燃料電池を作成する。

Description

本発明はイオン伝導膜に関係し、詳しくは、燃料電池に使用される、特に安定性に優れるイオン伝導膜に関するものでる。
液体電解質のかわりに高分子固体電解質をイオン伝導体として用いる電気化学的装置の例として、水電解槽や燃料電池を上げることができる。これらに用いられるイオン伝導膜は、カチオン交換膜としてプロトン伝導性を有すると共に、化学的、熱的、電気化学的および力学的に十分安定なものでなくてはならない。このため、長期にわたり使用できるものとしては、主に米デュポン社製の「ナフィオン(登録商標)」を代表例とするパーフルオロカーボンスルホン酸膜が使用されてきた。しかしながら、ナフィオン膜を100℃を越える条件で運転しようとすると、膜の含水率が急激に落ちるほか、膜の軟化も顕著となる。また、ダイレクトメタノール型燃料電池を始めとする液体有機燃料を燃料とする燃料電池においては、たとえばメタノールを燃料極側に供給して使用する場合、メタノールがイオン伝導膜を透過して空気極側に流れ込んでしまうクロスオーバーという問題が顕著である。このクロスオーバーが生じると、例えば、液体燃料と酸化剤が直接反応してしまい、電力が低下してしまうという問題や、液体燃料が空気極側から外部に漏れ出すといった問題が発生する。さらには、膜のコストが高すぎることが燃料電池技術の確立の障害として指摘されている。
このような欠点を克服するため、非フッ素系芳香族環含有ポリマーにスルホン酸基を導入した高分子イオン伝導膜が種々検討されている。ポリマー骨格としては、耐熱性や化学的安定性を考慮すると、芳香族ポリアリーレンエーテルケトン類や芳香族ポリアリーレンエーテルスルホン類などの、芳香族ポリアリーレンエーテル化合物を有望な構造としてとらえることができ、ポリアリールエーテルスルホンをスルホン化したもの(例えば、非特許文献1参照。)、ポリエーテルエーテルケトンをスルホン化したもの(例えば、特許文献1参照。)、スルホン化ポリスチレン等が報告されている。しかしながら、これらポリマーのスルホン化反応により芳香環上に導入されたスルホン酸基は一般に熱により脱離しやすい傾向にあり、これを改善する方法として電子吸引性芳香環上にスルホン酸基を導入したモノマーを用いて重合することで、熱的に安定性の高いスルホン化ポリアリールエーテルスルホン系化合物が報告されている(例えば、特許文献2参照。)。
しかしながら、それでもイオン伝導膜としての安定性は充分では無く、さらなる改良が進められており、例えば、熱架橋により安定性を高める方法や光架橋により安定性を高める方法が、特許文献3や特許文献4に記載されている。特許文献3においては、エチレン基、エチニル基などの多重結合や、ベンゾオキサジン基、オキサゾール基等を導入したポリマーを出発原料として熱架橋を進行させている。一方特許文献4においては、カルボニル基を基点として熱架橋または光架橋を施したポリマーが紹介されている。これらのポリマーにおいては、架橋の効果により形態安定性は改善されるが、架橋反応がいずれもラジカル反応に由来していることから、反応のコントロールが困難であり、かつ架橋反応と同時に、分子の切断反応なども進行するため、形態安定性には優れるものの、ポリマー自身が脆くなるという欠点を有していた。なお、ラジカル種がイオン伝導膜の劣化と関係しているという報告は、最近学会等で多数なされている。
特開平6−93114号公報(第15−17頁) 米国特許出願公開第2002/0091225号明細書(第1−2頁) ジャーナル・オブ・メンブラン・サイエンス(Journal of Membrane Science)、(オランダ)1993年、83巻、P.211−220 特開2003−217343 特開2003−292609
本発明は、イオン伝導膜の形態安定性を改良することを目的としており、例えば燃料電池における耐久性の改善や、ダイレクトメタノール型燃料電池におけるメタノールのクロスオーバーを低減する効果を有する。
本発明は、安定性が高く、かつイオン伝導性に優れた高分子固体電解質膜として使用するのに適したイオン伝導膜ならびにその製造方法、さらにはイオン伝導膜を使用した燃料電池を提供するものである。
すなわち本発明は、イオン交換性官能基を有するイオン伝導膜であって、200℃以上で熱処理をすることによって、安定性を高めたことを特徴とするイオン伝導膜である。
また、さらには350℃以上で熱処理を施したことを特徴とするイオン伝導膜である。
また、上記いずれかのイオン伝導膜であって、分子内にシアノ基を含むことを特徴とするイオン伝導膜である。
また、上記いずれかのイオン伝導膜であって、イオン交換性官能基が塩型の状態にあるイオン伝導膜に対して、不活性ガス雰囲気下で熱処理を施したことを特徴とするイオン伝導膜である。
また、上記いずれかのイオン伝導膜であって芳香族炭化水素系のイオン伝導膜であり、かつスルホン酸基を含有することを特徴とするイオン伝導膜である。
また、上記いずれかのイオン伝導膜であって、熱処理によりシアノ基が架橋していることを特徴とするイオン伝導膜である。
また、トリアジン環とスルホン酸基を有していることを特徴とする芳香族炭化水素系のイオン伝導膜である。
また、上記いずれかのイオン伝導膜であって、イオン伝導膜として、下記一般式(1)とともに一般式(2)で示される構成成分を含むことを特徴とするイオン伝導膜である。
Figure 2005243492
ただし、Arは2価の芳香族基、Yはスルホン基またはケトン基、XはHまたは1価のカチオン種を示す。
Figure 2005243492
ただし、Ar'は2価の芳香族基を示す。
また、上記イオン伝導膜の製造方法である。
また、上記のイオン伝導膜を使用した燃料電池に関するものである。
本発明は、熱処理により分子鎖が安定化する作用を利用し、イオン伝導膜の安定性を改善することを特徴とするものであり、本発明によるイオン伝導膜は、液体燃料またはガス燃料を原料として作動する燃料電池の性能や耐久性を改善する。
本発明は、イオン交換性官能基を有するイオン伝導膜の処理により、イオン伝導膜の安定性を高めたことを特徴とするイオン伝導膜に関するものである。具体的には、熱処理によってイオン伝導膜内部に存在する、例えば溶媒といった不純物を除去し、イオン伝導膜をより密なものに変化させる効果がある。また同時に、いわゆる高温で分子鎖を固定するアニ-リングや特定の分子構造の安定化を進行させることによって、イオン伝導膜の安定性を向上できる。そのため、液体燃料を使用するタイプの燃料電池においては、イオン伝導膜のプロトン伝導性を損なうことなく、例えばダイレクトメタノール型燃料電池で最大の問題となっているメタノールのクロスリークを低減することが可能である。また、水素ガスと酸化ガスを燃料とするような現在一般的に使用されようとしている燃料電池においては、膜の安定性が高まることによって、燃料ガスのクロスリークを低く抑えることが可能となるので、イオン伝導膜の劣化を低減することが可能となる。
イオン伝導膜の内部において、分子鎖がゆるやかに固定されているような本発明に準じないイオン伝導膜では、微小スケールの欠陥がイオン伝導膜内部に存在すると考えられる。そのようなイオン伝導膜においては、液体燃料や水分やガス成分が、その欠陥に入り込んだり、その箇所を通って移動することが可能となるため、膜の膨潤が大きくなったり、燃料や水分が透過しやすくなり、また、そのような欠点を起点として、膜の劣化も進行しやすくなる。燃料電池の耐久性低下の一因として、膜の膨潤収縮の繰り返しによる物理的劣化や、燃料のクロスリークが原因で発生する活性種による化学的な悪影響が強く指摘されている。
本発明における方法では、200℃以上でイオン伝導膜を熱処理することによって、イオン伝導膜の安定性を増加させたイオン伝導膜であり、より好ましくは、350℃以上で熱処理を施したイオン伝導膜である。このような高温で処理することによって、溶媒除去やアニ-リングの効果を好適に発現させることが可能である。200℃よりも低い温度で処理する場合には、安定性向上の効果はあまり期待されない。
イオン伝導膜の材質としては、特に制限されるものではないが、イオン伝導膜としての基本的な熱安定性が200℃よりも低い場合は、このような後加工によって、特性を改善したイオン伝導膜とすることは困難である。
また、安定性向上を狙った加工方法の従来技術として、ラジカル反応種を分子内に含有させる方法を前述したが、ラジカル反応による架橋は、安定性向上効果はあるもののイオン伝導膜の脆化にも結びつくので、本発明の方法は、熱処理によってラジカル反応を引き起こす系では適しているとは言えない。
一方、より好適な系としては、分子内にシアノ基を含むイオン伝導膜があげられる。即ち、イオン伝導膜の熱安定性が200℃よりも高いポリマーからなるイオン伝導膜であり、かつシアノ基を分子内に有するものは、本発明の熱処理によって、シアノ基3個が環化する反応により一部トリアジン環が生成する。トリアジン環の形成は、分子間の架橋反応でもあるため、安定性がさらに向上する。この反応は、ラジカル反応を介して進行する架橋反応ではないため、同じ架橋反応でも制御は容易であり、かつイオン伝導膜の脆化はほとんど観察されない。従ってより安定性に優れたイオン伝導膜を提供することができる。
なおこれらの安定性を向上させる処理は、比較的高温下での処理であるため、イオン交換性官能基は塩型のイオン伝導膜であることが望ましく、かつ窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下で処理することが好ましい。イオン交換性官能基が酸型にあるイオン伝導膜を処理する場合や、酸素が多く存在する雰囲気で処理を施すと、酸によるイオン交換性官能基の脱離や、酸素によるイオン伝導膜の酸化といった望ましくない副反応の影響で、膜の劣化に繋がるため好ましくない。なお、イオン伝導性官能基のうち、少なくとも80%以上、より好ましくは90%以上が塩型であることが好ましく、80%よりも塩型のイオン伝導性官能基量が少ないと前記の理由でイオン伝導膜の劣化に繋がりやすい。また酸素濃度としては、少なくとも10%、より好適には5%以下で処理することが好ましく、10%よりも高い場合は、イオン伝導膜が酸化劣化されやすくなる。
このような手法で処理を施したイオン伝導膜は、塩型のイオン伝導膜として使用することも可能であるが、燃料電池用のイオン伝導膜としての使用を考える場合は、酸型のイオン伝導膜に変換することが好ましい。その手法としては、塩型のイオン伝導膜を、硫酸水溶液や塩酸水溶液やリン酸水溶液といった酸性溶液に浸漬することで酸型のイオン伝導膜へ変換した後、余分な酸成分を水洗除去することが好ましい。酸型への変換に使用する酸性溶液の濃度や温度は、目的に応じて決めることが可能であり、より高濃度の酸や高温の溶液を使用する程、酸型への変換速度や変換効率は高くなる傾向にある。また水洗に使用する水として、プロトン以外のカチオンを含むものは、酸型になったイオン伝導膜を再び塩型に戻す可能性があるため、管理する必要があり、こちらも目的に応じて決めることが可能である。また保存形態として、溶媒を含んだ形で保存しても問題はないが、乾燥させた状態で保存することもできる。
以下、本発明のイオン伝導膜およびイオン伝導膜を作製するためのポリマーについて説明する。なお、イオン伝導膜を製造する際や、ポリマーを作製する際には、酸型のイオン交換性基の形でも良い。前記熱処理をする段階で塩型になってさえいれば良好である。酸型のものを塩型に変換する方法としては、特に限定されるものではなく公知の方法を使用できる。例えば塩化ナトリウム水溶液や塩化カリウム水溶液、または硫酸ナトリウム水溶液などに浸漬後、水洗・乾燥する方法などは良好な一つの手段である。
イオン交換性官能基を有するポリマーの種類としては、ポリスチレンスルホン酸、ポリ(トリフルオロスチレン)スルホン酸、ポリビニルホスホン酸、ポリビニルカルボン酸、ポリビニルスルホン酸成分の少なくとも1種を含むアイオノマーが挙げられる。さらに、芳香族系のポリマーとして、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリフェニルキノキサリン、ポリアリールケトン、ポリエーテルケトン、ポリベンズオキサゾール、ポリベンズチアゾール、ポリイミド等の構成成分の少なくとも1種を含むポリマーに、スルホン酸基、ホスホン酸基、カルボキシル基、およびそれらの誘導体の少なくとも1種が導入されているポリマーが挙げられる。なお、ここでいうポリスルホン、ポエーテルスルホン、ポリエーテルケトン等は、その分子鎖にスルホン結合、エーテル結合、ケトン結合を有しているポリマーの総称であり、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリエーテルエーテルケトンケトン、ポリエーテルケトンエーテルケトンケトン、ポリエーテルケトンスルホンなどを含むとともに、特定のポリマー構造に限定するものではない。ただし、200℃以上の熱的安定性を有するものに限られる。
上記酸性基を含有するポリマーのうち、芳香環上にスルホン酸基を持つポリマーは、上記例のような骨格を持つポリマーに対して適当なスルホン化剤を反応させることにより得ることができる。このようなスルホン化剤としては、例えば、芳香族環含有ポリマーにスルホン酸基を導入する例として報告されている、濃硫酸や発煙硫酸を使用するもの(例えば、Solid State Ionics,106,P.219(1998))、クロル硫酸を使用するもの(例えば、J.Polym.Sci.,Polym.Chem.,22,P.295(1984))、無水硫酸錯体を使用するもの(例えば、J.Polym.Sci.,Polym.Chem.,22,P.721(1984)、J.Polym.Sci.,Polym.Chem.,23,P.1231(1985))等が有効である。これらの試薬を用い、それぞれのポリマーに応じた反応条件を選定することにより実施することができる。また、特許第2884189号に記載のスルホン化剤等を用いることも可能である。
また、上記イオン交換性官能基含有ポリマーは、重合に用いるモノマーの中の少なくとも1種にイオン交換性官能基を含むモノマーを用いて合成することもできる。例えば、芳香族ジアミンと芳香族テトラカルボン酸二無水物から合成されるポリイミドにおいては、芳香族ジアミンの少なくとも1種にスルホン酸基含有ジアミンを用いて酸性化含有ポリイミドとすることが出来る。芳香族ジアミンジオールと芳香族ジカルボン酸から合成されるポリベンズオキサゾール、芳香族ジアミンジチオールと芳香族ジカルボン酸から合成されるポリベンズチアゾールの場合は、芳香族ジカルボン酸の少なくとも1種にスルホン酸基含有ジカルボン酸やホスホン酸基含有ジカルボン酸を使用することにより酸性基含有ポリベンズオキサゾール、ポリベンズチアゾールとすることが出来る。芳香族ジハライドと芳香族ジオールから合成されるポリスルホン、ポリエーテルスルホン、ポリエーテルケトンなどは、モノマーの少なくとも1種にスルホン酸基含有芳香族ジハライドやスルホン酸基含有芳香族ジオールを用いることで合成することが出来る。この際、スルホン酸基含有ジオールを用いるよりも、スルホン酸基含有ジハライドを用いる方が、重合度が高くなりやすいとともに、得られたイオン交換性官能基含有ポリマーの熱安定性が高くなるので好ましいと言える。
なお本発明におけるイオン交換性官能基を有するイオン伝導膜を形成するためのポリマーは、スルホン酸基含有ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリエーテルケトン系ポリマーなどのポリアリーレンエーテル系化合物であることがより好ましい。
さらに、これらのポリアリーレンエーテル系化合物のうち、下記一般式(1)とともに一般式(2)で示される構成成分を含むものが特に好ましい。
Figure 2005243492
ただし、Arは2価の芳香族基、Yはスルホン基またはケトン基、XはHまたは1価のカチオン種を示す。
Figure 2005243492
ただし、Ar'は2価の芳香族基を示す。
上記一般式(2)で示される構成成分は、下記一般式(3)で示される構成成分であることが好ましい。
Figure 2005243492
ただし、Ar'は2価の芳香族基を示す。
また、本発明のスルホン酸基を含有するポリアリーレンエーテル系ポリマーにおいては上記一般式(1)および一般式(2)で示される以外の構造単位が含まれていてもかまわない。このとき、上記一般式(1)または一般式(2)で示される以外の構造単位は50重量%以下であることが好ましい。50質量%以下とすることにより、本発明のイオン交換性官能基を有するイオン伝導膜を形成するためのポリマーの特性を活かした組成物とすることができる。
本発明のイオン交換性官能基を有するイオン伝導膜を形成するためのポリマーとしては、イオン交換容量が0.3〜4.0meq/gの範囲にあることが好ましい。0.3meq/gよりも少ない場合には、イオン伝導膜として使用したときに十分なイオン伝導性を示さない傾向があり、4.0meq/gよりも大きい場合にはイオン伝導膜を高温高湿条件においた場合に膜膨潤が大きくなりすぎて使用に適さなくなる傾向がある。なお、スルホン酸基含有量はポリマー組成より計算することができるし、実験的に求めることもできる。より好ましくは1.0〜3.5meq/gである。
さらに本発明のイオン交換性官能基を有するイオン伝導膜を形成するためのポリマーとしては、下記一般式(4)とともに一般式(5)で示される構成成分を含むものが特に好ましい。ビフェニレン構造を有していることにより高温高湿条件での寸法安定性に優れるとともに、強靱性も高いものとなる。
Figure 2005243492
Figure 2005243492
ただし、XはHまたは1価のカチオン種を示す。
本発明のスルホン酸基を含有するポリアリーレンエーテル系ポリマーは、下記一般式(6)および一般式(7)で表される化合物をモノマーとして含む芳香族求核置換反応により重合することができる。一般式(6)で表される化合物の具体例としては、3,3'−ジスルホ−4,4'−ジクロロジフェニルスルホン、3,3'−ジスルホ−4,4'−ジフルオロジフェニルスルホン、3,3'−ジスルホ−4,4'−ジクロロジフェニルケトン、3,3'−ジスルホ−4,4'−ジフルオロジフェニルスルホン、およびそれらのスルホン酸基が1価カチオン種との塩になったもの等が挙げられる。1価カチオン種としては、ナトリウム、カリウムや他の金属種や各種アミン類等でも良く、これらに制限される訳ではない。一般式(7)で表される化合物としては、2,6−ジクロロベンゾニトリル、2,6−ジフルオロベンゾニトリル、2,4−ジクロロベンゾニトリル、2,4−ジフルオロベンゾニトリル、等を挙げることができる。
Figure 2005243492
Figure 2005243492
ただし、Yはスルホン基またはケトン基、Xは1価のカチオン種、Zは塩素またはフッ素を示す。本発明において、上記2,6−ジクロロベンゾニトリルおよび2,4−ジクロロベンゾニトリルは、異性体の関係にあり、いずれを用いたとしても良好なイオン伝導性、耐熱性、加工性および寸法安定性を達成することができる。その理由としては両モノマーとも反応性に優れるとともに、小さな繰り返し単位を構成することで分子全体の構造をより硬いものとしていると考えられている。
上述の芳香族求核置換反応において、上記一般式(6)、(7)で表される化合物とともに各種活性化ジフルオロ芳香族化合物やジクロロ芳香族化合物をモノマーとして併用することもできる。これらの化合物例としては、4,4'−ジクロロジフェニルスルホン、4,4'−ジフルオロジフェニルスルホン、4,4'−ジフルオロベンゾフェノン、4,4'−ジクロロベンゾフェノン、デカフルオロビフェニル等が挙げられるがこれらに制限されることなく、芳香族求核置換反応に活性のある他の芳香族ジハロゲン化合物、芳香族ジニトロ化合物、芳香族ジシアノ化合物なども使用することができる。
また、上述の一般式(1)で表される構成成分中のArおよび上述の一般式(2)で表される構成成分中のAr'は、一般には芳香族求核置換重合において上述の一般式(6)、(7)で表される化合物とともに使用される芳香族ジオール成分モノマーより導入される構造である。このような芳香族ジオールモノマーの例としては、4,4'−ビフェノール、ビス(4−ヒドロキシフェニル)スルホン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)メタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、ビス(4−ヒドロキシ−2,5−ジメチルフェニル)メタン、ビス(4−ヒドロキシフェニル)フェニルメタン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(3−メチル−4−ヒドロキシフェニル)フルオレン、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン、ハイドロキノン、レゾルシン、ビス(4−ヒドロキシフェニル)ケトン等があげられるが、この他にも芳香族求核置換反応によるポリアリーレンエーテル系化合物の重合に用いることができる各種芳香族ジオールを使用することもできる。これら芳香族ジオールは、単独で使用することができるが、複数の芳香族ジオールを併用することも可能である。
本発明のスルホン酸基を含有するポリアリーレンエーテル系ポリマーを芳香族求核置換反応により重合する場合、上記一般式(6)および一般式(7)で表せる化合物を含む活性化ジフルオロ芳香族化合物及び/またはジクロロ芳香族化合物と芳香族ジオール類を塩基性化合物の存在下で反応させることで重合体を得ることができる。重合は、0〜400℃の温度範囲で行うことができるが、50〜250℃の温度であることが好ましい。0℃より低い場合には、十分に反応が進まない傾向にあり、400℃より高い場合には、ポリマーの分解も起こり始める傾向がある。反応は、無溶媒下で行うこともできるが、溶媒中で行うことが好ましい。使用できる溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、ジフェニルスルホン、スルホランなどを挙げることができるが、これらに限定されることはなく、芳香族求核置換反応において安定な溶媒として使用できるものであればよい。これらの有機溶媒は、単独でも2種以上の混合物として使用されても良い。塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等があげられるが、芳香族ジオール類を活性なフェノキシド構造にしうるものであれば、これらに限定されず使用することができる。芳香族求核置換反応においては、副生物として水が生成する場合がある。この際は、重合溶媒とは関係なく、トルエンなどを反応系に共存させて共沸物として水を系外に除去することもできる。水を系外に除去する方法としては、モレキュラーシーブなどの吸水材を使用することもできる。芳香族求核置換反応を溶媒中で行う場合、得られるポリマー濃度として5〜50重量%となるようにモノマーを仕込むことが好ましい。5重量%よりも少ない場合は、重合度が上がりにくい傾向がある。一方、50重量%よりも多い場合には、反応系の粘性が高くなりすぎ、反応物の後処理が困難になる傾向がある。重合反応終了後は、反応溶液より蒸発によって溶媒を除去し、必要に応じて残留物を洗浄することによって、所望のポリマーが得られる。また、反応溶液を、ポリマーの溶解度が低い溶媒中に加えることによって、ポリマーを固体として沈殿させ、沈殿物の濾取によりポリマーを得ることもできる。
また、本発明のスルホン酸基を含有するポリアリーレンエーテル系ポリマーは、ポリマー対数粘度が0.1以上であることが好ましい。対数粘度が0.1よりも小さいと、イオン伝導膜として成形したときに、膜が脆くなりやすくなる。還元比粘度は、0.3以上であることがさらに好ましい。一方、還元比粘度が5を超えると、ポリマーの溶解が困難になるなど、加工性での問題が出てくるので好ましくない。なお、対数粘度を測定する溶媒としては、一般にN−メチルピロリドン、N,N−ジメチルアセトアミドなどの極性有機溶媒を使用することができるが、これらに溶解性が低い場合には濃硫酸を用いて測定することもできる。
なお、必要に応じて、本発明のイオン交換性官能基を有するイオン伝導体を形成するためのポリマーは、例えば酸化防止剤、熱安定剤、滑剤、粘着付与剤、可塑剤、架橋剤、粘度調整剤、静電気防止剤、抗菌剤、消泡剤、分散剤、重合禁止剤、ラジカル防止剤などの各種添加剤や、イオン伝導膜の特性をコントロールするための無機化合物や無機―有機のハイブリッド化合物、イオン性液体、貴金属化合物などを含んでいても良い。
以上に示したポリマーを、押し出し、圧延またはキャストなど任意の方法でイオン伝導膜とすることができる。中でも適当な溶媒に溶解した溶液から成形することが好ましい。この溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、ヘキサメチルホスホンアミドなどの非プロトン性極性溶媒や、メタノール、エタノール等のアルコール類から適切なものを選ぶことができるがこれらに限定されるものではない。これらの溶媒は、可能な範囲で複数を混合して使用してもよい。溶液中の化合物濃度は0.1〜50重量%の範囲であることが好ましい。溶液中の化合物濃度が0.1重量%未満であると良好な成形物を得るのが困難となる傾向にあり、50重量%を超えると加工性が悪化する傾向にある。溶液から成形体を得る方法は従来から公知の方法を用いて行うことができる。イオン伝導膜を成形する手法として最も好ましいのは、溶液からのキャストであり、キャストした溶液から上記のように溶媒を除去してイオン伝導膜を得ることができる。溶媒の除去は、乾燥によることがイオン伝導膜の均一性からは好ましい。また、化合物や溶媒の分解や変質を避けるため、減圧下でできるだけ低い温度で乾燥することもできる。また、溶液の粘度が高い場合には、基板や溶液を加熱して高温でキャストすると溶液の粘度が低下して容易にキャストすることができる。キャストする際の溶液の厚みは特に制限されないが、10〜2000μmであることが好ましい。より好ましくは50〜1500μmである。溶液の厚みが10μmよりも薄いとイオン伝導膜としての形態を保てなくなる傾向にあり、2000μmよりも厚いと不均一な高分子イオン伝導膜ができやすくなる傾向にある。溶液のキャスト厚を制御する方法は公知の方法を用いることができる。例えば、アプリケーター、ドクターブレードなどを用いて一定の厚みにしたり、ガラスシャーレなどを用いてキャスト面積を一定にして溶液の量や濃度で厚みを制御することができる。キャストした溶液は、溶媒の除去速度を調整することでより均一な膜を得ることができる。例えば、加熱する場合には最初の段階では低温にして蒸発速度を下げたりすることができる。また、水などの非溶媒に浸漬する場合には、溶液を空気中や不活性ガス中に適当な時間放置しておくなどして化合物の凝固速度を調整することができる。本発明のイオン伝導膜は目的に応じて任意の膜厚にすることができるが、イオン伝導性の面からはできるだけ薄いことが好ましい。具体的には5〜300μmであることが好ましく、25〜250μmであることがさらに好ましい。イオン伝導膜の厚みが5μmより薄いとイオン伝導膜の取扱が困難となり燃料電池を作製した場合に短絡等が起こる傾向にあり、300μmよりも厚いとイオン伝導膜の電気抵抗値が高くなり燃料電池の発電性能が低下する傾向にある。また本発明においては、イオン伝導膜として記載したが、中空糸状に加工することも好ましい形であり、加工に際しては公知の処方を利用できる。
以上のようにして得たイオン伝導膜に対して、前述した熱処理法を施すことによって、膜の特性を改良し、より優れたイオン伝導膜を提供することが可能となる。
最終的に得られたイオン伝導膜を使用する場合、膜中のイオン性官能基は金属塩になっているものを含んでいても良いが、適当な酸処理によりフリーの酸に変換した形が好ましい。この際、イオン伝導膜のイオン伝導率は1.0x10−3S/cm以上であることが好ましい。イオン伝導率が1.0x10−3S/cm以上である場合には、そのイオン伝導膜を用いた燃料電池において良好な出力が得られる傾向にあり、1.0x10−3S/cm未満である場合には燃料電池の出力低下が起こる傾向にある。
安定性が改善された一つの効果として、液体燃料やガスの透過性が抑制される。すなわち、本発明のイオン伝導膜においては、液体燃料として代表的なメタノールが透過する速度、すなわちメタノール透過係数を同等膜厚のサンプルで比較した場合、熱処理を施さない場合に比べて、20%以上透過係数を下げることが可能となる。場合により40%以上低下させることも可能となる。なお、メタノール透過速度として、液体燃料のクロスリークを防ぐ意味では、メタノール透過速度は、0.1〜4.0mmol/m2/sの範囲にあることが好ましく、より好適には、2.0mmol/m2/sよりも小さいことが望ましい。本発明のイオン伝導膜においては、より良好な形で膜の膨潤を抑えることが可能であるため、高いイオン伝導性と液体燃料透過抑止性能を両立できる。
また、本発明のイオン伝導膜に電極を設置することによって、本発明のイオン伝導膜と電極との接合体を得ることができる。触媒の種類や電極の構成や電極に使用されるガス拡散層の種類や接合方法などは特に限定されるものではなく、公知のものが使用でき、また公知の技術を組み合わせたものも使用できる。電極に使用する触媒としては耐酸性と触媒活性の観点から適宜選出できるが、白金族系金属およびこれらの合金や酸化物が特に好ましい。例えばカソードに白金または白金系合金,アノードに白金または白金系合金や白金とルテニウムの合金を使用すると高効率発電に適している。複数の種類の触媒を使用していても良く、分布があっても良い。電極中の空孔率や、電極中に触媒と一緒に混在させるイオン伝導性樹脂の種類・量なども特に制限されるものではない。また疎水性化合物の含浸などに代表されるガス拡散性をコントロールするための手法なども好適に利用できる。電極を膜に接合する技術としては、膜―電極間に大きな抵抗が生じないようにすることが重要であり、また膜の膨潤収縮や、機械的な力によって剥離や電極触媒の剥落が生じないようにすることも重要である。この接合体の作製方法としては、例えば触媒担持カーボンとイオン伝導性樹脂およびポリテトラフルオロエチレン等の撥水性を有する材料を混合してあらかじめ電極を作製し、これを膜に熱圧着する手法や、前記混合物を膜にスプレーやインクジェット等で直接析出させる方法などが好適に用いられる。また、化学めっきによる、例えば白金族のアンミン錯イオンのように金属イオンをカチオン型にした溶液に膜を浸漬してイオン交換(吸着)させてから、膜を還元剤溶液に接触させて、膜表面近傍の金属イオンを還元させると同時に膜内部の金属イオンを表面に拡散させ、強固な金属析出層を膜表面に形成させる方法などが上げられる。後者については、さらに化学めっき浴を用いて活性な金属析出層の上に所定の金属種および量をめっき成長させる方法もある。
また上記のイオン伝導膜・電極接合体を燃料電池に組み込むことによって良好な性能を有する燃料電池を提供できる。燃料電池に使用されるセパレータの種類や、燃料や酸化ガスの流速・供給方法・流路の構造などや、運転方法、運転条件、温度分布、燃料電池の制御方法などは特に限定されるものではない。
本発明のイオン伝導膜は高いイオン伝導性を有しながら、安定性や液体燃料透過抑止能に優れる。その特性を生かして、ダイレクトメタノール型燃料電池や固体高分子形燃料電池の高分子固体イオン伝導膜として利用することができ、そうして作製した燃料電池は優れた性能および耐久性を示す。
以下に本発明の実施例を示すが本発明はこれらの実施例に限定されるものではない。
評価法・測定法
<イオン伝導膜の厚み>
イオン伝導膜の厚みは、マイクロメーター(Mitutoyo 標準マイクロメーター 0−25mm 0.01mm)を用いて測定することにより求めた。測定は5×5cmの大きさのサンプルに対して20箇所測定し、その平均値を厚みとした。室温が20℃で湿度が30±5RH%にコントロールされた測定室内で評価を行った。なお測定に際してサンプルは、24時間以上、測定室内で静置したものを使用した。
<イオン交換容量(酸型)>
イオン交換容量(IEC)としては、イオン伝導膜に存在する酸型の官能基量を測定した。まずサンプル調整として、サンプル片(5×5cm)を80℃のオーブンで窒素気流下2時間乾燥し、さらにシリカゲルを充填したデシケータ中で30分間放置冷却した後、乾燥重量を測定した(Ws)。次いで、200mlの密閉型のガラス瓶に、200mlの1mol/l塩化ナトリウム-超純水溶液と秤量済みの前記サンプルを入れ、密閉状態で、室温で24時間攪拌した。次いで、その溶液30mlを10mMの水酸化ナトリウム水溶液(市販の標準溶液)で中和滴定し、滴定量(T)より下記式を用いて、IEC(酸型)を求めた。
IEC(meq/g)=10T/(30Ws)×0.2
(Tの単位:ml Wsの単位:g)
なお、サンプル中のイオン性官能基量の目安となる全イオン交換容量は、サンプルを2mol/lの硫酸水溶液に一晩浸漬した後、超純水で洗浄を繰り返した後乾燥することで作製した酸型サンプルについて、上述のイオン交換容量を求めることで行った。
<膨潤率>
膨潤率は、サンプル(5×5cm)の正確な乾燥重量(Ws)と、サンプルを70℃の超純水に2時間浸漬した後取り出し、サンプル表面に存在する余分な水滴をキムワイプ(商品名)を用いてふき取り、直ぐに測定した重量(Wl)から、下記式を用いて求めた。数値が小さいほうが形態安定性に優れることを意味する。
膨潤率(%)=(Wl−Ws)/Ws×100(%)
<イオン伝導率>
イオン伝導率σは次のようにして測定した。自作測定用プローブ(ポリテトラフルロエチレン製)上で幅10mmの短冊状膜試料の表面に白金線(直径:0.2mm)を押しあて、80℃、相対湿度95%の恒温恒湿槽中に試料を保持し、白金線間の10kHzにおける交流インピーダンスをSOLARTRON社1250FREQUENCY RESPONSE ANALYSERにより測定した。極間距離を10mmから40mmまで10mm間隔で変化させて測定し、極間距離と抵抗測定値をプロットした直線の勾配Dr[Ω/cm]から下記の式により膜と白金線間の接触抵抗をキャンセルして算出した。
σ[S/cm]=1/(膜幅×膜厚[cm]×Dr)
<メタノール透過速度およびメタノール透過係数>
イオン交換膜の液体燃料透過速度はメタノール透過速度およびメタノール透過係数として、以下の方法で測定した。25℃に調整した5モル/リットルのメタノール水溶液(メタノール水溶液の調整には、市販の試薬特級グレードのメタノールと超純水(18MΩ・cm)を使用。)に24時間浸漬したイオン交換膜をH型セルに挟み込み、セルの片側に100mlの5モル/リットルのメタノール水溶液を、他方のセルに100mlの超純水を注入し、25℃で両側のセルを撹拌しながら、イオン交換膜を通って超純水中に拡散してくるメタノール量をガスクロマトグラフを用いて測定することで算出した(イオン交換膜の面積は、2.0cm2)。なお具体的には、超純水を入れたセルのメタノール濃度変化速度[Ct](mmol/L/s)より以下の式を用いて算出した。
メタノール透過速度[mmol/m2/s]=(Ct[mmol/L/s]× 0.1[L])/2×10−4[m2]
メタノール透過係数[mmol/m/s]=メタノール透過速度[mmol/m2/s]×膜厚[m]
<発電特性>
下記2種類の方法により発電特性を評価した。
<発電特性評価1>
デュポン社製20%ナフィオン(商品名)溶液に、市販の54%白金/ルテニウム触媒担持カーボン(田中貴金属工業株式会社)と、少量の超純水およびイソプロパノールを混合してから、均一になるまで撹拌することで、触媒ペーストを調製した。この触媒ペーストを、東レ製カーボンペーパーTGPH−060(疎水化処理品)に白金の付着量が2mg/cm2になるように均一に塗布・乾燥して、アノード用の電極触媒層付きガス拡散層を作製した。また、同様の手法で、白金/ルテニウム触媒担持カーボンに替えて市販の40%白金触媒担持カーボン(田中貴金属工業株式会社)を用いて、疎水化していないカーボンペーパー上に電極触媒層を形成することで、カソード用の電極触媒層付きガス拡散層を作製した(1mg−Pt/cm2)。上記2種類の電極触媒層付きガス拡散層の間に、イオン伝導膜を、電極触媒層がイオン伝導膜に接するように挟み、ホットプレス法により135℃、2MPaにて5分間加圧、加熱することにより、イオン伝導膜・電極接合体を作製した。この接合体をElectrochem社製の評価用燃料電池セルFC25−02SPに組み込んでセル温度40℃で、アノードおよびカソードにそれぞれ40℃の5mol/lのメタノール水溶液と空気を供給し、電流密度0.1A/cm2で放電試験を行い、その際の電圧を測定した。
<発電特性評価2>
上記の発電特性評価1で示したカソード用の電極触媒層付きガス拡散層を、アノード用としても使用し、同様の手法によりイオン伝導膜・電極接合体を作製した。セル温度80℃で、アノードおよびカソードに、それぞれ、60℃で加湿した水素ガス及び酸素ガスを供給しながら燃料電池の開回路電圧(V)を測定した。また同条件で長期間運転しながら開回路電圧の経時変化を観察し、開回路電圧が50mV低下した時間を耐久時間として評価した。
実施例1
モル比で1.00:2.04:3.04:3.57となるように、3,3'−ジスルホ
−4,4'−ジクロロジフェニルスルホン2ナトリウム塩、2,6−ジクロロベンゾニト
リル、4,4'−ビフェノール、炭酸カリウムを混合した。その混合物14gをモリキュラーシーブ2.90gと溶媒であるNMPと共に100ml四つ口フラスコに入れ、窒素を流した。145℃で一時間撹拌した後、反応温度を190−200℃に上昇させて系の粘性が十分上がるのを目安に反応を続けた(約7時間)。放冷の後、沈降しているモレキュラーシーブを除いて水中にストランド状に沈殿させた。得られたポリマーは、沸騰させた超純水中で1時間洗浄した後、乾燥した。ポリマーの24%NMP溶液を調整した。流延法によってポリマー溶液を薄く引き延ばし、95℃次いで150℃で4時間乾燥することでグリーンフィルムを作製した。このグリーンフィルムを250℃の窒素オーブン中で2時間乾燥することによって熱処理を施したフィルムを作製した。100℃以下の温度となるまで、窒素オーブン中で放置した後、フィルムを取り出し、次いで、2mol/lの硫酸水溶液中に2時間浸漬し、水洗5回後、枠に固定した状態で室温で乾燥することにより、実施例1のイオン伝導膜を作製した。
実施例2
グリーンフィルムを300℃で熱処理したことを除いて、実施例1の手法で処理することによって、実施例2のイオン伝導膜を作製した。
実施例3
グリーンフィルムを370℃で30分間熱処理したことを除いて、実施例1の手法で処理することによって、実施例3のイオン伝導膜を作製した。処理前後でIRスペクトルを測定した結果、シアノ基によると考えられるピーク強度が幾分低下し、新たにトリアジン環に由来すると考えられるピークがわずかではあるが観察された。シアノ基の一部が架橋し、トリアジン環を形成したものと推定される。
実施例4
厚みの異なるグリーンフィルムを用いたことを除いて、実施例2の手法で処理することによって、実施例4のイオン伝導膜を作製した。
比較例1
グリーンフィルムの熱処理をしなかったことを除いて実施例1の手法で比較例1のイオン伝導膜を作製した。
比較例2
グリーンフィルムの熱処理をしなかったことを除いて実施例4の手法で比較例2のイオン伝導膜を作製した。
比較例3
実施例3のグリーンフィルムを熱処理の前に、酸型に変換したことを除いて、実施例3の手法で処理することによって、比較例4のイオン伝導膜を作製した。膜の変形と明らかな着色が観察され、劣化している様子が見られた。実施例1から4膜においては、熱処理により、よりしっかりとした膜になっており、かつ比較例3の膜に見られたような色の変化も認められていない。酸型状態から熱処理を行ったことが問題と考えられる。
実施例1、2、3、4、比較例1、2、の物性評価結果を表1に示す。
Figure 2005243492
実施例1のイオン伝導膜の方が、比較例1のイオン伝導膜よりも薄く、また実施例4のイオン伝導膜の方が比較例2のイオン伝導膜よりも薄い。このことは、実施例の熱処理により、膜がより緻密なものとなっているためと考えられる。同時に、より密な膜となったため、膜の膨潤も少なく、これがメタノール透過係数から見積もられる、液体燃料やガス等のクロスリークが小さくなった理由と推定される。そのようなプラスの効果に加えて、実施例の熱処理を行ったとしても、燃料電池用のイオン伝導膜としてもう一つの重要な因子であるイオン伝導率は低下していない。それは、実施例3の最も強い熱処理を行った膜でも同様の傾向にあり、かえって膨潤やメタノールの透過を低く抑えられる特徴が強く現れるため最も良好なイオン伝導膜となっている。その結果、燃料電池とした際の発電性能も実施例の膜の方が電圧が高いことから、比較例の膜よりも優れていることが分かる。耐久性に関しても、実施例の膜の方が良好であり、このことは、劣化の原因となっているクロスリークを抑える性能に優れているためだと考えられる。
イオン伝導性と安定性が両立される、優れたイオン伝導膜を提供することができ、信頼性に優れ、高性能な燃料電池を供給することが可能となる。

Claims (9)

  1. イオン交換性官能基を有するイオン伝導膜であって、200℃以上で熱処理をすることによって、形態安定性を高めたことを特徴とするイオン伝導膜。
  2. 分子内にシアノ基を含むことを特徴とする請求項1の範囲のイオン伝導膜。
  3. イオン交換性官能基が塩型の状態にあり、不活性ガス雰囲気下で熱処理を施したことを特徴とする請求項1乃至2のいずれかの範囲のイオン伝導膜。
  4. 芳香族炭化水素系化合物からなり、かつスルホン酸基を含有することを特徴とする請求項1乃至3のいずれかの範囲のイオン伝導膜。
  5. 請求項2乃至4のいずれかの範囲のイオン伝導膜であって、熱処理によりシアノ基が架橋していることを特徴とするイオン伝導膜。
  6. トリアジン環を有していることを特徴とする請求項5記載のイオン伝導膜。
  7. 下記一般式(1)とともに一般式(2)で示される構成成分を含むことを特徴とする請求項1乃至6のいずれかの範囲のイオン伝導膜。
    Figure 2005243492
    ただし、Arは2価の芳香族基、Yはスルホン基またはケトン基、XはHまたは1価のカチオン種を示す。
    Figure 2005243492
    ただし、Ar'は2価の芳香族基を示す。
  8. 請求項1乃至7の範囲のイオン伝導膜の製造方法。
  9. 請求項1乃至8の範囲のイオン伝導膜を使用した燃料電池。
JP2004053385A 2003-07-31 2004-02-27 イオン伝導膜 Withdrawn JP2005243492A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004053385A JP2005243492A (ja) 2004-02-27 2004-02-27 イオン伝導膜
AT04771020T ATE509383T1 (de) 2003-07-31 2004-07-29 Elektrolyt-membran-elektroden-baugruppe, brennstoffzelle damit und verfahren zur herstellung einer elektrolyt-membran-elektroden- baugruppe
PCT/JP2004/010807 WO2005013399A1 (ja) 2003-07-31 2004-07-29 電解質膜・電極構造体およびそれを用いた燃料電池、電解質膜・電極構造体の製造方法
CN2004800223292A CN1833330B (zh) 2003-07-31 2004-07-29 电解质膜·电极结构体和使用它的燃料电池、电解质膜·电极结构体的制造方法
EP04771020A EP1653541B1 (en) 2003-07-31 2004-07-29 Electrolyte membrane-electrode assembly, fuel cell using same, and method for producing electrolyte membrane-electrode assembly
US10/566,218 US20080063917A1 (en) 2003-07-31 2004-07-29 Electrolyte Membrane-Electrode Assembly, Fuel Cell Using The Same, And Method For Producing Electrolyte Membrane-Electrode Assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053385A JP2005243492A (ja) 2004-02-27 2004-02-27 イオン伝導膜

Publications (1)

Publication Number Publication Date
JP2005243492A true JP2005243492A (ja) 2005-09-08

Family

ID=35024991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053385A Withdrawn JP2005243492A (ja) 2003-07-31 2004-02-27 イオン伝導膜

Country Status (1)

Country Link
JP (1) JP2005243492A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049303A (ja) * 2004-07-05 2006-02-16 Toray Ind Inc 高分子電解質膜
WO2007119868A1 (ja) 2006-04-13 2007-10-25 Sumitomo Chemical Company, Limited 高分子電解質膜の製造方法、高分子電解質膜及び直接メタノール型燃料電池
WO2009035131A1 (ja) * 2007-09-11 2009-03-19 Sumitomo Chemical Company, Limited 高分子電解質膜の製造方法、高分子電解質膜、膜-電極接合体及び燃料電池
JP2009252721A (ja) * 2008-04-11 2009-10-29 Nitto Denko Corp プロトン伝導性高分子電解質膜およびその製造方法ならびにそれを用いた膜−電極接合体および高分子電解質型燃料電池
CN111681806A (zh) * 2020-05-25 2020-09-18 汕头超声显示器技术有限公司 一种耐弯曲的透明导电复合膜及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199144A (ja) * 1996-01-12 1997-07-31 Toyota Central Res & Dev Lab Inc 電解質膜の製造方法
JPH1167224A (ja) * 1997-08-22 1999-03-09 Asahi Chem Ind Co Ltd 固体高分子燃料電池用膜−電極接合体
JP2002252006A (ja) * 2001-02-22 2002-09-06 Aisin Seiki Co Ltd 固体高分子電解質膜の製造方法および燃料電池
JP2002298870A (ja) * 2001-03-30 2002-10-11 Toyobo Co Ltd 燃料電池用固体高分子電解質膜/電極接合体及びその製造方法
JP2003257261A (ja) * 2001-12-27 2003-09-12 Sumitomo Chem Co Ltd 改質された高分子電解質膜の製造方法
JP2004149779A (ja) * 2002-10-08 2004-05-27 Toyobo Co Ltd ポリアリーレンエーテル系化合物、それを含有する組成物、およびそれらの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199144A (ja) * 1996-01-12 1997-07-31 Toyota Central Res & Dev Lab Inc 電解質膜の製造方法
JPH1167224A (ja) * 1997-08-22 1999-03-09 Asahi Chem Ind Co Ltd 固体高分子燃料電池用膜−電極接合体
JP2002252006A (ja) * 2001-02-22 2002-09-06 Aisin Seiki Co Ltd 固体高分子電解質膜の製造方法および燃料電池
JP2002298870A (ja) * 2001-03-30 2002-10-11 Toyobo Co Ltd 燃料電池用固体高分子電解質膜/電極接合体及びその製造方法
JP2003257261A (ja) * 2001-12-27 2003-09-12 Sumitomo Chem Co Ltd 改質された高分子電解質膜の製造方法
JP2004149779A (ja) * 2002-10-08 2004-05-27 Toyobo Co Ltd ポリアリーレンエーテル系化合物、それを含有する組成物、およびそれらの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049303A (ja) * 2004-07-05 2006-02-16 Toray Ind Inc 高分子電解質膜
WO2007119868A1 (ja) 2006-04-13 2007-10-25 Sumitomo Chemical Company, Limited 高分子電解質膜の製造方法、高分子電解質膜及び直接メタノール型燃料電池
WO2009035131A1 (ja) * 2007-09-11 2009-03-19 Sumitomo Chemical Company, Limited 高分子電解質膜の製造方法、高分子電解質膜、膜-電極接合体及び燃料電池
JP2009252721A (ja) * 2008-04-11 2009-10-29 Nitto Denko Corp プロトン伝導性高分子電解質膜およびその製造方法ならびにそれを用いた膜−電極接合体および高分子電解質型燃料電池
CN111681806A (zh) * 2020-05-25 2020-09-18 汕头超声显示器技术有限公司 一种耐弯曲的透明导电复合膜及其制造方法
CN111681806B (zh) * 2020-05-25 2021-11-12 汕头超声显示器技术有限公司 一种耐弯曲的透明导电复合膜及其制造方法

Similar Documents

Publication Publication Date Title
JP3928611B2 (ja) ポリアリーレンエーテル系化合物、それを含有する組成物、およびそれらの製造方法
EP1561768B1 (en) Polyarylene ether compound containing sulfonic acid group, composition containing same, and method for manufacturing those
US20080063917A1 (en) Electrolyte Membrane-Electrode Assembly, Fuel Cell Using The Same, And Method For Producing Electrolyte Membrane-Electrode Assembly
WO2006051749A1 (ja) 芳香族炭化水素系プロトン交換膜およびこれを使用した直接メタノール型燃料電池
JP4684678B2 (ja) 固体高分子型燃料電池用膜−電極構造体及び固体高分子型燃料電池
JP5176261B2 (ja) ダイレクトメタノール型燃料電池
JP4720091B2 (ja) イオン交換膜
JP3651684B1 (ja) イオン交換膜
JP2005243492A (ja) イオン伝導膜
JP4821946B2 (ja) 電解質膜及びその製造方法
JP4529068B2 (ja) 高分子固体電解質膜の製造方法
JP2005133146A (ja) 固体高分子型電解膜
JP2006294544A (ja) 高分子電解質膜と電極との接合方法、電解質膜・電極接合体及び電解質膜・電極接合体を用いた燃料電池
JP2005235404A (ja) ブレンドイオン交換膜、膜/電極接合体、燃料電池
JP2007149592A (ja) 高分子電解質膜・電極接合体の製造方法、および高分子電解質膜・電極接合体
JP4729857B2 (ja) イオン交換膜
JP2007063533A (ja) スルホン酸基含有ポリマーとその用途および製造方法
JP4534126B2 (ja) 高分子固体電解質膜の製造方法
JP3651682B1 (ja) 耐久性に優れたイオン交換膜、膜電極接合体、燃料電池
JP3651683B1 (ja) スルホン酸基含有高分子化合物及びそれにより得られるイオン伝導膜とそれを用いた物品
JP4720090B2 (ja) スルホン酸基含有高分子電解質膜及びそれを用いた物品
JP2005243495A (ja) イオン交換膜
JP4022833B2 (ja) スルホン酸基含有ポリマー及びその用途
JP5510511B2 (ja) ダイレクトメタノール型燃料電池
JP2005232202A (ja) 多層イオン交換膜、膜/電極接合体、燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101224