JP2005165309A - 液晶表示装置およびその作製方法 - Google Patents

液晶表示装置およびその作製方法 Download PDF

Info

Publication number
JP2005165309A
JP2005165309A JP2004329505A JP2004329505A JP2005165309A JP 2005165309 A JP2005165309 A JP 2005165309A JP 2004329505 A JP2004329505 A JP 2004329505A JP 2004329505 A JP2004329505 A JP 2004329505A JP 2005165309 A JP2005165309 A JP 2005165309A
Authority
JP
Japan
Prior art keywords
film
liquid crystal
substrate
droplet discharge
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004329505A
Other languages
English (en)
Other versions
JP2005165309A5 (ja
JP4684625B2 (ja
Inventor
Shunpei Yamazaki
舜平 山崎
Shinji Maekawa
慎志 前川
Itsuki Fujii
厳 藤井
Hideaki Kuwabara
秀明 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2004329505A priority Critical patent/JP4684625B2/ja
Publication of JP2005165309A publication Critical patent/JP2005165309A/ja
Publication of JP2005165309A5 publication Critical patent/JP2005165309A5/ja
Application granted granted Critical
Publication of JP4684625B2 publication Critical patent/JP4684625B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】 基板が大型化すればするほど、成膜とエッチングとを繰り返すことによる製造プロセス時間の延長、エッチング溶液などの廃棄物の処理コスト増大、材料利用効率の低下が顕著になっている。
【解決手段】本発明は、液滴吐出法による材料層と密着性を向上させるための下地膜を形成し、フォトマスクを用いることなく、液晶表示装置を作製するために必要なパターンのうち、材料層のパターン、代表的には、配線(または電極)パターン、絶縁層パターン、または所定のパターンを形成するためのマスクパターンを形成する工程を少なくとも1つ、もしくはそれ以上含むものとする。
【選択図】 図1

Description

本発明は薄膜トランジスタ(以下、TFTという)で構成された回路を有する半導体装置およびその作製方法に関する。例えば、液晶表示パネルに代表される電気光学装置を部品として搭載した電子機器に関する。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数〜数百nm程度)を用いて薄膜トランジスタ(TFT)を構成する技術が注目されている。薄膜トランジスタはICや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置のスイッチング素子として開発が急がれている。
従来より、画像表示装置として液晶表示装置が知られている。パッシブ型の液晶表示装置に比べ高精細な画像が得られることからアクティブマトリクス型の液晶表示装置が多く用いられるようになっている。アクティブマトリクス型の液晶表示装置においては、マトリクス状に配置された画素電極を駆動することによって、画面上に表示パターンが形成される。詳しくは選択された画素電極と該画素電極に対応する対向電極との間に電圧が印加されることによって、画素電極と対向電極との間に配置された液晶層の光学変調が行われ、この光学変調が表示パターンとして観察者に認識される。
このようなアクティブマトリクス型の電気光学装置の用途は広がっており、画面サイズの大面積化とともに、高精細化や高開口率化や高信頼性の要求が高まっている。
これまで、一枚のマザーガラス基板から複数の液晶表示パネルを切り出して、大量生産を効率良く行う生産技術が採用されてきた。マザーガラス基板のサイズは、1990年初頭における第1世代の300×400mmから、2000年には第4世代となり680×880mm若しくは730×920mmへと大型化して、一枚の基板から多数の表示パネルが取れるように生産技術が進歩してきた。
また、画面サイズの大面積化と同時に、生産性の向上や低コスト化の要求も高まっている。
上記アクティブマトリクス型の電気光学装置を製造する際には、CVD法やスパッタ法等により薄膜を形成し、、写真蝕刻(フォトリソグラフィー)技術によりパターニングを行うプロセスを繰り返すことでTFTを作製している。フォトリソグラフィーの技術において、フォトマスクは、エッチング工程のマスクとするフォトレジストパターンを基板上に形成するために用いる。
このフォトマスクを1枚使用することによって、レジスト塗布、プレベーク、露光、現像、ポストベークなどの工程と、その前後の工程において、被膜の成膜およびエッチングなどの工程、さらにレジスト剥離、洗浄や乾燥工程などが付加される。従って、製造プロセスの煩雑化が避けられず、歩留まりの低下や製造コスト高を招いていた。
特に母材となる基板が大型化すればするほど、成膜とエッチングとを繰り返すことによる製造プロセス時間の延長、エッチング溶液などの廃棄物の処理コスト増大、材料利用効率の低下が顕著になってしまう。
そこで、本発明は、製造コストを低減する電気光学装置の製造方法を提供することを課題とする。
本発明は、フォトマスクを用いることなく、液晶表示装置を作製するために必要なパターンのうち、材料層のパターン、代表的には、配線(または電極)パターン、絶縁層パターン、または所定のパターンを形成するためのマスクパターンを形成する工程を少なくとも1つ、もしくはそれ以上有することを特徴とする。
液滴吐出法(その方式によっては、インクジェット法とも呼ばれる。)を用いて材料層のパターンを形成する。
加えて、本発明は、多層配線間の接続を容易に実現することができる技術を提供する。
アスペクト比(コンタクトホールの径と深さの比)の高いコンタクトホールをフォトリソグラフィー技術を用いて形成することなく、多層配線間の接続を行う方法を提供する。上層配線と下層配線の導通をとる箇所において、下層配線に凸状部(以下、この凸状部、もしくは導電性部材を「プラグ」若しくは「ピラー」ともいう。)を設ける。なお、凸状部は、柱状の導電性部材、或いは液滴吐出法を繰り返すことにより積層された部材であってもよい。そして、塗布法による層間絶縁膜を形成した後、エッチバックを行って凸状部を露出させ、その凸状部を介して上層配線との電気的な接続を行う。
また、他の方法として、層間絶縁膜を液滴吐出法により選択的に形成することによって、層間絶縁膜の形成と同時にコンタクトホールの形成が可能となる。
また、他の方法として、上層配線と下層配線の導通をとる箇所において、下層配線に撥液性有機膜からなる凸状部を設ける。そして、塗布法による層間絶縁膜を形成した後、凸状部のみを除去することによってコンタクトホールを形成する。そして、コンタクトホールを塞ぐように上層配線を形成する。
本明細書で開示する発明の構成は、
下地前処理を行った領域に、液滴吐出法により形成されたゲート電極を有する薄膜トランジスタと、
前記薄膜トランジスタのドレイン電極上に液滴吐出法により形成された柱状の導電膜と、
前記柱状の導電膜に接続された画素電極とを有することを特徴とする液晶表示装置である。
上記構成において、前記ゲート電極、前記ドレイン電極、または前記柱状の導電膜は、金、銀、銅、白金、パラジウム、タングステン、ニッケル、タンタル、ビスマス、鉛、インジウム、錫、亜鉛、チタン、又はアルミニウムを含むことを特徴としている。
また、上記各構成において、前記薄膜トランジスタは、非晶質半導体、又はセミアモルファス半導体を有することを特徴としている。
また、上記各構成において、前記液晶表示装置は、表示画面を構成したことを特徴とするテレビ受像機である。
また、上記構造を実現するための発明の構成は、
下地前処理を行った領域に、液滴吐出法によりゲート電極を形成し、
前記ゲート電極上に第1の絶縁膜を形成し、
前記第1の絶縁膜上に半導体膜を形成し、
前記半導体膜上に、マスクを形成し、
前記マスクを用いて前記半導体膜をパターニングし、
前記パターニングされた半導体膜に下地前処理を行い、
前記下地前処理を行った半導体膜上に、液滴吐出法によりソース電極及びドレイン電極を形成することにより薄膜トランジスタを形成し、
前記ソース電極又は前記ドレイン電極上に柱状の導電膜を形成し、
前記柱状の導電膜及び前記薄膜トランジスタを覆うように、第2の絶縁膜を形成し、
前記第2の絶縁膜上において、前記柱状の導電膜と接続するように画素電極を形成し、
液晶またはシール材を液滴吐出法により形成し、
減圧下で対向基板と貼り合わせることを特徴とする液晶表示装置の作製方法である。
また、他の作製方法に関する本発明の構成は、
下地前処理を行った領域に、液滴吐出法によりゲート電極を形成し、
前記ゲート電極上に第1の絶縁膜を形成し、
前記第1の絶縁膜上に半導体膜を形成し、
前記半導体膜上に、マスクを形成し、
前記マスクを用いて前記半導体膜をパターニングし、
前記パターニングされた半導体膜に下地前処理を行い、
前記下地前処理を行った半導体膜上に、液滴吐出法によりソース電極及びドレイン電極を形成することにより薄膜トランジスタを形成し、
前記ソース電極又は前記ドレイン電極上に柱状の有機膜を形成し、
前記柱状の有機膜及び前記薄膜トランジスタを覆うように、第2の絶縁膜を形成し、
前記柱状の有機膜を除去し、
前記第2の絶縁膜上において、前記ソース電極又はドレイン電極と接続するように画素電極を形成し、
液晶またはシール材を液滴吐出法により形成し、
減圧下で対向基板と貼り合わせることを特徴とする液晶表示装置の作製方法である。
上記構成において、前記第2の絶縁膜は、前記柱状の有機膜に対して撥液性を有することを特徴としている。また、上記構成において、水洗により、前記柱状の有機膜を除去することを特徴としている。
また、TFT構造に関係なく本発明を適用することが可能であり、例えば、トップゲート型TFTや、ボトムゲート型(逆スタガ型)TFTや、順スタガ型TFTを用いることが可能である。また、シングルゲート構造のTFTに限定されず、複数のチャネル形成領域を有するマルチゲート型TFT、例えばダブルゲート型TFTとしてもよい。
また、TFTの活性層としては、非晶質半導体膜、結晶構造を含む半導体膜、非晶質構造を含む化合物半導体膜などを適宜用いることができる。さらにTFTの活性層として、非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造を有し、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質な領域を含んでいるセミアモルファス半導体膜(微結晶半導体膜、マイクロクリスタル半導体膜とも呼ばれる)も用いることができる。セミアモルファス半導体膜は、少なくとも膜中の一部の領域には、0.5〜20nmの結晶粒を含んでおり、ラマンスペクトルが520cm-1よりも低波数側にシフトしている。また、セミアモルファス半導体膜は、X線回折ではSi結晶格子に由来するとされる(111)、(220)の回折ピークが観測される。また、セミアモルファス半導体膜は、未結合手(ダングリングボンド)の中和剤として水素またはハロゲンを少なくとも1原子%またはそれ以上含ませている。セミアモルファス半導体膜の作製方法としては、珪化物気体をグロー放電分解(プラズマCVD)して形成する。珪化物気体としては、SiH4、その他にもSi26、SiH2Cl2、SiHCl3、SiCl4、SiF4などを用いることが可能である。この珪化物気体をH2、又は、H2とHe、Ar、Kr、Neから選ばれた一種または複数種の希ガス元素で希釈しても良い。希釈率は2〜1000倍の範囲とすればよい。圧力は概略0.1Pa〜133Paの範囲、電源周波数は1MHz〜120MHz、好ましくは13MHz〜60MHzとすればよい。基板加熱温度は300℃以下でよく、好ましくは100〜250℃とすればよい。膜中の不純物元素として、酸素、窒素、炭素などの大気成分の不純物は1×1020/cm3以下とすることが望ましく、特に、酸素濃度は5×1019/cm3以下、好ましくは1×1019/cm3以下とする。なお、セミアモルファス半導体膜を活性層としたTFTの電界効果移動度μは、1〜10cm2/Vsecである。
本発明により、フォトマスクを用いることなく材料層のパターニングを行うことができるため、材料の利用効率が向上する。また、液晶表示装置の製造方法における露光現像工程を減らすことによって、作製工程を簡略化できる。
本発明の実施形態について、以下に説明する。
(実施の形態1)
ここでは逆スタガ型TFTをスイッチング素子とするアクティブマトリクス型液晶表示装置の作製方法を示す。なお、図1は作製工程の断面を示している。
まず、基板10上に後に形成する液滴吐出法による材料層と密着性を向上させるための下地膜11を形成する。下地膜11は、極薄く形成すれば良いので、必ずしも層構造を持っていなくても良く、下地前処理とみなすこともできる。スプレーによって光触媒物質(酸化チタン(TiOX)、チタン酸ストロンチウム(SrTiO3)、セレン化カドミウム(CdSe)、タンタル酸カリウム(KTaO3)、硫化カドミウム(CdS)、酸化ジルコニウム(ZrO2)、酸化ニオブ(Nb25)、酸化亜鉛(ZnO)、酸化鉄(Fe23)、酸化タングステン(WO3))を全面に滴下、またはインクジェット法やゾルゲル法を用いて有機材料(ポリイミド、アクリル、或いは、シリコン(Si)と酸素(O)との結合で骨格構造が構成され、置換基に水素、フッ素、アルキル基、または芳香族炭化水素のうち少なくとも1種を有する材料を用いた塗布絶縁膜)を選択的に形成してもよい。
光触媒物質は、光触媒機能を有する物質を指し、紫外光領域の光(波長400nm以下、好ましくは380nm以下)を照射し、光触媒活性を生じさせるものである。光触媒物質上に、インクジェット法により、溶媒に混入された導電体を吐出すると、微細な描画を行うことができる。
例えば、TiOXに光照射する前、親油性はあるが、親水性はない、つまり撥水性の状態にある。光照射を行うことにより、光触媒活性が起こり、親水性にかわり、逆に親油性がない状態、つまり撥油性となる。なお光照射時間により、親水性と親油性を共に有する状態にもなりうる。
なお、親水性とは、水に濡れやすい状態を指し、接触角が30度以下、特に接触角が5度以下を超親水性という。一方撥水性とは、水に濡れにくい状態を指し、接触角が90度以上のものを指す。同様に親油性とは、油に濡れやすい状態を指し、撥油性とは油に濡れにくい状態を指す。なお接触角とは、滴下したドットのふちにおける、形成面と液滴の接線がなす角度のことを指す。
すなわち、光照射を行った領域(以下、照射領域と表記する)は、親水性領域、又は超親水性(合わせて単に親水性と表記する)となる。このとき、照射領域の幅を所望の配線幅となるように光照射を行う。その後、インクジェット法により、照射領域上から又は照射領域にむかって、水系の溶媒に導電体が混入したドットを吐出する。すると、単にインクジェット法により吐出されたドットの径より小さな、つまり幅の狭い配線を形成することができる。これは所望の配線幅となるように照射領域が形成されるため、吐出されたドットが形成表面で広がることを抑制できるからである。更に、ドットが多少ずれて吐出された場合であっても、照射領域に沿って配線を形成することができ、配線形成の正確な位置制御が可能となる。
なお、水系の溶媒を用いる場合、インクジェットのノズルからスムーズに吐出できるように界面活性剤を添加すると好ましい。
また、油(アルコール)系の溶媒に混入された導電体を吐出する場合、光照射が行われない領域(以下、非照射領域と表記する)に導電体を吐出し、非照射領域上から又は非照射領域にむかってドットを吐出することにより、同様に配線を形成することができる。すなわち、配線を形成したい領域の両端、つまり配線を形成したい領域を囲むような周囲に光照射を行い、照射領域を形成すればよい。このとき照射領域は撥油性を有するため、油(アルコール)系の溶媒に混入された導電体を有するドットは、選択的に非照射領域に形成されるからである。すなわち、非照射領域の幅を所望の配線幅となるように光照射を行う。
なお、油(アルコール)系の溶媒は、非極性溶剤又は低極性溶剤を用いることができる。例えば、テルピネオール、ミネラルスピリット、キシレン、トルエン、エチルベンゼン、メシチレン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、シクロヘキサン、又はシクロオクタンを用いることができる。
更に光触媒物質へ遷移金属(Pd、Pt、Cr、Ni、V、Mn、Fe、Ce、Mo、W等)をドーピングすることにより、光触媒活性を向上させたり、可視光領域(波長400nm〜800nm)の光により光触媒活性を起こすことができる。遷移金属は、広いバンドギャップを持つ活性な光触媒の禁制帯内に新しい準位を形成し、可視光領域まで光の吸収範囲を拡大しうるからである。例えば、CrやNiのアクセプター型、VやMnのドナー型、Fe等の両性型、その他Ce、Mo、W等をドーピングすることができる。このように光の波長は光触媒物質によって決定することができるため、光照射とは光触媒物質の光触媒活性化させる波長の光を照射することを指す。
また、光触媒物質を真空中又は水素環流中で加熱し還元させると、結晶中に酸素欠陥が発生する。このように遷移元素をドーピングしなくても、酸素欠陥は電子ドナーと同等の役割を果たす。特に、ゾルゲル法により形成する場合、酸素欠陥が最初から存在するため、還元しなくともよい。またN2等のガスをドープすることにより、酸素欠陥を形成することができる。
また、ここでは基板上に導電性材料を吐出する場合に密着性を良くする下地前処理を行う例を示したが、特に限定されず、材料層(例えば、有機層、無機層、金属層)、或いは、吐出した導電性層の上にさらに液滴吐出法で材料層(例えば、有機層、無機層、金属層)を形成する場合において、材料層と材料層との密着性向上のためのTiOX成膜処理を行っても良い。つまり、液滴吐出法で導電性材料を吐出して描画する場合、その導電性材料層の上下界面で下地前処理を挟み、その密着性を良くすることが望ましい。
なお、基板10は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス若しくはアルミノシリケートガラスなど、フュージョン法やフロート法で作製される無アルカリガラス基板の他、本作製工程の処理温度に耐えうる耐熱性を有するプラスチック基板等を用いることができる。また、反射型の液晶表示装置とする場合、単結晶シリコンなどの半導体基板、ステンレスなどの金属基板、またはセラミック基板の表面に絶縁層を設けた基板を適用しても良い。
次いで、液滴吐出法、代表的にはインクジェット法により滴下した後、酸素雰囲気で焼成を行い、ゲート電極またはゲート配線となる金属配線12を形成する。また、同様に端子部に伸びる配線40も形成する。なお、ここでは図示しないが、保持容量を形成するための容量電極または容量配線をも形成する。
これらの配線材料としては、金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、パラジウム(Pd)、タングステン(W)、ニッケル(Ni)、タンタル(Ta)、ビスマス(Bi)、鉛(Pb)、インジウム(In)、錫(Sn)、亜鉛(Zn)、チタン(Ti)、若しくはアルミニウム(Al)、これらからなる合金、これらの分散性ナノ粒子、又はハロゲン化銀の微粒子を用いる。特に、ゲート配線は、低抵抗化することが好ましいので、比抵抗値を考慮して、金、銀、銅のいずれかの材料を溶媒に溶解又は分散させたものを用いることが好適であり、より好適には、低抵抗な銀、銅を用いるとよい。但し、銀、銅を用いる場合には、不純物拡散防止対策のため、合わせてバリア膜を設けるとよい。溶媒は、酢酸ブチル等のエステル類、イソプロピルアルコール等のアルコール類、アセトン等の有機溶剤等に相当する。表面張力と粘度は、溶媒の濃度を調整したり、界面活性剤等を加えたりして適宜調整する。
液滴吐出法において用いるノズルの径は、0.02〜100μm(好適には30μm以下)に設定し、該ノズルから吐出される組成物の吐出量は0.001pl〜100pl(好適には10pl以下)に設定することが好ましい。液滴吐出法には、オンデマンド型とコンティニュアス型の2つの方式があるが、どちらの方式を用いてもよい。さらに液滴吐出法において用いるノズルには、圧電体の電圧印加により変形する性質を利用した圧電方式、ノズル内に設けられたヒータにより組成物を沸騰させ該組成物を吐出する加熱方式があるが、そのどちらの方式を用いてもよい。被処理物とノズルの吐出口との距離は、所望の箇所に滴下するために、出来る限り近づけておくことが好ましく、好適には0.1〜3mm(好適には1mm以下)程度に設定する。ノズルと被処理物は、その相対的な距離を保ちながら、ノズル及び被処理物の一方が移動して、所望のパターンを描画する。また、組成物を吐出する前に、被処理物の表面にプラズマ処理を施してもよい。これは、プラズマ処理を施すと、被処理物の表面が親水性になったり、疎液性になったりすることを活用するためである。例えば、純水に対しては親水性になり、アルコールを溶媒したペーストに対しては疎液性になる。
組成物を吐出する工程は、減圧下で行っても良い。これは、組成物を吐出して被処理物に着弾するまでの間に、該組成物の溶媒が揮発し、後の乾燥と焼成の工程を省略又は短くすることができるためである。組成物の吐出後は、常圧下又は減圧下で、レーザ光の照射や瞬間熱アニール、加熱炉等により、乾燥と焼成の一方又は両方の工程を行う。乾燥と焼成の工程は、両工程とも加熱処理の工程であるが、例えば、乾燥は100度で3分間、焼成は200〜350度で15分間〜120分間で行うもので、その目的、温度と時間が異なるものである。乾燥と焼成の工程を良好に行うためには、基板を加熱しておいてもよく、そのときの温度は、基板等の材質に依存するが、100〜800度(好ましくは200〜350度)とする。本工程により、組成物中の溶媒の揮発又は化学的に分散剤を除去し、周囲の樹脂が硬化収縮することで、融合と融着を加速する。雰囲気は、酸素雰囲気、窒素雰囲気又は空気で行う。但し、金属元素を分解又は分散している溶媒が除去されやすい酸素雰囲気下で行うことが好適である。
上記下地膜の形成または下地前処理を行うことによって、後に形成する液滴吐出法での金属層の密着性が大幅に向上され、希フッ酸(1/100希釈)に浸けても1分以上耐えることができ、テープ剥がし試験でも十分な密着性が確保されている。
次いで、プラズマCVD法やスパッタリング法や塗布法を用いて、ゲート絶縁膜13を単層又は積層構造で形成する。望ましくは、ゲート絶縁膜13として、窒化珪素からなる絶縁体層、酸化珪素からなる絶縁体層、窒化珪素からなる絶縁体層の3層の積層とする。また、ゲート絶縁膜13として、窒化珪素からなる絶縁体層と、ポリイミドからなる絶縁体層の2層の積層を用いてもよい。なお、ゲートリーク電流が少ない緻密な絶縁膜を低い成膜温度で形成するには、アルゴンなどの希ガス元素を反応ガスに含ませ、形成される絶縁膜中に混入させると良い。
次いで、半導体膜14aを形成する。半導体膜14aは、シランやゲルマンに代表される半導体材料ガスを用いて気相成長法やスパッタリング法で作製されるアモルファス半導体膜、或いはセミアモルファス半導体膜で形成する。
アモルファス半導体膜としては、SiH4、若しくはSiH4とH2の混合気体を用いたPCVD法により得られるアモルファスシリコン膜を用いることができる。また、セミアモルファス半導体膜としては、SiH4をH2で3倍〜1000倍に希釈した混合気体、Si26とGeF4のガス流量比を20〜40:0.9(Si26:GeF4)で希釈した混合気体、或いはSi26とのF2混合気体を用いたPCVD法により得られるセミアモルファスシリコン膜を用いることができる。なお、セミアモルファスシリコン膜は、下地との界面により結晶性を持たせることができるため好ましい。
次いで、絶縁体層16をプラズマCVD法やスパッタリング法で形成する。なお、パターニングは、液滴吐出法で形成されたマスクを用いたエッチング、またはフォトリソグラフィ技術を用いればよい。この絶縁体層16は、ゲート電極層と相対して半導体層上に残存させて、チャネル保護層とするものである。また、絶縁体層16としては、界面の清浄性を確保して、有機物や金属物、水蒸気などの不純物で半導体層が汚染されることを防ぐ効果を得るために、緻密な膜で形成することが好ましい。グロー放電分解法においても、珪化物気体をアルゴンなどの珪化物気体で100倍〜500倍に希釈して形成された窒化珪素膜は、100℃以下の成膜温度でも緻密な膜を形成可能であり好ましい。
次いで、絶縁体層16を覆うマスク15を液滴吐出法で形成する。(図1(A))マスク15は、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ノボラック樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いる。また、ベンゾシクロブテン、パリレン、フレア、透過性を有するポリイミドなどの有機材料、シロキサン系ポリマー等の重合によってできた化合物材料、水溶性ホモポリマーと水溶性共重合体を含む組成物材料等を用いて液滴吐出法で形成する。或いは、感光剤を含む市販のレジスト材料を用いてもよく、例えば、代表的なポジ型レジストである、ノボラック樹脂と感光剤であるナフトキノンジアジド化合物、ネガ型レジストであるベース樹脂、ジフェニルシランジオール及び酸発生剤などを用いてもよい。いずれの材料を用いるとしても、その表面張力と粘度は、溶媒の濃度を調整したり、界面活性剤等を加えたりして適宜調整する。
次いで、マスク15で覆われた領域以外の半導体膜14aをドライエッチングまたはウェットエッチングにより除去して活性層となる半導体層14bを形成する。
次いで、マスク15を除去した後、n型の半導体膜17を全面に形成する。なおn型の半導体膜を設ける場合、半導体膜と電極とのコンタクト抵抗が低くなり好ましいが、必要に応じて設ければよい。n型の半導体膜17は、シランガスとフォスフィンガスを用いたPCVD法で形成すれば良く、アモルファス半導体膜、或いはセミアモルファス半導体膜で形成することができる。
次いで、液滴吐出法により導電性材料(Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等)を含む組成物を選択的に吐出して、ソース配線またはドレイン配線18a、18bを形成する。なお、同様に、端子部において接続配線41も形成する。(図1(B))
次いで、ソース配線またはドレイン配線18a、18bをマスクとして自己整合的にn型の半導体膜17をエッチングして、ソース領域またはドレイン領域19a、19bを形成する。この段階でチャネルストップ型のTFT30が完成する。絶縁体層16は、n型の半導体膜のエッチングストッパーとして機能させる。
次いで、シャドーマスクを用いて端子部以外をレジストなどの樹脂で覆い、端子部においては、接続配線41をマスクとしたゲート絶縁膜13のエッチングを行って配線40の一部を露呈させる。また、シャドーマスクに代えてスクリーン印刷法によりレジストマスクを形成してエッチングマスクとしてもよい。なお、端子部以外をレジストで覆うことなくゲート絶縁膜13のエッチングを行ってもよいが、画素部において、ソース配線またはドレイン配線18a、18bと重ならない領域のゲート絶縁膜がエッチングされてしまう点と、絶縁体層16がエッチングされて半導体層が露呈してしまう恐れがある点で問題がある。
次いで、端子部に伸びる配線40と接続配線41との接続を行うための導電物42を形成する。導電物42は印刷法または液滴吐出法により形成すればよい。液滴吐出法を用いる場合、導電性材料(Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等)を含む組成物を選択的に吐出して導電物42を形成する。
次いで、ソース配線またはドレイン配線18a上の一部に導電性部材からなる凸状部(ピラー)20を形成する。凸状部(ピラー)20は、導電性材料(Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等)を含む組成物の吐出と焼成を繰り返すことによって積み重ねる。また、同様に接続配線41上にも凸状部(ピラー)43を形成する。或いは、凸状部(ピラー)20は、スパッタ法により得た金属膜をパターニングすることで形成してもよく、この場合、凸状部(ピラー)は柱状となる。
次いで、塗布法による平坦な層間絶縁膜21を形成する。(図1(C))塗布法による平坦な層間絶縁膜とは、液状の組成物を塗布して形成する層間絶縁膜を指す。塗布法による平坦な層間絶縁膜としては、アクリル、ポリイミドなどの有機樹脂、有機溶媒中に溶かされた絶縁膜材料を塗布した後熱処理により被膜を形成する所謂、塗布珪素酸化膜(Spin on Glass、以下「SOG」ともいう。)、シロキサンポリマーなどの焼成によりシロキサン結合を形成する材料などが挙げられる。また、層間絶縁膜21は、塗布法に限定されず、気相成長法やスパッタリング法により形成された酸化珪素膜などの無機絶縁膜も用いることができる。また、保護膜として窒化珪素膜をPCVD法やスパッタ法で形成した後、塗布法による平坦な絶縁膜を積層してもよい。
また、液滴吐出法により層間絶縁膜21を形成してもよい。また、凸状部(ピラー)20、43を本焼成する前に層間絶縁膜21を液滴吐出法により形成し、同時に本焼成してもよい。
なお、塗布法や液滴吐出法による平坦な層間絶縁膜21を形成する際、スキージではなく、エアナイフで表面におけるミクロの凹凸を平坦化させた後、本焼成を行うことが好ましい。
次いで、全面エッチバックにより凸状部(ピラー)20、43上の層間絶縁膜を除去して凸状部(ピラー)20、43を露出させる。また、他の方法としては、化学的機械研磨(CMP)により、層間絶縁膜を研削し、その後、層間絶縁膜を全面エッチバックすることにより、凸状部(ピラー)20、43を露出させることができる。
次いで、層間絶縁膜22上に凸状部(ピラー)20と接する画素電極23を形成する。(図1(D))なお、同様に凸状部(ピラー)43と接する端子電極44も形成する。透過型の液晶表示パネルを作製する場合には、液滴吐出法または印刷法によりインジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)などを含む組成物からなる所定のパターンを形成し、焼成して画素電極23および端子電極44を形成しても良い。また、反射型の液晶表示パネルを作製する場合には、画素電極23および端子電極44を液滴吐出法によりAg(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いて形成することができる。他の方法としては、スパッタリング法により透明導電膜、若しくは光反射性の導電膜を形成して、液滴吐出法によりマスクパターンを形成し、エッチングを組み合わせて画素電極を形成しても良い。なお、エッチバックやCMPにより層間絶縁膜22の表面は平坦化されており、平坦な画素電極23を形成することができる。
なお、図10に画素部の一部を拡大した上面図を示す。また、図10は画素電極の形成途中を示しており、左側の画素においては画素電極が形成されているが、右側の画素においては画素電極を形成していない状態を示している。図10において、実線A−A’で切断した図が、図1(D)の画素部の断面と対応しており、図1(D)と対応する箇所には同じ符号を用いている。また、容量配線31が設けてあり、保持容量は、ゲート絶縁膜を誘電体とし、画素電極23と、該画素電極と重なる容量配線31とで形成されている。
以上の工程により、基板10上にボトムゲート型(逆スタガ型ともいう。)のTFTおよび画素電極が形成された液晶表示パネル用のTFT基板が完成する。
次いで、画素電極23を覆うように、配向膜24aを形成する。なお、配向膜24aは、液滴吐出法やスクリーン印刷法やオフセット印刷法を用いればよい。その後、配向膜24aの表面にラビング処理を行う。
そして、対向基板25には、着色層26a、遮光層(ブラックマトリクス)26b、及びオーバーコート層27からなるカラーフィルタを設け、さらに透明電極からなる対向電極28と、その上に配向膜24bを形成する。そして、閉パターンであるシール材(図示しない)を液滴吐出法により画素部と重なる領域を囲むように形成する。ここでは液晶29を滴下するため、閉パターンのシール材を描画する例を示すが、開口部を有するシールパターンを設け、TFT基板を貼りあわせた後に毛細管現象を用いて液晶29を注入するディップ式(汲み上げ式)を用いてもよい。
次いで、気泡が入らないように減圧下で液晶の滴下を行い、両方の基板を貼り合わせる。閉ループのシールパターン内に液晶を1回若しくは複数回滴下する。液晶の配向モードとしては、液晶分子の配列が光の入射から出射に向かって90°ツイスト配向したTNモードを用いる場合が多い。TNモードの液晶表示装置を作製する場合には、基板のラビング方向が直交するように貼り合わせる。
なお、一対の基板間隔は、球状のスペーサを散布したり、樹脂からなる柱状のスペーサを形成したり、シール材にフィラーを含ませることによって維持すればよい。上記柱状のスペーサは、アクリル、ポリイミド、ポリイミドアミド、エポキシの少なくとも1つを主成分とする有機樹脂材料、もしくは酸化珪素、窒化珪素、酸化窒化珪素のいずれか一種の材料、或いはこれらの積層膜からなる無機材料であることを特徴としている。
次いで、必要でない基板の分断を行う。多面取りの場合、それぞれのパネルを分断する。また、1面取りの場合、予めカットされている対向基板を貼り合わせることによって、分断工程を省略することもできる。
そして、異方性導電体層45を介し、公知の技術を用いてFPC46を貼りつける。以上の工程で液晶モジュールが完成する。(図1(E))また、必要があれば光学フィルムを貼り付ける。透過型の液晶表示装置とする場合、偏光板は、アクティブマトリクス基板と対向基板の両方に貼り付ける。
以上示したように、本実施の形態では、凸状部(ピラー)20、43を用いてフォトマスクを利用した光露光工程を削減することにより、工程を単純化するとともに、工程時間を短縮することができる。また、液滴吐出法を用いて基板上に直接的に各種のパターンを形成することにより、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易に液晶表示パネルを製造することができる。
また、本実施の形態では、フォトマスクを利用した光露光工程を用いていない工程を示したが、特に限定されず、一部のパターニングをフォトマスクを利用した光露光工程により行ってもよい。
(実施の形態2)
ここでは実施の形態1とは接続方法が異なる例を示す。図2に逆スタガ型TFTをスイッチング素子とするアクティブマトリクス型液晶表示装置の作製工程の断面を示す。
まず、実施の形態1に示した工程に従って、図1(A)と同じ状態を得る。基板210上に下地膜211、金属配線212、端子部に伸びる配線240を形成し、さらにゲート絶縁膜213、半導体膜214a、絶縁体層216を順次形成する。そして、絶縁体層216を覆うマスク215を液滴吐出法で形成する。(図2(A))
次いで、マスク215で覆われた領域以外の半導体膜214aをドライエッチングまたはウェットエッチングにより除去して活性層となる半導体層214bを形成する。
次いで、マスク215を除去した後、n型の半導体膜217を全面に形成する。n型の半導体膜217は、シランガスとフォスフィンガスを用いたPCVD法で形成すれば良く、アモルファス半導体膜、或いはセミアモルファス半導体膜で形成することができる。
次いで、液滴吐出法により導電性材料(Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等)を含む組成物を選択的に吐出して、ソース配線またはドレイン配線218a、218bを形成する。なお、同様に、端子部において接続配線241も形成する。(図2(B))なお、ドレイン配線218bは画素電極(反射電極)として機能するため、反射性の高いAg(銀)、Al(アルミニウム)等を用いることが好ましい。液滴吐出法により画素電極を形成するため、反射電極の鏡面反射を防ぐ凸凹を形成しやすい。従来では、画素電極を形成した後、サンドブラスト法やエッチング法等の工程を追加して表面を凹凸化させて、鏡面反射を防ぎ、反射光を散乱させることによって白色度を増加させていた。
次いで、ソース配線またはドレイン配線218a、218bをマスクとして自己整合的にn型の半導体膜217をエッチングして、ソース領域またはドレイン領域219a、219bを形成する。この段階でチャネルストップ型のTFT230が完成する。絶縁体層216は、n型の半導体膜のエッチングストッパーとして機能させる。
次いで、シャドーマスクを用いて端子部以外をレジストなどの樹脂で覆い、端子部においては、接続配線241をマスクとしたゲート絶縁膜213のエッチングを行って配線240の一部を露呈させる。
次いで、端子部に伸びる配線240と接続配線241との接続を行うための導電物242を形成する。導電物242は印刷法または液滴吐出法により形成すればよい。液滴吐出法を用いる場合、導電性材料(Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等)を含む組成物を選択的に吐出して導電物242を形成する。
次いで、液滴吐出法により層間絶縁膜221を選択的に形成する。(図2(C))画素部においては画素電極となる領域以外の領域を覆って形成する。なお、層間絶縁膜としての膜厚をかせぐために複数回の液滴吐出および焼成を繰り返してもよい。また、端子部においては後に端子電極を形成する部分には形成しない。すなわち、接続を行う部分や層間絶縁膜が不要な領域には、最初から層間絶縁膜を設けない。従って、ここではコンタクトホールの形成が不要となる。
層間絶縁膜221としては液滴吐出法が可能な絶縁材料、例えば、感光性又は非感光性の有機材料(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベンゾシクロブテン)、シロキサン、ポリシラザン、及びそれらの積層構造を用いることができる。シロキサンとは、珪素(Si)と酸素(O)との結合で骨格構造が構成され、置換基に少なくとも水素を含む、又は置換基にフッ素、アルキル基、又は芳香族炭化水素のうち少なくとも1種を有するポリマー材料、を出発原料として形成される。またポリシラザンとは、珪素(Si)と窒素(N)の結合を有するポリマー材料、いわゆるポリシラザンを含む液体材料を出発原料として形成される。
次いで、接続配線241と接する端子電極244を液滴吐出法または印刷法により形成する。(図2(D))端子電極244は、インジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)などを含む組成物を用いる。
なお、端子電極244の形成工程は、層間絶縁膜221の形成工程よりも前に行ってもよいし、液滴吐出法により異なる材料を同時に吐出できるヘッドで同時に描画してもよいし、焼成のみを共通の工程としてもよい。
以上の工程により、基板210上にボトムゲート型(逆スタガ型ともいう。)のTFTおよび画素電極が形成された反射型の液晶表示パネル用のTFT基板が完成する。
次いで、画素電極218aを覆うように、配向膜224aを形成する。なお、配向膜224aは、液滴吐出法やスクリーン印刷法やオフセット印刷法を用いればよい。その後、配向膜224aの表面にラビング処理を行う。
そして、対向基板225には、着色層226a、遮光層(ブラックマトリクス)226b、及びオーバーコート層227からなるカラーフィルタを設け、さらに透明電極からなる対向電極228と、その上に配向膜224bを形成する。そして、閉パターンであるシール材(図示しない)を液滴吐出法により画素部と重なる領域を囲むように形成する。ここでは液晶229を滴下するため、閉パターンのシール材を描画する例を示すが、開口部を有するシールパターンを設け、TFT基板を貼りあわせた後に毛細管現象を用いて液晶229を注入するディップ式(汲み上げ式)を用いてもよい。
次いで、気泡が入らないように減圧下で液晶の滴下を行い、両方の基板を貼り合わせる。閉ループのシールパターン内に液晶を1回若しくは複数回滴下する。液晶の配向モードとしては、液晶分子の配列が光の入射から出射に向かって90°ツイスト配向したTNモードを用いる場合が多い。TNモードの液晶表示装置を作製する場合には、基板のラビング方向が直交するように貼り合わせる。
なお、一対の基板間隔は、球状のスペーサを散布したり、樹脂からなる柱状のスペーサを形成したり、シール材にフィラーを含ませることによって維持すればよい。上記柱状のスペーサは、アクリル、ポリイミド、ポリイミドアミド、エポキシの少なくとも1つを主成分とする有機樹脂材料、もしくは酸化珪素、窒化珪素、酸化窒化珪素のいずれか一種の材料、或いはこれらの積層膜からなる無機材料であることを特徴としている。
次いで、必要でない基板の分断を行う。多面取りの場合、それぞれのパネルを分断する。また、1面取りの場合、予めカットされている対向基板を貼り合わせることによって、分断工程を省略することもできる。
そして、異方性導電体層245を介し、公知の技術を用いてFPC246を貼りつける。以上の工程で液晶モジュールが完成する。(図2(E))また、必要があれば光学フィルムを貼り付ける。透過型の液晶表示装置とする場合、偏光板は、アクティブマトリクス基板と対向基板の両方に貼り付ける。
以上示したように、本実施の形態では、層間絶縁膜を液滴吐出法により選択的に形成してフォトマスクを利用した光露光工程を削減することにより、工程を単純化するとともに、工程時間を短縮することができる。また、液滴吐出法を用いて基板上に直接的に各種のパターンを形成することにより、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易に液晶表示パネルを製造することができる。
また、本実施の形態では、フォトマスクを利用した光露光工程を用いていない工程を示したが、特に限定されず、一部のパターニングをフォトマスクを利用した光露光工程により行ってもよい。
(実施の形態3)
ここでは実施の形態1とは接続方法が異なる例を示す。図3に逆スタガ型TFTをスイッチング素子とするアクティブマトリクス型液晶表示装置の作製工程の断面を示す。
まず、実施の形態1に示した工程に従って、図1(C)と同じ状態を得る。基板310上に下地膜311、金属配線312、端子部に伸びる配線340を形成し、さらにゲート絶縁膜313、半導体膜、絶縁体層316を順次形成する。そして、絶縁体層316を覆うマスクを液滴吐出法で形成する。次いで、マスクで覆われた領域以外の半導体膜をドライエッチングまたはウェットエッチングにより除去して活性層となる半導体層314を形成する。次いで、マスクを除去した後、n型の半導体膜を全面に形成する。次いで、液滴吐出法により導電性材料(Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等)を含む組成物を選択的に吐出して、ソース配線またはドレイン配線318a、318b、接続配線341を形成する。次いで、ソース配線またはドレイン配線318a、318bをマスクとして自己整合的にn型の半導体膜をエッチングして、ソース領域またはドレイン領域319a、319bを形成する。この段階でチャネルストップ型のTFT330が完成する。絶縁体層316は、n型の半導体膜のエッチングストッパーとして機能させる。次いで、シャドーマスクを用いて端子部以外をレジストなどの樹脂で覆い、端子部においては、接続配線341をマスクとしたゲート絶縁膜313のエッチングを行って配線340の一部を露呈させる。次いで、端子部に伸びる配線340と接続配線341との接続を行うための導電物342を形成する。
次いで、ソース配線またはドレイン配線318a上の一部に撥液性(撥水性、撥油性)からなる凸状部(ピラー)320を液滴吐出法により形成する。凸状部(ピラー)320は、撥液性材料(フルオロアルキルシラン(FAS)などのフッ素系樹脂)を含む組成物の吐出と焼成を繰り返すことによって積み重ねる。また、同様に接続配線341上にも凸状部(ピラー)343を形成する。なお、凸状部(ピラー)320、343として、撥液性を有しない材料を用い、後にCF4プラズマ処理などを行って撥液性を得るようにしてもよい。例えばポリビニルアルコール(PVA)のような水溶性樹脂を用いて凸状部(ピラー)を形成した後、CF4プラズマ処理を行って撥液性を持たせればよい。
また、CF4プラズマ処理を行わずに撥液性材料を用いてコンタクトホールを形成することができる。撥液性材料(フルオロアルキルシラン(FAS)などのフッ素系樹脂)を全面に塗布した後、ポリイミドやポリビニルアルコール(PVA)のような水溶性樹脂でマスクを形成する。そして、マスクが設けられた領域以外の撥液性材料をO2アッシングなどで除去し、マスクを除去する。ここで、マスクを除去した箇所のみが撥液性を有した状態となる。その後、全面に絶縁材料を塗布すると、マスクを除去した箇所(撥液性を有する領域)には絶縁膜が形成されない。こうして、所望の箇所のみを露呈させた絶縁膜が得られる。
次いで、平坦な層間絶縁膜322を形成する。塗布法を用いて平坦な膜を得てもよいし、液滴吐出法により形成した後、エアナイフで表面におけるミクロの凹凸を平坦化させてもよい。平坦な層間絶縁膜322としては、アクリル、ポリイミドなどの有機樹脂、有機溶媒中に溶かされた絶縁膜材料を塗布した後、熱処理により被膜を形成する所謂、塗布珪素酸化膜(Spin on Glass、以下「SOG」ともいう。)、シロキサンポリマーなどの焼成によりシロキサン結合を形成する材料などが挙げられる。
なお、層間絶縁膜の形成の際に用いる溶媒に対して撥液性を有している凸状部(ピラー)320、343として、凸状部上には層間絶縁膜が形成されないようにする。(図3(A))
次いで、凸状部(ピラー)320、343のみを除去することによってコンタクトホールを形成する。(図3(B))
次いで、ドレイン配線318aと接する画素電極323を形成する。(図3(C))なお、同様に接続配線341と接する端子電極344も形成する。
透過型の液晶表示パネルを作製する場合には、液滴吐出法によりインジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)などを含む組成物からなる所定のパターンを形成し、焼成して画素電極323および端子電極344を形成しても良い。また、反射型の液晶表示パネルを作製する場合には、Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いることができる。他の方法としては、スパッタリング法により透明導電膜、若しくは光反射性の導電膜を形成して、液滴吐出法によりマスクパターンを形成し、エッチングを組み合わせて画素電極を形成しても良い。
以上の工程により、基板310上にボトムゲート型(逆スタガ型ともいう。)のTFTおよび画素電極が形成された液晶表示パネル用のTFT基板が完成する。
次いで、画素電極323を覆うように、配向膜324aを形成する。なお、配向膜324aは、液滴吐出法やスクリーン印刷法やオフセット印刷法を用いればよい。その後、配向膜324aの表面にラビング処理を行う。
そして、対向基板325には、着色層326a、遮光層(ブラックマトリクス)326b、及びオーバーコート層327からなるカラーフィルタを設け、さらに透明電極からなる対向電極328と、その上に配向膜324bを形成する。そして、閉パターンであるシール材(図示しない)を液滴吐出法により画素部と重なる領域を囲むように形成する。ここでは液晶329を滴下するため、閉パターンのシール材を描画する例を示すが、開口部を有するシールパターンを設け、TFT基板を貼りあわせた後に毛細管現象を用いて液晶329を注入するディップ式(汲み上げ式)を用いてもよい。
次いで、気泡が入らないように減圧下で液晶の滴下を行い、両方の基板を貼り合わせる。閉ループのシールパターン内に液晶を1回若しくは複数回滴下する。液晶の配向モードとしては、液晶分子の配列が光の入射から出射に向かって90°ツイスト配向したTNモードを用いる場合が多い。TNモードの液晶表示装置を作製する場合には、基板のラビング方向が直交するように貼り合わせる。
なお、一対の基板間隔は、球状のスペーサを散布したり、樹脂からなる柱状のスペーサを形成したり、シール材にフィラーを含ませることによって維持すればよい。上記柱状のスペーサは、アクリル、ポリイミド、ポリイミドアミド、エポキシの少なくとも1つを主成分とする有機樹脂材料、もしくは酸化珪素、窒化珪素、酸化窒化珪素のいずれか一種の材料、或いはこれらの積層膜からなる無機材料であることを特徴としている。
次いで、必要でない基板の分断を行う。多面取りの場合、それぞれのパネルを分断する。また、1面取りの場合、予めカットされている対向基板を貼り合わせることによって、分断工程を省略することもできる。
そして、異方性導電体層345を介し、公知の技術を用いてFPC346を貼りつける。以上の工程で液晶モジュールが完成する。(図3(D))また、必要があれば光学フィルムを貼り付ける。透過型の液晶表示装置とする場合、偏光板は、アクティブマトリクス基板と対向基板の両方に貼り付ける。
以上示したように、本実施の形態では、撥液性を有する凸状部(ピラー)320、343を用いてフォトマスクを利用した光露光工程を削減することにより、工程を単純化するとともに、工程時間を短縮することができる。また、液滴吐出法を用いて基板上に直接的に各種のパターンを形成することにより、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易に液晶表示パネルを製造することができる。
また、本実施の形態では、フォトマスクを利用した光露光工程を用いていない工程を示したが、特に限定されず、一部のパターニングをフォトマスクを利用した光露光工程により行ってもよい。
以上の構成でなる本発明について、以下に示す実施例でもってさらに詳細な説明を行うこととする。
本実施例では、チャネルエッチ型のTFTを用いたアクティブマトリクス型液晶表示装置の作製例を示す。なお、図4は本実施例の作製工程の断面を示している。
まず、実施の形態1に示した工程に従って、基板410上に下地膜411、金属配線412、端子部に伸びる配線440を形成し、さらにゲート絶縁膜413を形成する。
次いで、半導体膜414a、n型の半導体膜417を積層形成する。半導体膜414aは、シランやゲルマンに代表される半導体材料ガスを用いて気相成長法やスパッタリング法で作製されるアモルファス半導体膜、或いはセミアモルファス半導体膜で形成する。アモルファス半導体膜としては、SiH4、若しくはSiH4とH2の混合気体を用いたPCVD法により得られるアモルファスシリコン膜を用いることができる。また、セミアモルファス半導体膜としては、SiH4をH2で3倍〜1000倍に希釈した混合気体、Si26とGeF4のガス流量比を20〜40:0.9(Si26:GeF4)で希釈した混合気体、或いはSi26とのF2混合気体を用いたPCVD法により得られるセミアモルファスシリコン膜を用いることができる。なお、セミアモルファスシリコン膜は、下地との界面により結晶性を持たせることができるため好ましい。また、n型の半導体膜417は、シランガスとフォスフィンガスを用いたPCVD法で形成すれば良く、アモルファス半導体膜、或いはセミアモルファス半導体膜で形成することができる。なお、PCVD法を用いてゲート絶縁膜413、半導体膜414a、n型の半導体膜417を大気にさらすことなく連続的に成膜することも可能である。大気に曝さないようにすることで不純物の混入を防止できる。
次いで、半導体層をパターニングするためのマスク415を液滴吐出法で形成する。(図4(A))マスク415は、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ノボラック樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いる。いずれの材料を用いるとしても、その表面張力と粘度は、溶媒の濃度を調整したり、界面活性剤等を加えたりして適宜調整する。
次いで、マスク415で覆われた領域以外の半導体膜414aおよびn型の半導体膜417をドライエッチングまたはウェットエッチングにより除去して活性層となる半導体層を形成する。
次いで、液滴吐出法により、カバレッジを良好にするため、半導体層のエッジをカバーする絶縁材料または導電材料からなる層416を形成する。
次いで、液滴吐出法により、導電性材料(Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等)を含む組成物を選択的に吐出して、ソース配線またはドレイン配線418a、418bを形成する。
次いで、ゲート電極である金属配線412とゲート絶縁膜413を介して重なる半導体層の一部を除去するためのマスクを液滴吐出法で形成する。エッチングにより、金属配線412とゲート絶縁膜413を介して重なる一部が除去された半導体層414bを形成すると同時にn型の半導体膜419a、419bを形成する。この段階でチャネルエッチ型のTFT430が完成する。
次いで、シャドーマスクを用いて端子部以外をレジストなどの樹脂で覆い、端子部においては、接続配線441をマスクとしたゲート絶縁膜413のエッチングを行って配線440の一部を露呈させる。(図4(B))また、シャドーマスクに代えてスクリーン印刷法によりレジストマスクを形成してエッチングマスクとしてもよい。
以降の工程は、実施の形態1と同様に行えばよい。本実施例は実施の形態1とTFT構造が異なるだけで他の構成は同一である。
次いで、端子部に伸びる配線440と接続配線441との接続を行うための導電物442を形成する。導電物442は印刷法または液滴吐出法により形成すればよい。
次いで、ソース配線またはドレイン配線418a上の一部に導電性部材からなる凸状部(ピラー)420を形成する。また、同様に接続配線441上にも凸状部(ピラー)443を形成する。
次いで、塗布法による平坦な層間絶縁膜421を形成する。(図4(C))また、層間絶縁膜421は、塗布法に限定されず、気相成長法やスパッタリング法により形成された酸化珪素膜などの無機絶縁膜も用いることができる。また、保護膜として窒化珪素膜をPCVD法やスパッタ法で形成した後、塗布法による平坦な絶縁膜を積層してもよい。
また、液滴吐出法により層間絶縁膜421を形成してもよい。また、凸状部(ピラー)420、443を本焼成する前に層間絶縁膜421を液滴吐出法により形成し、同時に本焼成してもよい。
次いで、全面エッチバックにより凸状部(ピラー)420、443上の層間絶縁膜を除去して凸状部(ピラー)420、443を露出させる。また、他の方法としては、化学的機械研磨(CMP)により、層間絶縁膜を研削し、その後、層間絶縁膜を全面エッチバックすることにより、凸状部(ピラー)420、443を露出させることができる。
次いで、平坦化させた層間絶縁膜422上に凸状部(ピラー)420と接する画素電極423を形成する。(図4(D))なお、同様に凸状部(ピラー)443と接する端子電極444も形成する。透過型の液晶表示パネルを作製する場合には、液滴吐出法または印刷法によりインジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)などを含む組成物からなる所定のパターンを形成し、焼成して画素電極423および端子電極444を形成しても良い。また、反射型の液晶表示パネルを作製する場合には、画素電極423および端子電極444を液滴吐出法によりAg(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いて形成することができる。
以上の工程により、基板410上にボトムゲート型(逆スタガ型ともいう。)のTFTおよび画素電極が形成された液晶表示パネル用のTFT基板が完成する。
次いで、画素電極423を覆うように、配向膜424aを形成する。なお、配向膜424aは、液滴吐出法やスクリーン印刷法やオフセット印刷法を用いればよい。その後、配向膜424aの表面にラビング処理を行う。
そして、対向基板425には、着色層426a、遮光層(ブラックマトリクス)426b、及びオーバーコート層427からなるカラーフィルタを設け、さらに透明電極からなる対向電極428と、その上に配向膜424bを形成する。そして、閉パターンであるシール材(図示しない)を液滴吐出法により画素部と重なる領域を囲むように形成する。本実施例では液晶429を滴下するため、閉パターンのシール材を描画する例を示すが、開口部を有するシールパターンを設け、TFT基板を貼りあわせた後に毛細管現象を用いて液晶429を注入するディップ式(汲み上げ式)を用いてもよい。
次いで、気泡が入らないように減圧下で液晶の滴下を行い、両方の基板を貼り合わせる。閉ループのシールパターン内に液晶を1回若しくは複数回滴下する。
なお、一対の基板間隔は、球状のスペーサを散布したり、樹脂からなる柱状のスペーサを形成したり、シール材にフィラーを含ませることによって維持すればよい。
次いで、必要でない基板の分断を行う。多面取りの場合、それぞれのパネルを分断する。また、1面取りの場合、予めカットされている対向基板を貼り合わせることによって、分断工程を省略することもできる。
そして、異方性導電体層445を介し、公知の技術を用いてFPC446を貼りつける。以上の工程で液晶モジュールが完成する。(図4(E))また、必要があれば光学フィルムを貼り付ける。透過型の液晶表示装置とする場合、偏光板は、アクティブマトリクス基板と対向基板の両方に貼り付ける。
また、本実施例では、フォトマスクを利用した光露光工程を用いていない工程を示したが、特に限定されず、一部のパターニングをフォトマスクを利用した光露光工程により行ってもよい。例えば、チャネル形成領域のサイズが決定する半導体層の一部を除去するパターニング工程でフォトマスクを利用すると、精密にサイズを決定することができる。
また、本実施例は実施の形態1と自由に組み合わせることができる。
本実施例は、チャネルエッチ型のTFTを用いたアクティブマトリクス型液晶表示装置の作製例を示す。なお、図5は本実施例の液晶表示装置の断面を示している。
なお、本実施例は、チャネルストップ型のTFTである実施の形態2とTFTの構造が異なるのみであるので、ここでは簡単な説明のみとする。
また、チャネルエッチ型のTFT530は、実施例1と同じ工程に従って形成すればよい。ドレイン配線のパターンが実施例1と異なり、そのまま画素電極(反射電極)とする点以外は実施例1と同じ工程である。
また、層間絶縁膜521は、実施の形態2と同様に液滴吐出法で選択的に形成する。画素部においては画素電極となる領域以外の領域を覆って形成する。なお、層間絶縁膜としての膜厚をかせぐために複数回の液滴吐出および焼成を繰り返してもよい。また、端子部においては後に端子電極を形成する部分には形成しない。すなわち、接続を行う部分や層間絶縁膜が不要な領域には、最初から層間絶縁膜を設けない。従って、ここではコンタクトホールの形成が不要となる。
次いで、接続配線541と接する端子電極544を液滴吐出法または印刷法により形成する。
以上の工程により、基板510上にボトムゲート型(逆スタガ型ともいう。)のTFTおよび画素電極が形成された反射型の液晶表示パネル用のTFT基板が完成する。
以降の工程は、実施の形態2と同一であるため、簡単な説明のみとする。次いで、画素電極を覆うように、配向膜524aを形成する。その後、配向膜524aの表面にラビング処理を行う。そして、対向基板525には、着色層526a、遮光層(ブラックマトリクス)526b、及びオーバーコート層527からなるカラーフィルタを設け、さらに透明電極からなる対向電極528と、その上に配向膜524bを形成する。そして、閉パターンであるシール材(図示しない)を液滴吐出法により画素部と重なる領域を囲むように形成する。次いで、気泡が入らないように減圧下で液晶529の滴下を行う。そして、両方の基板を貼り合わせる。次いで、必要でない基板の分断を行う。そして、異方性導電体層545を介し、公知の技術を用いてFPC546を貼りつける。以上の工程で反射型の液晶モジュールが完成する。(図5)
以上示したように、本実施例では、層間絶縁膜を液滴吐出法により選択的に形成してフォトマスクを利用した光露光工程を削減することにより、工程を単純化するとともに、工程時間を短縮することができる。
また、本実施例では、ドレイン配線パターンの一部が画素電極であるため、ドレイン配線と画素電極とのコンタクトを設ける必要がなく、工程の簡素化ができる。
また、本実施例では、フォトマスクを利用した光露光工程を用いていない工程を示したが、特に限定されず、一部のパターニングをフォトマスクを利用した光露光工程により行ってもよい。例えば、チャネル形成領域のサイズが決定する半導体層の一部を除去するパターニング工程でフォトマスクを利用すると、精密にサイズを決定することができる。
また、本実施例は、実施の形態1、実施の形態2、実施例1と自由に組み合わせることができる。
本実施例は、チャネルエッチ型のTFTを用いたアクティブマトリクス型液晶表示装置の作製例を示す、なお、図6は本実施例の液晶表示装置の断面を示している。
なお、本実施例は、チャネルストップ型のTFTである実施の形態3とTFTの構造が異なるのみであるので、ここでは簡単な説明のみとする。
また、本実施例のチャネルエッチ型のTFT630は、実施例1と同じ工程に従って形成すればよい。
実施例1に従って、ソース配線またはドレイン配線を形成する工程まで行った後、実施の形態3と同様にソース配線またはドレイン配線上の一部に撥液性(撥水性、撥油性)からなる凸状部(ピラー)を液滴吐出法により形成する。
次いで、平坦な層間絶縁膜622を形成する。塗布法を用いて平坦な膜を得てもよいし、液滴吐出法により形成した後、エアナイフで表面におけるミクロの凹凸を平坦化させてもよい。なお、実施の形態3と同様に、層間絶縁膜の形成の際に用いる溶媒に対して撥液性を有している凸状部(ピラー)として、凸状部上には層間絶縁膜が形成されないようにする。次いで、凸状部(ピラー)のみを除去することによってコンタクトホールを形成する。次いで、ドレイン配線と接する画素電極623を形成する。なお、同様に接続配線641と接する端子電極644も形成する。
透過型の液晶表示パネルを作製する場合には、液滴吐出法によりインジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)などを含む組成物からなる所定のパターンを形成し、焼成して画素電極623および端子電極644を形成しても良い。
また、反射型の液晶表示パネルを作製する場合には、Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いることができる。他の方法としては、スパッタリング法により透明導電膜、若しくは光反射性の導電膜を形成して、液滴吐出法によりマスクパターンを形成し、エッチングを組み合わせて画素電極を形成しても良い。
以上の工程により、基板610上にボトムゲート型(逆スタガ型ともいう。)のTFT630および画素電極623が形成された液晶表示パネル用のTFT基板が完成する。
以降の工程は、実施の形態3と同一であるため、簡単な説明のみとする。次いで、画素電極を覆うように、配向膜624aを形成する。その後、配向膜624aの表面にラビング処理を行う。そして、対向基板625には、着色層626a、遮光層(ブラックマトリクス)626b、及びオーバーコート層627からなるカラーフィルタを設け、さらに透明電極からなる対向電極628と、その上に配向膜624bを形成する。そして、閉パターンであるシール材(図示しない)を液滴吐出法により画素部と重なる領域を囲むように形成する。次いで、気泡が入らないように減圧下で液晶629の滴下を行い、両方の基板を貼り合わせる。次いで、必要でない基板の分断を行う。そして、異方性導電体層645を介し、公知の技術を用いてFPC646を貼りつける。以上の工程で液晶モジュールが完成する。(図6)
以上示したように、本実施例では、撥液性を有する凸状部(ピラー)を用いてフォトマスクを利用した光露光工程を削減することにより、工程を単純化するとともに、工程時間を短縮することができる。
また、本実施例では、フォトマスクを利用した光露光工程を用いていない工程を示したが、特に限定されず、一部のパターニングをフォトマスクを利用した光露光工程により行ってもよい。例えば、チャネル形成領域のサイズが決定する半導体層の一部を除去するパターニング工程でフォトマスクを利用すると、精密にサイズを決定することができる。
また、本実施例は、実施の形態1、実施の形態3、実施例1と自由に組み合わせることができる。
本実施例では、液滴吐出法により作製される順スタガ型のTFTをスイッチング素子とするアクティブマトリクス型液晶表示装置の作製方法を示す。なお、図7は本実施例の液晶表示装置の断面構造を示している。
まず、基板710上に後に形成する液滴吐出法による材料層と密着性を向上させるための下地膜711を形成する。下地膜711は、極薄く形成すれば良いので、必ずしも層構造を持っていなくても良く、下地前処理とみなすこともできる。スプレーによって光触媒物質(酸化チタン(TiOX)、チタン酸ストロンチウム(SrTiO3)、セレン化カドミウム(CdSe)、タンタル酸カリウム(KTaO3)、硫化カドミウム(CdS)、酸化ジルコニウム(ZrO2)、酸化ニオブ(Nb25)、酸化亜鉛(ZnO)、酸化鉄(Fe23)、酸化タングステン(WO3))を全面に滴下、またはインクジェット法やゾルゲル法を用いて有機材料(ポリイミド、アクリル、或いは、シリコン(Si)と酸素(O)との結合で骨格構造が構成され、置換基に水素、フッ素、アルキル基、または芳香族炭化水素のうち少なくとも1種を有する材料を用いた塗布絶縁膜)を選択的に形成してもよい。
次いで、下地膜711上に液滴吐出法により、ソース配線層及びドレイン配線層718a、718bを形成する。また、端子部において端子電極740を形成する。これらの層を形成する導電性材料としては、Ag(銀)、Au(金)、Cu(銅))、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いることができる。特に、ソース及びドレイン配線層は、低抵抗化することが好ましのいで、比抵抗値を考慮して、金、銀、銅のいずれかの材料を溶媒に溶解又は分散させたものを用いることが好適であり、より好適には、低抵抗な銀、銅を用いるとよい。溶媒は、酢酸ブチル等のエステル類、イソプロピルアルコール等のアルコール類、アセトン等の有機溶剤等に相当する。表面張力と粘度は、溶媒の濃度を調整したり、界面活性剤等を加えたりして適宜調整する。また、第1の実施の形態と同様に下地層を形成しても良い。
次いで、n型の半導体層を全面に形成した後、ソース配線層及びドレイン配線層718a、718bの間にあるn型の半導体層をエッチングして除去する。
次いで、半導体膜を全面に形成する。半導体膜は、シランやゲルマンに代表される半導体材料ガスを用いて気相成長法やスパッタリング法で作製されるアモルファス半導体膜、或いはセミアモルファス半導体膜で形成する。
次いで、液滴吐出法により形成したマスクを形成し、半導体膜とn型の半導体層のパターニングを行って、図7に示す半導体層714、n型の半導体層719a、719bを形成する。半導体層714は、ソース配線層及びドレイン配線層718a、718bの両方に跨るように形成される。また、ソース配線層及びドレイン配線層718a、718bと半導体層714の間にはn型の半導体層719a、719bが介在している。
次いで、プラズマCVD法やスパッタリング法を用いて、ゲート絶縁膜を単層又は積層構造で形成する。特に好ましい形態としては、窒化珪素からなる絶縁層、酸化珪素からなる絶縁層、窒化珪素からなる絶縁層の3層の積層体をゲート絶縁膜として構成させる。
次いで、液滴吐出法により形成したマスクを形成し、ゲート絶縁膜をパターニングし、ゲート絶縁層713を形成する。
次いで、ゲート配線712を液滴吐出法で形成する。ゲート配線712を形成する導電性材料としては、Ag(銀)、Au(金)、Cu(銅))、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いることができる。ゲート配線712は端子部まで延在させ、対応する端子部の端子電極740と接して形成される。
次いで、実施の形態1と同様にソース配線層及びドレイン配線層718a、718b上の一部に導電性部材からなる凸状部(ピラー)720を形成する。凸状部(ピラー)720は、導電性材料(Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等)を含む組成物の吐出と焼成を繰り返すことによって積み重ねる。また、同様に端子電極740上にも凸状部(ピラー)743を形成する。
次いで、塗布法による平坦な層間絶縁膜を形成する。また、層間絶縁膜は、塗布法に限定されず、気相成長法やスパッタリング法により形成された酸化珪素膜などの無機絶縁膜も用いることができる。また、保護膜として窒化珪素膜をPCVD法やスパッタ法で形成した後、塗布法による平坦な絶縁膜を積層してもよい。
また、液滴吐出法により層間絶縁膜を形成してもよい。また、凸状部(ピラー)720、743を本焼成する前に層間絶縁膜を液滴吐出法により形成し、同時に本焼成してもよい。
次いで、全面エッチバックにより凸状部(ピラー)720、743上の層間絶縁膜を除去して凸状部(ピラー)720、743を露出させる。また、他の方法としては、化学的機械研磨(CMP)により、層間絶縁膜を研削し、その後、層間絶縁膜を全面エッチバックすることにより、凸状部(ピラー)720、743を露出させることができる。
次いで、層間絶縁膜722上に凸状部(ピラー)720と接する画素電極723を形成する。なお、同様に凸状部(ピラー)743と接する端子電極744も形成する。
以上の工程により、基板710上にトップゲート型(順スタガ型)のTFT713および画素電極723が形成された液晶表示パネル用のTFT基板が完成する。
以降の工程は、実施の形態1と同一であるため、簡単な説明のみとする。次いで、画素電極723を覆うように、配向膜724aを形成する。その後、配向膜724aの表面にラビング処理を行う。そして、対向基板725には、着色層726a、遮光層(ブラックマトリクス)726b、及びオーバーコート層727からなるカラーフィルタを設け、さらに透明電極からなる対向電極728と、その上に配向膜724bを形成する。そして、閉パターンであるシール材(図示しない)を液滴吐出法により画素部と重なる領域を囲むように形成する。次いで、気泡が入らないように減圧下で液晶729の滴下を行い、両方の基板を貼り合わせる。次いで、必要でない基板の分断を行う。そして、異方性導電体層745を介し、公知の技術を用いて端子電極744にFPC746を貼りつける。以上の工程で反射型の液晶モジュールが完成する。(図7)
また、本実施例では、フォトマスクを利用した光露光工程を用いていない工程を示したが、特に限定されず、一部のパターニングをフォトマスクを利用した光露光工程により行ってもよい。
また、本実施例は実施の形態1と自由に組み合わせることができる。
本実施例は、順スタガ型のTFTを用いたアクティブマトリクス型液晶表示装置の作製例を示す。なお、図8は本実施例の液晶表示装置の断面を示している。
なお、本実施例は、チャネルストップ型のTFTである実施の形態2とTFTの構造が異なるのみであるので、ここでは簡単な説明のみとする。
また、順スタガ型のTFT830は、実施例4と同じ工程に従って形成すればよい。ドレイン配線のパターンが実施例4と異なり、そのまま画素電極(反射電極)とする点以外は実施例4と同じ工程である。
また、層間絶縁膜821は、実施の形態2と同様に液滴吐出法で選択的に形成する。画素部においては画素電極となる領域以外の領域を覆って形成する。なお、層間絶縁膜としての膜厚をかせぐために複数回の液滴吐出および焼成を繰り返してもよい。また、端子部においては後に端子電極を形成する部分には形成しない。すなわち、接続を行う部分や層間絶縁膜が不要な領域には、最初から層間絶縁膜を設けない。従って、ここではコンタクトホールの形成が不要となる。
次いで、接続配線840と接する端子電極844を液滴吐出法または印刷法により形成する。
以上の工程により、基板810上にトップゲート型(順スタガ型)のTFT830および画素電極が形成された反射型の液晶表示パネル用のTFT基板が完成する。
以降の工程は、実施の形態2と同一であるため、簡単な説明のみとする。次いで、画素電極を覆うように、配向膜824aを形成する。その後、配向膜824aの表面にラビング処理を行う。そして、対向基板825には、着色層826a、遮光層(ブラックマトリクス)826b、及びオーバーコート層827からなるカラーフィルタを設け、さらに透明電極からなる対向電極828と、その上に配向膜824bを形成する。そして、閉パターンであるシール材(図示しない)を液滴吐出法により画素部と重なる領域を囲むように形成する。次いで、気泡が入らないように減圧下で液晶829の滴下を行い、両方の基板を貼り合わせる。次いで、必要でない基板の分断を行う。そして、異方性導電体層845を介し、公知の技術を用いてFPC846を貼りつける。以上の工程で反射型の液晶モジュールが完成する。(図8)
以上示したように、本実施例では、層間絶縁膜を液滴吐出法により選択的に形成してフォトマスクを利用した光露光工程を削減することにより、工程を単純化するとともに、工程時間を短縮することができる。
また、本実施例では、ドレイン配線パターンの一部が画素電極であるため、ドレイン配線と画素電極とのコンタクトを設ける必要がなく、工程の簡素化ができる。
また、本実施例は、実施の形態1、実施の形態2、実施例4と自由に組み合わせることができる。
本実施例は、順スタガ型のTFTを用いたアクティブマトリクス型液晶表示装置の作製例を示す、なお、図9は本実施例の液晶表示装置の断面を示している。
なお、本実施例は、チャネルストップ型のTFTである実施の形態3とTFTの構造が異なるのみであるので、ここでは簡単な説明のみとする。
また、本実施例のチャネルエッチ型のTFT930は、実施例4と同じ工程に従って形成すればよい。
実施例4に従って、ゲート配線を形成する工程まで行った後、実施の形態3と同様にソース配線またはドレイン配線上の一部に撥液性(撥水性、撥油性)からなる凸状部(ピラー)を液滴吐出法により形成する。
次いで、平坦な層間絶縁膜922を形成する。塗布法を用いて平坦な膜を得てもよいし、液滴吐出法により形成した後、エアナイフで表面におけるミクロの凹凸を平坦化させてもよい。なお、実施の形態3と同様に、層間絶縁膜の形成の際に用いる溶媒に対して撥液性を有している凸状部(ピラー)として、凸状部上には層間絶縁膜が形成されないようにする。次いで、凸状部(ピラー)のみを除去することによってコンタクトホールを形成する。次いで、ドレイン配線と接する画素電極923を形成する。なお、同様に接続配線940と接する端子電極944も形成する。
透過型の液晶表示パネルを作製する場合には、液滴吐出法によりインジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)などを含む組成物からなる所定のパターンを形成し、焼成して画素電極923および端子電極944を形成しても良い。
また、反射型の液晶表示パネルを作製する場合には、Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いることができる。他の方法としては、スパッタリング法により透明導電膜、若しくは光反射性の導電膜を形成して、液滴吐出法によりマスクパターンを形成し、エッチングを組み合わせて画素電極を形成しても良い。
以上の工程により、基板910上にトップゲート型(順スタガ型)のTFT930および画素電極923が形成された液晶表示パネル用のTFT基板が完成する。
以降の工程は、実施の形態3と同一であるため、簡単な説明のみとする。次いで、画素電極923を覆うように、配向膜924aを形成する。その後、配向膜924aの表面にラビング処理を行う。そして、対向基板925には、着色層926a、遮光層(ブラックマトリクス)926b、及びオーバーコート層927からなるカラーフィルタを設け、さらに透明電極からなる対向電極928と、その上に配向膜924bを形成する。そして、閉パターンであるシール材(図示しない)を液滴吐出法により画素部と重なる領域を囲むように形成する。次いで、気泡が入らないように減圧下で液晶929の滴下を行い、両方の基板を貼り合わせる。次いで、必要でない基板の分断を行う。そして、異方性導電体層945を介し、公知の技術を用いてFPC946を貼りつける。以上の工程で液晶モジュールが完成する。(図9)
以上示したように、本実施例では、撥液性を有する凸状部(ピラー)を用いてフォトマスクを利用した光露光工程を削減することにより、工程を単純化するとともに、工程時間を短縮することができる。
また、本実施例では、フォトマスクを利用した光露光工程を用いていない工程を示したが、特に限定されず、一部のパターニングをフォトマスクを利用した光露光工程により行ってもよい。
また、本実施例は、実施の形態1、実施の形態3、実施例4と自由に組み合わせることができる。
本実施例では、液晶滴下を液滴吐出法を用いる例を示す。本実施例では、大面積基板を用い、パネル4枚取りの作製例を図11(A)〜図11(D)に示す。
図11(A)は、インクジェットによる液晶層形成の途中の断面図を示しており、シール材112で囲まれた画素部111を覆うように液晶材料114をインクジェット装置116のノズル118から吐出、噴射、または滴下させている。インクジェット装置116は、図11(A)中の矢印方向に移動させる。なお、ここではノズル118を移動させた例を示したが、ノズルを固定し、基板を移動させることによって液晶層を形成してもよい。
また、図11(B)には斜視図を示している。シール112で囲まれた領域のみに選択的に液晶材料114を吐出、噴射、または滴下させ、ノズル走査方向113に合わせて滴下面115が移動している様子を示している。
また、図11(A)の点線で囲まれた部分119を拡大した断面図が図11(C)、図11(D)である。液晶材料114の粘性が高い場合は、連続的に吐出され、図11(C)のように繋がったまま付着される。一方、液晶材料114の粘性が低い場合には、間欠的に吐出され、図11(D)に示すように液滴が滴下される。
なお、図11(C)中、120は逆スタガ型TFT、121は画素電極をそれぞれ指している。画素部111は、マトリクス状に配置された画素電極と、該画素電極と接続されているスイッチング素子、ここでは逆スタガ型TFTと、保持容量(図示しない)とで構成されている。
ここで、図12(A)〜図12(D)を用いて、パネル作製の流れを以下に説明する。
まず、絶縁表面に画素部1034が形成された第1基板1035を用意する。第1基板1035は、予め、配向膜の形成、ラビング処理、球状スペーサ散布、或いは柱状スペーサ形成、またはカラーフィルタの形成などを行っておく。次いで、図12(A)に示すように、不活性気体雰囲気または減圧下で第1基板1035上にディスペンサ装置またはインクジェット装置でシール材1032を所定の位置(画素部1034を囲むパターン)に形成する。半透明なシール材1032としてはフィラー(直径6μm〜24μm)を含み、且つ、粘度40〜400Pa・sのものを用いる。なお、後に接する液晶1033に溶解しないシール材料を選択することが好ましい。シール材1032としては、アクリル系光硬化樹脂やアクリル系熱硬化樹脂を用いればよい。また、簡単なシールパターンであるのでシール材1032は、印刷法で形成することもできる。
次いで、シール材1032に囲まれた領域に液晶1033をインクジェット法により滴下する。(図12(B))液晶1033としては、インクジェット法によって吐出可能な粘度を有する公知の液晶材料を用いればよい。また、液晶材料は温度を調節することによって粘度を設定することができるため、インクジェット法に適している。インクジェット法により無駄なく必要な量だけの液晶1033をシール材1032に囲まれた領域に保持することができる。
次いで、画素部1034が設けられた第1基板1035と、対向電極や配向膜が設けられた第2基板1031とを気泡が入らないように減圧下で貼りあわせる。(図12(C))ここでは、貼りあわせると同時に紫外線照射や熱処理を行って、シール材1032を硬化させる。なお、紫外線照射に加えて、熱処理を行ってもよい。
また、図13(A)及び図13(B)に貼り合わせ時または貼り合わせ後に紫外線照射や熱処理が可能な貼り合わせ装置の例を示す。
図13(A)中、1041は第1基板支持台、1042は第2基板支持台、1044は窓、1048は下側定盤、1049は光源である。なお、図13において、図12と対応する部分は同一の符号を用いている。
下側定盤1048は加熱ヒータが内蔵されており、シール材を硬化させる。また、第2基板支持台1042には窓1044が設けられており、光源1049からの紫外光などを通過させるようになっている。ここでは図示していないが窓1044を通して基板の位置アライメントを行う。また、対向基板となる第2の基板1031は予め、所望のサイズに切断しておき、台1042に真空チャックなどで固定しておく。図13(A)は貼り合わせ前の状態を示している。
貼り合わせ時には、第1基板支持台1041と第2基板支持台1042とを下降させた後、圧力をかけて第1基板1035と第2基板1031を貼り合わせ、そのまま紫外光を照射することによって硬化させる。貼り合わせ後の状態を図13(B)に示す。
次いで、スクライバー装置、ブレイカー装置、ロールカッターなどの切断装置を用いて第1基板1035を切断する。(図12(D))こうして、1枚の基板から4つのパネルを作製することができる。そして、公知の技術を用いてFPCを貼りつける。
なお、第1基板1035、第2基板1031としてはガラス基板、石英基板、またはプラスチック基板を用いることができる。
以上の工程によって得られた液晶モジュールの上面図を図14(A)に示すとともに、他の液晶モジュールの上面図の例を図14(B)に示す。
非晶質半導体膜(アモルファスシリコン膜)で活性層を形成したTFTは、電界効果移動度が小さく1cm2/Vsec程度しか得られていない。そのために、画像表示を行うための駆動回路はICチップで形成され、TAB(Tape Automated Bonding)方式やCOG(Chip on glass)方式で実装することとなる。
図14(A)中、1101は、アクティブマトリクス基板、1106は対向基板、1104は画素部、1105はFPCである。なお、液晶をインクジェット法により吐出させ、減圧下で一対の基板1101、1106をシール材1107で貼り合わせている。
セミアモルファスシリコン膜からなる活性層を有するTFTを用いた場合、駆動回路の一部を作製することができ、図11(B)のような液晶モジュールを作製することができる。なお、セミアモルファスシリコン膜からなる活性層を有するTFTで形成できない駆動回路は、ICチップ(図示しない)を実装する。
図14(B)中、1111は、アクティブマトリクス基板、1116は対向基板、1112はソース信号線駆動回路、1113はゲート信号線駆動回路、1114は画素部、1117は第1シール材、1115はFPCである。なお、液晶をインクジェット法により吐出させ、一対の基板1111、1116を第1シール材1117および第2シール材で貼り合わせている。駆動回路部1112、1113には液晶は不要であるため、画素部1114のみに液晶を保持させており、第2シール材1118はパネル全体の補強のために設けられている。
また、得られた液晶モジュールにバックライト1204、導光板1205を設け、カバー1206で覆えば、図15にその断面図の一部を示したようなアクティブマトリクス型液晶表示装置(透過型)が完成する。なお、カバーと液晶モジュールは接着剤や有機樹脂を用いて固定する。また、透過型であるので偏光板1203は、アクティブマトリクス基板と対向基板の両方に貼り付ける。
なお、図15中、1200は基板、1201は画素電極、1202は柱状スペーサ、1207はシール材、1220は着色層、遮光層が各画素に対応して配置されたカラーフィルタ、1221は対向電極、1222、1223は配向膜、1224は液晶層、1219は保護膜である。
また、本実施例は、実施の形態1、実施の形態2、実施の形態3、実施例1乃至6のいずれか一と自由に組み合わせることができる。
本実施例では、液滴吐出法を行う装置の例を図16(A)〜図16(C)に示す。図16(A)は上面図であり、図16(B)はそのA−A’における断面図であり、図16(C)はそのB−B’における断面図である。
図16(A)において、1601は基板であり、その上に薄膜トランジスタ及び画素電極等を形成する。当該基板1601は、基板ステージ(図示しない)により固定している。搬送時には図中の矢印の方向に搬送させる。
また、基板1601の表面側上方には溶液吐出装置のヘッド部1603が移動し、組成物(金属配線や絶縁層やマスクを形成する材料)を含む溶液の吐出が行われる。ヘッド部1603の移動により、基板1601は相対的に走査されることになる。ヘッド部1603の目詰まりを防ぐため、溶媒の入った容器1605にヘッド部を浸しておき、走査する前には、試運転台1607である程度、吐出させて液滴サイズなどを安定させる。安定な液滴が得られるようになったら、ヘッド部を基板上方に移動させて吐出を行う。
勿論、ヘッド部1603を固定し、基板1601を移動させて走査させることも可能である。吐出された組成物1604、1606は、焼成により溶媒が揮発して(焼成されて)所望のパターン(金属配線や絶縁層やマスクなど)となる。
また、ここでは単純に並列に2つのヘッド部1603の一回の走査により全面塗布を完了する例を示したが、ヘッド部1603を数回往復移動させ、複数回の重ね塗りを行っても良い。
また、ここでは、溶媒の入った容器1605と試運転台1607を別々とした例を示したが、溶媒の入った容器1605のみとして液滴が安定するまで容器1605に吐出するようにしてもよい。
また、図17に液滴吐出装置のノズルおよび制御系の一例を示す。
液滴吐出手段1403の個々のヘッド1405a、1405bは制御手段1407に接続され、それがコンピュータ1410で制御することにより予めプログラミングされたパターンを描画することができる。描画するタイミングは、例えば、基板1400上に形成されたマーカー1411を基準に行えば良い。或いは、基板1400の縁を基準にして基準点を確定させても良い。これをCCDなどの撮像手段1404で検出し、画像処理手段1409にてデジタル信号に変換したものをコンピュータ1410で認識して制御信号を発生させて制御手段1407に送る。勿論、基板1400上に形成されるべきパターンの情報は記憶媒体1408に格納されたものであり、この情報を基にして制御手段1407に制御信号を送り、液滴吐出手段1403の個々のヘッド1405a、1405bを個別に制御することができる。
図17でのヘッド1405a、1405bは、走査方向に対して2列とした例であるが、走査方向に対して3列とし、大型基板に対応させた例を図18に示す。
図18において、1500は大型基板、1504は撮像手段、1507はステージ、1511はマーカー、1503は1つのパネルが形成される領域を示している。1つのパネルの幅と同じ幅のヘッド1505a、1505b、1505cを備え、このヘッドをジグザグまたは往復させたりして適宜、材料層のパターンを形成する。
図18において、走査方向に対して3列としたヘッド1505a、1505b、1505cはそれぞれ異なる材料層を形成することを可能としてもよいし、同一材料を吐出してもよい。3つのヘッドで同一材料を吐出して層間絶縁膜をパターン形成する場合にはスループットが向上する。
なお、図18に示す装置は、ヘッド部を固定し、基板1500を移動させて走査させることも、基板1500を固定し、基板1500を固定させて走査させることも可能である。
また、本実施例は、実施の形態1、実施の形態2、実施の形態3、実施例1乃至7のいずれか一と自由に組み合わせることができる。
本実施例では、金属配線を形成する金属粒子の例を図19に示す。この金属粒子を溶媒に分散、または溶かして液滴吐出法により金属配線を形成する。
図19(A)に示す金属粒子は、1701が銅(Cu)成分、1702が銀(Ag)で構成されている。銅の周りを銀でコーティングすることによって、下地膜または下地前処理を行った場合の密着性向上を図ることができる。また、銅の凹凸を銀でコーティングすることによって滑らかなものとする。
また、図19(B)に示す金属粒子は、1711が銅(Cu)成分、1712が銀(Ag)で構成され、その間にバッファ層1713としてNiBが設けられている例である。バッファ層1713は、銅(Cu)成分1711と1712銀(Ag)との密着性を上げるために設けられている。
また、本実施例は、実施の形態1、実施の形態2、実施の形態3、実施例1乃至8のいずれか一と自由に組み合わせることができる。
図20には、電気メッキ処理を行う状態を示し、大型マザーガラス基板から4つのパネルを得る多面取りを行う場合について説明する。
図20(A)に示すように、基板1300には、ゲート電極1303と同一レイヤー、例えば液滴吐出法によりAgを数μm幅で描画して、電流を供給するための導電膜1380を形成する。該導電膜1380は、ゲート電極と異なる材料から形成してもよく、電解メッキ処理により形成したいCuから形成してもよい。このとき、Agからなるゲート電極上にもCuを形成するとよい。その結果、メッキ処理により、Cuを均一に形成することができる。
図20(B)に示すように、基板1300はステージ1384に固定され、基板に対して、金属の溶けた水溶液を滴下するためのヘッド1381と、該金属の溶けた水溶液を水洗するためのヘッド1382と、乾燥させるために気体が噴出するためのヘッド1383と、が順に配置される。このように複数のノズルを配置することにより、連続処理ができ、スループットを高めることができる。電気メッキ法によりCuを形成する場合、金属の溶けた水溶液として硫酸銅と希硫酸からなる溶液を用いることができる。乾燥させるための気体は、酸素、窒素、それらの混合物を用いることができる。さらに乾燥を早めるため、温風を噴出してもよい。
この状態で、基板1300を矢印方向に移動させ、大型マザーガラス基板に対して、電気メッキ処理を行うことができる。もちろん基板1300とヘッド1381、1382、1383とは相対的に移動すればよい。
電気メッキ法によりCuを形成する場合、メッキにより銀の周りを覆うようにCuが設けられる。銀は高価な材料であるので、このように銅メッキを行うことで製造コストを低減できる。また、大画面の液晶パネルを形成する場合、このように銅メッキを行うことで配線抵抗を低くすることができる。
また、銅メッキを行った場合には、銅メッキした配線にはバリア層として窒化珪素、またはNiBで覆うことが好ましい。
このとき、図20(C)に示すように、基板1300は、ステージ1384に固定され、角度θとなるように斜めに配置する。角度θは、0°<θ<90°、好ましくは45°<θ<80°の範囲をとることができる。また角度θは、90°<θ<120°とし、圧力を高くしてヘッド1381からの水溶液を噴出することもできる。同様に、圧力を高くしてヘッド1382から水洗の水、及びヘッド1383からの気体を噴出する。この場合、水溶液は基板1300上を垂れることなく、そのまま落ちるため、水溶液のムラを防止することができる。このように、基板を斜めに配置することにより、マザーガラス基板の大型化に伴うメッキ処理装置の大型化を防ぐことができる。
また、ステージ1384は、導電体、及び絶縁体1385からなり、一方の導電体を陽極、他方の導電体を陰極とし、基板1300に形成された導電膜1380に接続している。これらに電流を流すことにより、メッキ処理を行うことができる。もちろん、ステージ1384に、導電体及び絶縁体を設置してもよい。
また、メッキを行う配線は全て繋がったパターンとなっており、メッキ処理を行った後は不要であるので除去することが好ましい。例えば、パネル毎の基板の分断で各配線が分断されるようにする。
なお、基板1300を金属の溶けた水溶液の浴槽に浸けてメッキ処理を行ってもよい。
また、溶液中の金属イオンの還元作用により電流を流すことない無電解メッキ法により、ゲート電極の周囲に導電膜1302を形成してもよい。この場合、電流を流すための導電膜1380を形成することがない。
また、本実施例は、実施の形態1、実施の形態2、実施の形態3、実施例1乃至9のいずれか一と自由に組み合わせることができる。
本発明の液晶表示装置、及び電子機器として、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、ノート型パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機又は電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDigital Versatile Disc(DVD)等の記録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられる。特に、大型画面を有する大型テレビ等に本発明を用いることが望ましい。それら電子機器の具体例を図21に示す。
図21(A)は22インチ〜50インチの大画面を有する大型の表示装置であり、筐体2001、支持台2002、表示部2003、ビデオ入力端子2005等を含む。なお、表示装置は、パーソナルコンピュータ用、TV放送受信用などの全ての情報表示用表示装置が含まれる。本発明により、1辺が1000mmを超える第5世代以降のガラス基板を用いても、比較的安価な大型表示装置を実現できる。
図21(B)はノート型パーソナルコンピュータであり、本体2201、筐体2202、表示部2203、キーボード2204、外部接続ポート2205、ポインティングマウス2206等を含む。本発明により、比較的安価なノート型パーソナルコンピュータを実現できる。
図21(C)は記録媒体を備えた携帯型の画像再生装置(具体的にはDVD再生装置)であり、本体2401、筐体2402、表示部A2403、表示部B2404、記録媒体(DVD等)読み込み部2405、操作キー2406、スピーカー部2407等を含む。表示部A2403は主として画像情報を表示し、表示部B2404は主として文字情報を表示する。なお、記録媒体を備えた画像再生装置には家庭用ゲーム機器なども含まれる。本発明により、比較的安価な画像再生装置を実現できる。
以上の様に、本発明を実施して得た液晶表示装置は、あらゆる電子機器の表示部として用いても良い。なお、本実施例の電子機器には、最良の形態、実施例1乃至8のいずれの構成を用いて作製された液晶表示装置を用いても良い。
また、本実施例は、実施の形態1、実施の形態2、実施の形態3、実施例1乃至10のいずれか一と自由に組み合わせることができる。
本発明により、液滴吐出法によって主な複数の工程が行われるため、製造装置に関する製造コストが低減できる。
また、フォトマスクを用いることなく材料層のパターニングを行うことができるため、材料の利用効率が向上する。また、液晶表示装置の製造方法における露光現像工程を減らすことによって、作製工程を簡略化できる。また、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易に液晶表示パネルを製造することができる。
実施の形態1を示す図。 実施の形態2を示す図。 実施の形態3を示す図。 実施例1の作製工程を示す図。 実施例2の液晶表示装置を示す断面図。 実施例3の液晶表示装置を示す断面図。 実施例4の作製工程を示す図。 実施例5の作製工程を示す図。 実施例6の作製工程を示す図。 実施の形態1を示す画素上面図。 液晶滴下を液滴吐出法で行う斜視図および断面図。(実施例7) プロセス上面図を示す図。(実施例7) 貼りあわせ装置および貼りあわせ工程を示す断面図。(実施例7) 液晶モジュールの上面図。(実施例7) アクティブマトリクス型液晶表示装置を示す断面図。(実施例7) 液滴吐出装置を示す図。(実施例8) 液滴吐出装置を示す図。(実施例8) 液滴吐出装置を示す図。(実施例8) 金属粒子の断面を示す図。(実施例9) メッキを行う装置を示す図。(実施例10) 電子機器の一例を示す図。(実施例11)
符号の説明
10 基板
11 下地膜
12 金属配線
13 ゲート絶縁膜
14a 半導体膜
14b 半導体層
15 マスク
16 絶縁体層
17 n型の半導体膜
18a ソース配線またはドレイン配線
18b ソース配線またはドレイン配線
19a ソース領域またはドレイン領域
19b ソース領域またはドレイン領域
20 凸状部
21 層間絶縁膜
22 層間絶縁膜
23 画素電極
24a 配向膜
24b 配向膜
25 対向基板
26a 着色層
26b 遮光層
27 オーバーコート層
28 対向電極
29 液晶
30 TFT
31 容量配線
40 配線
41 接続配線
42 導電物
43 凸状部
44 端子電極
45 異方性導電体層
46 FPC
110 大面積基板
111 画素部
112 シール材
113 ノズル操作方向
114 液晶材料
115 滴下面
116 液滴吐出装置
118 ノズル
119 点線で囲まれた部分
120 逆スタガ型TFT
121 画素電極
210 基板
211 下地膜
213 ゲート絶縁膜
214a 半導体膜
214b 半導体層
215 マスク
216 絶縁体層
217 n型の半導体膜
218a ソース配線またはドレイン配線
218b ソース配線またはドレイン配線
219a ソース領域またはドレイン領域
219b ソース領域またはドレイン領域
221 層間絶縁膜
224a 配向膜
224b 配向膜
225 対向基板
226a 着色層
226b 遮光層
227 オーバーコート層
228 対向電極
229 液晶
230 TFT
240 配線
241 接続配線
242 導電物
244 端子電極
245 異方性導電体層
246 FPC
310 基板
314 半導体層
316 絶縁体層
318a ソース配線またはドレイン配線
318b ソース配線またはドレイン配線
319a ソース領域またはドレイン領域
319b ソース領域またはドレイン領域
320 凸状部
322 層間絶縁膜
323 画素電極
324a 配向膜
324b 配向膜
325 対向基板
326a 着色層
326b 遮光層
327 オーバーコート層
328 対向電極
329 液晶
330 TFT
340 配線
341 接続配線
342 導電物
343 凸状部
344 端子電極
345 異方性導電体層
346 FPC
410 基板
411 下地膜
412 金属配線
413 ゲート絶縁膜
414a 半導体膜
414b 半導体層
415 マスク
416 絶縁材料または導電材料からなる層
417 n型の半導体膜
418a ソース配線またはドレイン配線
418b ソース配線またはドレイン配線
419a n型の半導体膜
419b n型の半導体膜
420 凸状部
421 層間絶縁膜
422 層間絶縁膜
423 画素電極
424a 配向膜
424b 配向膜
425 対向基板
426a 着色層
426b 遮光層
427 オーバーコート層
428 対向電極
429 液晶
430 TFT
440 配線
441 接続配線
442 導電物
443 凸状部
444 端子電極
445 異方性導電体層
446 FPC
510 基板
521 層間絶縁膜
524a 配向膜
524b 配向膜
525 対向基板
526a 着色層
526b 遮光層
527 オーバーコート層
528 対向電極
529 液晶
530 TFT
544 端子電極
545 異方性導電体層
546 FPC
610 基板
622 層間絶縁膜
623 画素電極
624a 配向膜
624b 配向膜
625 対向基板
626a 着色層
626b 遮光層
627 オーバーコート層
628 対向電極
629 液晶
630 TFT
641 接続配線
644 端子電極
645 異方性導電体層
646 FPC
706 対向基板
710 基板
711 下地膜
712 ゲート配線
713 ゲート絶縁層
714 半導体層
718a ソース配線層及びドレイン配線層
718b ソース配線層及びドレイン配線層
719a n型の半導体層
719b n型の半導体層
720 凸状部
722 層間絶縁膜
723 画素電極
724a 配向膜
724b 配向膜
725 対向基板
726a 着色層
726b 遮光層
727 オーバーコート層
728 対向電極
729 液晶
730 TFT
740 端子電極
743 凸状部
744 端子電極
745 異方性導電体層
746 FPC
824a 配向膜
824b 配向膜
825 対向基板
826a 着色層
826b 遮光層
827 オーバーコート層
828 対向電極
829 液晶
830 TFT
840 接続配線
844 端子電極
845 異方性導電体層
846 FPC
924a 配向膜
924b 配向膜
925 対向基板
926a 着色層
926b 遮光層
927 オーバーコート層
928 対向電極
929 液晶
930 TFT
940 接続配線
944 端子電極
945 異方性導電体層
946 FPC
1031 第2基板
1032 シール材
1033 液晶
1034 画素部
1035 第1基板
1041 第1基板支持台
1042 第2基板支持台
1044 窓
1048 下側定盤
1049 光源
1101 基板
1104 画素部
1105 FPC
1107 シール材
1111 基板
1112 ソース信号線駆動回路
1113 ゲート信号線駆動回路
1114 画素部
1115 FPC
1116 対向基板
1117 第1シール材
1118 第2シール材
1200 基板
1201 画素電極
1202 スペーサ
1203 偏光板
1204 バックライト
1205 導光板
1206 カバー
1207 シール材
1219 保護膜
1220 CF
1221 対向電極
1222 配向膜
1223 配向膜
1224 液晶層
1300 基板
1302 導電膜
1303 ゲート電極
1380 導電膜
1381 ヘッド
1382 ヘッド
1383 ヘッド
1384 ステージ
1385 ステージ
1400 基板
1403 液滴吐出手段
1404 撮像手段
1405a ヘッド
1405b ヘッド
1407 制御手段
1408 記憶媒体
1409 画像処理手段
1410 コンピュータ
1411 マーカー
1500 大型基板
1503 領域
1504 撮像手段
1505a ヘッド
1505b ヘッド
1505c ヘッド
1507 ステージ
1511 マーカー
1601 基板
1603 ヘッド部
1604 組成物
1605 溶媒の入った容器
1606 組成物
1607 試運転台
1701 銅
1702 銀
1711 銅
1712 銀
1713 バッファ層
2001 筐体
2002 支持台
2003 表示部
2005 ビデオ入力端子
2201 本体
2202 筐体
2203 表示部
2204 キーボード
2205 外部接続ポート
2206 ポインティングマウス
2401 本体
2402 筐体
2403 表示部A
2404 表示部B
2405 記録媒体読込部
2406 操作キー
2407 スピーカー部

Claims (8)

  1. 下地前処理を行った領域に、液滴吐出法により形成されたゲート電極を有する薄膜トランジスタと、
    前記薄膜トランジスタのドレイン電極上に液滴吐出法により形成された柱状の導電膜と、
    前記柱状の導電膜に接続された画素電極とを有することを特徴とする液晶表示装置。
  2. 請求項1において、前記ゲート電極、前記ドレイン電極、または前記柱状の導電膜は、金、銀、銅、白金、パラジウム、タングステン、ニッケル、タンタル、ビスマス、鉛、インジウム、錫、亜鉛、チタン、又はアルミニウムを含むことを特徴とする液晶表示装置。
  3. 請求項1または請求項2において、前記薄膜トランジスタは、非晶質半導体、又はセミアモルファス半導体を有することを特徴とする液晶表示装置。
  4. 請求項1乃至3のいずれか一において、前記液晶表示装置は、表示画面を構成したことを特徴とするテレビ受像機。
  5. 下地前処理を行った領域に、液滴吐出法によりゲート電極を形成し、
    前記ゲート電極上に第1の絶縁膜を形成し、
    前記第1の絶縁膜上に半導体膜を形成し、
    前記半導体膜上に、マスクを形成し、
    前記マスクを用いて前記半導体膜をパターニングし、
    前記パターニングされた半導体膜に下地前処理を行い、
    前記下地前処理を行った半導体膜上に、液滴吐出法によりソース電極及びドレイン電極を形成することにより薄膜トランジスタを形成し、
    前記ソース電極又は前記ドレイン電極上に柱状の導電膜を形成し、
    前記柱状の導電膜及び前記薄膜トランジスタを覆うように、第2の絶縁膜を形成し、
    前記第2の絶縁膜上において、前記柱状の導電膜と接続するように画素電極を形成することを特徴とする液晶表示装置の作製方法。
  6. 下地前処理を行った領域に、液滴吐出法によりゲート電極を形成し、
    前記ゲート電極上に第1の絶縁膜を形成し、
    前記第1の絶縁膜上に半導体膜を形成し、
    前記半導体膜上に、マスクを形成し、
    前記マスクを用いて前記半導体膜をパターニングし、
    前記パターニングされた半導体膜に下地前処理を行い、
    前記下地前処理を行った半導体膜上に、液滴吐出法によりソース電極及びドレイン電極を形成することにより薄膜トランジスタを形成し、
    前記ソース電極又は前記ドレイン電極上に柱状の有機膜を形成し、
    前記柱状の有機膜及び前記薄膜トランジスタを覆うように、第2の絶縁膜を形成し、
    前記柱状の有機膜を除去し、
    前記第2の絶縁膜上において、前記ソース電極又はドレイン電極と接続するように画素電極を形成し、
    液晶またはシール材を液滴吐出法により形成し、
    減圧下で対向基板と貼り合わせることを特徴とする液晶表示装置の作製方法。
  7. 請求項6において、前記第2の絶縁膜は、前記柱状の有機膜に対して撥液性を有することを特徴とする液晶表示装置の作製方法。
  8. 請求項6又は請求項7において、水洗により、前記柱状の有機膜を除去することを特徴とする液晶表示装置の作製方法。
JP2004329505A 2003-11-14 2004-11-12 半導体装置の作製方法 Expired - Fee Related JP4684625B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329505A JP4684625B2 (ja) 2003-11-14 2004-11-12 半導体装置の作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003386023 2003-11-14
JP2004329505A JP4684625B2 (ja) 2003-11-14 2004-11-12 半導体装置の作製方法

Publications (3)

Publication Number Publication Date
JP2005165309A true JP2005165309A (ja) 2005-06-23
JP2005165309A5 JP2005165309A5 (ja) 2007-12-13
JP4684625B2 JP4684625B2 (ja) 2011-05-18

Family

ID=34741820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329505A Expired - Fee Related JP4684625B2 (ja) 2003-11-14 2004-11-12 半導体装置の作製方法

Country Status (1)

Country Link
JP (1) JP4684625B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925185A (ja) * 1995-07-13 1997-01-28 Toshiba Ceramics Co Ltd 炭化珪素膜被覆部材及びその製造方法
JP2005227618A (ja) * 2004-02-13 2005-08-25 Semiconductor Energy Lab Co Ltd 発光装置及び発光装置の作製方法
JP2007158078A (ja) * 2005-12-06 2007-06-21 Zycube:Kk 半導体装置とその製造方法
JP2007152939A (ja) * 2005-11-11 2007-06-21 Semiconductor Energy Lab Co Ltd 機能性を有する層、及びそれを有する可撓性基板の形成方法、並びに半導体装置の作製方法
JP2007266252A (ja) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd 薄膜トランジスタおよびその製造方法
JP2008218626A (ja) * 2007-03-02 2008-09-18 Mitsubishi Electric Corp Tftアレイ基板及びその製造方法
JP2009010347A (ja) * 2007-06-01 2009-01-15 Semiconductor Energy Lab Co Ltd 表示装置の作製方法
JP2009290130A (ja) * 2008-05-30 2009-12-10 Toppan Printing Co Ltd 薄膜トランジスタ、薄膜トランジスタアレイ及び画像表示装置
JP2010117733A (ja) * 2005-12-28 2010-05-27 Semiconductor Energy Lab Co Ltd 表示装置
US8030178B2 (en) 2005-11-11 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Layer having functionality, method for forming flexible substrate having the same, and method for manufacturing semiconductor device
JP2012156543A (ja) * 2007-06-18 2012-08-16 Tap Development Ltd Liability Co ポリマー薄膜における自己整合ビアホールの形成
JP2012204658A (ja) * 2011-03-25 2012-10-22 Seiko Epson Corp 回路基板の製造方法
JP2013161090A (ja) * 2012-02-07 2013-08-19 Samsung Display Co Ltd 薄膜トランジスター表示板及びその製造方法
JP2017098536A (ja) * 2015-11-17 2017-06-01 株式会社リコー 電界効果型トランジスタ、表示素子、表示装置、システム、及び電界効果型トランジスタの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220625A (ja) * 1990-12-21 1992-08-11 Sharp Corp アクティブマトリクス液晶表示装置の製造方法
JP2002311592A (ja) * 2000-12-28 2002-10-23 Seiko Epson Corp 分子膜パターンの形成方法、分子膜パターン、半導体装置の製造方法、半導体装置、電気光学装置の製造方法、電気光学装置、電子装置の製造方法、及び電子機器
JP2003124215A (ja) * 2001-10-15 2003-04-25 Seiko Epson Corp パターン形成方法、半導体デバイス、電気回路、表示体モジュール、カラーフィルタおよび発光素子
JP2003255373A (ja) * 2002-03-01 2003-09-10 Sharp Corp 表示装置およびその製造方法
JP2003318516A (ja) * 2002-04-22 2003-11-07 Seiko Epson Corp 製膜方法及びデバイス及び電子機器並びにデバイスの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220625A (ja) * 1990-12-21 1992-08-11 Sharp Corp アクティブマトリクス液晶表示装置の製造方法
JP2002311592A (ja) * 2000-12-28 2002-10-23 Seiko Epson Corp 分子膜パターンの形成方法、分子膜パターン、半導体装置の製造方法、半導体装置、電気光学装置の製造方法、電気光学装置、電子装置の製造方法、及び電子機器
JP2003124215A (ja) * 2001-10-15 2003-04-25 Seiko Epson Corp パターン形成方法、半導体デバイス、電気回路、表示体モジュール、カラーフィルタおよび発光素子
JP2003255373A (ja) * 2002-03-01 2003-09-10 Sharp Corp 表示装置およびその製造方法
JP2003318516A (ja) * 2002-04-22 2003-11-07 Seiko Epson Corp 製膜方法及びデバイス及び電子機器並びにデバイスの製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925185A (ja) * 1995-07-13 1997-01-28 Toshiba Ceramics Co Ltd 炭化珪素膜被覆部材及びその製造方法
JP2005227618A (ja) * 2004-02-13 2005-08-25 Semiconductor Energy Lab Co Ltd 発光装置及び発光装置の作製方法
JP4566575B2 (ja) * 2004-02-13 2010-10-20 株式会社半導体エネルギー研究所 発光装置の作製方法
JP2007152939A (ja) * 2005-11-11 2007-06-21 Semiconductor Energy Lab Co Ltd 機能性を有する層、及びそれを有する可撓性基板の形成方法、並びに半導体装置の作製方法
US8030178B2 (en) 2005-11-11 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Layer having functionality, method for forming flexible substrate having the same, and method for manufacturing semiconductor device
US8436354B2 (en) 2005-11-11 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Layer having functionality, method for forming flexible substrate having the same, and method for manufacturing semiconductor device
JP2007158078A (ja) * 2005-12-06 2007-06-21 Zycube:Kk 半導体装置とその製造方法
US8634044B2 (en) 2005-12-28 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US11269214B2 (en) 2005-12-28 2022-03-08 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US10739637B2 (en) 2005-12-28 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
JP2010117733A (ja) * 2005-12-28 2010-05-27 Semiconductor Energy Lab Co Ltd 表示装置
JP2012032836A (ja) * 2005-12-28 2012-02-16 Semiconductor Energy Lab Co Ltd 表示装置
US10444564B1 (en) 2005-12-28 2019-10-15 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US9703140B2 (en) 2005-12-28 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
JP2007266252A (ja) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd 薄膜トランジスタおよびその製造方法
JP2008218626A (ja) * 2007-03-02 2008-09-18 Mitsubishi Electric Corp Tftアレイ基板及びその製造方法
US8647933B2 (en) 2007-06-01 2014-02-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and display device
JP2009010347A (ja) * 2007-06-01 2009-01-15 Semiconductor Energy Lab Co Ltd 表示装置の作製方法
JP2012156543A (ja) * 2007-06-18 2012-08-16 Tap Development Ltd Liability Co ポリマー薄膜における自己整合ビアホールの形成
JP2009290130A (ja) * 2008-05-30 2009-12-10 Toppan Printing Co Ltd 薄膜トランジスタ、薄膜トランジスタアレイ及び画像表示装置
JP2012204658A (ja) * 2011-03-25 2012-10-22 Seiko Epson Corp 回路基板の製造方法
JP2013161090A (ja) * 2012-02-07 2013-08-19 Samsung Display Co Ltd 薄膜トランジスター表示板及びその製造方法
JP2017098536A (ja) * 2015-11-17 2017-06-01 株式会社リコー 電界効果型トランジスタ、表示素子、表示装置、システム、及び電界効果型トランジスタの製造方法

Also Published As

Publication number Publication date
JP4684625B2 (ja) 2011-05-18

Similar Documents

Publication Publication Date Title
US7964452B2 (en) Liquid crystal display device and method for manufacturing the same
KR101124999B1 (ko) 반도체 장치와 그 제조 방법
TWI254340B (en) Method for fabricating thin film pattern, device and fabricating method therefor, method for fabricating liquid crystal display, liquid crystal display, method for fabricating active matrix substrate, electro-optical apparatus, and electrical apparatus
JP4684625B2 (ja) 半導体装置の作製方法
US7439086B2 (en) Method for manufacturing liquid crystal display device
JP4619060B2 (ja) 半導体装置の作製方法
TW200419521A (en) Liquid crystal display device and manufacturing method therof
TWI390316B (zh) 液晶顯示裝置及其製造方法
JP4554344B2 (ja) 半導体装置の作製方法
JP4737971B2 (ja) 液晶表示装置および液晶表示装置の作製方法
JP4522904B2 (ja) 半導体装置の作製方法
JP4671665B2 (ja) 表示装置の作製方法
JP4679058B2 (ja) 半導体装置の作製方法
JP4489443B2 (ja) 液晶表示装置の作製方法
JP4624078B2 (ja) 液晶表示装置の作製方法
JP2005210014A (ja) 半導体膜、半導体膜の成膜方法、半導体装置およびその作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees