本発明の実施形態について、以下に説明する。
(実施の形態1)
ここではチャネルエッチ型のTFTをスイッチング素子とするアクティブマトリクス型液晶表示装置の作製例を図1、図2に示す。
まず、基板10上に後に形成する液滴吐出法による材料層と密着性を向上させるための下地層11を形成する。下地層11は、極薄く形成すれば良いので、必ずしも層構造を持っていなくても良く、下地前処理とみなすこともできる。スプレー法またはスパッタ法によって光触媒物質(酸化チタン(TiOX)、チタン酸ストロンチウム(SrTiO3)、セレン化カドミウム(CdSe)、タンタル酸カリウム(KTaO3)、硫化カドミウム(CdS)、酸化ジルコニウム(ZrO2)、酸化ニオブ(Nb2O5)、酸化亜鉛(ZnO)、酸化鉄(Fe2O3)、酸化タングステン(WO3))を全面に滴下する処理、またはインクジェット法やゾルゲル法を用いて有機材料(ポリイミド、アクリル、或いは、シリコン(Si)と酸素(O)との結合で骨格構造が構成され、置換基に水素、フッ素、アルキル基、または芳香族炭化水素のうち少なくとも1種を有する材料を用いた塗布絶縁膜)を選択的に形成する処理を行えばよい。
光触媒物質は、光触媒機能を有する物質を指し、紫外光領域の光(波長400nm以下、好ましくは380nm以下)を照射し、光触媒活性を生じさせるものである。光触媒物質上に、インクジェット法により、溶媒に混入された導電体を吐出すると、微細な描画を行うことができる。
例えば、TiOXに光照射する前、親油性はあるが、親水性はない、つまり撥水性の状態にある。光照射を行うことにより、光触媒活性が起こり、親水性にかわり、逆に親油性がない状態、つまり撥油性となる。なお光照射時間により、親水性と親油性を共に有する状態にもなりうる。
なお、親水性とは、水に濡れやすい状態を指し、接触角が30度以下、特に接触角が5度以下を超親水性という。一方撥水性とは、水に濡れにくい状態を指し、接触角が90度以上のものを指す。同様に親油性とは、油に濡れやすい状態を指し、撥油性とは油に濡れにくい状態を指す。なお接触角とは、滴下したドットのふちにおける、形成面と液滴の接線がなす角度のことを指す。
なお、水系の溶媒を用いる場合、インクジェットノズルからスムーズに吐出できるように界面活性剤を添加すると好ましい。また、インクジェットノズルに代えて、噴霧ノズルやディスペンスノズルを用いることもできる。
また、油(アルコール)系の溶媒に混入された導電体を吐出する場合、光照射が行われない領域(以下、非照射領域と表記する)に導電体を吐出し、非照射領域上から又は非照射領域にむかってドットを吐出することにより、同様に配線を形成することができる。
なお、油(アルコール)系の溶媒は、非極性溶剤又は低極性溶剤を用いることができる。例えば、テルピネオール、ミネラルスピリット、キシレン、トルエン、エチルベンゼン、メシチレン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、シクロヘキサン、又はシクロオクタンを用いることができる。
更に光触媒物質へ遷移金属(Pd、Pt、Cr、Ni、V、Mn、Fe、Ce、Mo、W等)をドーピングすることにより、光触媒活性を向上させたり、可視光領域(波長400nm〜800nm)の光により光触媒活性を起こすことができる。遷移金属は、広いバンドギャップを持つ活性な光触媒の禁制帯内に新しい準位を形成し、可視光領域まで光の吸収範囲を拡大しうるからである。例えば、CrやNiのアクセプター型、VやMnのドナー型、Fe等の両性型、その他Ce、Mo、W等をドーピングすることができる。このように光の波長は光触媒物質によって決定することができるため、光照射とは光触媒物質の光触媒活性化させる波長の光を照射することを指す。
また、光触媒物質を真空中又は水素環流中で加熱し還元させると、結晶中に酸素欠陥が発生する。このように遷移元素をドーピングしなくても、酸素欠陥は電子ドナーと同等の役割を果たす。特に、ゾルゲル法により形成する場合、酸素欠陥が最初から存在するため、還元しなくともよい。またN2等のガスをドープすることにより、酸素欠陥を形成することができる。
また、ここでは基板上に導電性材料を吐出する場合に密着性を良くする下地前処理を行う例を示したが、特に限定されず、材料層(例えば、有機層、無機層、金属層)、或いは、吐出した導電性層の上にさらに液滴吐出法で材料層(例えば、有機層、無機層、金属層)を形成する場合において、材料層と材料層との密着性向上のためのTiOX成膜処理を行っても良い。つまり、液滴吐出法で導電性材料を吐出して描画する場合、その導電性材料層の上下界面で下地前処理を挟み、その密着性を良くすることが望ましい。
また、下地層11は、光触媒材料に限らず、3d遷移金属(Sc、Ti、Cr、Ni、V、Mn、Fe、Co、Cu、Zn等)、または、その酸化物、窒化物、酸窒化物を用いることができる。
なお、基板10は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス若しくはアルミノシリケートガラスなど、フュージョン法やフロート法で作製される無アルカリガラス基板の他、本作製工程の処理温度に耐えうる耐熱性を有するプラスチック基板等を用いることができる。また、反射型の液晶表示装置とする場合、単結晶シリコンなどの半導体基板、ステンレスなどの金属基板、またはセラミック基板の表面に絶縁層を設けた基板を適用しても良い。
次いで、スパッタ法、CVD法、または液滴吐出法などを用いて絶縁膜を全面に形成する。この絶縁膜としては、無機材料(酸化シリコン、窒化シリコン、酸化窒化シリコンなど)、感光性または非感光性の有機材料(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジストまたはベンゾシクロブテン)、またはこれらの積層などを用いることができる。また、この絶縁膜としてシロキサン系ポリマーを用いて得られるアルキル基を含むSiOx膜を適用してもよい。この絶縁膜の厚さと同じ厚さによって、後に形成されるゲート配線の厚さ及び電気抵抗値が決定される。大面積の画面を有する液晶表示装置を形成する場合には、低抵抗なゲート配線を形成することが望ましく、絶縁膜の厚さを厚く、例えば1μm〜100μmとすればよい。ここでは絶縁膜の厚さを5μmとする。なお、下地層11により密着性のよい絶縁膜が形成される。
次いで、感光性樹脂(代表的にはレジスト)からなるマスク13を形成する。マスク13は、液滴吐出法や印刷法(凸版、平板、凹版、スクリーンなど)を用いて形成する。直接、所望のマスクパターンを液滴吐出法や印刷法で形成してもよいが、高精細度に形成するために全面に液滴吐出法や印刷法でレジスト膜を形成した後、フォトマスクを用いて露光を行い、図4に示すレジスト剥離装置を用いて所望のマスクパターンを得ることが望ましい。
図4に示すレジスト剥離装置は基板をスピンさせることなく現像および基板の洗浄を行うことができる。図4(A)は側面図であり、基板ホルダ384に固定された大面積基板300を搬送しながら、レジスト剥離液ノズル群381からレジスト剥離液を吐出する。大面積基板300は画素部302が4つ取れ、4パネルを作製することができる。そして、純水ノズル群382から水洗の水、及びブローノズル群383からの気体を噴出する。大面積基板300は断面図である図4(B)に示したように、角度θとなるよう斜めに配置されている。角度θは、0°<θ<90°、好ましくは45°<θ<80°の範囲をとることができる。なお、図4(B)において303はレジスト膜である。レジスト膜303に向けて複数のレジスト剥離液ノズル380から吐出したレジスト剥離液は重力により基板表面に沿って流れる。また、角度θは、90°<θ<120°とし、圧力を高くしてレジスト剥離液ノズル群381からのレジスト剥離液を噴出することもできる。この場合、レジスト剥離液は大面積基板300上を垂れることなく、そのまま落ちるため、レジスト剥離液のムラを防止することができる。同様に、圧力を高くして純水ノズル群382から水洗の純水、及びブローノズル383からの気体を噴出する。
次いで、絶縁膜の選択的エッチングを行って絶縁層14を形成し、凹部12が形成される。(図1(A))このエッチングの際、下地層11がエッチングストッパーとして機能するように絶縁膜の材料やエッチャントやエッチングガスを適宜調節する。
次いで、マスク13を残したまま、液滴吐出法、代表的にはインクジェット法により凹部に向けて材料液を滴下した後、酸素雰囲気で焼成を行い、ゲート電極またはゲート配線となる樹脂を含む金属配線15を形成する。(図1(B))絶縁層14によって予め凹部が形成されているため、正確なパターン形状、特に細い幅の配線を得ることができる。ここではゲート配線となる樹脂を含む金属配線15の幅を1μmとする。なお、図1(B)は仮焼成前の基板の状態を示している。余分な液滴16がマスク13上に残っても、マスクを疎液性としておくことで金属配線と隔離して焼成することができるため、後のマスクの除去工程で同時に取り除くことができる。
また、同時に太い幅の配線も得ることができる。樹脂を含む金属配線15と同様に端子部に伸びる配線40も形成する。ここでは端子部に伸びる配線40の幅を30μmとする。なお、ここでは図示しないが、保持容量を形成するための容量電極または容量配線も必要であれば形成する。
これらの配線材料としては、金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、パラジウム(Pd)、タングステン(W)、ニッケル(Ni)、タンタル(Ta)、ビスマス(Bi)、鉛(Pb)、インジウム(In)、錫(Sn)、亜鉛(Zn)、チタン(Ti)、若しくはアルミニウム(Al)、これらからなる合金、これらの分散性ナノ粒子、又はハロゲン化銀の微粒子を用いる。特に、ゲート配線は、低抵抗化することが好ましいので、比抵抗値を考慮して、金、銀、銅のいずれかの材料を溶媒に溶解又は分散させたものを用いることが好適であり、より好適には、低抵抗な銀、銅を用いるとよい。但し、銀、銅を用いる場合には、金属元素(銀、銅)の拡散防止対策のため、合わせてバリアメタル膜(Ta、TaN、Ti、TiN、W、WNなど)を設けるとよい。溶媒は、酢酸ブチル等のエステル類、イソプロピルアルコール等のアルコール類、アセトン等の有機溶剤等に相当する。表面張力と粘度は、溶媒の濃度を調整したり、界面活性剤等を加えたりして適宜調整する。
また、上記金属材料が複合された粒子、例えば銅の周りを銀でコーティングされた金属粒子を溶媒に分散、または溶かして液滴吐出法により金属配線を形成してもよい。銅の周りを銀でコーティングすることによって、下地膜または下地前処理を行った場合の密着性向上を図ることができる。また、銅の凹凸を銀でコーティングすることによって滑らかなものとする。また、銅の周りをバッファ層(NiまたはNiB)でコーティングし、さらに全体を銀でコーティングされた金属粒子を溶媒に分散、または溶かして液滴吐出法により金属配線を形成してもよい。なお、バッファ層は、銅(Cu)成分と銀(Ag)との密着性を上げるために設ける。
液滴吐出法において用いるノズルの径は、0.02〜100μm(好適には30μm以下)に設定し、該ノズルから吐出される組成物の吐出量は0.001pl〜100pl(好適には10pl以下)に設定することが好ましい。液滴吐出法には、オンデマンド型とコンティニュアス型の2つの方式があるが、どちらの方式を用いてもよい。さらに液滴吐出法において用いるノズルには、圧電体の電圧印加により変形する性質を利用した圧電方式、ノズル内に設けられたヒータにより組成物を沸騰させ該組成物を吐出する加熱方式があるが、そのどちらの方式を用いてもよい。被処理物とノズルの吐出口との距離は、所望の箇所に滴下するために、出来る限り近づけておくことが好ましく、好適には0.1〜3mm(好適には1mm以下)程度に設定する。ノズルと被処理物は、その相対的な距離を保ちながら、ノズル及び被処理物の一方が移動して、所望のパターンを描画する。また、組成物を吐出する前に、被処理物の表面にプラズマ処理を施してもよい。これは、プラズマ処理を施すと、被処理物の表面が親水性になったり、疎液性になったりすることを活用するためである。例えば、純水に対しては親水性になり、アルコールを溶媒したペーストに対しては疎液性になる。
組成物を吐出する工程は、減圧下で行っても良い。これは、組成物を吐出して被処理物に着弾するまでの間に、該組成物の溶媒が揮発し、後の乾燥と焼成の工程を省略又は短くすることができるためである。組成物の吐出後は、常圧下又は減圧下で、レーザ光の照射や瞬間熱アニール、加熱炉等により、乾燥と焼成の一方又は両方の工程を行う。乾燥と焼成の工程は、両工程とも加熱処理の工程であるが、例えば、乾燥は100度で3分間、焼成は200〜350度で15分間〜120分間で行うもので、その目的、温度と時間が異なるものである。乾燥と焼成の工程を良好に行うためには、基板を加熱しておいてもよく、そのときの温度は、基板等の材質に依存するが、100〜800度(好ましくは200〜350度)とする。本工程により、組成物中の溶媒の揮発又は化学的に分散剤を除去し、周囲の樹脂が硬化収縮することで、融合と融着を加速する。即ち、焼成した配線および電極は樹脂を含む。雰囲気は、酸素雰囲気、窒素雰囲気又は空気で行う。但し、金属元素を分解又は分散している溶媒が除去されやすい酸素雰囲気下で行うことが好適である。
上記下地層の形成または下地前処理を行うことによって、液滴吐出法での金属層の密着性が大幅に向上され、希フッ酸(1/100希釈)に浸けても1分以上耐えることができ、テープ剥がし試験でも十分な密着性が確保されている。
また、絶縁層14を親液性の材料とする、或いは絶縁層14の側壁を親液性とすることによって、側壁においても金属層の密着性を向上できる。
次いで、レジストからなるマスク13を除去する。この段階では絶縁層の表面平面よりも金属層が盛り上がっていても構わない。図4に示す装置と同様の装置を用いて、ノズルから溶媒(シンナー等)を吐出させた後、水洗、乾燥を順次行えばよい。なお、水洗に加えて超音波洗浄を行ってもよい。
次いで、平坦化処理、例えばプレスや化学的機械研磨(Chemical−Mechanical Polishing:以下、CMPと記す)を行う。(図1(C))
また、機械的に加圧する加熱プレス装置の一例を図5(A)に示す。加熱プレス装置は上下一対のホットプレート52、53を備えていて、この上下ホットプレートの間に試料を挟みこみ、上ホットプレート53を下方に移動させて押圧する。ガラス基板が割れない範囲(面圧0.5kgf/cm2〜1.0kgf/cm2)で加圧力を加える。ホットプレート52、53はそれぞれヒータ58a、58bを内蔵しており、下側のホットプレート52は固定している。上ホットプレート53は支柱55a、55bに、上下に昇降自在に取り付けられている。このホットプレート52、53によって、テフロン(登録商標)コート膜56が表面に設けられた上プレート54と被処理層57が設けられた基板51をプレスする。ここでは、被処理層57とは、絶縁層14と金属配線15を指す。プレスによる平坦化によって絶縁層14と金属配線15との露呈面が一致する。プレスされても絶縁層14が厚さ、幅を保持しているため、金属配線15のパターンが延伸されない。また、仮焼成した基板をプレスし、プレスした状態で焼成温度まで加熱することによって本焼成を短時間に行うことができる。大面積基板においては、ベーク室も巨大なものが必要とされ、ベーク室全体を加熱しようとするとベーク処理時間が長くなりがちである。
また、図5(A)とは異なる他の加圧する装置の例を図5(B)に示す。ローラ62と送りローラ63の間に基板61を挟み、駆動回転させながら加圧手段(図示しない)により加圧してプレスする。ローラ62は金属製の円筒体で表面にテフロン(登録商標)コート膜66が設けられており、送りローラ63と対をなして対向配列されている。また、送りローラ63の前後には基板61を送り込み、または搬出するために、駆動手段によって回転される複数の搬送ローラを並べたローラコンベア64が設けられている。なお、基板61には被処理層67が設けられている。また、ローラ62及び送りローラ63の内部に温度調節可能なシーズヒータを内設してローラ表面を加熱保持できるようにしてもよい。
どちらのプレス装置でもプレスによる平坦化を行うことができる。長時間または高温加熱の加熱プレスを行う場合には、図5(A)のプレス装置が適しており、短時間または低温加熱の加熱プレスを行う場合には、図5(B)のプレス装置が適している。なお、どちらのプレス装置においても被処理層の構成材料の付着をふせぐテフロン(登録商標)コート膜56、66を設けている。
また、ここで他の作製プロセスを図6を用いて説明する。液滴吐出法において、異なる種類の材料を複数のノズルから吐出できる装置を用いる。なお、基板10上に下地層11を形成し、絶縁層74を形成する工程は上述した工程と同一であるので説明は省略する。図6(A)に示すように絶縁層74上に水溶性樹脂77とレジストからなるマスク73を同じ装置で吐出する。この水溶性樹脂77はレジスト材料の流動性が高い場合、またはベーク時に流動性が増加するレジスト材料である場合、パターン変形を防ぐために用いる。また、水溶性樹脂77はレジスト不要な領域、例えば基板周縁部を保護する。そして、焼成または光硬化を行った後、図6(B)に示すように水洗を行って水溶性樹脂のみを除去する。なお、図6(B)は仮焼成前の状態を示している。こうして得られたマスク73を用いて図6(C)に示すように絶縁層74の選択的エッチングを行って精細なパターンを得てもよい。そして、図6(D)に示すように液滴吐出法により配線75、40を形成し、マスク73上に付着した余分な液滴76をマスクと同時に除去し、図6(E)に示すようにプレスによる平坦化を行えばよい。図6に示すレジストマスク形成工程とした場合、マスク73の端部が曲率を有した形状となる。従って、余分な液滴76と配線75との間隔をさらに広げることができる。なお、ここでは水溶性樹脂を例に説明したが、特に限定されず、水以外の溶媒でマスク材料と選択性の取れる材料として形成した後、その材料のみ溶媒で溶かしてもよい。
図6(A)〜図6(E)に示したプロセス、または図1(A)〜図1(C)に示したプロセスのいずれを用いてもよい。
次いで、プラズマCVD法やスパッタリング法を用いて、ゲート絶縁膜18、半導体膜、n型の半導体膜を順次、成膜する。本実施の形態においては、配線上であっても平坦な表面を有する埋め込み配線となっているため、各膜厚が薄くともカバレッジ不良は発生しない。例えば、プラズマCVD法またはスパッタ法を用い、ゲート絶縁膜18の厚さを1〜200nmとすることができる。
ゲート絶縁膜18としては、PCVD法やスパッタ法により得られる酸化珪素、窒化珪素、または窒化酸化珪素を主成分とする材料を用いる。好ましくは10nm〜50nmと薄くしてシリコンを含む絶縁膜の単層または積層構造で形成する。
このように膜厚の薄い絶縁膜をプラズマCVD法を用いる場合、成膜レートを遅くして薄い膜厚を制御性よく得る必要がある。例えば、RFパワーを100W、10kHz、圧力0.3Torr、N2Oガス流量400sccm、SiH4ガス流量1sccm、とすれば酸化珪素膜の成膜速度を6nm/minとすることができる。
また、ゲート絶縁膜18をシロキサン系ポリマーを用いた液滴吐出法により吐出、焼成してアルキル基を含むSiOx膜としてもよい。ただし、液滴吐出法によりゲート絶縁膜18を形成する場合には膜厚は100nm以上に厚くなる。
半導体膜は、シランやゲルマンに代表される半導体材料ガスを用いて気相成長法やスパッタリング法や熱CVD法で作製されるアモルファス半導体膜、或いはセミアモルファス半導体膜で形成する。
アモルファス半導体膜としては、SiH4、若しくはSiH4とH2の混合気体を用いたPCVD法により得られるアモルファスシリコン膜を用いることができる。また、セミアモルファス半導体膜としては、SiH4をH2で3倍〜1000倍に希釈した混合気体、Si2H6とGeF4のガス流量比を20〜40:0.9(Si2H6:GeF4)で希釈した混合気体、或いはSi2H6とのF2混合気体を用いたPCVD法により得られるセミアモルファスシリコン膜を用いることができる。なお、セミアモルファスシリコン膜は、下地との界面により結晶性を持たせることができるため好ましい。
n型の半導体膜は、シランガスとフォスフィンガスを用いたPCVD法で形成すれば良く、アモルファス半導体膜、或いはセミアモルファス半導体膜で形成することができる。n型の半導体膜20を設けると、半導体膜と電極(後の工程で形成される電極)とのコンタクト抵抗が低くなり好ましいが、必要に応じて設ければよい。
なお、ゲート絶縁膜18、半導体膜、n型の半導体膜は、選択的に成膜することが好ましく、図9に示す装置を用いれば可能である。図9に示す装置はフェイスダウン方式として基板900を搬送し、大気圧プラズマCVD装置901、902、903により連続的な成膜ができる。大気圧プラズマCVD装置901、902、903にはそれぞれプロセスガス導入スリットとプロセスガス排出スリットが設けられており、両スリット間に挟まれた領域近傍を基板900が通過すると成膜できる。なお、基板搬送経路904の上流側にプロセスガス排出スリットを設け、下流側にプロセスガス導入スリットが設けられている。図9に示す装置は、CVD装置の上方を基板900の一部通過させた後から成膜することも可能である。全面にゲート絶縁膜を成膜した場合、液晶表示装置用のアクティブマトリクス基板としては、画素部においてゲート絶縁膜をエッチングする必要はなく、端子部の端子電極を露出する際にゲート絶縁膜を除去する必要がある。しかしながら、図9に示す装置を用いれば、端子部の端子電極が設けられている領域にゲート絶縁膜を形成することなく画素部のみを覆うゲート絶縁膜を得ることができる。
次いで、マスク21を設け、半導体膜と、n型の半導体膜とを選択的にエッチングして島状の半導体膜19、n型の半導体膜20を得る。(図1(D))マスク21の形成方法は、図1(A)に示した方法でも図6(A)及び図6(B)に示した方法でもよい。
次いで、液滴吐出法により導電性材料(Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等)を含む組成物を選択的に吐出して、ソース配線またはドレイン配線22、23を形成する。なお、同様に、端子部において接続配線(図示しない)も形成する。(図1(E))また、液滴吐出法に代えて、スパッタ法により金属膜を形成した後、パターニングによってソース配線またはドレイン配線22、23を形成してもよい。
次いで、ソース配線またはドレイン配線22、23をマスクとしてn型の半導体膜、および半導体膜の上層部をエッチングして、図2(A)の状態を得る。この段階で、活性層となるチャネル形成領域24、ソース領域26、ドレイン領域25を備えたチャネルエッチ型のTFTが完成する。
次いで、チャネル形成領域24を不純物汚染から防ぐための保護膜27を形成する。保護膜27としては、スパッタ法、またはPCVD法により得られる窒化珪素、または窒化酸化珪素を主成分とする材料を用いる。また、この保護膜27は、図9に示したCVD装置で選択的に形成してもよい。ここでは保護膜を形成した例を示したが、特に必要でなければ設ける必要はない。
次いで、液滴吐出法により層間絶縁膜28を選択的に形成する。層間絶縁膜28は、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ノボラック樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いる。また、ベンゾシクロブテン、パリレン、フレア、透過性を有するポリイミドなどの有機材料、シロキサン系ポリマー等の重合によってできた化合物材料、水溶性ホモポリマーと水溶性共重合体を含む組成物材料等を用いて液滴吐出法で形成する。
次いで、層間絶縁膜28をマスクとして保護膜をエッチングし、ソース配線またはドレイン配線22、23上の一部に導電性部材からなる凸状部(ピラー)29を形成する。凸状部(ピラー)29は、導電性材料(Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等)を含む組成物の吐出と焼成を繰り返すことによって積み重ねてもよい。
次いで、層間絶縁膜28上に凸状部(ピラー)29と接する画素電極30を形成する。(図1(D))なお、同様に配線40と接する端子電極41も形成する。透過型の液晶表示パネルを作製する場合には、液滴吐出法または印刷法によりインジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)などを含む組成物からなる所定のパターンを形成し、焼成して画素電極30および端子電極41を形成しても良い。また、反射型の液晶表示パネルを作製する場合には、画素電極30および端子電極41を液滴吐出法によりAg(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いて形成することができる。他の方法としては、スパッタリング法により透明導電膜、若しくは光反射性の導電膜を形成して、液滴吐出法によりマスクパターンを形成し、エッチングを組み合わせて画素電極を形成しても良い。
また、液滴吐出法で画素電極30のような比較的広い面積のパターンを形成する場合には、凹凸が生じる恐れがあるため、図5に示すプレス装置を用い、加熱プレスによって画素電極30の表面を平坦化することが好ましい。また、画素電極30の材料としてインジウム錫酸化物(ITO)のように結晶化させるためのベークが必要な材料を用いた場合、プレスと同時に焼成に加え、ベークも行うことができる。
図2(D)の段階での画素の上面図の一例を図3に示す。図3中において、鎖線A−B断面が図2(D)の断面図と対応している。なお、対応する部位には同じ符号を用いている。
また、ここでは保護膜27を設けた例としたため、層間絶縁膜28と凸状部(ピラー)29とを別々に形成したが、保護膜を設けない場合、液滴吐出法により同じ装置(例えば、図7、図8に示す装置)で形成することもできる。
ここで、同時に異なる材料(例えば絶縁材料と導電材料)をパターン形成できる液滴吐出装置の一例を図7に示す。
図7において、1500は大型基板、1504は撮像手段、1507はステージ、1511はマーカー、1503は1つのパネルが形成される領域を示している。1つのパネルの幅と同じ幅のヘッド1505a、1505b、1505cを備え、ステージを移動させてこれらのヘッドを走査、例えばジグザグまたは往復させて適宜、材料層のパターンを形成する。大型基板の幅と同じ幅のヘッドとすることも可能であるが、図7のように1つのパネルサイズに合わせるほうが操作しやすい。また、スループット向上のためには、ステージを動かしたままで材料の吐出を行うことが好ましい。
また、ヘッド1505a、1505b、1505cやステージ1507には温度調節機能を持たせることが好ましい。
なお、ヘッド(ノズル先端)と大型基板との間隔は、約1mmとする。この間隔を短くすることによって着弾精度を高めることができる。
図7において、走査方向に対して3列としたヘッド1505a、1505b、1505cはそれぞれ異なる材料層を形成することを可能としてもよいし、同一材料を吐出してもよい。3つのヘッドで同一材料を吐出して層間絶縁膜をパターン形成する場合にはスループットが向上する。
なお、図7に示す装置は、ヘッド部を固定し、大型基板1500を移動させて走査させることも、大型基板1500を固定し、ヘッド部を移動させて走査させることも可能である。
液滴吐出手段の個々のヘッド1505a、1505b、1505cは制御手段に接続され、それがコンピュータで制御することにより予めプログラミングされたパターンを描画することができる。吐出量は印加するパルス電圧により制御する。描画するタイミングは、例えば、基板上に形成されたマーカーを基準に行えば良い。或いは、基板の縁を基準にして基準点を確定させても良い。これをCCDなどの撮像手段で検出し、画像処理手段にてデジタル信号に変換したものをコンピュータで認識して制御信号を発生させて制御手段に送る。勿論、基板上に形成されるべきパターンの情報は記憶媒体に格納されたものであり、この情報を基にして制御手段に制御信号を送り、液滴吐出手段の個々のヘッドを個別に制御することができる。
図8に示すように、同時に異なる材料をパターン形成する場合、先にノズルユニット800における1列目のノズル群から第1の材料液を基板801に向けて吐出して第1の材料層802を形成し、続いて2列目のノズル群から第2の材料液を吐出して第2の材料層803を形成する。このような吐出を行うとアライメントが同じであるためパターンのずれが少なく、さらにプロセス時間も短縮される。
パターン形成途中を示す上面図が図8(A)であり、1列目の吐出を示す断面図が図8(B)であり、2列目の吐出を示す断面図が図8(C)である。
また、図8に示す吐出方法は、第1の材料層によって液滴の広がりを抑えることができるため、第2の材料層の流動性が高い場合にも有効である。
また、図8に示す吐出方法で水溶性樹脂とマスク材料とを形成し、図6(A)の状態を得ることもできる。
以上の工程により、基板10上にボトムゲート型(逆スタガ型ともいう。)のTFTおよび画素電極が形成された液晶表示パネル用のTFT基板が完成する。
次いで、画素電極30を覆うように、配向膜34aを形成する。なお、配向膜34aは、液滴吐出法やスクリーン印刷法やオフセット印刷法を用いればよい。その後、配向膜34aの表面にラビング処理を行う。
そして、対向基板35には、着色層36a、遮光層(ブラックマトリクス)36b、及びオーバーコート層37からなるカラーフィルタを設け、さらに透明電極からなる対向電極38と、その上に配向膜34bを形成する。そして、閉パターンであるシール材(図示しない)を液滴吐出法により画素部と重なる領域を囲むように形成する。ここでは後の工程で液晶を滴下するため、閉パターンのシール材を描画する例を示すが、開口部を有するシールパターンを設け、TFT基板を貼りあわせた後に毛細管現象を用いて液晶を注入するディップ式(汲み上げ式)を用いてもよい。また、カラーフィルタも液滴吐出法により形成することができる。
次いで、気泡が入らないように減圧下で液晶の滴下を行い、両方の基板を貼り合わせる。閉ループのシールパターン内に液晶を1回若しくは複数回滴下する。液晶の配向モードとしては、液晶分子の配列が光の入射から出射に向かって90°ツイスト配向したTNモードを用いる場合が多い。TNモードの液晶表示装置を作製する場合には、基板のラビング方向が直交するように貼り合わせる。
なお、液晶39を挟んだ一対の基板の間隔は、球状のスペーサを散布したり、樹脂からなる柱状のスペーサを形成したり、シール材にフィラーを含ませることによって維持すればよい。上記柱状のスペーサは、アクリル、ポリイミド、ポリイミドアミド、エポキシの少なくとも1つを主成分とする有機樹脂材料、もしくは酸化珪素、窒化珪素、酸化窒化珪素のいずれか一種の材料、或いはこれらの積層膜からなる無機材料であることを特徴としている。
次いで、必要でない基板の分断を行う。多面取りの場合、それぞれのパネルを分断する。また、1面取りの場合、予めカットされている対向基板を貼り合わせることによって、分断工程を省略することもできる。
そして、異方性導電体層45を介し、公知の技術を用いてFPC46を貼りつける。以上の工程で液晶モジュールが完成する。(図2(D))また、必要があれば光学フィルムを貼り付ける。透過型の液晶表示装置とする場合、偏光板は、アクティブマトリクス基板と対向基板の両方に貼り付ける。
以上示したように、本実施の形態では、液滴吐出法を用いてフォトマスクを利用した光露光工程を削減することにより、工程を単純化するとともに、工程時間を短縮することができる。また、液滴吐出法を用いて基板上に直接的に各種のパターンを形成することにより、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易に液晶表示パネルを製造することができる。また、液滴吐出法を用いて低抵抗な埋め込み配線を形成することができるため、大面積パネルを作製することができる。
また、本実施の形態では、スピンコートを行わず、フォトマスクを利用した光露光工程を極力行わない工程を示したが、特に限定されず、一部のパターニングをフォトマスクを利用した光露光工程により行ってもよい。
(実施の形態2)
ここではチャネルエッチ型のTFTをスイッチング素子とするアクティブマトリクス型発光表示装置の作製例を図20、図21に示す。
まず、実施の形態1と同様に、基板210上に後に形成する液滴吐出法による材料層と密着性を向上させるための下地層211を形成する。
下地層211は、光触媒材料に限らず、3d遷移金属(Sc、Ti、Cr、Ni、V、Mn、Fe、Co、Cu、Zn等)、または、その酸化物、窒化物、酸窒化物を用いることができる。
なお、基板210は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス若しくはアルミノシリケートガラスなど、フュージョン法やフロート法で作製される無アルカリガラス基板の他、本作製工程の処理温度に耐えうる耐熱性を有するプラスチック基板等を用いることができる。
次いで、実施の形態1と同様に、スパッタ法、CVD法、または液滴吐出法などを用いて絶縁膜を全面に形成する。
この絶縁膜としては、無機材料(酸化シリコン、窒化シリコン、酸化窒化シリコンなど)、感光性または非感光性の有機材料(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジストまたはベンゾシクロブテン)、またはこれらの積層などを用いることができる。また、この絶縁膜としてシロキサン系ポリマーを用いて得られるアルキル基を含むSiOx膜を適用してもよい。この絶縁膜の厚さと同じ厚さによって、後に形成されるゲート配線の厚さ及び電気抵抗値が決定される。大面積の画面を有する発光表示装置を形成する場合には、低抵抗なゲート配線を形成することが望ましく、絶縁膜の厚さを厚く、例えば1μm〜100μmとすればよい。ここでは絶縁膜の厚さを5μmとする。なお、下地層211により密着性のよい絶縁膜が形成される。
次いで、実施の形態1と同様に、感光性樹脂(代表的にはレジスト)からなるマスク213を形成する。マスク213は、液滴吐出法や印刷法(凸版、平板、凹版、スクリーンなど)を用いて形成する。
次いで、実施の形態1と同様に、絶縁膜の選択的エッチングを行って絶縁層214を形成し、凹部212が形成される。(図20(A))このエッチングの際、下地層211がエッチングストッパーとして機能するように絶縁膜の材料やエッチャントやエッチングガスを適宜調節する。
次いで、実施の形態1と同様に、マスク213を残したまま、液滴吐出法、代表的にはインクジェット法により凹部に向けて材料液を滴下した後、酸素雰囲気で焼成を行い、ゲート電極またはゲート配線となる金属配線215a、215bを形成する。(図20(B))なお、図20(B)では、後に形成される半導体層と重なる電極を金属配線215aで示し、上層配線とコンタクトする配線を金属配線215bで示している。金属配線215bの幅は、上層配線とコンタクトさせるため、金属配線215aの幅よりも太いものとする。ここでは金属配線215bの幅を4μmとし、金属配線215aの幅を2μmとする。
絶縁層214によって予め凹部が形成されているため、正確なパターン形状、特に細い幅の金属配線215aを得ることができる。また、同時に太い幅の配線も得ることができる。なお、図20(B)は仮焼成前の基板の状態を示している。余分な液滴216がマスク213上に残っても、マスクを疎液性としておくことで金属配線と隔離して焼成することができるため、後のマスクの除去工程で同時に取り除くことができる。
また、金属配線215a、215bと同様に端子部に伸びる配線240も形成する。なお、ここでは図示しないが、発光素子に電流を供給するための電源線も形成してもよい。また、保持容量を形成するための容量電極または容量配線も必要であれば形成する。
また、絶縁層214を親液性の材料とする、或いは絶縁層214の側壁を親液性とすることによって、側壁においても金属層の密着性を向上できる。
次いで、実施の形態1と同様に、レジストからなるマスク213を除去する。この段階では絶縁層の表面平面よりも金属層が盛り上がっていても構わない。
次いで、実施の形態1と同様に、平坦化処理、例えばプレスやCMPを行う。(図20(C)) プレスによる平坦化によって絶縁層214と金属配線215a、215bとの露呈面が一致する。プレスされても絶縁層214が厚さ、幅を保持しているため、金属配線金属配線215a、215bのパターンが延伸されない。また、仮焼成した基板をプレスし、プレスした状態で焼成温度まで加熱することによって本焼成を短時間に行うことができる。大面積基板においては、ベーク室も巨大なものが必要とされ、ベーク室全体を加熱しようとするとベーク処理時間が長くなりがちである。
また、ここで他の作製プロセスを図23を用いて説明する。液滴吐出法において、異なる種類の材料を複数のノズルから吐出できる装置を用いる。なお、基板210上に下地層211を形成し、絶縁層274を形成する工程は上述した工程と同一であるので説明は省略する。図23(A)に示すように絶縁層274上に水溶性樹脂277とレジストからなるマスク273を同じ装置で吐出する。この水溶性樹脂277はレジスト材料の流動性が高い場合、またはベーク時に流動性が増加するレジスト材料である場合、パターン変形を防ぐために用いる。また、水溶性樹脂277はレジスト不要な領域、例えば基板周縁部を保護する。そして、焼成または光硬化を行った後、図23(B)に示すように水洗を行って水溶性樹脂のみを除去する。なお、図23(B)は仮焼成前の状態を示している。こうして得られたマスク273を用いて図23(C)に示すように絶縁層274の選択的エッチングを行って精細なパターンを得てもよい。そして、図23(D)に示すように液滴吐出法により配線275a、275b、240を形成し、マスク273上に付着した余分な液滴276をマスクと同時に除去し、図23(E)に示すようにプレスによる平坦化を行えばよい。図23に示すレジストマスク形成工程とした場合、マスク273の端部が曲率を有した形状となる。従って、余分な液滴276と配線275aとの間隔をさらに広げることができる。なお、ここでは水溶性樹脂を例に説明したが、特に限定されず、水以外の溶媒でマスク材料と選択性の取れる材料として形成した後、その材料のみ溶媒で溶かしてもよい。
図23(A)〜図23(E)に示したプロセス、または図20(A)〜図20(C)に示したプロセスのいずれを用いてもよい。
次いで、実施の形態1と同様に、プラズマCVD法やスパッタリング法を用いて、ゲート絶縁膜218、半導体膜、n型の半導体膜を順次、成膜する。本実施の形態においては、配線上であっても平坦な表面を有する埋め込み配線となっているため、各膜厚が薄くともカバレッジ不良は発生しない。例えば、プラズマCVD法またはスパッタ法を用い、ゲート絶縁膜218の厚さを1〜200nmとすることができる。
半導体膜は、シランやゲルマンに代表される半導体材料ガスを用いて気相成長法やスパッタリング法や熱CVD法で作製されるアモルファス半導体膜、或いはセミアモルファス半導体膜で形成する。
n型の半導体膜は、シランガスとフォスフィンガスを用いたPCVD法で形成すれば良く、アモルファス半導体膜、或いはセミアモルファス半導体膜で形成することができる。n型の半導体膜220を設けると、半導体膜と電極(後の工程で形成される電極)とのコンタクト抵抗が低くなり好ましいが、必要に応じて設ければよい。
なお、ゲート絶縁膜218、半導体膜、n型の半導体膜は、選択的に成膜することが好ましく、図9に示す装置を用いれば可能である。
次いで、実施の形態1と同様に、マスク221を設け、半導体膜と、n型の半導体膜とを選択的にエッチングして島状の半導体膜219、n型の半導体膜220を得る。(図20(D))
次いで、マスクを設けてゲート絶縁膜を選択的にエッチングしてコンタクトホールを形成する。アクティブマトリクス型の発光装置においては一つの画素に複数のTFTが配置され、ゲート電極とゲート絶縁膜を介して上層の配線との接続箇所を有する。
次いで、液滴吐出法により導電性材料(Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等)を含む組成物を選択的に吐出して、ソース配線またはドレイン配線222、223、および引出電極217を形成する。なお、同様に、発光素子に電流を供給するための電源線や、端子部において接続配線(図示しない)も形成する。(図20(E))また、液滴吐出法に代えて、スパッタ法により金属膜を形成した後、パターニングによってソース配線またはドレイン配線222、223、および引出電極217を形成してもよい。
次いで、ソース配線またはドレイン配線222、223をマスクとしてn型の半導体膜、および半導体膜の上層部をエッチングして、図21(A)の状態を得る。この段階で、活性層となるチャネル形成領域224、ソース領域226、ドレイン領域225を備えたチャネルエッチ型のTFTが完成する。
次いで、チャネル形成領域224を不純物汚染から防ぐための保護膜27を形成する。(図20(B))保護膜227としては、スパッタ法、またはPCVD法により得られる窒化珪素、または窒化酸化珪素を主成分とする材料を用いる。また、この保護膜227は、図9に示したCVD装置で選択的に形成してもよい。ここでは保護膜を形成した例を示したが、特に必要でなければ設ける必要はない。
次いで、液滴吐出法により層間絶縁膜228を選択的に形成する。層間絶縁膜28は、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ノボラック樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いる。また、ベンゾシクロブテン、パリレン、フレア、透過性を有するポリイミドなどの有機材料、シロキサン系ポリマー等の重合によってできた化合物材料、水溶性ホモポリマーと水溶性共重合体を含む組成物材料等を用いて液滴吐出法で形成する。
次いで、層間絶縁膜228をマスクとして保護膜をエッチングし、ソース配線またはドレイン配線222、223上の一部に導電性部材からなる凸状部(ピラー)229を形成する。凸状部(ピラー)229は、導電性材料(Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等)を含む組成物の吐出と焼成を繰り返すことによって積み重ねてもよい。
次いで、層間絶縁膜228上に凸状部(ピラー)229と接する第1の電極230を形成する。(図21(C))なお、同様に配線240と接する端子電極241も形成する。ここでは駆動用のTFTはnチャネル型とした例であるので第1の電極230は陰極として機能させることが好ましい。発光を通過させる場合、第1の電極230としては、液滴吐出法または印刷法によりインジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)などを含む組成物からなる所定のパターンを形成し、焼成して第1の電極230および端子電極241を形成する。また、発光を第1の電極で反射させる場合、液滴吐出法によりAg(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物からなる所定のパターンを形成し、焼成して第1の電極230および端子電極241を形成する。他の方法としては、スパッタリング法により透明導電膜、若しくは光反射性の導電膜を形成して、液滴吐出法によりマスクパターンを形成し、エッチングを組み合わせて第1の電極230を形成しても良い。
図21(C)の段階での画素の上面図の一例を図22に示す。図22中において、鎖線A−A’断面が図21(C)中の画素部右側の断面図と対応し、鎖線B−B’が図21(C)中の画素部左側の断面図と対応している。なお、図22中において、図20および図21に対応する部位には同じ符号を用いている。また、図22において、後に形成される隔壁234の端部となる箇所は点線で示している。
また、液滴吐出法で第1の電極230のような比較的広い面積のパターンを形成する場合には、凹凸が生じる恐れがあるため、図5に示すプレス装置を用い、加熱プレスによって第1の電極230の表面を平坦化することが好ましい。また、第1の電極230の材料としてインジウム錫酸化物(ITO)のように結晶化させるためのベークが必要な材料を用いた場合、プレスと同時に焼成に加え、ベークも行うことができる。
また、ここでは保護膜227を設けた例としたため、層間絶縁膜228と凸状部(ピラー)229とを別々に形成したが、保護膜を設けない場合、液滴吐出法により同じ装置(例えば、図7、図8に示す装置)で形成することもできる。
次いで、第1の電極230の周縁部を覆う隔壁234を形成する。隔壁(土手ともいう)234は、珪素を含む材料、有機材料及び化合物材料を用いて形成する。また、多孔質膜を用いても良い。但し、アクリル、ポリイミド等の感光性、非感光性の材料を用いて形成すると、その側面は曲率半径が連続的に変化する形状となり、上層の薄膜が段切れせずに形成されるため好ましい。
以上の工程により、基板210上にボトムゲート型(逆スタガ型ともいう)のTFTおよび第1の電極が形成された発光表示パネル用のTFT基板が完成する。
次いで、電界発光層として機能する層、即ち、有機化合物を含む層236の形成を行う。有機化合物を含む層236は、積層構造であり、それぞれ蒸着法または塗布法を用いて形成する。例えば、陰極上に電子輸送層、発光層、正孔輸送層、正孔注入層と順次積層する。なお、有機化合物を含む層236の形成前に、酸素雰囲気中でのプラズマ処理や真空雰囲気下での加熱処理を行うとよい。蒸着法を用いる場合、予め、抵抗加熱により有機化合物は気化されており、蒸着時にシャッターが開くことにより基板の方向へ飛散する。気化された有機化合物は、上方に飛散し、メタルマスクに設けられた開口部を通って基板に蒸着される。また、フルカラー化するためには、発光色(R、G、B)ごとにマスクのアライメントを行えばよい。
また、塗り分けを行わず、有機化合物を含む層236として単色の発光を示す材料を用い、カラーフィルターや色変換層を組み合わせることによりフルカラー表示を行うことができる。例えば、白色又は橙色の発光を示す電界発光層を形成する場合、カラーフィルター、又はカラーフィルター、色変換層、カラーフィルターと色変換層とを組み合わせたものを別途設けることによってフルカラー表示ができる。カラーフィルターや色変換層は、例えば第2の基板(封止基板)に形成し、基板へ張り合わせればよい。また上述したように、単色の発光を示す材料、カラーフィルター、及び色変換層のいずれも液滴吐出法により形成することができる。
もちろん単色発光の表示を行ってもよい。例えば、単色発光を用いてエリアカラータイプの発光表示装置を形成してもよい。エリアカラータイプは、パッシブマトリクス型の表示部が適しており、主に文字や記号を表示することができる。
次いで、第2の電極237を形成する。発光素子の陽極として機能する第2の電極237は光を透過する透明導電膜を用いて形成し、例えばITO、ITSOの他、酸化インジウムに2〜20%の酸化亜鉛(ZnO)を混合した透明導電膜を用いる。発光素子は、有機化合物を含む層236を第1の電極と第2の電極で挟んだ構成になっている。なお、第1の電極及び第2の電極は仕事関数を考慮して材料を選択する必要があり、そして第1の電極及び第2の電極は、画素構成によりいずれも陽極、又は陰極となりうる。
また、第2の電極237の低抵抗化を図るため、発光領域とならない領域の第2の電極上に補助電極を設けてもよい。
また、第2の電極237を保護する保護層を形成してもよい。例えば、珪素からなる円盤状のターゲットを用い、成膜室雰囲気を窒素雰囲気または窒素とアルゴンを含む雰囲気とすることによって窒化珪素膜からなる保護膜を形成することができる。また、炭素を主成分とする薄膜(DLC膜、CN膜、アモルファスカーボン膜)を保護膜として形成してもよく、別途、CVD法を用いた成膜室を設けてもよい。ダイヤモンドライクカーボン膜(DLC膜とも呼ばれる)は、プラズマCVD法(代表的には、RFプラズマCVD法、マイクロ波CVD法、電子サイクロトロン共鳴(ECR)CVD法、熱フィラメントCVD法など)、燃焼炎法、スパッタ法、イオンビーム蒸着法、レーザー蒸着法などで形成することができる。成膜に用いる反応ガスは、水素ガスと、炭化水素系のガス(例えばCH4、C2H2、C6H6など)とを用い、グロー放電によりイオン化し、負の自己バイアスがかかったカソードにイオンを加速衝突させて成膜する。また、CN膜は反応ガスとしてC2H4ガスとN2ガスとを用いて形成すればよい。なお、DLC膜やCN膜は、可視光に対して透明もしくは半透明な絶縁膜である。可視光に対して透明とは可視光の透過率が80〜100%であることを指し、可視光に対して半透明とは可視光の透過率が50〜80%であることを指す。なお、この保護膜は、必要がなければ特に設けなくともよい。
次いで、封止基板235をシール材(図示しない)で貼り合わせて発光素子を封止する。なお、シール材で囲まれた領域には透明な充填材238を充填する。充填材238としては、透光性を有している材料であれば特に限定されず、代表的には紫外線硬化または熱硬化のエポキシ樹脂を用いればよい。ここでは屈折率1.50、粘度500cps、ショアD硬度90、テンシル強度3000psi、Tg点150℃、体積抵抗1×1015Ω・cm、耐電圧450V/milである高耐熱のUVエポキシ樹脂(エレクトロライト社製:2500Clear)を用いる。また、充填材238を一対の基板間に充填することによって、全体の透過率を向上させることができる。
最後にFPC246を異方性導電膜245により公知の方法で端子電極241と貼りつける。(図21(D))
以上の工程により、アクティブマトリクス型発光装置が作製できる。
図24はEL表示パネル構成の一例を示す上面図である。図24は、走査線及び信号線へ入力する信号を、外付けの駆動回路により制御する発光表示パネルの構成を示している。絶縁表面を有する基板2700上に画素2702をマトリクス上に配列させた画素部2701、走査線側入力端子2703、信号線側入力端子2704が形成されている。画素数は種々の規格に従って設ければ良く、XGAであれば1024×768×3(RGB)、UXGAであれば1600×1200×3(RGB)、フルスペックハイビジョンに対応させるのであれば1920×1080×3(RGB)とすれば良い。
画素2702は、走査線側入力端子2703から延在する走査線と、信号線側入力端子2704から延在する信号線とが交差することで、マトリクス状に配設される。画素2702のそれぞれには、スイッチング素子とそれに接続する画素電極が備えられている。スイッチング素子の代表的な一例はTFTであり、TFTのゲート電極側が走査線と、ソース若しくはドレイン側が信号線と接続されることにより、個々の画素を外部から入力する信号によって独立して制御可能としている。
なお、第1の電極を透明材料、第2の電極を金属材料とすれば、基板210を通過させて光を取り出す構造、即ちボトムエミッション型となる。また、第1の電極を金属材料、第2の電極を透明材料とすれば、封止基板235を通過させて光を取り出す構造、即ちトップエミッション型となる。また、第1の電極および第2の電極を透明材料とすれば、基板210と封止基板235の両方を通過させて光を取り出す構造とすることができる。本発明は、適宜、いずれか一の構造とすればよい。
以上示したように、本実施の形態では、液滴吐出法を用いてフォトマスクを利用した光露光工程を削減することにより、工程を単純化するとともに、工程時間を短縮することができる。また、液滴吐出法を用いて基板上に直接的に各種のパターンを形成することにより、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易にEL表示パネルを製造することができる。また、液滴吐出法を用いて低抵抗な埋め込み配線を形成することができるため、大面積パネルを作製することができる。
また、本実施の形態では、スピンコートを行わず、フォトマスクを利用した光露光工程を極力行わない工程を示したが、特に限定されず、一部のパターニングをフォトマスクを利用した光露光工程により行ってもよい。
また、本実施の形態は実施の形態1と自由に組み合わせることができる。
以上の構成でなる本発明について、以下に示す実施例でもってさらに詳細な説明を行うこととする。
本実施例では、液晶滴下を液滴吐出法で行う例を示す。本実施例では、大面積基板110を用い、パネル4枚取りの作製例を図11に示す。
図11(A)は、インクジェットによる液晶層形成の途中の断面図を示しており、シール材112で囲まれた画素部111を覆うように液晶材料114を液滴吐出装置116のノズル118から吐出、噴射、または滴下させている。液滴吐出装置116は、図11(A)中の矢印方向に移動させる。なお、ここではノズル118を移動させた例を示したが、ノズルを固定し、基板を移動させることによって液晶層を形成してもよい。
また、図11(B)には斜視図を示している。シール材112で囲まれた領域のみに選択的に液晶材料114を吐出、噴射、または滴下させ、ノズル走査方向113に合わせて滴下面115が移動している様子を示している。
また、図11(A)の点線で囲まれた部分119を拡大した断面図が図11(C)、図11(D)である。液晶材料の粘性が高い場合は、連続的に吐出され、図11(C)のように繋がったまま付着される。一方、液晶材料の粘性が低い場合には、間欠的に吐出され、図11(D)に示すように液滴が滴下される。
なお、図11(C)中、120は逆スタガ型TFT、121は画素電極をそれぞれ指している。画素部111は、マトリクス状に配置された画素電極と、該画素電極と接続されているスイッチング素子、ここでは逆スタガ型TFTと、保持容量(図示しない)とで構成されている。
ここで、図12(A)〜図12(D)を用いて、パネル作製の流れを以下に説明する。
まず、絶縁表面に画素部1034が形成された第1基板1035を用意する。第1基板1035は、予め、配向膜の形成、ラビング処理、球状スペーサ散布、或いは柱状スペーサ形成、またはカラーフィルタの形成などを行っておく。次いで、図12(A)に示すように、不活性気体雰囲気または減圧下で第1基板1035上にディスペンサ装置またはインクジェット装置でシール材1032を所定の位置(画素部1034を囲むパターン)に形成する。半透明なシール材1032としてはフィラー(直径6μm〜24μm)を含み、且つ、粘度40〜400Pa・sのものを用いる。なお、後に接する液晶に溶解しないシール材料を選択することが好ましい。シール材としては、アクリル系光硬化樹脂やアクリル系熱硬化樹脂を用いればよい。また、簡単なシールパターンであるのでシール材1032は、印刷法で形成することもできる。
次いで、シール材1032に囲まれた領域に液晶1033をインクジェット法により滴下する。(図12(B))液晶1033としては、インクジェット法によって吐出可能な粘度を有する公知の液晶材料を用いればよい。また、液晶材料は温度を調節することによって粘度を設定することができるため、インクジェット法に適している。インクジェット法により無駄なく必要な量だけの液晶1033をシール材1032に囲まれた領域に保持することができる。
次いで、画素部1034が設けられた第1基板1035と、対向電極や配向膜が設けられた第2基板1031とを気泡が入らないように減圧下で貼りあわせる。(図12(C))ここでは、貼りあわせると同時に紫外線照射や熱処理を行って、シール材1032を硬化させる。なお、紫外線照射に加えて、熱処理を行ってもよい。
また、図13に貼り合わせ時または貼り合わせ後に紫外線照射や熱処理が可能な貼り合わせ装置の例を示す。
図13中、1041は第1基板支持台、1042は第2基板支持台、1044は窓、1048は下側定盤、1049は光源である。なお、図13において、図12と対応する部分は同一の符号を用いている。
下側定盤1048は加熱ヒータが内蔵されており、シール材を硬化させる。また、第2基板支持台には窓1044が設けられており、光源1049からの紫外光などを通過させるようになっている。ここでは図示していないが窓1044を通して基板の位置アライメントを行う。また、対向基板となる第2基板1031は予め、所望のサイズに切断しておき、第2基板支持台1042に真空チャックなどで固定しておく。図13(A)は貼り合わせ前の状態を示している。
貼り合わせ時には、第1基板支持台と第2基板支持台とを下降させた後、圧力をかけて第1基板1035と第2基板1031を貼り合わせ、そのまま紫外光を照射することによって硬化させる。貼り合わせ後の状態を図13(B)に示す。
次いで、スクライバー装置、ブレイカー装置、ロールカッターなどの切断装置を用いて第1基板1035を切断する。(図12(D))こうして、1枚の基板から4つのパネルを作製することができる。そして、公知の技術を用いてFPCを貼りつける。
なお、第1基板1035、第2基板1031としてはガラス基板、石英基板、またはプラスチック基板を用いることができる。
以上の工程によって得られた液晶モジュールの上面図を図14(A)に示すとともに、他の液晶モジュールの上面図の例を図14(B)に示す。
非晶質半導体膜(アモルファスシリコン膜)で活性層を形成したTFTは、電界効果移動度が小さく1cm2/Vsec程度しか得られていない。そのために、画像表示を行うための駆動回路はICチップで形成され、TAB(Tape Automated Bonding)方式やCOG(Chip on glass)方式で実装することとなる。
図14(A)中、1101は、アクティブマトリクス基板、1106は対向基板、1104は画素部、1107はシール材、1105はFPCである。なお、液晶をインクジェット法により吐出させ、減圧下で一対の基板1101、1106をシール材1107で貼り合わせている。
セミアモルファスシリコン膜からなる活性層を有するTFTを用いた場合、駆動回路の一部を作製することができ、図11(B)のような液晶モジュールを作製することができる。駆動回路を形成する場合にはゲート絶縁膜を選択的に除去してコンタクトホールを形成するプロセスが追加で必要になる。
図15は、5〜50cm2/V・secの電界効果移動度が得られるセミアモルファスシリコン膜を使ったnチャネル型のTFTで構成する走査線側駆動回路のブロック図を示している。
図15において500で示すブロックが1段分のサンプリングパルスを出力するパルス出力回路に相当し、シフトレジスタはn個のパルス出力回路により構成される。501はバッファ回路であり、その先に画素502が接続される。
図16は、パルス出力回路500の具体的な構成を示したものであり、nチャネル型のTFT601〜612で回路が構成されている。このとき、セミアモルファスシリコン膜を使ったnチャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良い。例えば、チャネル長を8μmとすると、チャネル幅は10〜80μmの範囲で設定することができる。
また、バッファ回路501の具体的な構成を図17に示す。バッファ回路も同様にnチャネル型のTFT620〜636で構成されている。このとき、セミアモルファスシリコン膜を使ったnチャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良い。例えば、チャネル長を10μmとすると、チャネル幅は10〜1800μmの範囲で設定することとなる。
なお、セミアモルファスシリコン膜からなる活性層を有するTFTで形成できない駆動回路は、ICチップ(図示しない)を実装する。
また、駆動回路を形成する領域のみ選択的にレーザー光を照射して多結晶シリコン膜からなるTFTで駆動回路を形成してもよい。レーザー光には波長400nm以下のエキシマレーザ光や、YAGレーザの第2高調波、第3高調波を用いる。例えば、繰り返し周波数10〜1000Hz程度のパルスレーザー光を用い、当該レーザー光を光学系にて100〜500mJ/cm2に集光し、90〜95%のオーバーラップ率をもって照射し、シリコン膜表面を走査させればよい。また、非晶質半導体膜の結晶化に際し、大粒径に結晶を得るためには、連続発振が可能な固体レーザを用い、基本波の第2高調波〜第4高調波を適用するのが好ましい。代表的には、Nd:YVO4レーザー(基本波1064nm)の第2高調波(532nm)や第3高調波(355nm)を適用すればよい。連続発振のレーザーを用いる場合には、出力10Wの連続発振のYVO4レーザから射出されたレーザ光を非線形光学素子により高調波に変換する。また、共振器の中にYVO4結晶と非線形光学素子を入れて、高調波を射出する方法もある。そして、好ましくは光学系により照射面にて矩形状または楕円形状のレーザ光に成形して、被処理体に照射する。このときのエネルギー密度は0.01〜100MW/cm2程度(好ましくは0.1〜10MW/cm2)が必要である。そして、10〜2000cm/s程度の速度でレーザ光に対して相対的に半導体膜を移動させて照射すればよい。
図14(B)中、1111は、アクティブマトリクス基板、1116は対向基板、1112はソース信号線駆動回路、1113はゲート信号線駆動回路、1114は画素部、1117は第1シール材、1115はFPCである。なお、液晶をインクジェット法により吐出させ、一対の基板1111、1116を第1シール材1117および第2シール材で貼り合わせている。ソース信号線駆動回路1112、およびゲート信号線駆動回路1113には液晶は不要であるため、画素部1114のみに液晶を保持させており、第2シール材1118はパネル全体の補強のために設けられている。
また、得られた液晶モジュールにバックライト1604、導光板1605を設け、カバー1606で覆えば、図18にその断面図の一部を示したようなアクティブマトリクス型液晶表示装置(透過型)が完成する。なお、カバーと液晶モジュールは接着剤や有機樹脂を用いて固定する。また、透過型であるので偏光板1603は、アクティブマトリクス基板と対向基板の両方に貼り付ける。
なお、図18中、1600は基板、1601は画素電極、1602は柱状スペーサ、1607はシール材、1620は着色層、遮光層が各画素に対応して配置されたカラーフィルタ、1621は対向電極、1622、1623は配向膜、1624は液晶層、1619は保護膜である。柱状スペーサ1602も液滴吐出法により形成してもよい。
また、本実施例は実施の形態1または実施例1と自由に組み合わせることができる。