JP2005112858A - 生体適合性物質の水不溶化多孔性粒子及びその製造法 - Google Patents

生体適合性物質の水不溶化多孔性粒子及びその製造法 Download PDF

Info

Publication number
JP2005112858A
JP2005112858A JP2004303975A JP2004303975A JP2005112858A JP 2005112858 A JP2005112858 A JP 2005112858A JP 2004303975 A JP2004303975 A JP 2004303975A JP 2004303975 A JP2004303975 A JP 2004303975A JP 2005112858 A JP2005112858 A JP 2005112858A
Authority
JP
Japan
Prior art keywords
particles
water
substance
biocompatible
biocompatible substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004303975A
Other languages
English (en)
Inventor
Satoshi Izumikawa
智 泉川
Noboru Yamashita
昇 山下
Akira Takagi
彰 高木
Yoshinori Masuda
義典 増田
Akira Okada
昭 岡田
Muneo Fukui
宗夫 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamanouchi Pharmaceutical Co Ltd
Original Assignee
Yamanouchi Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamanouchi Pharmaceutical Co Ltd filed Critical Yamanouchi Pharmaceutical Co Ltd
Priority to JP2004303975A priority Critical patent/JP2005112858A/ja
Publication of JP2005112858A publication Critical patent/JP2005112858A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Medicinal Preparation (AREA)

Abstract

【課題】架橋剤を含まず生体適合性であって、優れた弾力性、治療上有効とされる塞栓能、塞栓治療後の速やかな再疎通能などを有する塞栓物質について、開発が要望されていた。また、無菌的に大量生産が可能で、粒子径の制御も可能で、前記特性を有する塞栓物質の製造法の開発が必要とされていた。
【解決手段】本発明は、架橋剤を含有せず生体適合性であり、多孔性で優れた弾力性及び塞栓治療用塞栓能を有するため塞栓物質として、また優れた血小板凝集作用を示すことから止血物質として有用な水不溶化多孔性粒子及びその製造法に関する。また、本発明粒子は速やかな再疎通が期待され、更に医薬製剤用担体としても有用である。

Description

本発明は、塞栓治療用塞栓物質あるいは医薬製剤用担体として有用な生体適合性物質の水不溶化多孔性粒子及びその製造法に関する。
現在、肝細胞癌の主な治療法には、肝切除、経動脈的塞栓療法、エタノール注入療法などの療法がある。なかでも経動脈的塞栓療法(Transcatheter arterial embolization;以下、TAEと略記することもある)は、多発例、大型の肝癌、切除後の再発例などに幅広く適用されている療法である。該療法は、抗癌剤のリピオドール懸濁液をマイクロカテーテルを用いて癌組織に注入し、続いて非イオン性造影剤を用いて懸濁した塞栓物質により癌組織に通じる血管を塞栓して行われるものである。該療法によれば、癌組織への血液の供給を絶ち、いわゆる「兵糧攻め」により効果的に癌組織を壊死させることができる。また、該療法は組織選択的治療法であるため、正常細胞の壊死などの副作用も最小限に抑えることができる。なお、該療法は腎癌にも有効であることが知られている。
TAEに用いられる塞栓物質に関する先行技術としては、下記の特許文献1〜3が公知である。
特許文献1には、要約すれば
a.架橋された部分加水分解バレイショデンプンなどの多糖または多糖誘導体(特定された構成・性質・機能:生理学的許容性、水不溶性、親水性、膨潤性、三次元網状構造を有するグルコース単位から構成、共有性結合をもつ架橋により交叉結合、血漿中のα−アミラーゼによって水溶性分画に分解されるような置換度)の粒子を自体公知の方法で製造し、
b.該粒子を篩別して血管直径に基づいて選択される粒子サイズを有する画分を採取し、
c.該画分を、必要により他の生理学的許容物質とともに、生理学的に許容しうる水溶液に懸濁し、
d.該懸濁液を容器に充填し、無菌または滅菌処理する
ことを特徴とする塞栓治療用の血管内投与用薬剤の製造法が開示されており、該発明に基づくエピクロルヒドリン架橋部分加水分解バレイショデンプン粒子を用いた生分解性一時的塞栓物質はデグラダブルスターチマイクロスフェアー(商品名:ファルマシア社製 以下、DSMと略記する)として上市されている。
該DSMは血流遮断効果が数十分しか持続せず、上述したような「兵糧攻め」の効果を期待できないばかりでなく、その水不溶化には架橋剤が用いられている。
また、TAEに用いられる塞栓物質には、これまで自己凝血塊、筋肉片、金属、活性炭粒子、ゼラチンスポンジ、シリコン球、ポリビニルアルコールスポンジ、シアノアクリレート、ポリ乳酸グリコール酸マイクロスフェアーなどの使用が報告されているが、現在のところゼラチンスポンジが世界各国で最も一般的に用いられている。
文献2には、実際に臨床で用いられていたゼラチンスポンジ機械的破砕物が血管に密着しにくい問題点を改善する目的で、ゼラチン球状粒子の製造法として、ゼラチン及びゼラチンと架橋反応する水溶性化合物の水溶液を、水に不溶性のエチルセルロースを水と相溶しない非極性有機溶媒に溶解させてなる分散溶媒中に分散させて架橋反応させることが開示されている。
しかしながら、該公報に記載された製造法によって得られたものは、多孔性を有しておらず、塞栓治療用塞栓物質として求められる弾力性を有していないばかりでなく、具体的に開示された球状粒子はグルタルアルデヒドなどの架橋剤を使用して架橋されたものである。
グルタルアルデヒドに限らず架橋剤の多くは生体適合性に欠け、それらの残留性及び毒性が懸念されていることが文献等で報告されている(van Luyn MJ.,Biomaterials,13(14),pp.1017-1024(1992): van Luyn MJ.,J. Biomed.,Mater. Res.,26(8),pp.1091-1110(1992): Huang Lee LL.,J. Biomed.,Mater. Res.,24(9),pp.1185-1201(1990)など)。
特許文献3には、前記特許文献2に記載された方法により製造された多孔性を有していない架橋ゼラチン球状粒子からなる血管塞栓剤が開示されており、塞栓動脈の再疎通がヒトと比較して早いとされるイヌにおいて腎臓塞栓実験の結果、30日後も動脈の塞栓が確認されている。
塞栓治療用塞栓物質としては、2週間以降で再疎通すれば治療上有効とされる塞栓療法が可能とされ、かつ正常細胞の壊死などの副作用も懸念されないことが文献等で報告されている(佐藤守男,山田龍作,日本医学放射線学会雑誌,43(8),p.977-1005(1983))。
特公昭61−25689号公報(対応特許 米国特許第4,124,705号) 特公昭62−33263号公報 特開昭60−222045号公報(対応特許 欧州特許第132983号)
したがって、架橋剤を含まず生体適合性であって、注射針またはカテーテルを通過しかつ血管壁面にフィットするなどの優れた弾力性、治療上有効とされる塞栓能、正常細胞の壊死などの副作用が懸念されることのない塞栓治療後の速やかな再疎通能などを有する塞栓物質についてはこれまで知られておらず、その開発が要望されていた。
また、無菌的に大量生産が可能で、粒子径の制御も可能で、前記特性を有する塞栓物質の製造法の開発が必要とされていた。
このような状況下、本発明者らは架橋剤を使用しないで水不溶性でかつ多孔性の粒子の製造法について検討を行ったところ、架橋剤を添加しない場合エマルジョン調製時にエマルジョンが合一すること、粒子の強度を高めるため加熱した場合多孔性粒子がその形状を保つことができず塊となること、エマルジョン調製後冷却によりゲル化させ貧溶媒から粒子を取り出すとき粒子内に水が存在している状態で加熱した場合溶解あるいは凝集すること、製造時に用いた溶媒を洗浄除去する場合撹拌のみでは許容量以下までの充分な洗浄ができないこと、ゲル粒子の表面の多孔性を高められないことなど、多孔性粒子を製造するにあたって問題点が明らかとなった。
さらに、本発明者らは塞栓治療用塞栓物質として満足しうる生体適合性物質の多孔性粒子を製造すべく鋭意研究した結果、ゲル化または固化した生体適合性物質の多孔性粒子を実質的に水の存在しない系で加熱して水不溶化することにより、塞栓物質としての十分な弾力性、治療上有効とされる塞栓能を有する水不溶化多孔性粒子を調製できることを見出した。さらに、このようにして得られた水不溶化多孔性粒子が塞栓物質として優れているばかりでなく、例えば骨成長因子(BMP)などの医薬物質や種々の細胞固定化または培養用の担体など各種の担体としても優れた性質を有することを知見して本発明を完成させるに至った。
すなわち、本発明は実質的に架橋剤を含有しないゲル形成性または固化性の生体適合性物質の水不溶化多孔性粒子に関する。また、本発明はゲル化または固化した生体適合性物質の多孔性粒子を実質的に水の存在しない系で加熱して水不溶化してなる生体適合性物質の水不溶化多孔性粒子に関するものである。
また、本発明によれば、ゲル化または固化した生体適合性物質の多孔性粒子を実質的に水の存在しない系で加熱して水不溶化する生体適合性物質の多孔性粒子の製造法、またゲル形成性または固化性の生体適合性物質を該物質の良溶媒溶液中で起泡させ、良溶媒とは混和しない生体適合性物質の貧溶媒に分散し、これを冷却してゲル化または固化した後、得られた多孔性粒子を生体適合性物質の貧溶媒が混和しうる溶媒で洗浄し、実質的に水の存在しない系で加熱してなる生体適合性物質の水不溶化多孔性粒子及びその製造法が提供される。
さらにまた、本発明によれば、ゲル形成性または固化性の生体適合性物質の良溶媒溶液に、生体適合性物質の貧溶媒に溶解しうる物質もしくは生体適合性物質の良溶媒に不溶でかつ該物質の貧溶媒に移行する物質を分散させ、該分散液をさらに生体適合性物質の貧溶媒に分散し、これを冷却してゲル化または固化した後、得られた多孔性粒子を生体適合性物質の貧溶媒が混和しうる溶媒で洗浄し、実質的に水の存在しない系で加熱してなる生体適合性物質の水不溶化多孔性粒子及びその製造法が提供される。
従来、泡のような柔らかいものはその形状が不安定であり、ブロック状にすることはできても、架橋剤を用いないで塞栓物質として用いられる程度の大きさで、水不溶性かつ多孔性を保持した粒子にすることは極めて困難と考えられていた状況下、ゲル化または固化した生体適合性物質の多孔性粒子を実質的に水の存在しない系で加熱して水不溶化することにより、本発明の水不溶化多孔性粒子が得られたことは全く予想外であった。
以下に、本発明を詳細に説明する。
本発明において、「実質的に架橋剤を含有しない」とは、本発明の目的を損なわない範囲内、特に毒性を呈しない範囲内で、架橋剤を添加する実施態様も本発明に包括されることを意味するものである。
本発明に用いられる生体適合性物質としては、製薬学的に許容され生体分解性であり、加熱処理により水不溶化するものであれば特に制限されない。なかでも、後述のエマルジョン化工程においてエマルジョン形成時に冷却によりゲルの強度が増加するものあるいは固化するものが好適である。また、該生体適合性物質は、該物質の良溶媒に溶解するとき起泡するものが好適である。また、起泡しなくともあるいは起泡させなくとも、生体適合性物質の貧溶媒を該物質の良溶媒溶液に分散後、この分散液をさらに該物質の貧溶媒中に分散することにより、粒子の内部に孔を形成させうる態様、あるいは、生体適合性物質の貧溶媒に溶解しうる物質もしくは生体適合性物質の良溶媒に不溶でかつ生体適合性物質の貧溶媒に移行する物質を生体適合性物質の良溶媒溶液に分散後、この分散液をさらに該物質の貧溶媒に分散することにより、粒子の内部に孔を形成させうる態様も、本発明に包括される。生体適合性物質の貧溶媒に溶解しうる物質もしくは生体適合性物質の良溶媒に不溶でかつ該物質の貧溶媒に移行する物質としては、例えば、生体適合性物質がゼラチンの場合、大豆油などの油類、クロロホルムなどの有機溶剤、ポリスチレンビーズなどの有機化合物などが挙げられる。
また本発明の生体適合性物質は、アミノ酸または生体由来の化合物からなる高分子、その誘導体、またはそれらの生理学的に許容される塩であれば特に制限されない。例えば、ポリペプチド、その誘導体、蛋白質、その誘導体、多糖、その誘導体、それらの生理学的に許容される塩、それらを含む混合物、またはそれらとポリペプチドとの混合物などが挙げられる。具体的には、ゼラチン、コラーゲン、アテロコラーゲン、アルブミン、フィブリン、プロタミンなどの蛋白質またはポリペプチド、それらの誘導体、またはそれらの生理学的に許容される塩、ジュランガム、アラビアゴム、ヒアルロン酸、アルギン酸、コンドロイチン硫酸、ヘパリン、キチン、キトサンなどの多糖、それらの誘導体、またはそれらの生理学的に許容される塩などが挙げられる。なかでも、ゼラチン、アテロコラーゲン、アルブミン、ヒアルロン酸、アルギン酸、それらの誘導体、またはそれらの生理学的に許容される塩が好適である。これらの生体適合性物質は1種または2種以上混合して用いてもよい。さらにはゼラチンが好適である。
前記生体適合性物質の良溶媒としては、製薬学的に許容され該物質が溶解しうるものであれば特に制限されない。例えば、水、ジメチルスルホキシド、ベンジルアルコールなどが挙げられる。なかでも水が好適である。該溶媒には、緩衝剤、乳化剤、等張化剤などの製薬学的に許容される添加剤を含んでもよい。該緩衝剤としては、リン酸塩、炭酸塩、有機酸塩などが挙げられる。該乳化剤としては、ポリソルベート、ポリエチレン硬化ヒマシ油、セスキオレイン酸ソルビタンなどが挙げられる。該等張化剤としては、塩化ナトリウム、グルコース、乳糖、ショ糖などが挙げられる。これらの添加剤は1種または2種以上用いてもよい。なお該物質を溶解させるとき、溶液を加温して溶解させてもよい。また、生体適合性物質を該物質の良溶媒に溶解するときの濃度は、生体適合性物質の種類により異なるが、通常約0.01〜50重量%、好ましくは約0.1〜30重量%、さらに好ましくは約1〜20重量%である。
前記生体適合性物質の貧溶媒としては、製薬学的に許容され生体適合性物質が溶解しないもの、あるいは製薬学的に許容され前記生体適合性物質の良溶媒と混和しないものであれば特に制限されない。例えば、鉱物油(例えば流動パラフィンなど)、動物油、植物油(例えば、大豆油、ゴマ油、落花生油、綿実油、椿油、ナタネ油、ヤシ油、ユーカリ油、とうもろこし油、オリーブ油、ヒマシ油など)、シリコン油、脂肪酸、脂肪酸エステル類(例えば、中鎖脂肪酸トリグリセライド(例えば、商品名:パナセート、日本油脂社製)、オレイン酸エチルなど)、有機溶媒(例えば、トルエン、ベンゼン、ヘキサン、クロロホルム、ジクロロメタン、四塩化炭素など)などが挙げられる。なかでも、大豆油、ゴマ油、落花生油、綿実油、椿油、ナタネ油、ヤシ油、ユーカリ油、とうもろこし油、オリーブ油などの植物油、中鎖脂肪酸トリグリセライド、オレイン酸エチルなどの脂肪酸エステル類が好適である。これらの生体適合性物質の貧溶媒は1種または2種以上混合して用いてもよい。なかでも脂肪酸エステル類が好適である。
本発明の多孔性粒子としては、球状もしくは不定形の粒子で表面及び内部に1カ所以上の孔を有し水に不溶であれば特に制限されない。なかでも蜂の巣状のものが好適である。また、該粒子中には薬物または化合物を含有または固定化させてもよい。薬物または化合物の含有または固定化は、自体公知の方法で行うことができる。該方法としては、例えば、後述の製造法の各工程において、薬物または化合物を添加または混合して、含有または固定化する方法などが挙げられる。また、該粒子とともに、例えば、賦形剤、安定化剤、緩衝剤、分散剤、コーティング剤などの一般に製薬学的に許容される添加剤を用いてもよい。該賦形剤としては、乳糖、結晶セルロース、デキストランなどが挙げられる。該安定化剤としては、乳糖、トレハロース、ポリエチレングリコールなどが挙げられる。該緩衝剤としては、リン酸塩、炭酸塩、有機酸塩などが挙げられる。該分散剤としては、カルボキシメチルセルロース、グリセリン、大豆油などが挙げられる。該コーティング剤としては、アクリル酸ポリマー、ポリ乳酸グリコール酸共重合体などが挙げられる。これらの添加剤は1種または2種以上用いてもよい。
本発明の水不溶化多孔性粒子の比重は、特に制限されないが、通常0.001〜1g/ml、好ましくは0.005〜0.9g/ml、さらに好ましくは0.005〜0.2g/mlである。なお比重は、例えばメスシリンダーにて一定容量(ml)を取り、そのときの重量(g)を測定し、重量を容積で除すことによって算出することができる。
本発明の水不溶化多孔性粒子の粒子径は、特に制限されないが、通常0.01〜10mm、好ましくは0.1〜7mmである。またTAEに用いられる場合、副作用が懸念されない粒子径であれば特に制限されないが、通常注射針またはカテーテルに、また塞栓治療に選択される血管に適応できるものである。好ましくは0.5〜10mm、さらに好ましくは0.5〜7mmである。なお、本発明でいう粒子径とは平均粒子径を意味するものである。
本発明の水不溶化多孔性粒子は、注射針またはカテーテルなどを通過しうる弾力性、また塞栓治療に選択される血管などを粒子が自由に変形して塞栓しうる弾力性を有するものである。TAEに用いられる場合、例えば0.5〜1.5mmの粒子径を有する粒子が水などの溶媒中に膨潤した状態でマイクロカテーテル(規格3French(外径1mm))またはそれに相当する流路を通過しうるものが好適である。
本発明の水不溶化多孔性粒子の膨潤率は、特に制限されないが、通常約0.1〜100倍、好ましくは約0.1〜10倍、さらに好ましくは約1〜5倍である。なお膨潤率は、例えば一定体積(V1と略記する)の粒子を、水、生理食塩液、各種電解質溶液、医療用輸液、油、造影剤または治療用医薬品の溶液に浸し、1時間後の膨潤体積(V2と略記する)をメスシリンダーなどを用いて測定し、V2/V1によって算出することができる。
次に、本発明の製造法について説明する(図1参照)。
本発明において、「実質的に水の存在しない」とは、本発明の目的を損なわない範囲内、特に加熱処理を行うとき粒子が溶解あるいは凝集しない範囲内で、水が存在する実施態様も本発明に包括される。特に詳細には、「実質的に水の存在しない」とは、後述の洗浄・脱水工程において、粒子が生体適合性物質の良溶媒及び該物質の貧溶媒が混和しうる溶媒によって洗浄された状態、あるいは粒子を通風乾燥、真空乾燥、凍結乾燥などの乾燥手段によって乾燥された状態を意味するものである。
本発明の生体適合性物質からなる水不溶化多孔性粒子の製造法については、生体適合性物質(Mと略記する)の良溶媒(Sと略記する)溶液(S1と略記する)を例えば撹拌して泡立てる起泡化工程、該工程で得られた泡をMの貧溶媒(S2と略記する)に投入し、例えば撹拌してエマルジョンを形成させるエマルジョン化工程、該工程で得られたエマルジョンを例えばMのゲル化温度以下に冷却してゲル化(または固化)してゲル粒子とするゲル化工程、該工程で得られたゲル粒子を例えば篩過してS2から取り出すことによりS2を除去する、貧溶媒(S2)の除去工程、該工程で得られたゲル粒子を例えばS2が混和しうる溶媒(S3)で洗浄し乾燥(脱水)して多孔性粒子とする洗浄・脱水工程、該工程で得られた多孔性粒子を実質的に水の存在しない系で加熱処理して水不溶化多孔性粒子とする加熱処理工程、更に必要に応じて水洗し凍結乾燥する工程から構成される。なお、前記各工程については、本発明を詳細に説明するため便宜上分けるものであるが、一部工程は他の工程を兼ねることもできるため、本発明はこれらの工程に拘束されるものではない。
以下、各工程を詳細に説明する。
起泡化工程については、生体適合性物質(M)の良溶媒(S)溶液(S1)を泡立てる方法であれば特に制限されない。該方法としては、例えば、ホモジナイザー(特殊機化工業社製)、パドル付き撹拌モーター(MAZELA Z、EYELA社製)、マグネチックスターラー(ヤマト科学社製)などの撹拌機を用いて泡立てる方法、酸素、二酸化炭素、窒素、空気などの気体を送り込んで泡立てる方法などが挙げられる。撹拌器を用いて泡立てる場合、機械の回転数、容器の大きさなどの条件は空気を抱き込むことができればいかなる条件でもよい。また、気体を送り込んで泡立てる場合、S1が起泡化できればいかなる条件でもよい。例えば、S1中で多孔性ガラスフィルターで窒素ガスを送り込む方法などが挙げられる。なおS1の調製時、Mが溶解しにくい場合にはS1を加温してMを溶解させてもよい。
エマルジョン化工程については、前記工程で得られた泡をMの貧溶媒(S2)に添加しエマルションが形成できる方法であれば特に制限されない。該方法としては、例えば、ホモジナイザー(特殊機化工業社製)、パドル付き撹拌モーター(MAZELA Z、EYELA社製)、マグネチックスターラー(MAG MIXER、ヤマト科学社製)などの撹拌機を用いてエマルジョンを形成させる方法などが挙げられる。またこのとき、前記工程で得られた泡をMの貧溶媒(S2)に添加する比率(泡/S2)は、エマルションが形成できる比率であれば特に制限されないが、通常1.0以下、好ましくは0.8以下である。また、機械の回転数、容器の大きさなどの条件は、消泡あるいはエマルジョン粒子間の融合をおこさなければいかなる条件でもよい。なお、起泡しなくともあるいは起泡させなくとも、生体適合性物質の貧溶媒を該物質の良溶媒溶液に分散後、この分散液をさらに該物質の貧溶媒中に分散することにより、粒子の内部に孔を形成しうる場合、あるいは、生体適合性物質の貧溶媒に溶解しうる物質もしくは生体適合性物質の良溶媒に不溶でかつ該物質の貧溶媒に移行する物質を生体適合性物質の良溶媒溶液に分散後、この分散液をさらに該物質の貧溶媒に分散することにより、粒子の内部に孔を形成しうる場合、前記起泡化工程を省略し、例えば、S1に、S2を分散(S2/S1)させ、該分散液をさらにS2に分散し、S2/S1/S2エマルジョンが形成されるときには、当該工程は前記起泡化工程を兼ねることもできる。この場合、S2/S1の比率としては、エマルジョンが形成される比率であれば特に制限されないが、通常1.0以下、好ましくは0.8以下である。さらに(S2/S1)/S2の比率としては、上記同様特に制限されないが、1.0以下、好ましくは0.8以下である。
ゲル化(または固化)工程については、前記工程で得られたエマルジョンがゲル化(または固化)する方法であれば特に制限されない。該方法としては、例えば、生体適合性物質のゲル化(または固化)温度以下に系を冷却する方法、該物質の貧溶媒で洗浄することにより固化させる方法などが挙げられる。エマルジョンがゲル化(または固化)することにより、取り扱い容易な粒子を得ることができる。生体適合性物質のゲル化温度は、通常生体適合性物質の組成、該物質の良溶媒溶液濃度、あるいは保持時間(ある一定の温度に保つ時間)に応じて適宜選択できる。例えば、4%ゼラチン水溶液を急冷する場合、約18℃でゲル化することができるが、後述の洗浄工程において、ゲル化粒子をアルコール類で洗浄する場合、発熱反応を起こすため概ね16℃以下が好ましい。また、ゼラチン以外の生体適合性物質の場合は、該物質の貧溶媒で洗浄することにより固化させることができる。
生体適合性物質の貧溶媒(S2と略記する)の除去工程については、前記工程で得られた粒子をS2から取り出すことによりS2を除去する方法であれば特に制限されない。該方法としては、例えば、篩過、ろ取、遠心分離法などが挙げられる。当該工程では、粒子の形状を安定に維持するため、生体適合性物質のゲル化温度以下に系を冷却して行うことが好ましい。また該工程において、粒子を使用目的に応じて分級してもよい。
洗浄・脱水工程については、前記工程で得られた粒子からS及びS2が洗浄される方法であれば特に制限されない。該方法としては、例えば、S及びS2が混和しうる溶媒(S3)で洗浄する方法などが挙げられる。該工程では、例えば、メッシュ上に粒子を取り出しS3で洗浄したり、また粒子をビーカーに入れS3で減圧下撹拌しながら洗浄し、常圧に戻したりあるいは粒子とS3をビーカーに入れ、ビーカーごと超音波照射により洗浄する。この減圧、常圧、超音波の工程を繰り返してもよい。この工程により、表面および内部に孔がさらに生じ、内部に残留したS2が効率良く洗浄される。S3としては、製薬学的に許容されS及びS2に混和可能であり、Mの貧溶媒であれば特に制限されない。S3としては、 例えば、アルコール類(例えば、メタノール、エタノール、イソプロパノールなど)、アセトン、ジオキサン、ヘキサン、ハロゲン系有機溶媒などが挙げられる。なかでも、メタノール、エタノール、イソプロパノールなどのアルコール類が好適である。これらは、1種または2種以上用いてもよい。当該工程では、粒子の形状を安定に維持するため、生体適合性物質のゲル化温度以下に系を冷却して行うことが好ましい。また当該工程において、凝集防止剤を添加してもよい。凝集防止剤としては、例えば、乳糖、D―ソルビトール、結晶セルロースなどが挙げられる。さらに当該工程の前後に、通風乾燥、真空乾燥、凍結乾燥などの工程を行うこともできる。
加熱処理工程については、実質的に水の存在しない系で前記工程で得られた粒子が水に不溶となる温度及び時間条件で処理されれば特に制限されない。また、当該工程としては、生体適合性物質が分子間架橋を起こす温度及び時間であればいかなる条件でもよい。該方法における時間条件は温度条件によって決定されるが、例えば、110℃〜220℃で10分以上120時間以下が挙げられる。好ましくは135℃〜200℃で10分以上120時間以下、さらに好ましくは145℃〜190℃で1時間以上6時間以下である。また該工程は減圧下で行ってもよい。当該工程は滅菌処理を兼ねることができる。また当該工程後、必要に応じて粒子を水で洗浄し水に可溶性の成分を除去してもよい。
前記滅菌処理は、本発明粒子を医療用包装容器(例えば、バイアル、アンプル、プレフィルド型シリンジなど)に充填封入後、高圧蒸気法(日本薬局方)などで行ってもよい。
また、本発明粒子は、医療用包装容器(例えば、バイアル、アンプル、プレフィルド型シリンジなど)に充填後、自体公知の方法で、さらに脱水工程を行うこともできる。該工程としては、例えば、通風乾燥、真空乾燥、凍結乾燥などの乾燥方法が挙げられる。
本発明の多孔性粒子が塞栓治療用塞栓物質として用いられる場合、その用量は、塞栓治療に選択される血管の太さ、腫瘍組織の広がり、あるいは使用する器具などにより適宜調整することができるが、通常1g以下、好ましくは0.5g以下である。この場合、生理学的に許容される液(生理的食塩水、ヨード化ケシ油脂肪酸エチルエステルなど)などとともに医薬組成物として使用されてもよい。
本発明の多孔性粒子は、塞栓物質としてTAEなどに用いられる他、例えばバイオプシーなどの医療行為における止血物質として用いられる。この場合、該粒子単独または生理学的に許容される液(生理的食塩水など)などとともに医薬組成物として使用されてもよい。また、種々の細胞固定化または培養用の担体として用いられる。この場合、生理学的に許容される液(生理的食塩水など)などとともに医薬組成物として使用されてもよい。さらにまた、創傷保護剤、経口製剤の崩壊剤、薬物吸着剤(例えば苦味防止剤)、徐放性製剤の担体、輸送時の破損防止材などとしても用いられる。
また、本発明の多孔性粒子には、例えば診断用薬剤、治療用薬剤などの医薬物質を含有または混合させて用いることもできる。すなわち、この場合、本発明の多孔性粒子を含有する医薬組成物が提供される。
前記診断用薬剤としては、例えば造影剤としてX線造影剤、放射性同位元素などが挙げられる。該X線造影剤としては、例えば三ヨード化合物としてアミドトリゾ酸、イオタラム酸、ヨーダミド、メトリゾ酸、またはそれらの生理学的に許容しうる塩、三ヨードダイマー化合物としてアジピオドン、イオキサグル酸、イオトロクス酸、ヨードキサム酸、イオカルム酸、またはそれらの生理学的に許容しうる塩、非イオン性化合物としてイオトロラン、イオパミドール、イオヘキソール、イオヘルソール、イオメプロール、メトリザミド、ヨード化油剤としてヨード化ケシ油脂肪酸エチルエステル(商品名:リピオドール ウルトラフルイド)などが挙げられる。
また、前記診断用薬剤としては、例えば放射性物質であってもよい。該物質は溶液または微粒子の形であってもよい。該微粒子は、一般には本発明粒子と同一サイズかまたはこれより小さいものである。例えば、インジウム、タリウム、ヨウ素、テクネチウム、ガリウム、セリウム、ルビジウム、クロム酸、鉄、スズ、キセノン、炭素、酸素、窒素、フッ素またはそれらの生理学的に許容しうる塩などの放射性同位元素を含有する物質であってもよい。これらは1種または2種以上の異なった放射性同位元素を用いてもよい。該放射性物質の濃度及び放射能は診断できる範囲であれば特に制限されない。
前記治療用薬剤としては、例えば抗腫瘍用薬剤または同様の放射性物質などが挙げられる。該抗腫瘍用薬剤としては、抗腫瘍性抗生物質としてマイトマイシンC、アクチノマイシンD、ブレオマイシン系薬剤(塩酸ブレオマイシンなど)、アントラサイクリン系抗生物質(塩酸アクラルビシン、塩酸エピルビシン、塩酸ドキソルビシンなど)、ネオカルチノスタチン、ジノスタチンスチラマー(SMANCS)など、代謝拮抗剤としてメトトレキサート、テガフール、フルオロウラシルなど、アルキル化剤としてシクロフォスファミド、塩酸ニムスチン、ラニムスチンなど、抗腫瘍性植物成分薬剤として塩酸イリノテカン、硫酸ビンブラスチン、エトポシドなど、その他の腫瘍用薬としてカルボプラチン、シスプラチン、ペントスタチン、レンチナンなどが挙げられる。
また、治療用薬剤としては、例えばサイトカイン、造血因子、各種増殖因子、酵素などの生物学的薬剤が挙げられる。該サイトカインとしては、例えばインターフェロン(例えばα,β,γ)、インターロイキン(例えばIL−1〜IL−18)、腫瘍壊死因子(TNF)などが挙げられる。該造血因子としては、例えばエリスロポエチン(EPO)、顆粒球コロニー刺激因子(G−CSF)、マクロファージコロニー刺激因子(M−CSF)、顆粒球マクロファージコロニー刺激因子(GM−CSF)、トロンボポエチン(TPO)、血小板増殖因子、幹細胞増殖因子(SCF)などが挙げられる。各種増殖因子としては、例えば塩基性あるいは酸性の繊維芽細胞増殖因子(FGF)あるいはこれらのファミリー、神経細胞増殖因子(NGF)あるいはこれらのファミリー、インスリン様成長因子(IGF)、骨形成因子(例えばBMP1〜BMP12)あるいは形質転換増殖因子(TGF−β)のスーパーファミリー、肝細胞増殖因子(HGF)、血小板由来増殖因子(PDGF)、上皮細胞増殖因子(EGF)などが挙げられる。各種ホルモンとしては、インスリン、カルシトニン、グルカゴン、ヒト成長因子(hGH)、副甲状腺ホルモン(PTH)などが挙げられる。酵素としては、例えばL−アスパラギナーゼ、スーパーオキシドディスムターゼ(SOD)、組織プラスミノーゲンアクチベーター(t−PA)などが挙げられる。これらの生物学的薬剤は、天然に存在する配列構造のものであってもその改変体であってもよい。また、それらの修飾体(例えばポリエチレングリコールなどによる化学修飾体)であってもよい。またこれらは単量体として用いても、ホモまたはヘテロの多量体として用いてもよい。
また、治療用薬剤は蛋白質、ペプチド類の発現に関与する物質(例えばDNA、RNA等の核酸類あるいは低分子及び高分子の転写調節因子及びそれらの阻害剤)などであってもよい。
さらにまた、治療用薬剤としては、例えば血管に作用する物質(血管拡張剤、血管収縮剤など)、凝固に作用を及ぼす物質、血栓の形成または溶解に作用する物質、抗菌性物質、抗炎物質、麻酔剤、ホルモン効果を示す物質、骨吸収抑制剤(例えばビスフォスフォネート類)、各種ビタミン類、抗寄生虫物質などが挙げられる。
これら治療用薬剤あるいは診断用薬剤は2種以上を混合して用いてもよい。さらにそれらを生理学的に許容される液(生理的食塩水など)などで希釈して用いてもよい。
本発明の生体適合性物質からなる水不溶化多孔性粒子は、架橋剤を含まず生体適合性であって、注射針またはカテーテルを通過しかつ血管壁面にフィットするなどの優れた弾力性、治療上有効とされる塞栓能を有し、多孔性であるがために正常細胞の壊死などの副作用が懸念されることのない塞栓治療後の速やかな再疎通能が期待されるため、例えば肝細胞癌などの経動脈的塞栓療法に用いることができる。
また、本発明の多孔性粒子は、該療法などに用いられる他、例えばバイオプシーの止血物質、種々の細胞固定化または培養用の担体、創傷保護剤、経口製剤の崩壊剤、薬物吸着剤(苦味防止剤)、徐放性製剤の担体、輸送時の破損防止材などに用いることもできる。
さらに、本発明によれば、実質的に架橋剤を含まない生体適合性物質の水不溶化多孔性粒子を含有する塞栓治療用塞栓物質あるいは医薬物質及び該粒子を含有する医薬組成物が提供される。
さらにまた、本発明によれば、大量生産が可能で、粒子径の制御も可能で、前記特性を有する多孔性粒子の製造法が提供される。
以下に、比較例、実施例及び試験例に基づいて、本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
比較例1
ゼラチン(CP−2,宮城化学社製)20gを精製水500mlに入れ、加温して溶解させた。この溶液200mlをパナセート800(日本油脂社製)1lに投入し、テフロン(登録商標)パドルを装着した撹拌装置(MAZELA Z,東京理化器械社製)を用いて200rpmで撹拌し、エマルジョンを形成させた。このエマルジョンを冷却しゲル化させゲル粒子とした。冷却下、メッシュ(250μm)を用いてゲル粒子を取り出し、イソプロピルアルコール(IPA)で洗浄した。次に、ガラスフィルターを用いてIPAを除去し、粒子を取り出した。これを真空乾燥後、155℃で4時間加熱し粒子を得た。得られた粒子はその表面に孔を有しておらず、内部は多孔性(蜂の巣状)ではなかった。
比較例2
ゼラチン(CP−2,宮城化学社製)20gを精製水500mlに入れ、加温して溶解させた。この溶液を室温に戻しホモジナイザー(特殊機化工業社製)で撹拌し(10000rpm,10分)起泡させた。この泡400mlをパナセート800(日本油脂社製)1lに投入し、テフロン(登録商標)パドルを装着した撹拌装置(MAZELA Z,東京理化器械社製)を用いて200rpmで撹拌し、エマルジョンを形成させた。このエマルジョンをゲル化させることなく室温下、メッシュを用いて取り出したところ、エマルジョンが合一し、粒子として取り出すことはできなかった。
ゼラチン(CP−2,宮城化学社製)20gを精製水500mlに入れ、加温して溶解させた。この溶液を室温に戻しホモジナイザー(特殊機化工業社製)で撹拌し(10000rpm,10分)起泡させた。この泡400mlをパナセート800(日本油脂社製)1lに投入し、テフロン(登録商標)パドルを装着した撹拌装置(MAZELA Z,東京理化器械社製)を用いて200rpmで撹拌し、エマルジョンを形成させた。このエマルジョンを冷却しゲル化させゲル粒子とした。冷却下、メッシュ(250μm)を用いてゲル粒子を取り出し、イソプロピルアルコール(IPA)で洗浄した。洗浄後、ガラスフィルターを用いてIPAを除去し、ゲル粒子を取り出した。これを真空乾燥後、155℃で4時間加熱し、本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
試験例1
実施例1で調製した多孔性粒子について、加熱処理前後の各粒子1mlを各々10mlのスピッツ管にとり水を加えて10mlとし、振とう機で一定時間振とう後の残存ゲル体積を測定することにより構造維持能力を比較した。
その結果、加熱処理した粒子は直ちに膨潤しその構造を維持するのに対し、加熱処理しない粒子はゲルが経時的に溶解し構造を維持できなかった。したがって、本発明粒子は、水不溶性であり、塞栓療法に適用可能と考えられる適度な強度を有することが示唆された。
試験例2
実施例1の中間工程で得られた未架橋の多孔性粒子1gを冷水300ml中に分散させ、10%グルタルアルデヒド水溶液を1%となるように滴下し30分間反応させた。水で洗浄し未架橋のグルタルアルデヒドを除去した後、121℃で20分間オートクレーブ処理し、さらに凍結乾燥し比較試料を得た。
実施例1で得られた試料及び比較試料について、細胞増殖実験を行った。
マイクロプレート中に1wellあたり5×104cells/mlのW20細胞(マウス骨髄ストローマ細胞)を200μlづつ加えCO2インキュベーター中1晩培養し、その後、骨形成因子(BMP−2)を41.8U/ml含んだ培地と交換し、さらに24時間培養した。試料及び比較試料は一定体積約10μlをBMP−2添加時に添加した。増殖した細胞の計数は、細胞の凍結融解処理後、細胞内のアルカリ性フォスファターゼ活性を利用した定色反応により評価した。
その結果、グルタルアルデヒドを架橋剤として用いて製造された多孔性粒子については細胞増殖抑制傾向が認められた。これに対して、本発明多孔性粒子については細胞増殖促進傾向が認められた。したがって、本発明粒子においては、グルタルアルデヒドで架橋された粒子よりも細胞増殖性及び安全性に優れていることが示唆された。
ゼラチン(CP−2,宮城化学社製)20gを精製水500mlに入れ、加温して溶解させた。この溶液を室温に戻しホモジナイザー(特殊機化工業社製)で撹拌し(10000rpm,10分)起泡させた。この泡400mlを大豆油(関東化学社製)1lに投入し、以下実施例1と同様に操作し、本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
ゼラチン(CP−2,宮城化学社製)50gを精製水500mlに入れ、加温して溶解させた。この溶液を室温に戻しホモジナイザー(特殊機化工業社製)で撹拌し(10000rpm,10分)起泡させた。この泡400mlを大豆油(関東化学社製)1lに投入し、以下実施例1と同様に操作し、本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
ゼラチン(CP−2,宮城化学社製)50gを精製水500mlに入れ、加温して溶解させた。この溶液を室温に戻しホモジナイザー(特殊機化工業社製)で撹拌し(10000rpm,10分)起泡させた。この泡400mlをゴマ油(関東化学社製)1lに投入し、以下実施例1と同様に操作し、本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
ウシ血清アルブミン(BSA,シグマ社製)20gを精製水100mlに入れ、マグネチックスターラーで撹拌溶解した。この溶液をホモジナイザー(特殊機化工業社製)で撹拌し(10000rpm,10分)起泡させた。この泡200mlをパナセート800(日本油脂社製)1lに投入し、以下実施例1と同様に操作し、本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
アルギン酸(シグマ社製)20gを精製水100mlに入れ、マグネチックスターラーで撹拌溶解した。この溶液をホモジナイザー(特殊機化工業社製)で撹拌し(10000rpm,10分)起泡させた。この泡200mlをパナセート800(日本油脂社製)1lに投入し、以下実施例1と同様に操作し、本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
ゼラチン(CP−2,宮城化学社製)50gを精製水500mlに入れ、加温して溶解させた。この溶液を室温に戻しホモジナイザー(特殊機化工業社製)で撹拌し(10000rpm,10分)起泡させた。この泡400mlをレオドールAO−15(花王社製)を1%含有するパナセート800(日本油脂社製)1lに投入し、以下実施例1と同様に操作し、本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
加水分解ゼラチン(商品名;ニッピハイグレードゼラチン,ニッピ社製)50gを精製水500mlに入れ、加温して溶解させた。この溶液を室温に戻しホモジナイザー(特殊機化工業社製)で撹拌し(10000rpm,10分)起泡させた。この泡400mlをパナセート800(日本油脂社製)1lに投入し、テフロン(登録商標)パドルを装着した撹拌装置(MAZELA Z,EYELA社製)を用いて400rpmで撹拌し、エマルジョンを形成させた。以下実施例1と同様に操作し、本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
酸処理ゼラチン(G−0785P,新田ゼラチン社製)20gを精製水500mlに入れ、加温して溶解させた。この溶液を室温に戻しホモジナイザー(特殊機化工業社製)で撹拌し(10000rpm,10分)起泡させた。この泡400mlをパナセート800(日本油脂社製)1lに投入し、以下実施例1と同様に操作し、本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
ゼラチン(CP−2,宮城化学社製)4gを精製水100mlに入れ、加温して溶解させた。この溶液を室温に戻しパナセート20mlを加え、ホモジナイザーで撹拌し、エマルジョンを形成させた。このエマルジョンをパナセート800(日本油脂社製)400mlに投入し、以下実施例1と同様に操作し、本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
実施例1と同様の方法で、得られたゲル粒子を真空乾燥後、190℃で1時間加熱し本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
実施例1と同様の方法で、得られたゲル粒子を真空乾燥後、170℃で2時間加熱し本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
実施例1と同様の方法で、得られたゲル粒子を真空乾燥後、160℃で4時間加熱し本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
実施例1と同様の方法で、得られたゲル粒子を真空乾燥後、145℃で5時間加熱し本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
実施例1と同様の方法で、得られたゲル粒子を凍結乾燥後、145℃で5時間加熱し本発明の粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
ゼラチン(GGG,新田ゼラチン社製)105gを精製水に入れ3lとし、加温して溶解させた。この溶液を室温に戻し撹拌機(EYELA社製)で撹拌し(1200rpm,20分)起泡させた。この泡6lをパナセート800(日本油脂社製)8lに投入し、テフロン(登録商標)パドルを装着した撹拌装置(MAZELA Z,EYELA社製)を用いて170rpmで撹拌し、エマルジョンを形成させた。このエマルジョンを冷却しゲル化させゲル粒子とした。冷却下、メッシュ(300μm)を用いてゲル粒子を取り出し、冷却したイソプロピルアルコール(IPA)で洗浄した。洗浄後、メッシュを用いてIPAを除去し、ゲル粒子を取り出した。このゲル粒子とIPAをビーカーに入れ、水流ポンプを用いて減圧にし、マグネチックスターラーで撹拌しながらゲル粒子を洗浄した。さらに、常圧に戻し、ビーカーごと超音波洗浄器に移し、ゲル粒子を超音波照射した。このゲル粒子をメッシュを用いて分級し、フィルターを用いてゲル粒子を取り出した。これを真空乾燥後、155℃で4時間加熱し、本発明粒子を得た。次に、この粒子をさらに水で洗浄後、凍結乾燥を行い粒子を得た。得られた粒子はその表面に孔を有し、内部は多孔性(蜂の巣状)であり、水に分散すると球状の粒子の形を保持したまま膨潤した。
比較例3
シクロヘキサン150g及びトルエン50gからなる分散媒にエチルセルロース(エトキシキ基含有49%)6gを溶解し、この溶液を冷却管とテフロン(登録商標)パドルを装着した500mlのセパラブルフラスコに入れた。撹拌速度を400rpmとし、温度を70℃にした。これにゼラチンを30重量%の濃度で水に加え、60℃で溶解させて得た水溶液を40g添加し、50%グルタルアルデヒド水溶液4g(ゼラチンのアミノ基1当量に対してグルタルアルデヒド4当量)を入れ、5分間反応させると茶褐色の粒子が得られた。これを酢酸エチルで洗浄し、さらにアセトンで洗浄し篩いで0.5〜1.0mmの粒子を集め、真空乾燥機で乾燥し粒子を得た。本粒子を電子顕微鏡で観察すると、表面が滑らかで内部に孔がなかった。
比較例4
比較例3と同様の操作で行った。ただし、グルタルアルデヒドの添加量を0.15g(ゼラチンのアミノ基1当量に対して、グルタルアルデヒド0.15当量)とした。
比較例5
比較例3と同様な操作で行った。架橋剤をグルタルアルデヒドからポリグリセロールポリグリシジルエーテル(商品名 デナコールEX512、ナガセ化成社製)と代え、これを5g(ゼラチンのアミノ基1当量に対して、エポキシ基4当量)入れ、反応時間を70℃で5時間行って、同様な操作で粒子を得た。
比較例6
比較例3と同様な操作で行った。ただし、ゼラチンの濃度を5重量%ととした。
試験例3
実施例16で製造された加熱処理(155℃,4時間)した粒子から、篩いで0.5〜1.0mmのものを取り出し、これを水に分散後凍結乾燥し製造された本発明粒子と比較例3〜6で製造された粒子について、それぞれの粒子の血小板凝集作用を測定した。試験は、5mlシリンジ(テルモ社製)にクエン酸ナトリウム試液(商品名 チトラート、ミドリ十字社製)を0.4ml入れ、ビーグル犬2頭(A及びB)から採血した血液を加え全量4mlとし、これを採血ビンに移し、それぞれの粒子40mgを入れ、動物用血球測定装置(セルタックα、日本光電社製)を用いて経時的な血小板数を測定することにより行った。なお、血液の凝集作用を確認するため、コラーゲン(1mg/ml、ウマの腱コラーゲン、Hormon-Chemie社製)を0.1378ml加えた(血液中のコラーゲン濃度を33.3μg/mlとした)。また、試験に用いた血液の妥当性を評価するため、クエン酸ナトリウム含有血液を用いてブランク試験を行った。
ビーグル犬A及びビーグル犬Bの2頭の血液を用いた結果をそれぞれ図4及び図5に示す。比較例3〜6で製造された粒子について、初期値を100とした血小板数の相対比(血中血小板数の残存率)は、ブランクと同じくほとんど変化を示さなかった。これに対し、本発明粒子については、血小板の凝集に基づく血小板数の相対比の有意な低下が認められた。したがって、塞栓物質周辺で血小板凝集が起きることから、塞栓療法において、より強固な塞栓の形成が期待できる。なお、コラーゲンを添加したものは添加後5分で血小板の凝集に基づく血小板数の減少が認められ、測定に用いた血液の妥当性を確認した。
本発明の水不溶化多孔性粒子を製造する製造方法を示す。詳細な説明については、発明の開示の欄に記載している。
本発明の水不溶化多孔性粒子が経動脈塞栓治療法に用いられる場合、塞栓治療の作用機序(投与から再疎通まで)を示すものである。該機序は、(i)カテーテルにより目的の血管に選択的に投与された粒子は、血管を物理的に塞栓する、(ii)血小板が該粒子に粘着及び/または接触することにより血小板凝集が誘発され、血餅が形成される(塞栓が強固となる)、(iii)塞栓により、栄養供給が絶たれた悪性腫瘍が壊死する(抗ガン剤と併用した場合には腫瘍部位における抗ガン剤濃度も高まり、さらなる治療効果が期待される)、(iv)粒子が生体内酵素によって分解され血管が再疎通する、(v)壊死部分あるいは周辺組織が正常に回復する、と考えられている。該機序における本発明多孔性粒子の特長については、以下のとおり考えられる。すなわち、(1)前記機序(i)については、本発明粒子は多孔性であるがゆえに粒子表面積が大きく、粒子の弾力性に優れるため、血管壁、血管の太さに合わせて自由に変形することができることにより、粒子同士が塞栓部位においてより密につまった状態を形成することができる。また、本発明粒子は、TAEなどに用いられるマイクロカテーテル内においても変形することができるため、非多孔性粒子に比べ大きな粒子径を有する粒子を投与することも可能であり、良好な塞栓効果が期待される。また通常、マイクロカテーテルを使うときには、かなりの力が必要とされるが、本発明粒子を用いる場合、先述の理由により施術者の肉体的負担が軽減されることが期待される。(2)通常、血小板凝集は、血小板が例えばコラーゲンなどと接触することにより誘発されて起こると言われている。前記機序(ii)については、例えばコラーゲンが分解して得られるゼラチンを塞栓物質の基剤として用いる場合を考える。本発明粒子の比表面積は多孔性であるがゆえに大きく、血小板との接触表面積が大きいため血小板凝集が起こりやすい。また、本発明粒子は多孔性であるため、粒子間にも血小板が浸入することができることから血小板凝集効果はさらに高まり、これに伴い塞栓能も高まると考えられる。さらにまた、粒子の凹凸の影響により、血管内に乱流が生じやすく、血小板が受ける剪断変形圧によって血小板凝集が起こりやすくなることも期待できる。(3)前記機序(iv)については、生体内酵素による分解において、本発明粒子が多孔性であることより粒子の内部からも分解されるため消失速度が早いと考えられる。
非多孔性粒子が同療法に用いられる場合の作用機序(投与から再疎通まで)を示すものである。粒子は多孔性でないため、本発明多孔性粒子と比して投与可能な粒子径や血小板凝集作用に基づく塞栓性及び再疎通能に劣るものと考えられる。
実施例16から調製される本発明粒子と比較例3〜6から得られる非多孔性粒子について、血小板凝集試験結果を示す。(ビーグル犬Aの血液)
図4と同様に血小板凝集試験結果を示す。(ビーグル犬Bの血液)

Claims (16)

  1. 実質的に架橋剤を含有しないゲル形成性または固化性の生体適合性物質(ゼラチン及びそれらの誘導体、並びにそれらの生理学的に許容される塩からなる群より選択された1種または2種以上からなる生体適合性物質を除く)からなる水不溶化多孔性粒子。
  2. 生体適合性物質が、ポリペプチド、その誘導体、蛋白質、その誘導体、多糖、その誘導体、及びそれらの生理学的に許容される塩からなる群より選択された1種または2種以上である請求項1記載の粒子。
  3. 生体適合性物質が、コラーゲン、アテロコラーゲン、アルブミン、フィブリン、プロタミン、ジュランガム、アラビアゴム、ヒアルロン酸、アルギン酸、コンドロイチン硫酸、ヘパリン、キチン、キトサン及びそれらの誘導体、並びにそれらの生理学的に許容される塩からなる群より選択された1種または2種以上である請求項2記載の粒子。
  4. 生体適合性物質が、アテロコラーゲン、アルブミン、ヒアルロン酸、アルギン酸及びそれらの誘導体、並びにそれらの生理学的に許容される塩からなる群より選択された1種または2種以上である請求項3記載の粒子。
  5. 粒子径が0.01乃至10mmである請求項1乃至4のいずれか1項に記載の粒子。
  6. 比重が0.001g/ml乃至1g/mlである請求項1乃至5のいずれか1項に記載の粒子。
  7. 請求項1乃至6のいずれか1項に記載の実質的に架橋剤を含有しない生体適合性物質の水不溶化多孔性粒子を含有する医薬組成物。
  8. 請求項7に記載の医薬組成物において、塞栓治療用塞栓物質として使用される医薬組成物。
  9. 請求項7に記載の医薬組成物において、止血物質として使用される医薬組成物。
  10. ゲル化または固化した生体適合性物質(ゼラチン及びそれらの誘導体、並びにそれらの生理学的に許容される塩からなる群より選択された1種または2種以上からなる生体適合性物質を除く)の多孔性粒子を実質的に水の存在しない系で加熱して水不溶化してなる生体適合性物質の水不溶化多孔性粒子。
  11. ゲル形成性または固化性の生体適合性物質を該物質の良溶媒溶液中で起泡させ、良溶媒とは混和しない生体適合性物質の貧溶媒に分散し、これを冷却してゲル化または固化した後、得られた多孔性粒子を生体適合性物質の貧溶媒が混和しうる溶媒で洗浄し、実質的に水の存在しない系で加熱して水不溶化してなる請求項10記載の粒子。
  12. ゲル化または固化した生体適合性物質(ゼラチン及びそれらの誘導体、並びにそれらの生理学的に許容される塩からなる群より選択された1種または2種以上からなる生体適合性物質を除く)の多孔性粒子を、実質的に水の存在しない系で加熱して水不溶化することを特徴とする生体適合性物質の水不溶化多孔性粒子の製造法。
  13. ゲル形成性または固化性の生体適合性物質を該物質の良溶媒溶液中で起泡させ、良溶媒とは混和しない生体適合性物質の貧溶媒に分散し、これを冷却してゲル化または固化した後、得られた多孔性粒子を生体適合性物質の貧溶媒が混和しうる溶媒で洗浄し、実質的に水の存在しない系で加熱して水不溶化する請求項12記載の粒子の製造法。
  14. ゲル形成性または固化性の生体適合性物質の良溶媒溶液に、該物質の貧溶媒を分散させ、該分散液をさらに生体適合性物質の貧溶媒に分散し、これを冷却してゲル化または固化した後、得られた多孔性粒子を生体適合性物質の貧溶媒が混和しうる溶媒で洗浄し、実質的に水の存在しない系で加熱して水不溶化する請求項12記載の粒子の製造法。
  15. ゲル形成性または固化性の生体適合性物質の貧溶媒に溶解しうる物質もしくは生体適合性物質の良溶媒に不溶で該物質の貧溶媒に移行する物質を生体適合性物質の良溶媒溶液に分散させ、該分散液をさらに生体適合性物質の貧溶媒に分散し、これを冷却してゲル化または固化した後、得られた多孔性粒子を生体適合性物質の貧溶媒が混和しうる溶媒で洗浄し、実質的に水の存在しない系で加熱して水不溶化する請求項12記載の粒子の製造法。
  16. 請求項12乃至15の製造法により得られる水不溶化多孔性粒子をさらに水に分散後、凍結乾燥する請求項12乃至15のいずれか1項に記載の粒子の製造法。
JP2004303975A 1996-07-19 2004-10-19 生体適合性物質の水不溶化多孔性粒子及びその製造法 Withdrawn JP2005112858A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303975A JP2005112858A (ja) 1996-07-19 2004-10-19 生体適合性物質の水不溶化多孔性粒子及びその製造法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19087896 1996-07-19
JP2004303975A JP2005112858A (ja) 1996-07-19 2004-10-19 生体適合性物質の水不溶化多孔性粒子及びその製造法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50678698A Division JP3879018B2 (ja) 1996-07-19 1997-07-17 生体適合性物質の水不溶化多孔性粒子及びその製造法

Publications (1)

Publication Number Publication Date
JP2005112858A true JP2005112858A (ja) 2005-04-28

Family

ID=34553859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303975A Withdrawn JP2005112858A (ja) 1996-07-19 2004-10-19 生体適合性物質の水不溶化多孔性粒子及びその製造法

Country Status (1)

Country Link
JP (1) JP2005112858A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150224133A1 (en) * 2013-03-15 2015-08-13 Covidien Lp Resorbable oxidized cellulose embolization solution
CN106063946A (zh) * 2015-04-23 2016-11-02 柯惠Lp公司 可吸收性氧化纤维素栓塞形成溶液
WO2020111895A1 (ko) * 2018-11-30 2020-06-04 주식회사 넥스트바이오메디컬 생분해성 고분자를 포함하는 화학색전용 수화겔 입자
WO2022244921A1 (en) * 2021-05-17 2022-11-24 Engain Co., Ltd. Embolic material for relieving or treating musculoskeletal pain comprising fast dissolving gelatin particles
WO2023174089A1 (zh) * 2022-03-14 2023-09-21 神泓医疗科技(上海)有限公司 液体栓塞剂及其制备方法和应用

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150224133A1 (en) * 2013-03-15 2015-08-13 Covidien Lp Resorbable oxidized cellulose embolization solution
US9782430B2 (en) * 2013-03-15 2017-10-10 Covidien Lp Resorbable oxidized cellulose embolization solution
CN106063946A (zh) * 2015-04-23 2016-11-02 柯惠Lp公司 可吸收性氧化纤维素栓塞形成溶液
WO2020111895A1 (ko) * 2018-11-30 2020-06-04 주식회사 넥스트바이오메디컬 생분해성 고분자를 포함하는 화학색전용 수화겔 입자
KR20200066574A (ko) * 2018-11-30 2020-06-10 주식회사 넥스트바이오메디컬 생분해성 고분자를 포함하는 화학색전용 수화겔 입자
CN113164650A (zh) * 2018-11-30 2021-07-23 株式会社 Nextbiomedical 包含生物降解高分子的用于化疗栓塞的水凝胶粒子
JP2022509997A (ja) * 2018-11-30 2022-01-25 ネクストバイオメディカル カンパニー リミテッド 生分解性高分子を含む化学塞栓用水和ゲル粒子
KR102449908B1 (ko) 2018-11-30 2022-10-04 주식회사 넥스트바이오메디컬 생분해성 고분자를 포함하는 화학색전용 수화겔 입자
JP7198529B2 (ja) 2018-11-30 2023-01-04 ネクストバイオメディカル カンパニー リミテッド 生分解性高分子を含む化学塞栓用水和ゲル粒子
WO2022244921A1 (en) * 2021-05-17 2022-11-24 Engain Co., Ltd. Embolic material for relieving or treating musculoskeletal pain comprising fast dissolving gelatin particles
WO2023174089A1 (zh) * 2022-03-14 2023-09-21 神泓医疗科技(上海)有限公司 液体栓塞剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
US7591993B2 (en) Polyvinyl alcohol microspheres, and injectable solutions of the same
JP3879018B2 (ja) 生体適合性物質の水不溶化多孔性粒子及びその製造法
EP2368581B1 (en) Porous intravascular embolization particles and related methods
JP4601169B2 (ja) 複合ヒドロゲル薬物送達システム
JP5616251B2 (ja) 固形腫瘍の化学的塞栓療法用組成物
EP0707474B1 (en) Medical use of organic aerogels and biodegradable organic aerogels
JP5148030B2 (ja) 新規の高粘度塞栓形成組成物
JP6195567B2 (ja) 止血組成物
CA2596283C (en) Embolization using poly-4-hydroxybutyrate particles
JP2002519364A (ja) 乳酸エチルを含有する血管塞栓形成組成物及びその使用方法
JP2007516747A (ja) 治療用ミクロ粒子
EP2708570A1 (en) Gelatin Particle and Use Thereof, and Device for Administration of Physiologically Active Substance
KR100478227B1 (ko) 키틴 및/또는 키토산으로 구성되는 혈관 색전 물질의 제조방법
JP2004510723A (ja) 低下した分子量のアミロペクチンをベースとする精製された澱粉を含む制御放出投与のための生物分解性微粒子
EP1490121B1 (en) Drug delivery particle
JP2005112858A (ja) 生体適合性物質の水不溶化多孔性粒子及びその製造法
JP2005103319A (ja) 生体適合性物質の水不溶化多孔性粒子及びその製造法
JP2014218464A (ja) 均一分散可能な架橋ゼラチン粒子集合体
JP2014058465A (ja) 膨潤ゼラチン粒子および生理活性物質徐放用ゼラチン粒子、ならびに生理活性物質投与用デバイス
JP2024508888A (ja) 一時的塞栓剤としてのアルギネートベースの粒子
JP2014058466A (ja) ゼラチン粒子およびその用途、ならびに生理活性物質投与用デバイス
JP2014210757A (ja) 架橋ゼラチン担体およびそれを用いた生理活性物質徐放担体

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510