JP4601169B2 - 複合ヒドロゲル薬物送達システム - Google Patents

複合ヒドロゲル薬物送達システム Download PDF

Info

Publication number
JP4601169B2
JP4601169B2 JP2000564591A JP2000564591A JP4601169B2 JP 4601169 B2 JP4601169 B2 JP 4601169B2 JP 2000564591 A JP2000564591 A JP 2000564591A JP 2000564591 A JP2000564591 A JP 2000564591A JP 4601169 B2 JP4601169 B2 JP 4601169B2
Authority
JP
Japan
Prior art keywords
hydrogel
phase
drug delivery
microspheres
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000564591A
Other languages
English (en)
Other versions
JP2003523926A5 (ja
JP2003523926A (ja
Inventor
アマープリート エス. ソウフニー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Incept LLC
Original Assignee
Incept LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incept LLC filed Critical Incept LLC
Publication of JP2003523926A publication Critical patent/JP2003523926A/ja
Publication of JP2003523926A5 publication Critical patent/JP2003523926A5/ja
Application granted granted Critical
Publication of JP4601169B2 publication Critical patent/JP4601169B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1213Semi-solid forms, gels, hydrogels, ointments, fats and waxes that are solid at room temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

【0001】
(発明の分野)
本発明は、ヒドロゲルを使用する治療種の制御された放出を提供するための組成物および方法に関する。
【0002】
(発明の背景)
薬物が有効であるためには、特定の濃度レベル(治療指数と呼ばれる)が、特定の位置で特定の時間の間維持されなければならない。全身的に投与される薬物は最初の2つの目的を達するが、不充分な様式であり、そして高用量では毒性の副作用の可能性を伴う。放出の制御された徐放処方物の全身的な投与は、薬物のより効率的な利用でこれらの2つの目的を達成し、そして副作用を低減し得る。薬物送達システムの局所的な移植はさらに、薬物の利用の効率を改善し得る。
【0003】
ヒドロゲルは、溶媒(例えば、水)を吸収し、認識可能な溶解を伴わずに迅速に膨張し、そして可逆的に変形し得る3次元ネットワークを維持する物質である。ヒドロゲルは、架橋されていないか、または架橋され得る。架橋されていないヒドロゲルは、水を吸収し得るが、疎水性および親水性領域の存在に起因して溶解しない。親水性ポリマー(水溶性ポリマーを含む)の共有結合的に架橋されたネットワークは、水和状態におけるヒドロゲルとして従来から示されている。多数の水性ヒドロゲルが、種々の生物医学的な適用(例えば、ソフトコンタクトレンズ、創傷の処置、および薬物送達のような)において使用されている。
【0004】
ヒドロゲルは、グリコサミノグリカンおよびポリサッカライド、タンパク質などのような天然のポリマーから形成され得る。ここで、用語「グリコサミノグリカン」は、生物学的に活性ではない(すなわち、リガンドまたはタンパク質のような化合物ではない)複合ポリサッカライドを含み、そして同じサッカライドサブユニットまたは2つの異なるサッカライドサブユニットのいずれかの反復ユニットを有する。グリコサミノグリカンのいくつかの例として、デルマタン硫酸、ヒアルロン酸、コンドロイチン硫酸、キチン、ヘパリン、ケラチン硫酸、ケラト硫酸、およびそれらの誘導体が挙げられる。
【0005】
グリコサミノグリカンは、天然の供給源から抽出され、精製され、そして誘導体化され得るか、または合成的に産生され得るかもしくは細菌のような改変された微生物によって合成され得る。これらの物質はまた、天然の可溶性の状態から、部分的に可溶であるか、または水膨張性であるか、またはヒドロゲル状態に合成によって改変され得る。これは、例えば、イオン化可能官能基またはヒドロゲルに結合可能な官能基(例えば、カルボキシル基および/またはヒドロキシル基もしくはアミン基)の他のより疎水性の基との結合またはそれによる置換によって行われ得る。
【0006】
ヒドロゲルを形成することにおける使用に適切な親水性ポリマー物質として、ポリ(ヒドロキシアルキルメタクリレート)、ポリ(電解質複合体)、加水分解可能な結合によって架橋されたポリ(ビニルアセテート)、水膨張性N−ビニルラクタムポリサッカライド、天然ゴム、寒天、アガロース、アルギン酸ナトリウム、カラゲナン、フコイダン、フルセララン(frucellaran)、ラミナラン(laminaran)、ヒプネア(hypnea)、エウケウマ(eucheuma)、アラビアガム、ガッチ(gatti)ガム、カラヤガム、トラガカントガム、ローカストガム(locust bean gum)、アラビノガラクタン、ペクチン、アミロペクチン、ゼラチン、親水性コロイド(例えば、カルボキシメチルセルロースガムまたはプロピレングリコールのようなポリオールと架橋されたアルギネートガム)などが挙げられる。以前から既知のヒドロゲルのいくつかの処方物は、Etesの米国特許第3,640,741号、Hartopの同第3,865,108号、Denzingerらの同第3,992,562号、Manningらの同第4,002,173号、Arnoldの同第4,014,335号、Michaelsの同第4,207,893号、およびHandbook of Common Polymers,(ScottおよびRoff編)Chemical Rubber Company、Cleveland,Ohioに記載されている。
【0007】
酵素的または加水分解的に不安定な成分として、それぞれポリペプチドまたはポリエステル成分を含む、共有結合的に架橋されたネットワークに基づく吸収可能なまたは生分解性ヒドロゲルの、合成ならびに生物医学的および薬学的な適用は、多数の研究者によって記載されている。例えば、Jarrettら、「Bioabsorbable Hydrogel Tissue Barrier:In Situ Gelation Kinetics」、Trans.Soc.Biomater.,第XVIII巻、182、1995、およびPark、「Enzyme−digestible Swelling Hydrogels as Platforms for Long−term Oral Drug Delivery:Synthesis and Characterization」、Biomaterials、9:435(1988)を参照のこと。
【0008】
文献において最も頻繁に記載されているヒドロゲルは、ポリビニルピロリドンのような水溶性のポリマーから作製されるものである。これは、アルブミンに基づくもののような天然に由来する生分解性の成分と架橋されている。制御された薬物の放出について、および外科手術後の癒合の処置のための膜として研究されている完全に合成のヒドロゲルは、ポリエーテルジポリラクチドブロックコポリマーのアクリル末端化された水溶性の鎖の付加重合によって形成された共有結合ネットワークに基づく。
【0009】
生体吸収性のヒドロゲルは、局所的な移植に十分に適切であるが、比較的低分子量の分子は、以前から既知のヒドロゲルの比較的開放的なネットワークに起因してヒドロゲルから迅速に放出される。しかし、比較的低分子量の化合物は、治療用分子および薬物のほぼ大半を構成する。移植可能でありそして生体吸収性のデバイスからの制御された薬物の送達は大規模な探索の対象となってきているが、比較的低分子量の水溶性および水不溶性の薬物の両方を送達し得る適切な吸収性のシステムは知られていない。
【0010】
比較的低分子量の薬物の制御された放出送達を提供する組成物および方法の開発は、以下の試みを提示する:送達マトリックスは、安全でありそして吸収可能である必要があり;薬物の放出は制御されそして維持されるべきであるが、「破裂効果」は存在せず;そしてデバイスは、敏感な捕捉された薬物の変質を妨げるように容易に組み立てられるべきである。
【0011】
治療種の維持され制御された放出を提供するための以前から既知の方法および組成物、ならびにこのような組成物および方法の使用に適切な適用は、本明細書中で以下で議論され、そして:(a)マイクロカプセル化および(b)標的化ミクロスフェアを含む。
【0012】
(a.マイクロカプセル化)
いくつかの以前から公知の送達システムは、生分解性ミクロスフェアおよび/または生分解性ポリマー(例えば、ポリd,1−乳酸(PLA)、ならびに乳酸およびグリコール酸(PLGA)のコポリマー)を含むマイクロカプセルを使用する。これらのポリマーは、徐放デバイスにおいて最も広範に使用されており、そして触媒または他の活性化因子の存在下または非存在下での乳酸またはグリコール酸の重縮合によって獲得され得る。このような物質から調製されたマイクロカプセルは、筋内または他の非経口的な経路によって投与され得る。
【0013】
しかし、多数の生物学的に活性な分子化合物の水溶性は、生分解性のミクロスフェアおよび/またはマイクロカプセル中での分子化合物の充填効率を最適化する際に制限因子となることが証明された。詳細には、例えば、PLAまたはPLGA−ポリマーミクロスフェア中への水溶性薬物の充填効率は、従来の油/水システムを溶媒エバポレーションプロセスにおいて使用される場合に比較的低いことが観察された。これは、このような薬物が、エマルジョン系の水性の外相の中に容易に分散するという観察に起因している。
【0014】
文献に記載されているミクロスフェアのほとんどは、「マトリックス型」の薬物送達カプセルのクラスに属する。ここで、「外来」(すなわち、薬物)粒子は、ポリマーとの直接的な接触において均質に分散される。このようなカプセルを製造するプロセスはまた、しばしば、薬物とポリマー性溶媒(例えば、アセトニトリルまたはメチレンクロライド)との間の直接的な接触を含む。生物系での、生物学的に活性な分子と、ポリマー、ポリマー性溶媒、または酵素との間でのこのような接触は、意図される医薬の分解を促進し得る。
【0015】
詳細には、ポリマー中の単量体および二量体の残渣は、タンパク質を分解し得、そしてこのポリマーとタンパク質と酵素との間での直接的な接触は、経時的なポリマーの分解を生じ得る。生分解性のポリマー中にペプチドをカプセル化するための以前の公知技術は、代表的には、溶媒−非溶媒系を利用する。このような系は、しばしば、高い溶媒残量、ミクロスフェアにおけるペプチドの不充分な内容物の均質性、ならびにポリマー、有機溶媒(例えば、メチレンクロライド、アセトニトリル)およびいくつかの場合には界面活性剤との生物学的因子の接触に起因する不安定性を生じる。
【0016】
捕捉された物質に対して潜在的に有害な影響(これは、処理を複雑にする)を有し得る有機溶媒の使用に取り組むために、いくつかの別の方法が提案されている。Tsueiらの米国特許第5,589,194号は、カプセル化組成物を形成するために熱で軟化される固体マトリックス形成材料中の活性成分を分散または溶解させることによる、マイクロカプセルの調製を記載している。カプセル化組成物は、固体のマイクロカプセルを提供するように、クエンチング液体中へのインタクトな流れとして注入される。
【0017】
Belakらの米国特許第3,242,237号は、不連続の徐放性化学肥料(fertilizer)粒子を形成するためのプロセスを記載している。ここでは、固形肥料を融解されたワックス中に分散し、そして液滴の形態で水中に滴下される。粒子中の液滴の固体性は、水との接触の際に形成され、そして水から分離される。
【0018】
Kubotaの欧州特許出願番号第0,443,743号は、1つ以上の微細粉末状の脂質において構成されるコーティング材料の粒子との衝突による接触中に、ビタミンCを含有する粒子コアを取り囲むことによって、微細な脂質粉末中に粒子のビタミンCをカプセル化するための方法を開示している。脂質は、粒子コアを取り囲む塊となった粒子のコーティングを形成する。
【0019】
Herbigの米国特許第3,161,602号は、以下の三相系を利用してカプセルを作製するためのプロセスを開示している:ワックス様の壁材料、核材料、および実質的に不活性な油性ビヒクル。ワックス状の材料は液体に融解させられ、そして核物質をコーティングするように攪拌され、それによって液体の壁のカプセル前駆体液滴を形成する。溶液は、連続的な攪拌によって冷却され、それによってワックス壁が固化し、そして自己支持カプセルが形成される。
【0020】
しかし、上記のHerbigの特許において記載されているプロセスは、以下を含む多数の欠点を有する:液体である液滴の完全な固体カプセルへの形成までに所望されない長期間の時間がかかること(これは、熱い不活性な油性ビヒクル中への拡散または排除機構のいずれかを介した活性成分の損失を生じ得る);これが、高度な機械的攪拌を必要とすること;活性成分の不均質な分配を有するカプセルを生じ得ること;および非常に広範な大きさの分布を有するカプセルを生じ得ること。
【0021】
Sharmaらの米国特許第4,597,970号および同第4,828,857号の両方は、スプレー乾燥プロセスを使用する、水素化されたパーム油中にアスパルテームをカプセル化するための方法を記載している。しかし、そのプロセスは、凝固工程の間に液滴の最も外部の表面上に均質な連続層を提供することが困難である点で、他のエアスプレープロセスと共有する欠点を有する。
【0022】
Arensらの米国特許第3,423,489号およびBollesの米国特許第3,779,942号は、カプセル化されるべき液体の内部コア、および固化され得る液体のカプセル化材料の外部の管を有する、同中心の二脂質カラムを形成することによる、カプセル形成の方法を記載している。特別な複数の開口部の液体流出システムが、カラムが個々の液滴中に十分圧縮することを可能にするために十分な時間、例えば、気体の層を通じる軌道通過に沿ってカラムを排出するために使用され、それによって、カプセル化材料がカプセル化された液体を囲む。
【0023】
Torchilinらの「Liposome−Polymer Systems.Introduction of Liposomes into a Polymer Gel and Preparation of the Polymer Gel inside a Liposome」、Polymer.Sci.U.S.S.R.,30:2307−2312(1988)は、非吸収性のヒドロゲル中のリポソーム粒子の捕捉に基づく研究を記載している。リポソームは、調製および安定化することが困難であり得る。また、ポリアクリルアミドヒドロゲルの非吸収性の性質は、続いて起こる想起(retrieval)を伴わない移植を妨げる。Baileyらの「Synthesis of Polymerized Vesicles with Hydrolyzable Linkages」、Macromolecules、25:3−11(1992)によって報告されているように、重合可能なリポソームベシクルの合成もまた試みられているが、複雑な合成スキームは、このプロセスにおける薬物分子の捕捉を困難にさせる。
【0024】
Berdeらの米国特許5,618,563号は、移植の部位で局所的に鎮痛剤を放出するためのミクロスフェアを含むポリマー性マトリックスの使用を記載している。この特許において使用されるポリマー性マトリックスはヒドロゲルではなく、そして疎水性ポリマーが、薬物の捕捉のために使用される。しかし、このようなポリマーマトリックスは炎症性であり得る。
【0025】
Ticeらの米国特許第4,530,840号は、抗炎症剤を送達するためマイクロカプセルを形成する方法を記載している。マイクロカプセルは、溶媒中に抗炎症剤および生分解性の壁形成材料を溶解させること、次いで連続的な相加工媒体中に得られた溶液を分散させることによって、調製される。加工媒体は、分散物から溶媒の一部を蒸発させ、それによって抗炎症剤を含有するマイクロ粒子を形成する。この方法において記載されている有機溶媒は、いくつかの高感受性な治療的実体を損傷し得、そして処理において使用された残渣溶媒は除去することが困難であり得、そして毒性に関係するものを提示する。
【0026】
Ramstackらの米国特許第5,650,173号は、薬物をカプセル化するため、および制御された薬物放出を提供するために適切なマイクロ粒子の形成に関する当該分野の状況を概説している。壁形成因子および薬物の両方を溶解するために溶媒を使用する、生分解性のマイクロ粒子を調製するための1つの方法が、記載されている。抽出媒体は、溶媒を除去し、そしてマイクロ粒子を形成するために得られたエマルジョンを安定化させるために使用される。Ticeの特許に記載されている方法を用いる場合は、大量の有機溶媒の使用は、除去および毒性の排出を惹起し得る。
【0027】
上記の観点から、処理および製作することが容易である、ヒドロゲルに基づくマトリックス中で維持された様式で比較的低分子量の化合物を送達し得る、局所的に移植可能でありそして吸収可能な薬物送達システムを実行するための組成物および方法を提供することが、所望されている。
【0028】
(b.標的化可能なミクロスフェア)
身体の多数の疾患状態が、局所的な状態として顕在化し、従って、局所的な治療に関係し得る。さらに、局所的な痛み(例えば、切開による)または固形の腫瘍は、局所的に処置され得る。局所治療の標的化は、多数の非侵襲性および侵襲性検出技術(例えば、磁気共鳴像、超音波、x線、血管造影法など)によって補助され得る。
【0029】
しかし、このような診断ツールの利用可能性にもかかわらず、疾患の局所を正確に狙うことは、時としてより困難であり得る。これは、疾患の拡散性の性質に起因し得るか、あるいは従来の手段による検出から逃れる細胞性または微視的レベルでの微妙な変更(例えば、転移性の腫瘍または自己免疫障害)に起因し得るかのいずれかであり得る。いくつかのこのような疾患について既知の効率を有する強力な薬物が存在するが、これらの薬物の非常に多くは、治療的なレベルにおいて所望されない毒性のプロフィールを有する。
【0030】
標的化された送達による薬物の効率的な利用は、付随する毒性の軽減を可能とし得る。例えば、静脈内に注射することが可能な薬物送達のためのミクロスフェアは、代表的には、網膜内皮系のマクロファージによって血流から迅速には排出されないような大きさであるべきである。Grefらの米国特許第5,565,215号は、可変の放出速度を有するか、または特定の細胞もしくは器官を標的化する、注射可能なナノ粒子またはマイクロ粒子の形成を記載している。
【0031】
リポソーム薬物送達系が、生物学的に活性な物質の静脈内投与について広範に考察された。なぜなら、これらは、血液中を自由に循環すると予想されたからである。しかし、リポソームが網膜内皮系を通じる取りこみによって血液から迅速に排出されることが観察された。ポリ(エチレングリコール)でのリポソームのコーティングは、このような活性な物質の半減期を実質的に増大させることが観察されている。しかし、可撓性でありそして比較的親水性であるPEG鎖は、タンパク質の吸着を減少させ、従ってRESの取りこみを減少させる、リポソーム表面での立体効果を誘導する。例えば、Lasicら、「Sterically Stabilized Liposomes:a Hypothesis on the Molecular Origin of the Extended Circulation Times」、Biochimica et Biophysica Acta、1070:187−192(1991);およびKlibanovら、「Activity of Amphipathic Poly(ethylene glycol) 5000 to Prolong the Circulation Time of Liposomes Depends on the Liposome Size and Is Unfavorable for Immunolipososome Binding to Target」、Biochimica et Biophysica Acta、1062:142−148(1991)を参照のこと。
【0032】
免疫学の分野は、細胞表面レセプターおよびシグナル伝達分子についての本発明者らの理解を向上させる。例えば、ほとんどの細胞の集団は、それを、細胞の集団でありそして標的特異的である「モノクローナル抗体」を作製することが可能であるようにする、特有のレセプターのセットを示す。この特異性の知見は、特定の細胞集団(例えば、腫瘍細胞)の特異的なレセプターに対するモノクローナル抗体に対する細胞毒性の分子(例えば、リシン)に結合する、融合毒素によって採用されるもののような、治療剤の開発を可能とした。しかし、一般的には、このような治療剤は十分に理解されていないという理由のために、広範には成功していない。例えば、迅速な排出の前のこれらの可溶性の分子の血管内投与によって提供される短い暴露時間に起因する、標的化における不適切な選択性が存在し得る。
【0033】
免疫リポソームを使用して循環時間を増強するためのアプローチは、目的の標的器官中の同化作用においてはより良好である。なぜなら、リポソームは、わずか数ナノメートルの大きさでしかないからであるが、しかし、これらの材料は、はるかにより高い循環速度を有する。例えば、Leyら、「Endothelial、Not Hemodynamic、Differences Are Responsible for Preferential Leukocyte Rolling in Rat Mesenteric Venules」、Circ.Res.,69:1034−1041(1991)。この迅速な循環は、リポソームに対する制限された暴露のみを提供することによって、標的組織との強力な相互作用の形成を妨害し得る。
【0034】
血管内皮に対する一般的には白血球(および特に、単球)の接着は、血液から組織の損傷の部位への細胞の補充に対する決定的な最初の工程である。白血球は、血管内を単純に循環するのではなく、むしろ、内皮細胞の内層とのそれらの相互作用を可能にする血管壁に沿って「回転」型の運動を受ける。この回転運動は、細胞の表面上に存在する炭水化物分子(セレクチンと呼ばれる)によって媒介される弱い相互作用によって引き起こされると考えられている。
【0035】
Raudら、「Leukocyte Rolling and Firm Adhesion in the Microcirculation」、Gastroenterology、104:310−323(1993)において報告されているように、適切な活性化シグナルを受容する際には、内皮細胞は減速し(LおよびおそらくはPセレクチンによって媒介される)、そして続いて、より強靭な結合を形成する(通常は、インテグリンのようなタンパク質に基づくレセプターによって媒介される)。このことは、続いて、白血球の局所的な蓄積を生じ、そして炎症および修復のような生理学的なプロセスにおけるそれらの関与を可能にする。しばしば、この挙動は、炎症性の状態に関連する血管の損傷に関係する。Edginton、「New Horizons for Stem−Cell Bioreactors」、Bio/Technology,10:1099−1106(1992)において報告されているように、例えば、心臓のバイパス手順の後、無酸素性となった内皮細胞は、それらのセレクチンの発現パターンを変更し得、そして攻撃するための好中球を生じ得、それによって生命を脅かす可能性のある「再潅流損傷」を生じ得る。
【0036】
敗血症のショックのほとんどは、同様の機構によって媒介される。いくつかの疾患(例えば、関節炎およびガン)の進行は、白血球の接着(これは、血管外遊出(組織空間への移動)の第一歩である)を停止することによって変更され得る。多くは、体の標的特異的疾患部位がどのようにレセプターによって媒介されて誘導されるかを通じて学習され得る。
【0037】
従って、マイクロカプセル化された薬物キャリアの標的化可能性を増強する組成物および方法を提供することが、所望されている。マイクロカプセル化された薬物キャリアは迅速に調製され、そして投与され得るが、しかし、標的組織を発見することにおいてなおより高度に特異的であり、そして薬物の送達において効率的である。このような「高性能なミクロスフェア」は、より低い循環速度、循環からのより遅い排出を有すること、および選択された細胞性の標的に対する選択的な接着性を有することによって、改善された標的化を達成することが可能であり得る。
【0038】
(発明の要旨)
上記を参照すると、本発明の目的は、比較的低分子量の化合物を送達し得る、局所的に移植が可能でありそして吸収可能な薬物送達組成物および方法を提供することである。
【0039】
処理および製造することが容易である、ヒドロゲルに基づくマトリックスを使用して持続された様式で比較的低分子量の化合物を送達し得る、局所的に移植が可能でありそして吸収可能な薬物送達組成物および方法を提供することもまた、本発明の目的である。
【0040】
本発明の別の目的は、マイクロカプセル化された薬物キャリアの標的化能力を増強し、そして容易に調製されそして投与され得る、吸収可能な薬物送達組成物および方法を提供することである。
【0041】
本発明のさらなる目的は、より遅い循環速度、循環からのより遅い排出を有し、そして選択された細胞性の標的に対する選択的な接着性を有する、吸収可能な薬物送達組成物および方法を提供することである。
【0042】
本発明のなお別の目的は、特異的な生体活性レセプターとの改善された結合体化を提供する、薬物を積んだミクロスフェアを提供することである。
【0043】
本発明のこれらおよび他の目的は、ヒドロゲルを使用する比較的低分子量の治療種の放出を制御するための組成物および方法を提供することによって達成される。本発明の原理に従うと、治療種は最初に、混合物を形成するように、1つ以上の比較的疎水性の速度改変剤中に分散または溶解させられる。この混合物は、マイクロ粒子に形成され得、次いでこれは、制御された様式で水溶性の治療剤を放出するように、生体吸収性のヒドロゲルマトリックス内に捕捉される。あるいは、マイクロ粒子は、ヒドロゲルの重合の間にインサイチュで形成され得る。
【0044】
本発明の1つの方法においては、ヒドロゲルミクロスフェアは、第2の非混合性の相の中で、重合可能な相の分散によって重合可能なマクロマーまたはモノマーから形成される。ここで、重合可能な相は、架橋を誘導する、重合を開始するために必要とされる少なくとも1つの成分を含み、そして非混合性のバルクの相は、相転移剤とともに、架橋を開始するために必要とされる別の成分を含む。水溶性の治療剤を含む予め形成されたマイクロ粒子は、乳濁物を形成するように、重合可能な相の中に分散させられ得るか、またはインサイチュで形成され得る。乳濁物および非混合性の相の重合および架橋は、適切な大きさのミクロスフェア中への重合可能な相の分散後に、制御された様式で開始され、従って、ヒドロゲルミクロスフェア中にマイクロ粒子を捕捉する。
【0045】
本発明の別の局面においては、ミクロスフェアの選択的な蓄積を提供するか、または特異的な領域を標的化するか、もしくはそうでなければ患者の体内のでのミクロスフェアの蓄積に影響を与えるリガンドと連結され得る大きさを有するヒドロゲルミクロスフェアが、形成される。
【0046】
(発明の詳細な説明)
本明細書中に記載する詳細は、薬物送達システムを形成するための本発明の組成物および方法を概説し、それとの使用のために適切な吸収性のポリマーおよび治療剤を記載し、そして本発明の複合ヒドロゲル薬物送達システムの形成の方法を記載する。ヒドロゲルマトリックスからの治療剤の放出速度を制御するために適切な種々の薬剤が、ヒドロゲルからの治療剤の放出速度に影響を与えるための因子および方法とともに記載される。特異的な適用のためにヒドロゲルミクロスフェアを標的化するための方法が、示される。本発明に従って調製されるヒドロゲルに基づく薬物送達システムのいくつかの例が、提供される。
【0047】
全体的には、本発明は、捕捉された治療用化合物を有する複合ヒドロゲルに基づくマトリックスおよびミクロスフェアを形成するための組成物および方法に関する。好ましくは、生体活性薬剤は、捕捉された薬剤の漏出を遅らせるために、疎水性の性質を有するマイクロ粒子(本明細書中では、「疎水性マイクロドメイン」と呼ばれる)中に捕捉される。より好ましくは、2つの相の分散物を有する複合材料(両方の相が、吸収可能であるが、混合可能ではない)。例えば、連続相は、親水性網(例えば、ヒドロゲル、架橋されていても、または架橋されていなくてもよい)であり得る。一方、分散相は、疎水性であり得る(例えば、油、脂肪、脂肪酸、ワックス、フルオロカーボン、または他の合成のもしくは天然の水非混合性の相、一般的には、本明細書中で「油」もしくは「疎水性」の相と呼ばれる)。
【0048】
油相は薬物を捕捉し、そしてヒドロゲル中への薬物の遅い分配による放出のための障壁を提供する。次いで、ヒドロゲル相は、酵素(例えば、リパーゼ)による消化、ならびに天然に存在する脂質および界面活性剤による溶解から油を防御する。後者は、例えば、疎水性、分子量、立体構造、分散耐性などに起因して、ヒドロゲル中への制限された浸透のみを有すると予想される。ヒドロゲルマトリックス中で制限された溶解度を有する疎水性薬物の場合においては、薬物の微粒子状の形態もまた、放出速度改変剤として作用し得る。しかし、水溶性の薬物、または水性相との接触によって変性される可能性がある薬物については、放出速度改変剤は、本明細書中に以下に記載される種々の別のものから選択され得る。
【0049】
本発明に従って調製されるヒドロゲルに基づく薬物送達システムの投与の経路として、以下が挙げられるがこれらに限定されない:接種または注射(例えば、静脈内、筋肉内、皮下、耳内、関節内、乳房内など)、局所適用(例えば、眼、耳、皮膚のような領域上、または創傷、火傷のような苦痛の部位上など)および上皮または粘膜皮膚の内層を通じる吸収による(例えば、膣および他の上皮の内層、胃腸粘膜など)。ヒドロゲルマトリックスを使用して処方される組成物は、以前から公知の、薬学的なキャリアまたは賦形剤、アジュバントなどを含み得る。
【0050】
本発明に従うヒドロゲルマトリックスは、カプセル、錠剤、フィルム、ミクロスフェアなどの中に処方され得る。ディスク、スラブ、またはシリンダーの形態のマトリックスは、移植物として使用され得、一方、ミクロスフェアは、皮下、筋肉内、静脈内、または動脈内に注射可能なものとして適用され得る。用語「ミクロスフェア」は、数ミリメートルから数ナノメートルまでの大きさの範囲の大きさのヒドロゲルの1個をいう。これは、球形、窪んだ球形、または不規則な形状であり得る。
【0051】
ヒドロゲルマトリックスは、好ましくは、単独または組合せのいずれかで、生物学的に活性な薬剤を含む。その結果、移植の前駆物および移植物は、動物中の組織および器官に隣接しているかまたは離れている薬剤についての送達システムを提供する。生物学的に活性である薬剤(これは、単独で、または移植前駆物および移植物と組み合わせて使用され得る)として、例えば、医薬品、薬物、または他の適切な生物学的、生理学的、もしくは薬学的に活性な物質が挙げられる。これらは、哺乳動物を含む動物の体内で、局所的または全身的に、生物学的な、生理学的な、または治療的な効果を提供し得、そして隣接しているかまたは周辺を取り囲んでいる組織の液体中に固体の移植マトリックスから放出され得る。
【0052】
生物学的に活性な薬剤は、均質な混合物を形成するように、ポリマー溶液中で可溶であり得るか、または懸濁物もしくは分散物を形成するように、ポリマー溶液中で不溶性であり得る。移植の際には、生物学的に活性な薬剤は、好ましくは、移植マトリックス中に取り込まれる。マトリックスは経時的に分解するので、生物学的に活性な薬剤は、隣接する組織の液体中にマトリックスから、好ましくは、制御された速度で、放出される。マトリックスからの生物学的に活性な薬剤の放出は、例えば、水性媒体中での生物学的に活性な薬剤の溶解度、マトリックス内での薬剤の分布、大きさ、形状、有孔性、移植マトリックスの溶解度および生体分解性などによって、変化し得る。
【0053】
生物学的に活性な薬剤は、動物中で生物学的または生理学的活性を刺激し得る。例えば、薬剤は、細胞の増殖および組織の再生を増強するように、出産の制御において機能するように、神経の刺激または骨の増殖を生じるようになどで、作用し得る。有用な生物学的に活性な薬剤の例として、以下が挙げられる:物質、またはその代謝前駆物質(これは、細胞および組織の増殖および生存を促進し得る)か、あるいは細胞の機能を増大させ得る、例えば、神経成長促進物質(例えば、ガングリオシド)、神経成長因子など;硬組織または軟組織成長促進因子(例えば、フィブロネクチン(FN)、ヒト成長ホルモン(HGH)、タンパク質成長因子インターロイキン−1(IL−1)など);骨成長促進物質(例えば、ヒドロキシアパタイト、トリカルシウムホスフェートなど);ならびに移植部位での感染を予防することにおいて有用な物質(例えば、ビダラビンまたはアシクロビルのような抗ウイルス剤、ペニシリンまたはテトラサイクリンのような抗細菌剤、またはキナクリンまたはクロロキンのような抗寄生虫剤)。
【0054】
本発明の実質的な有用性は、実質的に水溶性の薬物のカプセル化および制御された放出に基づくが、非常に制限された水溶性を有する他の治療的な物質が、本発明の薬物送達マトリックスを使用して容易に取りこまれ、そして送達され得る。
【0055】
(適切な吸収可能なヒドロゲル)
本発明の薬物送達システムの親水性相(すなわち、湿気に対して浸透性であるマトリックスまたは連続相)は、本明細書中で上記に記載されている、生体分解性のヒドロゲル型の材料のいずれかからなり得る。説明の目的のために、生体吸収性のヒドロゲルを形成するように重合され得る水溶性でありそして重合可能なマクロマーの水溶液が、本明細書中で以下に示される実施例において記載されている。このようなヒドロゲルの合成、特徴付け、および形成は、例えば、Sawhneyら、「Bioerodible Hydrogels Based on Photopolymerized Poly(ethyleneglycol)−co−poly−(α−hydroxy acid) Diacrylate Macromers」、Macromolecules、26:581−587(1993)に記載されている。
【0056】
(治療用分子)
いくつかの以前から公知である治療用物質、および最近発見された治療用物質は、比較的低い分子量(100,000ダルトン未満の分子量であると定義される)を有し、そして比較的水に可溶(0.001mg/mLより大きい溶解度を有する)である。ヒドロゲルマトリックスは、代表的には、水で膨れ、従って、任意の溶解させられたかまたは分散させられた治療物質もまた、水性の周囲の環境に対して自由に接近する。ヒドロゲルマトリックス中でのこのような物質の分散は、治療用物質の迅速な放出を生じることが、公知である。例えば、放出は、せいぜい数日内で実質的に完了する。
【0057】
しかし、数日間、数週間、または数ヶ月間の間まで、このような治療剤の放出を延長することが、しばしば所望される。また、この時間にわたって、制御され、漸増的である放出速度を有することもまた、所望される。そしてゼロ次速度論または時間独立性放出が最も好ましく、そして所望される。
【0058】
100,000ダルトン未満、より好ましくは、20,000ダルトン未満、および最も好ましくは、2,000ダルトン未満の分子量を有し、そして0.001mg/mLより大きい、より好ましくは0.01mg/mLより大きい、そして最も好ましくは0.1mg/mLよりも大きい水溶解度を有する、治療用物質が、有利には、本発明の薬物送達システムにおいて使用され得る。これらの治療剤として、例えば、生理学的に活性な材料または医療薬(例えば、中枢神経系に影響を与える薬剤、抗アレルギー薬、心臓血管剤、呼吸器官に影響を与える薬剤、消化器官に影響を与える薬剤、ホルモン調製物、代謝に影響を与える薬剤、抗腫瘍薬、抗生物質調製物、化学療法薬、抗生物質、局所麻酔薬、抗ヒスタミン剤、消炎剤、収斂剤、ビタミン剤、抗真菌剤、末梢神経麻酔薬、血管拡張剤、粗薬物エッセンス、チンキ剤、粗薬物粉末、降圧剤、または免疫抑制剤)が挙げられる。
【0059】
いくつかのオリゴペプチド薬物(サイトカインおよび成長因子を含む)もまた、治療剤として使用され得る。用語「サイトカイン」および「成長因子」は、正常な組織の治癒または再成長を補助する、生物学的に活性な分子およびペプチド(これは、天然に存在するかまたは合成であるかのいずれかであり得る)を記載するように使用される。サイトカインの機能は、2重である:(1)局所的な細胞が、新規のコラーゲンまたは組織を産生することを開始するために、および(2)補正(correction)に必要である部位に対して細胞を接着させるため。このように、サイトカインおよび成長因子は、宿主組織内で移植の「生物学的な固定」を促進するように作用する。
【0060】
サイトカインは、結合体とともに混合され得るか、または結合体に対して化学的に結合させられ得るかのいずれかであり得る。例えば、本発明の薬物送達システムにおける使用に適切なサイトカインとして、以下が挙げられる:インターフェロン(IFN)、腫瘍壊死因子(TNF)、インターロイキン、コロニー刺激因子(CSF)、成長因子(例えば、骨形成因子抽出物(OFE)、表皮成長因子(EGF)、形質転換成長因子(TGF)α、TGF−β(TGF−βの任意の組み合わせを含む)、TGF−β1、TGF−β2、血小板由来成長因子(PDGF−AA、PDGF−AB、PDGF−BB)、酸性の繊維芽細胞成長因子(FGF)、塩基性FGF、結合組織活性化ペプチド(CTAP)、β−トロンボグロブリン、インシュリン様成長因子(NGF)、エリスロポエチン(EPO)、神経成長因子(NGF)、骨形成タンパク質(BMP)、骨形成因子など。
【0061】
本発明の薬物送達システムは、表皮成長因子、ヒトの血小板由来TGF−β、内皮細胞成長因子、胸腺細胞活性化因子、血小板由来成長因子、繊維芽細胞増殖因子、フィブロネクチン、またはラミニンを含む、適切なカプセル化されたかまたはカプセル化されていない成長因子を放出するように設計され得る。
【0062】
サイトカインは、結合体とともに混合され得るか、または結合体に対して化学的に結合させられ得るかのいずれかであり得る。例えば、本発明の薬物送達システムにおける使用に適切なサイトカインとして、以下が挙げられる:インターフェロン(IFN)、腫瘍壊死因子(TNF)、インターロイキン、コロニー刺激因子(CSF)、成長因子(例えば、骨形成因子抽出物(OFE)、表皮成長因子(EGF)、形質転換成長因子(TGF)α、TGF−β(TGF−βの任意の組み合わせを含む)、TGF−β1、TGF−β2、血小板由来成長因子(PDGF−AA、PDGF−AB、PDGF−BB)、酸性の繊維芽細胞成長因子(FGF)、塩基性FGF、結合組織活性化ペプチド(CTAP)、β−トロンボグロブリン、インシュリン様成長因子(NGF)、エリスロポエチン(EPO)、神経成長因子(NGF)、骨形成タンパク質(BMP)、骨形成因子など。
【0063】
本発明の薬物送達システムは、表皮成長因子、ヒトの血小板由来TGF−β、内皮細胞成長因子、胸腺細胞活性化因子、血小板由来成長因子、繊維芽細胞増殖因子、フィブロネクチン、またはラミニンを含む、適切なカプセル化されたかまたはカプセル化されていない成長因子を放出するように設計され得る。
【0064】
本発明における使用に適切な生物学的に活性な薬剤としてまた、以下が挙げられる:抗炎症剤(例えば、ヒドロコルチゾン、プレドニソンなど);抗菌剤(例えば、ペニシリン、セファロスポリン、バシトラクチンなど);抗寄生虫剤(例えば、キナクリン、クロロキンなど);抗真菌剤(例えば、ニスタチン、ゲンタマイシンなど);抗ウイルス剤(例えば、アシクロビル、リバビリン、インターフェロンなど);抗新生物剤(例えば、メトトレキセート、5−フルオロウラシル、アドリアマイシン、毒素に結合した腫瘍特異的抗体、腫瘍壊死因子など);鎮痛剤(例えば、サリチル酸、アセトアミノフェン、イブプロフェン、フルルビプロフェン、モルヒネなど);局所麻酔剤(例えば、リドカイン、ブピバカイン、ベンゾカインなど);ワクチン(例えば、肝炎、インフルエンザ、はしか、風疹、破傷風、ポリオ、狂犬病など);中枢神経系剤(例えば、トランキライザー、β−アドレナリン作用性ブロック剤、ドーパミンなど);ヒト成長ホルモン、インシュリン様成長因子など;ホルモン(例えば、プロゲステロン、卵胞刺激ホルモン、インシュリン、ソマトトロピンなど);抗ヒスタミン剤(例えば、ジフェンヒドラミン、クロロフェンクラミンなど);心臓血管剤(例えば、ジギタリス、ニトログリセリン、パパベリン、ストレプトキナーゼなど);血管拡張剤(例えば、テオフィリン、ナイアシン、ミノキシジルなど);および他の同様の薬剤。
【0065】
本発明の薬物送達システムはまた、以下を提供するために使用され得る:制御された抗生物質(例えば、アミノグリコシド、マクロライド(例えば、エリスロマイシン、ペニシリン、セファロスポリンなど)を含む)の送達;外科手術前−もしくは手術後の、またはリドカイン、メピバカイン、ピロカイン、ブピバカイン、ピリロカイン、エチドカインなどのようなアミド型の局所麻酔剤のような薬剤を使用して痛みを処置するための、麻酔薬/鎮痛剤の送達;ならびにケトロラク、ナプロキセン、ジクロフェナックナトリウム、およびフルルビプロフェンのような非ステロイド抗炎症剤の局所的な制御された送達。治療の特定の形態においては、同じ送達システム(すなわち、本発明のポリマー)中での薬剤/薬物の組み合わせが、最適な効果を得るために有用であり得る。従って、例えば、抗菌剤および抗炎症剤が、組み合わされた有効性を提供するために単一のポリマー中で混合され得る。
【0066】
本明細書中で上記で議論されている水溶性の薬物は、例示的であって限定的ではないことが意図される。他の水溶性の薬剤の例として、以下が挙げられる:生物学的活性を有するペプチド、解熱剤、鎮痛剤、抗炎症剤、鎮咳性の去痰剤、鎮静剤、筋弛緩剤、抗癲癇薬、抗潰瘍剤、抗うつ剤、抗アレルギー剤、強心剤、不整脈治療剤、抗糖尿病薬、抗凝固剤、止血剤、抗結核剤、麻酔性拮抗剤、骨再吸収阻害剤、および脈管形成阻害剤。
【0067】
本発明において使用され得る特定の水溶性のポリペプチドとして、例えば、以下が挙げられる:オキシトシン、バソプレシン、副腎皮質刺激ホルモン(ATCH)、形質転換成長因子アンタゴニスト、プロラクチン、ルリベリンまたは黄体形成ホルモン放出ホルモン(LH−RH)、LH−RHアゴニストまたはアンタゴニスト、成長ホルモン、成長ホルモン放出因子、インシュリン、ソマトスタチン、ボンベシンアンタゴニスト、グルカゴン、インターフェロン、ガストリン、テトラガストリン、ペンタガストリン、ウロガストリン、セクレチン、カルシトニン、エンケファリン、エンドモルヒネ、アンギオテンシン、レニン、ブラジキニン、バシトラシン、ポリミジン、コリスチン、チロシジン、グラミシジン、モノクローナル抗体、可溶性のワクチン、および合成のアナログ、それらの改変体および薬学的に活性なフラグメント。
【0068】
本発明の送達システムを使用する送達に適切であり得る抗腫瘍剤の例として、以下が挙げられる:ブレオマイシンヒドロクロライド、メトトレキセート、アクチノマイシンD、マイトマイシンC、ビンブラスチン硫酸、ビンクリスチン硫酸、ダウノルビシンヒドロクロライド、アドリアマイシン、ネオカルジノスタチン、シトシンアラビノシド、フルオロウラシル、テトラヒドロフリル−5−フルオロウラシルクレスチン、ピシバニール、レンチナン、レバミゾール、ベスタチン、アジメキソン、グリシリジン、ポリI:C、ポリA:U、ポリICLC、シスプラチンなど。
【0069】
種々の放射線治療用化合物(例えば、γまたはβ放射線放射種)もまた、本発明の薬物送達システム中に含まれ得る。治療用放射線の存在は、所望されない細胞の増殖(例えば、ガンの間または過形成の間に生じる)を制御するために使用され得る。損傷した器官(例えば、動脈)からの過形成の応答は、血管形成術後の再狭窄に対して応答性であると広範囲に考えられている。従って、ヨウ素、リン、パラジウムなどの同位元素が、この目的のために適切であり得る。
【0070】
他の上記の既知の有益な薬物が、以下に記載されている:Remingtonによる、Pharmaceutical Sciences、第14版、1979(Mack Publishing Co.によって発行された);Falconerらによる、The Drug,The Nurse,The Patient,Including Current Drug Handbook(Saunder Companyによって発行された);およびBurgerによる、Medicinal Chemistry、第3版、第1巻および第2巻(Wiley−Interscience Co.によって発行された)。
【0071】
(疎水性ドメインの形成)
疎水性のマイクロドメインは、それ自体によって、インビボで投与された場合に分解され得るかまたは迅速に排出され得、これによって、インビボで捕捉された薬剤を含有するマイクロ液滴またはマイクロ粒子を直接使用して、延長された放出を達成することを困難にする。しかし、本発明に従うと、疎水性のマイクロドメインは、ゲルマトリックス中で一時隔離される。ゲルマトリックスは、迅速な排出から疎水性マイクロドメインを防御するが、それらの内容物を緩徐に放出するマイクロ液滴またはマイクロ粒子の能力は損傷しない。
【0072】
図1を参照すると、本発明に従って構築される、例示的な多相のヒドロゲルマイクロスフェア、またはヒドロゲルマトリックスの一部が、記載されている。マイクロスフェア10は、スフェア、液滴、他の不規則な粒状の形態、またはゲルマトリックスの一部(その用量全体にわたって分散された、マイクロ粒子11および/またはマイクロ液滴12を含有する)の形態で連続的なヒドロゲルマトリックスを含む。マイクロ粒子11は予め形成され得、そしてヒドロゲルマイクロスフェアを形成するための重合の前に、重合が可能である相と混合され得る。一方、マイクロ液滴12は、マイクロスフェア10のエマルジョンの重合の間の治療剤を積んだ疎水性の相の捕捉によって、インサイチュで形成され得る。マイクロスフェア10は、棚の安定性を増強するために乾燥させられ得る。
【0073】
マイクロ液滴12もまた、水に可溶性ではない分子化合物、制限された水溶性を有する化合物、またはヒドロゲル相と非混合性である別の相の中の溶液中で制限された水可溶性(水溶解度)を有する化合物を含み得る。水溶液中で安定ではない分子化合物は、また、非常に制限された水浸透性および分配を有する相の中に含まれ得る。
【0074】
1つの実施態様においては、疎水性の相のエマルジョン、および水溶性の分子化合物(例えば、タンパク質、ペプチド、または他の水溶性の化合物)の水溶液が、調製される。エマルジョンは、「水中油型」システム(ここでは、水が連続的な相である)とは対称的な、「油中水」型(連続的な相として油を用いる)である。本明細書中で使用される場合は、用語「連続的な相」は、内部の相である「分散された相」と比較して、外部のヒドロゲル相をいう。
【0075】
水または分散された相は、マイクロ粒子の様式で水溶性の薬物の分散物を含む。マイクロスフェアの「外部の」油の相は、放出速度改変剤を含み、これは代表的には、溶媒(例えば、ヒドロゲル形成調製物の水または水性の緩衝液)と不適合である。分子化合物が、ヒドロゲルマトリックスの全体にわたって形成される複数の小さい油滴のレザーバー内に効率的に「捕捉される(trapped)」ので、取り込まれた分子化合物は、処方の間に外部の親水性ゲルまたは溶液の相の中に容易には分配しない。
【0076】
疎水性の油の相は、スプレー形成および油に基づく熱い融解物のマイクロカプセル化を含む、いくつかの方法の1つによって形成され得る。スプレー形成方法においては、低い融点の放出速度改変剤が使用され、そして活性な薬物の既知の量が懸濁される(不溶性の薬物について)か、または融解混合工程によって同時に溶解させられる(可溶性の薬物について)。次いで、溶液または分散物は、空気の冷却された流れ、冷却水の浴、またはヒドロゲル前駆物の溶液中に噴霧される。1−10ミクロンの間の大きさの範囲のマイクロ粒子が得られる。これは、使用される放出速度改変剤の型、およびその融解速度に依存する形態を有する。
【0077】
油に基づく高温融解マイクロカプセル化法においては、放出速度改変剤が最初に融解させられ、次いで、50ミクロン未満にふるいをかけられている薬物の固体の粒子と混合される。混合物は、混合できない溶媒(シリコン油のような)中に、そして連続して攪拌されながら懸濁され、放出速度改変剤の融点の5℃上に加熱される。一旦、エマルジョンが安定化されられると、これは、粒子が固形状になるまで冷却される。得られるマイクロ粒子は、自由に流れる粉末を生じるように、石油エーテルでのデカンテーションによって洗浄される。このようにして、1から100ミクロンの間の大きさを有するマイクロ粒子を得ることができる。
【0078】
あるいは、油の相のマイクロ液滴もまた、重合が可能である溶液を加熱することによって、インサイチュで形成され得る。一旦、所望される薬物を含有する疎水性ドメインが得られると、それらは、エマルジョンを形成するために連続的な重合が可能である水溶液の相の中に分散させられ得る。次いで、このエマルジョンは、捕捉するために重合され、そして疎水性のマイクロドメインを安定化する。微細な分散物を形成するためには、油に可溶である薬物は疎水性の相の中に溶解させられ得、一方、水に可溶である薬物はこの相の中に微砕にされ、微細分散を形成し得る。図1は、上記の方法を使用して調製される、複合ヒドロゲルを示す。
【0079】
タンパク質および成長因子(これらは、ヒドロゲルの環境から水との接触によって変性させられ得る)は、最初に、微細にされた後に凍結乾燥され、次いで、分散物を形成するために油の相の中に懸濁され得る。次いで、分散物は、ヒドロゲルの形状の目的物またはマイクロスフェアを形成するように次いで架橋され得る、水中油型エマルジョンを形成するために、マクロマー溶液中で乳濁化され得る。タンパク質、ポリペプチド、または成長因子は、油のミクロの環境において比較的安定なままであると予想され、そしてそれが放出されるヒドロゲルの環境の外に対して緩徐に拡散するのみである。
【0080】
従って、油滴の存在は、分子を安定化させるだけでなくそれらの放出速度をもまた制御する、タンパク質またはポリペプチドについてミクロな環境を作成する。以下を含むがこれらに限定されない任意の種々の薬理学的に受容可能な油が、この目的のために使用され得る:ピーナツ油、ヒマシ油、ココナッツ油、コーン油など。
【0081】
塊および分散させられた相の両方において制限された可溶性を有する、以下を含む任意の種々の薬剤が、相転移剤として使用され、そしてエマルジョンの重合の当該分野において周知である:界面活性剤のTWEEN(登録商標)およびSPAN(登録商標)シリーズ(TWEEN(登録商標)およびSPAN(登録商標)は、ICI America,Inc.,Wilmington,DEの登録された登録商標である)のような界面活性剤、ならびにポリオキシアルキレンエーテルのPLURONIC(登録商標)シリーズ(PLURONIC(登録商標)は、BASF Corporation,Mount Olive,NJの登録された登録商標である)など。有機の相および水性の相の両方において可溶性を有する有機溶媒もまた使用され得、そして好ましい。
【0082】
本発明の原理に従うマイクロスフェアの形成は、代表的には、水溶液または分散物を含むので、水との混合が可能な有機材料が、以下を含むがこれらに限定されない相転移剤として使用され得る:ジアルキルスルホキシド(例えば、ジメチルスルホキシド(DMSO));ジアルキルホルムアミド(例えば、ジメチルホルムアミド(DMF));C1-5アルコール(例えば、メタノールおよびエタノール);ケトン(例えば、アセトンおよびメチルエチルケトン);ならびにエーテル(例えば、テトラヒドロフラン(THF)、ジブチルエーテル、およびジエチルエーテル)のような溶媒。
【0083】
本発明の薬物送達システムにおいて使用され得る適切な水溶性の保存剤として、以下が挙げられる:亜硫酸水素ナトリウム、チオ硫酸ナトリウム、アスコルビン酸、ベンズアルコニウムクロライド、クロロブタノール、チメロサール、フェニル第二水銀ボラート、パラベン、ベンズアルコール、およびフェニルエタノール。これらの薬剤は、重量で0.001から5%まで、そして好ましくは0.01%から2%までの量で存在し得る。
【0084】
適切な水可溶性の緩衝剤は、アルカリまたはアルカリ土類の、炭酸塩、リン酸塩、重炭酸塩、クエン酸塩、ホウ酸塩、酢酸塩、コハク酸塩など(例えば、リン酸ナトリウム、クエン酸ナトリウム、ホウ酸ナトリウム、酢酸ナトリウム、重炭酸ナトリウムおよび炭酸ナトリウム)である。これらの薬剤は、2から9まで、そして好ましくは4から8までの間の、システムのpHを維持するために十分な量で存在し得る。従って、緩衝剤は、全組成物の重量の5%程度で存在し得る。
【0085】
(放出速度改変剤)
疎水性でありそして連続的なヒドロゲルマトリックスの相の中で比較的安定な分散された相を形成することが可能である、放出速度改変剤が、実質的に水溶性の治療用薬剤についての二次的な容器として有利に使用され得る。放出速度改変剤は、十分には理解されていない任意の種々の機構によって、水に可溶である治療用薬剤の核酸を遅らせる。
【0086】
例えば、放出速度改変剤は、治療用薬剤を不溶性にしそして粒状の形態にするか、または放出速度改変剤の結晶性が、水の拡散を妨げ得、それによって治療剤の放出に対する耐性を増大する。放出速度の改変についての特定の機構は必要ではなく、そして本発明は、任意の1つ以上のこのような機構によって制限されるようには解釈されないはずである。
【0087】
任意の種々の低融点脂肪酸、脂肪、油、ワックス、または好ましくは85℃以下、より好ましくは65℃以下、そして最も好ましくは50℃以下の融点を有する他の比較的疎水性の種が、放出速度改変剤として使用され得る。
【0088】
放出速度改変剤は、室温で固体であり得るかまたは液体であり得る。これらは、好ましくは、水中では比較的低い可溶性を有する種から選択される。「比較的低い可溶性」は、これらの薬剤から作成されるマイクロ粒子が、水中へ完全に溶解するために数時間から数日、そして好ましくはそれ以上を要するはずであることを意味する(実際には、これらは完全には溶解しない)。
【0089】
しかし、放出速度改変剤は、最終的に生理学的な環境から代謝されるかまたは排出されるかのいずれかである、薬学的に受容可能な薬剤であるはずである。ヒドロゲル材料中に溶解または分散させられる有用な放出速度改変剤としてまた、例えば、比較的水に不溶である(すなわち、水と混合しない)有機物質挙げられ得、そして水不溶性の薬剤が好ましい。放出速度改変剤がポリマー溶液の処方のために使用されるポリマーと溶媒との組み合わせと適合性であることが、好ましい。放出速度改変剤としての使用に適切な化合物の部分的なリストを、表1に示す。
【0090】
【表1】
Figure 0004601169
有用な放出速度改変剤として、例えば、以下が挙げられる:脂肪酸、トリグリセリド、および他の同様の疎水性化合物。そしてこれらは、例えば、以下を含み得る:モノ−、ジ−、およびトリカルボン酸のエステル(例えば、2−エトキシエチルアセテート、メチルアセテート、エチルアセテート、ジエチルフタレート、ジメチルフタレート、ジブチルフタレート、ジメチルアジペート、ジメチルスクシネート、ジメチルオキサレート、ジメチルシトレート、トリエチルシトレート、アセチルトリブチルシトレート、アセチルトリエチルシトレート、グリセロールトリアセテート、ジ(n−ブチル)セベケートなど);ポリヒドロキシアルコール(例えば、プロピレングリコールおよびそのオリゴマー;ポリエチレングリコールのエステル;グリセリン;ソルビトール;グリセロールのトリエステル(例えば、トリグリセリド);エポキシド化またはオリゴマー化されたダイズ油、および他の植物性油;ステロール(例えば、コレステロール);ならびにアルコール(例えば、C6-12アルカノール、2−エトキシエタノールなど。
【0091】
放出速度改変剤は、単独で、または他のこのような薬剤と組み合わせて使用され得る。放出速度改変剤はまた、以下から選択され得る:トリグリセリルエステル(例えば、グリセリルジステアレート、グリセリルトリステアレート、グリセリルモノステアレート、グリセリルジパルミテート、グリセリルトリパルミテート、グリセリルモノラウレート、グリセリルジドコサノエート、グリセリルトリドコサノエート、グリセリルモノドコサノエート、グリセリルモノカプレート、グリセリルジカプレート、グリセリルトリカプレート、グリセリルモノミリステート、グリセリルジミリステート、グリセリルトリミリステート、グリセリルモノデセノエート、グリセリルジデセノエート、およびグリセリルトリデセノエート。
【0092】
放出速度改変剤としてまた、本質的に以下からなる群より選択されるワックス組成物が挙げられ得る:蜜蝋、セチルパルミテート、鯨蝋、カルナウバ(ブラジルロウヤシ)蝋、セチルミリステート、セチルパルミテート、セチルセロテート、ステアリルパルミテート、ステアリルミリステート、およびラウリルラウレート、;植物蝋(例えば、ブラジルロウヤシ、カウアス(cauassu)、カンデリラ、ラフィア、パームアフリカハネガヤ(palm separto)、サトウキビ、およびワタ蝋)を含む天然の蝋;動物蝋(例えば、蜜蝋、ゲッダ(ghedda)、チャイニーズ(chinese)昆虫、セラック(shellac)、鯨蝋、および羊毛脂);ならびにミネラルワックス(例えば、パラフィン、マイクロクリスタリンワックス、オゾケライト、モンタン蝋およびシンセラ蝋)。
【0093】
固体のマトリックス形成材料として有用である合成のワックスおよび改変されたワックスは、例えば、塩素処理されたパラフィンワックスである。ワックスが種々の化合物の混合物であり、そしてそれぞれの型の蝋がそれ自体多数の異なる等級で利用可能であることは明らかである。キャリアシステム中での放出速度改変剤としての使用に適切であり得る他の疎水性薬剤は、以下からなる群より選択される:長鎖のカルボン酸、長鎖のカルボン酸エステル、長鎖のカルボン酸アルコール、およびそれらの混合物。
【0094】
放出速度改変剤を形成することにおいて有用である長鎖のカルボン酸は、一般的には、6−30個の炭素原子、好ましくは、少なくとも12個の炭素原子、そして最も好ましくは、12から22個の炭素原子を含む。この炭素の鎖は、完全に飽和され得るか、または分岐であり得、これは、1つ以上の二重結合を含み、そしてこれは、3炭素環またはヒドロキシル基を含み得る。適切な飽和された直鎖状の酸の例は、n−ドデカン酸、n−テトラデカン酸、n−ヘキサデカン酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキドン酸、ベヘン酸、モンタン酸、およびメリシン酸である。不飽和のモノオレフィン直鎖状モノカルボン酸もまた、有用である。これらの例は、オレイン酸、ガドレイン酸、およびエルカ酸である。不飽和(ポリオレフィン)の直鎖状のモノカルボン酸もまた有用である。これらの例として、リノール酸、リノレン酸、アルキドン酸、およびベヘノール酸が挙げられる。例えば、ジアセチル酒石酸を含む分岐した酸が有用である。
【0095】
有用な長鎖のカルボン酸エステルの例として、以下の群によるものが挙げられるが、これらに限定されない:グリセリルモノステアレート;グリセリルモノパルミテート;グリセリルモノステアレートとグリセリルモノパルミテートとの混合物(Myvaplex 600、Eastman Fine Chemical Company、Rochester、NYから入手可能);グリセリルモノリノレート;グリセリルモノオレエート;グリセリルモノパルミテート、グリセリルモノステアレート、グリセリルモノオレエート、およびグリセリルモノリノレートの混合物(Myverol 18−92、Eastman Fine Chemical Company);グリセリルモノリノレエート;グリセリルモノガドレエート;グリセリルモノパルミテート、グリセリルモノステアレート、グリセリルモノオレエート、グリセリルモノリノレエート、グリセリルモノリノレネート、およびグリセリルモノガドレエートの混合物(Mverol 18−99、Eastman Fine Chemical Company);アセチル化グリセリド(例えば、蒸留されたアセチル化モノグリセリド(Myvacet 5−07、7−07、および9−45、Eastman Fine Chemical Company);プロピレングリコールモノエステル、蒸留されたモノグリセリド、ステアロイルラクチレートナトリウム、およびシリコンジオキサイドの混合物(Myvatex TL、Eastman Fine Chemical Company);プロピレングリコールモノエステル、蒸留されたモノグリセリド、ステアロイルラクチレートナトリウム、およおびシリコンジオキシドの混合物(Myvatex TL、Eastman Fine Chemical Company);d−αトコフェロールポリエチレングリコール1000スクシネート(Vitamin E TPGS、Eastman Fine Chemical Company);モノ−およびジ−グリセリドエステルの混合物;カルシウムステアロイルラクチレート;エトキシル化モノ−およびジ−グリセリド;乳酸化モノ−およびジ−グリセリド;グリセロールおよびプロピレングリコールのラクチル化カルボン酸エステル;長鎖のカルボン酸のラクチル化エステル;長鎖のカルボン酸のポリグリセロールエステル;長鎖のカルボン酸のプロピレングリコールモノ−およびジ−エステル;ステアロイルラクチレートナトリウム;ソルビタンモノステアレート;ソルビタンモノオレエート;長鎖のカルボン酸の他のソルビタンエステル;スクシニル化モノグリセリド;ステアリルモノグリセリルサイトレート;ステアリルヘプタノエート;ワックスのセチルエステル;ステアリルオクタノエート;C10−C30コレステロール/ラボステロールエステル;およびスクロースの長鎖のカルボン酸エステル。
【0096】
本発明において有用であるアルコールは、上記のカルボン酸のヒドロキシル形態によって例示され、そしてまたセテアリルアルコール(cetearyl aalcohol)である。
【0097】
(放出速度に影響を与える因子)
親水性の環境中で良好な安定性を有する場合には疎水性の相の中に溶解される、疎水性の薬物の、拡散は緩徐である。疎水性ドメインからの薬物の拡散の速度は、ドメインの大きさ、分散された相の画分、および2つの相を通過する薬物の相対的な安定性または分配計数の関数であると予想される。マイクロドメインが、液体であるか、またはエバポレーション、相転換または昇華の間に欠損または「チャンネル」を生じ得る任意の溶媒の使用を伴わずに低融点の固体から固化するかのいずれかである場合は、それらは、大きな破裂効果のような問題を生じる欠点から開放されると予想される。
【0098】
一旦、薬物が連続的なヒドロゲル相の中に放出されると、拡散および放出は、迅速であると予想される。なぜなら、これらのヒドロゲルは、低分子の拡散に対する十分な耐性を提供しないことが公知であるからである。油の相の中に分散させられた親水性の低分子は、疎水性の相の中で制限された可溶性を有すると予想され、そして薬物がヒドロゲル中に輸送される場合に非常に緩徐に溶解すると予想される。従って、親水性の薬物の飽和したレベルが、疎水性のドメイン中で維持され得ることが予想され、それによってこのような、複合的なデバイスからの実質的に「ゼロオーダー」または一定の放出を生じる。
【0099】
放出速度改変剤と比較した、ヒドロゲルマトリックス材料の親水性および親油性における変更は、送達される薬物の放出速度に対する実質的な影響を有すると予想される。他の因子(例えば、分散物の大きさ、分布、相対的な薬物の負荷、および2つの相のそれぞれの組成)もまた、放出速度に影響を与えると予想される。
【0100】
ゲルマトリックスは、生体活性である薬剤の放出における第2の速度を制限する因子であり得る。一般的には、低分子量の生体活性である薬剤(例えば、分子量が約2,000ダルトン以下の薬剤)については、ゲルマトリックスの有孔性は、生体活性である薬剤の放出速度に関連するとは予想されない。なぜなら、ほとんどの場合においては、このような薬剤は、任意のゲルを通じて自由に拡散するからである。例えば、ほとんどの抗生物質化合物は、本発明のゲルマトリックスを自由に拡散すると予想され、そして放出速度改変剤によって形成された膜の組成物は、捕捉された薬剤の放出の速度を支配する。
【0101】
一方、ゲルの孔の大きさは、生体活性である薬剤が比較的大きな分子量である場合に、隔絶したリポソームから放出される生体活性である薬剤の拡散において速度を決定する因子となり得る。一般的には、ヒドロゲルは、分子量が105ダルトンまたはそれよりも大きな分子を除外する。ヒドロゲルの孔の大きさは、ゲルを作成するために使用される出発マクロマーまたはモノマーの濃度(一般的には、4から30%w/wの濃度の前駆物が、ゲルを調製するために使用される)に依存する。孔の大きさは、架橋の程度、およびゲルの架橋の間の分子量によって、さらに変更され得る。例えば、生体活性である薬剤の分子量が既知である場合は、当業者は、ゲルの架橋を制御し、従って、その孔の大きさを制御することによって、所望される適切な拡散速度を得るようにゲルを調製し得る。
【0102】
生体活性である薬剤の大きさおよびゲルの有孔性のようなパラメーター(これらは、隔絶したリポソームから放出される生体活性である薬剤の拡散の速度を制御するために使用され得る)に加えて、生体活性である薬剤およびゲルの性質は、それ自体が、拡散の速度にさらに影響を与える。従って、生体活性である薬剤はゲルマトリックスについて任意の親和性(例えば、電荷、水素結合、ファンデルワールス力などに基づく親和性)を有する場合は、隔絶したリポソームから放出される生体活性である薬剤のゲルを通じる拡散は、緩徐である。
【0103】
さらに、使用されるゲルマトリックスとは無関係に、ゲルの浸透性の限界よりも高い分子量を有する分子を除いて、ゲルマトリックスは、それに対して暴露される液体(例えば、組織または体液、または培養培地)に対して自由に浸透する。従って、ゲルマトリックス中のマイクロ粒子は、ゲルマトリックスを通過して拡散することが可能である分子とのみ、相互作用する。
【0104】
ヒドロゲルマトリックスはまた、孔の大きさの効果以外の手段によって、その拡散を制限することによって、治療用化合物の放出を改変するために使用され得る。例えば,Schroederらの米国特許第5,693,341号(これは、本明細書中で参考として援用されている)は、生物学的に活性である薬剤の送達について、親和性結合したコラーゲンマトリックスを記載している。これらのコラーゲンマトリックスは、結合リガンドと活性な薬剤とを互いに混合することによって形成され、これによって親和性結合した複合体を形成するように結合リガンド−活性な薬剤の混合物を生じることを可能にし、次いで、マトリックスを形成するように、コラーゲンと得られる親和性結合した複合体を混合することを可能にする。
【0105】
結合リガンドを使用する上記の方もまた、本発明のヒドロゲル薬物送達デバイスにおいて使用され得る。この方法は、ヒドロゲルマトリックスの一部としての結合リガンドを含み、一方、活性な薬剤は、マトリックス自体の中に、または疎水性マイクロドメインの第2の容器中のいずれかに存在する。従って、活性な薬剤の放出は、ヒドロゲルマトリックス内の親和性リガンドの存在によって阻害され、そして制御され得る。
【0106】
好ましい結合リガンドであるヘパリンは、以下を含むが、これらに限定されない多数の活性な薬剤との親和的に結合した複合体を形成することが示されている:抗トロンビンIII;第VII因子、第IX因子、第XI因子、第XII因子、および第XIIa因子;トロンビン;プロペルジン;補体C1、C2、C3、およびC4;補体因子β;C3b不活性化因子;Gcグロブリン;プロテインHC;フィブロネクチン;β2−糖タンパク質1;C−反応性タンパク質;リポタンパク質リパーゼ;肝臓のトリグリセリドリパーゼ;VLDL,LDL;VLDLアポタンパク質;HDLP;制限エンドヌクレアーゼ;RNAポリメラーゼ;RNAポリメラーゼIおよびII;DNAポリメラーゼ;DNAリガーゼ;ポリヌクレオチドキナーゼ;伸張因子(EF−1);開始因子;タンパク質合成因子;リボソーム;エストロゲンレセプター;アンドロゲンレセプター;血小板因子
4;SV40腫瘍抗原;B型肝炎表面因子;ヒアルロニダーゼ:コラゲナーゼインヒビター;ニューロフィシン;およびトレハロースホスフェートシンターゼ。
【0107】
ヘパリンはまた、以下の薬剤と親和的に結合した複合体を形成することが知られている:形質転換成長因子β(TGF−β)、繊維芽細胞増殖因子(FGF)、血小板由来成長因子(PDGF)、表皮成長因子(EGF)、オステオゲニン、インシュリン様成長因子(IGF)、血管内皮成長因子、顆粒球/マクロファージコロニー刺激因子(CSF)、γインターフェロン、神経膠活性化因子、およびV型コラーゲン。
【0108】
ヒドロゲルの有孔性および蛇行性の推定を可能にし、そして従って、ヒドロゲル内での溶媒の効率的な拡散性の計算を可能にする浸透モデルが、Dongら、J.Biomater.Sci.Polymer Edn.,5:473−484(1994)において報告されている。ヒドロゲルマトリックスからの種々の薬物の放出速度は、全ての必須のパラメーター、ならびに放出される薬物、放出速度改変剤、およびヒドロゲルマトリックス材料の物理的な特性が既知である場合には、決定され得る。
【0109】
(標的化が可能なマイクロスフェア)
ヒドロゲル体の大きさは、それらの最終的な配置を指向するように選択され得る。従って、大きさに依存して、静脈内に導入されたマイクロスフェアは、肺の毛細血管のベッドに物理的に捕捉され(7μmより大きい大きさ)、RESシステムの細胞によって食作用され(100nmよりも大きい大きさ)、これによって粒子が肝臓および脾臓中に主に蓄積することを生じるか、または細胞外部位に留まらせ得る(100nm未満の大きさ)。
【0110】
循環している血球の性状(例えば、それらの大きさ、分布、循環および排出、ならびに密度など)を模倣するヒドロゲルマイクロスフェアが、形成され得る。これらの特徴を満たすマイクロスフェアはさらに、一方の末端でマイクロスフェアに付着させられ、そして他方の末端で特異的なシグナル伝達分子と付着させられた、突き出した鎖を結合することによって、それらの標的化を改善するように改変され得る。
【0111】
より一般的には、本発明のマイクロスフェアは、必要に応じて、組織の接着を最少にするか、または特異的な領域に対してマイクロカプセルを標的化するリガンドと連結され得、それによって特異的な治療剤剤が目的の器官に送達され得ることを可能にする。例えば、肝臓は、マイクロスフェアがその表面上にアシアロ糖タンパク質レセプターを発現し、それにより血管システムを通じて肝臓を特異的に標的化するために使用され得るように、放出速度改変剤中に捕捉された治療用薬剤を含有するヒドロゲルマイクロスフェアを形成することによって標的化され得る。
【0112】
このようなマイクロスフェアは、標的細胞に結合する能力を有し得るが、血管外遊出しないと予想され、従って、持続的な保護を提供し、そして白血球から潜在的な標的をマスクする。
【0113】
本発明に従って調製されるマイクロスフェアはまた、セレクチンによって媒介される付着について競合することによって、治療用薬剤として潜在的に作用し得、それによって白血球の結合を妨害する。さらに、これらはまた、抗炎症剤、抗生物質、抗酸化剤、または抗腫瘍性化合物の送達を、疾患の部位に対してより特異的に標的化することが可能であり得る。
【0114】
実施例
実施例1
ヒドロゲルミクロスフェアの形成
ぶら下がっている官能基または生体活性である薬剤を含む、好中球および白血球のような循環している白血球に対して類似の大きさおよび密度を有する、ほぼ単分散のヒドロゲルミクロスフェアが、形成され得る。このようなミクロスフェアを形成する1つの方法は、水に可溶であるフリーラジカルの重合可能なマクロマーの水溶液を使用して、油中水懸濁物を作成することによる。
【0115】
研究室の規模での本発明に従うマイクロ液滴の調製は、プローブソニケーターによって誘導される超音波処理を使用して可能である。産業的な規模での産生については、Microfluidization(登録商標)(Microfluidics Corp.,Newton,MA)が好ましい。このプロセスは、液体の反対方向の噴流を衝突させることによって、高い剪断力を作成する。この装置は、Mayhewら、「Characterization of Liposomes Prepared Using a Microemulsifier」、Biochim.Biophys.Acta、775:169−174(1984)に記載されている。代替の産業的な規模での処理装置として、GaulinおよびRannieのHomogenizers(APV Gaulin/Rannie Homogenizers,St.Paul,Minn.)が挙げられるが、これに限定されない。
【0116】
生体分解性のヒドロゲルを形成するために重合され得る水に可溶性のマクロマーの合成および特徴付けは、Sawhneyらの「Bioerodible Hydrogels Based on Photopolymerized Poly(ethylenglycol)−co−poly(α−hydroxy acid)Diacrylate Macromers」、Macromolecules、26:581−587(1993)において報告されている。
【0117】
ここで図2を参照すると、本発明の方法に従ってヒドロゲルミクロスフェアを製造する工程が記載されている。最初に、金属の塩(例えば、50から50,000ppmの濃度でのグルコン酸第一鉄)を含有する水性の相20が、油に可溶であるペルオキシドまたはヒドロペルオキシド(10から100,000ppmの濃度で)を含有する油の相25に添加されて、酸化還元反応が開始される。この反応は、マイクロ液滴の単分散性の集団が適切な剪断機構によって得られた後に、開始され得る。例えば、この反応は、必要とされる大きさの分布が達成されるまで、油の相の中に水性の相のマイクロ液滴を最初に分散させることによって制御され得る。攪拌が持続され,そしてその中にペルオキシドを溶解している油の相のさらなる量が溶解させられ、次いで、その中に導入および混合され得る。水性の相のマイクロ液滴は、本明細書中で上記に記載されている任意の低分子量の水に可溶である治療用化合物を含有し得る。
【0118】
得られるマクロマーのマイクロ液滴は、ヒドロゲルミクロスフェア30を形成するように重合する。油の相の中で可溶であるペルオキシドまたは水に可溶性であるペルオキシドが、相転移剤中に溶解させられ得、これは次いで、油の相の中に水に可溶であるペルオキシドを保有し、そしてヒドロゲルのマイクロ液滴中へのペルオキシドの輸送を促進する。この相転移は、マクロマーの溶液中にすでに存在する還元剤の存在下で重合を効率的に開始する。
【0119】
液滴の大きさは、油および水の相の粘性、それらの相対的な表面エネルギー、安定剤および界面活性剤の存在、ならびに剪断機構に依存する。天然または合成の起源の任意の種々の油が、使用され得る。次いで、ミクロスフェアは、遠心分離によって単離され得、そして水性の溶液でリンスすることによって、油の相から洗浄され得る。得られるヒドロゲルミクロスフェアは、調製後すぐに使用され得るか、または保存安定(shelf−stable)薬物送達マトリックスを提供するために使用の時間が予想されるまで、凍結させられるか、乾燥させられるか、もしくは凍結乾燥させられ得る。
【0120】
このようなミクロスフェアを形成するための酸化還元型の開始を使用することは必ずしも必要ではなく、任意の種々の化学的、熱的、光化学的なフリーラジカル開始システム(例えば、当該分野で以前から公知である)が使用され得る。フリーラジカル的に重合が可能であるマクロマーが使用されることは、必ずしも必要ではない。例えば、水に可溶性であるマクロマーを含有する任意の種々の球核性または求電子性の官能基(Shearwater Polymers,Inc.,Huntsville,ALを参照のこと)が、2つの反応性の成分が2つの別々の相に分散され得る限りは、使用され得る。
【0121】
ヒドロゲルミクロスフェアもまた、それらの制限された可溶性、イオン錯体形成、または他の手段によって安定化させられる、非重合化ヒドロゲル形成材料から形成され得る。本発明における使用に適切なヒドロゲルのより範囲の広いリストが、本明細書中上記に提供される。ミクロスフェアの形成の前駆物であるマイクロ液滴を形成するための例えば以下のような他の手段もまた、使用され得る:超音波分散、液滴の噴霧、小さい液滴の乳濁増殖、疎水性の相の中に分散させられた薬剤によって開始される疎水性コアを取り巻く界面重合化など。
【0122】
実施例2
標的化が可能なミクロスフェアの作成
ニ官能性のマクロマーに加えて、遊離のヒドロキシ基またはカルボキシル基を有する半テレキーレックマクロマーもまた水性の相に対して添加される場合は、得られるミクロスフェアは、さらなる機能化のために利用可能な遊離の官能基を有すると予想され得る。ぶら下がっている鎖の末端がヒドロキシ基およびカルボキシル基の混合物から選択される場合は、別の活性化スキームが、ミクロスフェアに対して炭水化物およびタンパク質シグナル伝達配列の両方を結合するように使用され得る。
【0123】
ムチンは、白血球および他の白血球細胞の表面上に存在する炭水化物分子である。これらの長い鎖の分子は、可撓性の性質を有し、そして細胞のシグナル伝達分子を鎖でつなぐように作用する。これらの分子は、例えば、それらの回転作用を通じて同一の標的部位に対して白血球を与える。ポリ(エチレンオキサイド)分子は、それらのエーテル結合によって鎖の可撓性を有し、そしてそれらの末端で機能的にされ得る。従って、これらの分子は、一方の末端で細胞のシグナル伝達配列に結合する鎖として使用され得、そして他方の末端ではミクロスフェアに結合する鎖として使用され得る。
【0124】
上記の実施例1に記載されているミクロスフェアは、静脈内投与の際にミクロスフェアの標的化の誘導を補助する、適切な細胞のシグナル伝達または接着分子を用いて機能的にされ得る。従って、送達されるべき物質および生物学的に活性な分子(好ましくは、抗体または抗体フラグメント)に共有結合すると考えらえられるポリマーを含む注射可能な粒子が、調製され得る。ここで、粒子は、生物学的に活性な分子が、粒子の外側の表面上に存在するような様式で、調製される。従って、それらの表面上に抗体または抗体フラグメントを有する注射可能な粒子が、薬物の選択的な用量について所望されるような特異的な細胞または器官を標的化するために使用され得る。
【0125】
図3を参照すると、ヒドロゲルミクロスフェア40は、実施例1に従って最初に調製される。次に、炭水化物およびタンパク質分子を結合させるために、ミクロスフェア40が、ジシクロヘキシカルボジイミド(DCC)(これは、カルボキシル基と反応する)とp−ニトロフェニルクロロカーボネート(これは、ヒドロキシル基と反応する)との乾燥有機溶媒中での混合によって、機能的にされ、それによってミクロスフェア42を生じる。
【0126】
次の工程においては、目的の炭水化物分子(例えば、Lセレクチンまたはムチン)のカップリングが、塩基性の水溶性の環境下で行われ(例えば、50mMのホウ酸ナトリウム緩衝液、pH8.5)、中間体のミクロスフェア44を生じる。目的のタンパク質(例えば、抗体またはインテグリン)のカップリングの最終工程が、再び塩基性の水性の環境下で行われて、標的化されたミクロスフェア46を生じる。タンパク質と炭水化物との結合は、蛍光の免疫細胞化学的プローブによって評価され得る。標的分子の結合の結合活性は、競合結合アッセイまたは放射性イムノアッセイによって測定され得る。
【0127】
生物学的に活性な分子、および特に、抗体または抗体フラグメントは、当業者に公知の任意の方法による、ポリ(アルキレングリコール)の末端のヒドロキシル基との反応によって、ブロックコポリマーに共有結合させられ得る。例えば、ヒドロキシル基は、エステルまたはアミド結合をそれぞれ形成するように、分子または抗体もしくは抗体フラグメント上の末端のカルボキシル基または末端のアミノ基と反応させられ得る。
【0128】
あるいは、分子は、ジアミンまたは以下を含むがこれらに限定されないジカルボン酸のようなニ官能性のスペーシング基を通じて、ポリ(アルキレングリコール)に対して連結させられ得る:セバシン酸、アジピン酸、イソフタル酸、テレフタル酸、フマル酸、ドデカンジカルボン酸、アゼライン酸、ピメリン酸、コルク酸(オクタン二酸(octanedioic acid))、イタコン酸、ジフェニル−4,4’−ジカルボン酸、ベンゾフェノン−4,4’−ジカルボン酸、およびp−カルボキシルフェノキシアルカノン酸。これらの実施態様においては、スペーシングジ基は、ポリ(アルキレングリコール)上のヒドロキシル基と反応し、次いで、生物学的に活性な分子と反応する。
【0129】
さらに別の場合には、スペーシング基は、生物学的に活性な分子または抗体もしくは抗体フラグメントと反応させられ得、次いで、ポリ(アルキレングリコール)上のヒドロキシル基と反応させられ得る。反応は、ナノ粒子に対して共有結合される分子の生物学的な活性に有害な影響を与えない条件下で達成されるはずである。例えば、タンパク質またはペプチドの変性を生じる条件(例えば、高温、特定の有機溶媒、および高いイオン強度の溶液(粒子に対してタンパク質が結合する場合))は、回避されるはずである。例えば、有機溶媒は、反応システムから排除されるはずであり、そしてEDCのような水に可溶であるカップリング剤が代わりに使用されるべきである。
【0130】
物理的におよび化学的な性質(例えば、大きさ、密度、組成、レセプター結合密度、ぶら下がった鎖の長さなど)は、これらのミクロスフェアの標的化の作用に影響を与えることが予想される。これらの合成のミクロスフェアの回転の挙動は、それらの「標的化能力」を評価するような、薄層流チャンバ中での白血球のものと比較され得る。次いで、最適な標的化システムは、可能性のある薬物送達アプローチと組み合わせられ得る。
【0131】
実施例3
ヒドロゲル錠剤の調製
エオシンYを、モデルの水に可溶である薬物として例として選択する。なぜなら、これは、水中で自由に可溶であるからである。300mgのEosinYを、1gのステアリン酸エチルと混合し得、そして混合物を穏やかに45℃に1分間加熱して、エオシンを溶解させ、そして融解したステアリン酸エチルと自由に混合させた。混合物を冷却し、そして結晶化させた。次いで、混合物を容器からかき集め、そして小さい粒子の大きさにするように粉末を挽くためにボールミルに移した。
【0132】
挽いた粉末は、100メッシュのスクリーンを通してふるいにかけられるべきであり、そして粒子を回収した。300mgのこのような粒子を、以下のように調製したマクロマーの溶液中に分散させ得る。dl−乳酸およびポリ(エチレングリコール)(PEG,分子量8,000ダルトン、PEG1モル当たり10モルの乳酸エステル)のアクリル化されたコポリマーを、Sawhneyによる上記の論文において記載されているように合成し得、そしてpH7.4でありそして100mg/mLの濃度のリン酸緩衝液中に溶解させる。Irgacure651(Ciba Geigy)を、N−ビニルピロリジノン中に600mg/mLの濃度で溶解させ、そして5μLのこの出発溶液を攪拌しながら1mLのマクロマーの溶液中に添加する。混合物を、6ウェルの皿にピペットし、そして1分間、10ミリワット/cm2の強度の長波の紫外線光に曝して、マクロマーのゲル化を達成する。
【0133】
このようにして、速度改変剤(ステアリン酸エチル)を使用して捕捉したエオシンYを含有するヒドロゲル錠剤を形成し得る。錠剤は、エオシンYの放出を観察するために水性の溶液中に配置され得、これは、類似の様式で調製される錠剤と比較して、はるかに遅くそして制御されていると予想されるが、ここれは、エオシンYは、ステアリン酸エチル中には捕捉されない。相転移剤は、この薬物送達システムの作成においては必要ではない。
【0134】
本発明の好ましい例示的な実施態様が上記に記載されているが、種々の変更および改変が、本発明を逸脱することなく当該分野で行われ得ること、および添付の特許請求の範囲内に本発明の真の精神および範囲内にはいるこのような変更および改変の全てを含むことが、意図されることが当業者に明らかである。
【0135】
本発明のさらなる特徴、その性質および種々の利点は、添付の図面および好ましい実施態様の以下の詳細な説明からさらに明らかである。
【図面の簡単な説明】
【図1】 図1は、分散させられた薬物を含有するマイクロドメインを含有する、本発明の原理に従って形成される、複合ヒドロゲルミクロスフェアを示す。
【図2】 図2は、乳濁物の重合方法を使用する、本発明のヒドロゲルミクロスフェアを形成することにおける工程を示す。
【図3】 図3は、本発明の原理に従って、標的化されたミクロスフェアを形成するための、細胞シグナル伝達炭水化物およびタンパク質分子の結合を可能にするための、ヒドロゲルミクロスフェアの活性化の工程を示す。

Claims (6)

  1. 共有結合的に架橋結合した親水性の合成マクロマを含む、連続的生体吸収性のある合成ヒドロゲルマトリックス;
    該連続的なヒドロゲルマトリックス中に分散された複数個の疎水性の相;及び
    該疎水性の相の中に配置された治療剤を含み、ここで該疎水性の相は、該ヒドロゲルマトリックスからの該治療剤の放出の速度を制御し、該疎水性の相がマイクロ液滴、又はマイクロ粒子である、薬物送達システム。
  2. 該疎水性の相が、放出速度改変剤、65℃より低い融点を持つ化合物、又はこれらの組み合わせを含む、請求項1記載の薬物送達システム。
  3. 該ヒドロゲルマトリックスが、ミクロスフェアとして形成された、請求項1記載の薬物送達システム。
  4. 該ミクロスフェアが、標的に結合する生物活性のある標的物質を更に含む、請求項記載の薬物送達システム。
  5. 前記の共有結合的に架橋結合した親水性の合成マクロマが、求電子性の官能基と求核性の官能基との反応物を含む、請求項1からのいずれか一項記載の薬物送達システム。
  6. 該疎水性の相が、1−100μの範囲の大きさである、請求項1からのいずれか一項記載の薬物送達システム。
JP2000564591A 1998-08-14 1999-08-13 複合ヒドロゲル薬物送達システム Expired - Fee Related JP4601169B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/134,287 1998-08-14
US09/134,287 US6632457B1 (en) 1998-08-14 1998-08-14 Composite hydrogel drug delivery systems
PCT/US1999/018530 WO2000009088A1 (en) 1998-08-14 1999-08-13 Composite hydrogel drug delivery systems

Publications (3)

Publication Number Publication Date
JP2003523926A JP2003523926A (ja) 2003-08-12
JP2003523926A5 JP2003523926A5 (ja) 2006-10-05
JP4601169B2 true JP4601169B2 (ja) 2010-12-22

Family

ID=22462670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000564591A Expired - Fee Related JP4601169B2 (ja) 1998-08-14 1999-08-13 複合ヒドロゲル薬物送達システム

Country Status (6)

Country Link
US (3) US6632457B1 (ja)
EP (1) EP1104286A4 (ja)
JP (1) JP4601169B2 (ja)
AU (1) AU5486399A (ja)
CA (1) CA2339482C (ja)
WO (1) WO2000009088A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11298444B2 (en) 2005-04-01 2022-04-12 Trivascular, Inc. Non-degradable, low swelling, water soluble radiopaque hydrogel polymer

Families Citing this family (233)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003705B2 (en) 1996-09-23 2011-08-23 Incept Llc Biocompatible hydrogels made with small molecule precursors
US7022683B1 (en) 1998-05-13 2006-04-04 Carrington Laboratories, Inc. Pharmacological compositions comprising pectins having high molecular weights and low degrees of methoxylation
US7790192B2 (en) 1998-08-14 2010-09-07 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US6703047B2 (en) * 2001-02-02 2004-03-09 Incept Llc Dehydrated hydrogel precursor-based, tissue adherent compositions and methods of use
US6152943A (en) * 1998-08-14 2000-11-28 Incept Llc Methods and apparatus for intraluminal deposition of hydrogels
CA2353642C (en) 1998-12-04 2009-11-10 Amarpreet S. Sawhney Biocompatible crosslinked polymers
AU775995B2 (en) * 1999-06-07 2004-08-19 Nycomed Gmbh Novel preparation and administration form comprising an acid-labile active compound
ATE460951T1 (de) 2000-01-25 2010-04-15 Edwards Lifesciences Corp Freisetzungssysteme zur behandlung von restenose und anastomotischer intimaler hyperplasie
US6652883B2 (en) 2000-03-13 2003-11-25 Biocure, Inc. Tissue bulking and coating compositions
ATE327262T1 (de) 2000-03-13 2006-06-15 Biocure Inc Zusammensetzungen zur erhöhung des gewebevolumens und beschichtungszusammensetzungen
JP4871476B2 (ja) 2000-03-13 2012-02-08 バイオコンパティブルズ ユーケー リミテッド 塞栓組成物
US20030049320A1 (en) * 2000-12-18 2003-03-13 Wockhardt Limited Novel in-situ forming controlled release microcarrier delivery system
DE60117857D1 (de) 2000-12-27 2006-05-04 Genzyme Corp Kontrollierte freisetzung von anti-arrhythmica aus einem biodegradierbaren hydrogel für die lokale anwendung am herzen
US6702744B2 (en) 2001-06-20 2004-03-09 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US8608661B1 (en) 2001-11-30 2013-12-17 Advanced Cardiovascular Systems, Inc. Method for intravascular delivery of a treatment agent beyond a blood vessel wall
CN100341589C (zh) 2002-05-24 2007-10-10 血管技术国际股份公司 用于涂覆医用植入物的组合物和方法
AU2003273272A1 (en) * 2002-06-03 2003-12-19 Alinis Biosciences, Inc. Therapeutic agent-containing polymeric nanoarticles
US20040115271A1 (en) * 2002-06-21 2004-06-17 Alex Sacharoff Hydration compositions for corneal pre-surgery treatment
US7361368B2 (en) 2002-06-28 2008-04-22 Advanced Cardiovascular Systems, Inc. Device and method for combining a treatment agent and a gel
TW200410717A (en) * 2002-12-31 2004-07-01 Ind Tech Res Inst Delivery system for control release of temperature sensitive bioactive material
US7122370B2 (en) * 2003-01-14 2006-10-17 Randolph Stanley Porubcan Formulations to increase in vivo survival of probiotic bacteria and extend their shelf-life
US8821473B2 (en) 2003-04-15 2014-09-02 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US8038991B1 (en) 2003-04-15 2011-10-18 Abbott Cardiovascular Systems Inc. High-viscosity hyaluronic acid compositions to treat myocardial conditions
US7641643B2 (en) * 2003-04-15 2010-01-05 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
JP2007534644A (ja) * 2003-12-09 2007-11-29 ユーニヴァーサティ、アヴ、ノース、テクサス 逆熱可逆性ゲル化性を有するハイドロゲル・ナノ粒子の水性分散体
US20050132466A1 (en) * 2003-12-11 2005-06-23 Kimberly-Clark Worldwide, Inc. Elastomeric glove coating
US20050127552A1 (en) * 2003-12-11 2005-06-16 Kimberly-Clark Worldwide, Inc. Method for forming an elastomeric article
US7790190B2 (en) * 2004-03-20 2010-09-07 Yasoo Health, Inc. Aqueous emulsions of lipophile solubilized with vitamin E TPGS and linoleic acid
US7151077B2 (en) * 2004-03-29 2006-12-19 Halliburton Energy Services, Inc. Polymersome compositions and associated methods of use
US20050245905A1 (en) * 2004-04-30 2005-11-03 Schmidt Steven P Local drug-delivery system
BRPI0515191A (pt) * 2004-08-13 2008-07-08 Angiotech Internac Ag composição farmacêutica, método para aumentar osso ou substituir perda óssea, método para reduzir a dor associada com cicatriz pós-cirúrgica, método para prevenir aderência cirúrgicas, método para aumento ou reparo de pele ou tecido, método para manter volume em fluido ocular durante cirurgia ocular, método para reduzir a dor associada com osteoartrite, método para tratar doença de refluxo gastroesofágico, método para tratar ou prevenir incontinência urinária, método para tratar ou prevenir incontinência fecal, implante método e dispositivo médico
DE102004040104A1 (de) * 2004-08-18 2006-02-23 Basf Ag Verwendung von amphiphilen Copolymerisaten als Solubilisatoren
US7909809B2 (en) 2004-09-27 2011-03-22 Boston Scientific Scimed, Inc. Devices and methods for agent-assisted medical procedures
US7282194B2 (en) * 2004-10-05 2007-10-16 Gp Medical, Inc. Nanoparticles for protein drug delivery
JP2008520783A (ja) * 2004-11-16 2008-06-19 ユニベルシテ・ド・リエージュ ヒドロゲルマトリックスおよびマイクロキャリアを含む活性物質供給システム
US8128952B2 (en) * 2005-01-12 2012-03-06 Clemson University Research Foundation Ligand-mediated controlled drug delivery
DE102005002703C5 (de) 2005-01-19 2013-07-04 Heraeus Kulzer Gmbh Antibiotische Beschichtung von Implantaten sowie Verfahren zur antibiotischen Beschichtung
US7611494B2 (en) 2005-02-08 2009-11-03 Confluent Surgical, Inc. Spray for fluent materials
US8828433B2 (en) 2005-04-19 2014-09-09 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US20080125745A1 (en) 2005-04-19 2008-05-29 Shubhayu Basu Methods and compositions for treating post-cardial infarction damage
US8303972B2 (en) 2005-04-19 2012-11-06 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US8187621B2 (en) 2005-04-19 2012-05-29 Advanced Cardiovascular Systems, Inc. Methods and compositions for treating post-myocardial infarction damage
US9539410B2 (en) 2005-04-19 2017-01-10 Abbott Cardiovascular Systems Inc. Methods and compositions for treating post-cardial infarction damage
US20060240051A1 (en) * 2005-04-26 2006-10-26 Singleton Andy H Eutectic blends containing a water soluble vitamin derivative
US7662753B2 (en) 2005-05-12 2010-02-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US7677315B2 (en) 2005-05-12 2010-03-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US8440217B1 (en) 2005-06-15 2013-05-14 Mawaheb M. EL-Naggar Method and system with contact lens product for treating and preventing adverse eye conditions
US20070110788A1 (en) * 2005-11-14 2007-05-17 Hissong James B Injectable formulation capable of forming a drug-releasing device
US8586078B2 (en) * 2005-12-05 2013-11-19 Rba Pharma Inc. Emulsion-containing medical articles
US20070212419A1 (en) * 2006-02-18 2007-09-13 Jozsef Bako Synthesis of biocompatible nanocomposite hydrogels as a local drug delivery system
US8795709B2 (en) * 2006-03-29 2014-08-05 Incept Llc Superabsorbent, freeze dried hydrogels for medical applications
WO2007127198A2 (en) 2006-04-24 2007-11-08 Incept, Llc Protein crosslinkers, crosslinking methods and applications thereof
US7976873B2 (en) 2006-05-10 2011-07-12 Medtronic Xomed, Inc. Extracellular polysaccharide solvating system for treatment of bacterial ear conditions
US7993675B2 (en) 2006-05-10 2011-08-09 Medtronic Xomed, Inc. Solvating system and sealant for medical use in the sinuses and nasal passages
US7959943B2 (en) 2006-05-10 2011-06-14 Medtronics Xomed, Inc. Solvating system and sealant for medical use in the middle or inner ear
NZ572864A (en) * 2006-05-12 2010-07-30 Nuplex Resins Bv Aqueous dispersion of an auto-oxidatively drying polyurethane
US7872068B2 (en) 2006-05-30 2011-01-18 Incept Llc Materials formable in situ within a medical device
WO2007146319A2 (en) * 2006-06-13 2007-12-21 Symphony Medical, Inc. Methods and apparatus for using polymer-based beads and hydrogels for cardiac applications
US7732190B2 (en) 2006-07-31 2010-06-08 Advanced Cardiovascular Systems, Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US9242005B1 (en) 2006-08-21 2016-01-26 Abbott Cardiovascular Systems Inc. Pro-healing agent formulation compositions, methods and treatments
US20090169628A1 (en) 2006-10-17 2009-07-02 Armark Authentication Technologies, Llc Article and method for focused delivery of therapeutic and/or diagnostic materials
US8741326B2 (en) 2006-11-17 2014-06-03 Abbott Cardiovascular Systems Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US9005672B2 (en) 2006-11-17 2015-04-14 Abbott Cardiovascular Systems Inc. Methods of modifying myocardial infarction expansion
US8192760B2 (en) 2006-12-04 2012-06-05 Abbott Cardiovascular Systems Inc. Methods and compositions for treating tissue using silk proteins
WO2008097581A1 (en) * 2007-02-06 2008-08-14 Incept, Llc Polymerization with precipitation of proteins for elution in physiological solution
US8088095B2 (en) 2007-02-08 2012-01-03 Medtronic Xomed, Inc. Polymeric sealant for medical use
US10258571B2 (en) * 2007-02-12 2019-04-16 Particle Sciences, Inc. Delivery devices containing encapsulated and/or practice-bound active pharmaceutical ingredients
US10278947B2 (en) 2007-02-28 2019-05-07 Orthopeutics, L.P. Crosslinker enhanced repair of connective tissues
US20090011043A1 (en) * 2007-07-03 2009-01-08 Hua Xie Tissue sealant made from whole blood
US9125807B2 (en) 2007-07-09 2015-09-08 Incept Llc Adhesive hydrogels for ophthalmic drug delivery
US20090099579A1 (en) 2007-10-16 2009-04-16 Tyco Healthcare Group Lp Self-adherent implants and methods of preparation
WO2009088777A1 (en) * 2007-12-31 2009-07-16 Armark Authentication Technologies, Llc Article and method for focused delivery of therapeutic and/or diagnostic materials
US7862538B2 (en) * 2008-02-04 2011-01-04 Incept Llc Surgical delivery system for medical sealant
US8828354B2 (en) * 2008-03-27 2014-09-09 Warsaw Orthopedic, Inc. Pharmaceutical gels and methods for delivering therapeutic agents to a site beneath the skin
US8745133B2 (en) * 2008-03-28 2014-06-03 Yahoo! Inc. System and method for optimizing the storage of data
US8420114B2 (en) * 2008-04-18 2013-04-16 Warsaw Orthopedic, Inc. Alpha and beta adrenergic receptor agonists for treatment of pain and / or inflammation
US9132119B2 (en) 2008-04-18 2015-09-15 Medtronic, Inc. Clonidine formulation in a polyorthoester carrier
USRE48948E1 (en) 2008-04-18 2022-03-01 Warsaw Orthopedic, Inc. Clonidine compounds in a biodegradable polymer
US8557273B2 (en) 2008-04-18 2013-10-15 Medtronic, Inc. Medical devices and methods including polymers having biologically active agents therein
US20090264477A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc., An Indiana Corporation Beta adrenergic receptor agonists for treatment of pain and/or inflammation
US9289409B2 (en) * 2008-04-18 2016-03-22 Warsaw Orthopedic, Inc. Sulindac formulations in a biodegradable material
US8883768B2 (en) * 2008-04-18 2014-11-11 Warsaw Orthopedic, Inc. Fluocinolone implants to protect against undesirable bone and cartilage destruction
US8956641B2 (en) 2008-04-18 2015-02-17 Warsaw Orthopedic, Inc. Alpha adrenergic receptor agonists for treatment of inflammatory diseases
US20090263451A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Anti-Inflammatory and/or Analgesic Agents for Treatment of Myofascial Pain
US8722079B2 (en) * 2008-04-18 2014-05-13 Warsaw Orthopedic, Inc. Methods for treating conditions such as dystonia and post-stroke spasticity with clonidine
US20090263443A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedics, Inc. Methods for treating post-operative effects such as spasticity and shivering with clondine
US8956636B2 (en) 2008-04-18 2015-02-17 Warsaw Orthopedic, Inc. Methods and compositions for treating postoperative pain comprosing ketorolac
US20090264489A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Method for Treating Acute Pain with a Formulated Drug Depot in Combination with a Liquid Formulation
US8629172B2 (en) 2008-04-18 2014-01-14 Warsaw Orthopedic, Inc. Methods and compositions for treating post-operative pain comprising clonidine
US8846068B2 (en) 2008-04-18 2014-09-30 Warsaw Orthopedic, Inc. Methods and compositions for treating post-operative pain comprising a local anesthetic
US20090264478A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Sulfasalazine formulations in a biodegradable polymer carrier
US8889173B2 (en) 2008-04-18 2014-11-18 Warsaw Orthopedic, Inc. Alpha adrenergic receptor agonists for treatment of pain and/or inflammation
US9072727B2 (en) * 2008-04-18 2015-07-07 Warsaw Orthopedic, Inc. Alpha adrenergic receptor agonists for treatment of degenerative disc disease
US9125917B2 (en) 2008-04-18 2015-09-08 Warsaw Orthopedic, Inc. Fluocinolone formulations in a biodegradable polymer carrier
WO2009132153A2 (en) * 2008-04-22 2009-10-29 Angiotech Pharmaceuticals, Inc. Biocompatible crosslinked hydrogels, drug-loaded hydrogels and methods of using the same
US20100040672A1 (en) * 2008-06-09 2010-02-18 Northwestern University Delivery of therapeutics
US10799593B2 (en) 2008-06-09 2020-10-13 Northwestern University Nanodiamond particle complexes
AU2009257390B2 (en) 2008-06-12 2014-09-04 Medtronic Xomed, Inc. Method for treating chronic wounds with an extracellular polymeric substance solvating system
US9943614B2 (en) 2008-06-17 2018-04-17 Brigham Young University Cationic steroid antimicrobial diagnostic, detection, screening and imaging methods
US20100015049A1 (en) * 2008-07-16 2010-01-21 Warsaw Orthopedic, Inc. Methods and compositions for treating postoperative pain comprising nonsteroidal anti-inflammatory agents
US9492375B2 (en) * 2008-07-23 2016-11-15 Warsaw Orthopedic, Inc. Foam carrier for bone grafting
EP2334686B1 (en) 2008-08-28 2019-02-27 President and Fellows of Harvard College Cortistatin analogues and syntheses therof
US20100098746A1 (en) * 2008-10-20 2010-04-22 Warsaw Orthopedic, Inc. Compositions and methods for treating periodontal disease comprising clonidine, sulindac and/or fluocinolone
US9161903B2 (en) * 2008-10-31 2015-10-20 Warsaw Orthopedic, Inc. Flowable composition that hardens on delivery to a target tissue site beneath the skin
US11090387B2 (en) 2008-12-22 2021-08-17 The Trustees Of The University Of Pennsylvania Hydrolytically degradable polysaccharide hydrogels
US8980317B2 (en) 2008-12-23 2015-03-17 Warsaw Orthopedic, Inc. Methods and compositions for treating infections comprising a local anesthetic
CA2750242C (en) 2009-02-12 2018-05-22 Incept, Llc Drug delivery through hydrogel plugs
US20100228097A1 (en) * 2009-03-04 2010-09-09 Warsaw Orthopedic, Inc. Methods and compositions to diagnose pain
US20100226959A1 (en) * 2009-03-04 2010-09-09 Warsaw Orthopedic, Inc. Matrix that prolongs growth factor release
US20100239632A1 (en) 2009-03-23 2010-09-23 Warsaw Orthopedic, Inc. Drug depots for treatment of pain and inflammation in sinus and nasal cavities or cardiac tissue
EP2427233B1 (en) 2009-05-04 2016-12-21 Incept Llc Biomaterials for track and puncture closure
ES2593584T3 (es) 2009-05-28 2016-12-09 Profibrix Bv Sellante de fibrina en polvo seco
GB0909136D0 (en) * 2009-05-28 2009-07-01 Profibrix Bv Dry powder composition
US8617583B2 (en) 2009-07-17 2013-12-31 Warsaw Orthopedic, Inc. Alpha adrenergic receptor agonists for prevention or treatment of a hematoma, edema, and/or deep vein thrombosis
US8653029B2 (en) 2009-07-30 2014-02-18 Warsaw Orthopedic, Inc. Flowable paste and putty bone void filler
US8231891B2 (en) 2009-07-31 2012-07-31 Warsaw Orthopedic, Inc. Implantable drug depot for weight control
US20110097375A1 (en) 2009-10-26 2011-04-28 Warsaw Orthopedic, Inc. Formulation for preventing or reducing bleeding at a surgical site
US20110097380A1 (en) * 2009-10-28 2011-04-28 Warsaw Orthopedic, Inc. Clonidine formulations having antimicrobial properties
US9504698B2 (en) * 2009-10-29 2016-11-29 Warsaw Orthopedic, Inc. Flowable composition that sets to a substantially non-flowable state
US8597192B2 (en) 2009-10-30 2013-12-03 Warsaw Orthopedic, Inc. Ultrasonic devices and methods to diagnose pain generators
CA2780294C (en) 2009-11-09 2018-01-16 Spotlight Technology Partners Llc Polysaccharide based hydrogels
CA2780274C (en) 2009-11-09 2018-06-26 Spotlight Technology Partners Llc Fragmented hydrogels
EP3960215B1 (en) 2009-12-15 2024-10-16 Incept, LLC Implants and biodegradable fiducial markers
US8758791B2 (en) * 2010-01-26 2014-06-24 Warsaw Orthopedic, Inc. Highly compression resistant matrix with porous skeleton
US8475824B2 (en) * 2010-01-26 2013-07-02 Warsaw Orthopedic, Inc. Resorbable matrix having elongated particles
US9486500B2 (en) 2010-01-28 2016-11-08 Warsaw Orthopedic, Inc. Osteoimplant and methods for making
US9050274B2 (en) * 2010-01-28 2015-06-09 Warsaw Orthopedic, Inc. Compositions and methods for treating an intervertebral disc using bulking agents or sealing agents
US9125902B2 (en) * 2010-01-28 2015-09-08 Warsaw Orthopedic, Inc. Methods for treating an intervertebral disc using local analgesics
US10189773B2 (en) 2010-05-07 2019-01-29 Medicus Biosciences, Llc In-vivo gelling pharmaceutical pre-formulation
US9232805B2 (en) 2010-06-29 2016-01-12 Biocure, Inc. In-situ forming hydrogel wound dressings containing antimicrobial agents
US8246571B2 (en) 2010-08-24 2012-08-21 Warsaw Orthopedic, Inc. Drug storage and delivery device having a retaining member
US8961501B2 (en) 2010-09-17 2015-02-24 Incept, Llc Method for applying flowable hydrogels to a cornea
US9414930B2 (en) * 2010-10-26 2016-08-16 Kyphon SÀRL Activatable devices containing a chemonucleolysis agent
US8404268B2 (en) 2010-10-26 2013-03-26 Kyphon Sarl Locally targeted anti-fibrotic agents and methods of use
US8740982B2 (en) 2010-10-26 2014-06-03 Kyphon Sarl Devices containing a chemonucleolysis agent and methods for treating an intervertebral disc or spinal arachnoiditis
US8623396B2 (en) 2010-12-03 2014-01-07 Warsaw Orthopedic, Inc. Compositions and methods for delivering clonidine and bupivacaine to a target tissue site
WO2012075451A2 (en) 2010-12-03 2012-06-07 Warsaw Orthopedic, Inc. Clonidine and gaba compounds in a biodegradable polymer carrier
US8360765B2 (en) 2011-01-07 2013-01-29 Covidien Lp Systems and method for forming a coaxial implant
US9060978B2 (en) 2011-01-24 2015-06-23 Warsaw Orthopedic, Inc. Method for treating an intervertebral disc disorder by administering a dominant negative tumor necrosis factor antagonist
US9717779B2 (en) 2011-01-31 2017-08-01 Warsaw Orthopedic, Inc. Implantable matrix having optimum ligand concentrations
US9486404B2 (en) 2011-03-28 2016-11-08 The Trustees Of The University Of Pennsylvania Infarction treatment compositions and methods
US9511077B2 (en) 2011-04-25 2016-12-06 Warsaw Orthopedic, Inc. Medical devices and methods comprising an anabolic agent for wound healing
US9592243B2 (en) 2011-04-25 2017-03-14 Warsaw Orthopedic, Inc. Medical devices and methods comprising an anabolic agent for treatment of an injury
US8404256B2 (en) * 2011-05-06 2013-03-26 The University Of Memphis Research Foundation Biomaterial composite composition and method of use
US9132194B2 (en) 2011-07-12 2015-09-15 Warsaw Orthopedic, Inc. Medical devices and methods comprising an adhesive sheet containing a drug depot
US9205241B2 (en) 2011-07-12 2015-12-08 Warsaw Orthopedic, Inc. Medical devices and methods comprising an adhesive material
CN104053458B (zh) 2011-07-20 2016-07-20 布莱阿姆青年大学 包含洗脱塞拉集宁化合物的水凝胶材料
US11083821B2 (en) 2011-08-10 2021-08-10 C.P. Medical Corporation Biocompatible hydrogel polymer formulations for the controlled delivery of biomolecules
US10111985B2 (en) 2011-08-10 2018-10-30 Medicus Biosciences, Llc Biocompatible hydrogel polymer formulations for the controlled delivery of biomolecules
WO2013029059A1 (en) * 2011-08-25 2013-02-28 Brigham Young University Medical devices incorporating ceragenin-containing composites
US10226417B2 (en) * 2011-09-16 2019-03-12 Peter Jarrett Drug delivery systems and applications
AU2012347926B2 (en) 2011-12-05 2018-03-15 Incept, Llc Medical organogel processes and compositions
US8758806B2 (en) * 2012-01-23 2014-06-24 Warsaw Orthopedic, Inc. Human lubrication gel
US9511018B2 (en) 2012-04-05 2016-12-06 Warsaw Orthopedic, Inc. Clonidine compounds in a biodegradable matrix
CA2872399C (en) 2012-05-02 2021-01-12 Brigham Young University Ceragenin particulate materials and methods for making same
US8735504B2 (en) 2012-05-02 2014-05-27 Warsaw Orthopedic, Inc. Methods for preparing polymers having low residual monomer content
JP6206987B2 (ja) 2012-05-11 2017-10-04 メディカス バイオサイエンシーズ,エルエルシー 網膜剥離の処置のための生体適合性ヒドロゲル製剤
EP3848064A1 (en) 2012-12-28 2021-07-14 Boston Scientific Scimed, Inc. Kits for surgical repair
CA2897150C (en) 2013-01-07 2021-07-13 Brigham Young University Methods for reducing cellular proliferation and treating certain diseases
US9066853B2 (en) 2013-01-15 2015-06-30 Warsaw Orthopedic, Inc. Clonidine compounds in a biodegradable fiber
ES2660294T3 (es) 2013-03-12 2018-03-21 Panacea Biomatx Inc. Método y sistema para hacer formulaciones personalizadas para los individuos
AU2014236385B2 (en) 2013-03-14 2019-01-24 Theragenics Corporation Biocompatible hydrogel polymer matrix for delivery of cells
US11524015B2 (en) 2013-03-15 2022-12-13 Brigham Young University Methods for treating inflammation, autoimmune disorders and pain
US10568893B2 (en) 2013-03-15 2020-02-25 Brigham Young University Methods for treating inflammation, autoimmune disorders and pain
WO2014151411A1 (en) 2013-03-15 2014-09-25 Brigham Young University Methods for treating inflammation, autoimmune disorders and pain
US11690855B2 (en) 2013-10-17 2023-07-04 Brigham Young University Methods for treating lung infections and inflammation
US10842969B2 (en) 2013-10-25 2020-11-24 Mercator Medsystems, Inc. Systems and methods of treating malacia by local delivery of hydrogel to augment tissue
CA2934819A1 (en) 2013-12-24 2015-07-02 President And Fellows Of Harvard College Cortistatin analogues and syntheses and uses thereof
US20150203527A1 (en) 2014-01-23 2015-07-23 Brigham Young University Cationic steroidal antimicrobials
CA2844321C (en) 2014-02-27 2021-03-16 Brigham Young University Cationic steroidal antimicrobial compounds
US10220045B2 (en) 2014-03-13 2019-03-05 Brigham Young University Compositions and methods for forming stabilized compositions with reduced CSA agglomeration
US9931350B2 (en) 2014-03-14 2018-04-03 Brigham Young University Anti-infective and osteogenic compositions and methods of use
WO2015149070A1 (en) 2014-03-28 2015-10-01 Washington University Hydrogels for localized radiotherapy
US10238665B2 (en) 2014-06-26 2019-03-26 Brigham Young University Methods for treating fungal infections
US10441595B2 (en) 2014-06-26 2019-10-15 Brigham Young University Methods for treating fungal infections
CN105266952A (zh) * 2014-07-09 2016-01-27 首都医科大学附属北京同仁医院 一种抗青光眼手术中所用防术后结膜粘连的器材
US9775978B2 (en) 2014-07-25 2017-10-03 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US10080877B2 (en) 2014-07-25 2018-09-25 Warsaw Orthopedic, Inc. Drug delivery device and methods having a drug cartridge
US10227376B2 (en) 2014-08-22 2019-03-12 Brigham Young University Radiolabeled cationic steroid antimicrobials and diagnostic methods
US10155788B2 (en) 2014-10-07 2018-12-18 Brigham Young University Cationic steroidal antimicrobial prodrug compositions and uses thereof
EA201791337A1 (ru) 2014-12-15 2017-11-30 Дзе Джонс Хопкинс Юниверсити Составы сунитиниба и способы их применения в лечении глазных нарушений
US9527883B2 (en) 2015-04-22 2016-12-27 Brigham Young University Methods for the synthesis of ceragenins
WO2016172543A1 (en) 2015-04-22 2016-10-27 Savage Paul B Methods for the synthesis of ceragenins
EP3288626A4 (en) 2015-04-27 2019-01-23 Reflex Medical Inc. SYSTEMS AND METHODS FOR SYMPATHETIC CARDIO-PULMONARY NEUROMODULATION
WO2016182932A1 (en) 2015-05-08 2016-11-17 President And Fellows Of Harvard College Cortistatin analogues, syntheses, and uses thereof
EP3294212B1 (en) 2015-05-12 2023-10-25 Incept, LLC Drug delivery from hydrogels
WO2016182561A1 (en) * 2015-05-12 2016-11-17 Purdue Research Foundation Wireless position sensing using magnetic field of two transmitters
KR102132544B1 (ko) 2015-06-19 2020-07-09 글로벌 헬스 솔루션즈, 엘엘씨 활성 성분들을 위한 페트롤라툼-계 전달 시스템
US11110071B2 (en) 2015-06-19 2021-09-07 Global Health Solutions Llc Petrolatum-based PHMB compositions and methods of treatment for onychomycosis
EP3316889A4 (en) 2015-07-01 2018-11-14 President and Fellows of Harvard College Cortistatin analogues and syntheses and uses thereof
KR20180034541A (ko) 2015-07-22 2018-04-04 인셉트, 엘엘씨 코팅된 눈물점마개
WO2017062770A1 (en) 2015-10-08 2017-04-13 Silverberg Noah Punctal plug and bioadhesives
EA038755B1 (ru) 2015-11-12 2021-10-14 Грейбаг Вижн, Инк. Агрегирующие микрочастицы для обеспечения замедленного высвобождения терапевтического агента для внутриглазной доставки
US10076650B2 (en) 2015-11-23 2018-09-18 Warsaw Orthopedic, Inc. Enhanced stylet for drug depot injector
US10420724B2 (en) 2015-11-25 2019-09-24 Incept, Llc Shape changing drug delivery devices and methods
WO2017139487A1 (en) 2016-02-09 2017-08-17 Northwind Medical, Inc. Methods, agents, and devices for local neuromodulation of autonomic nerves
WO2017152112A2 (en) * 2016-03-03 2017-09-08 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Hydrogel systems for skeletal interfacial tissue regeneration applied to epiphyseal growth plate repair
US10226550B2 (en) 2016-03-11 2019-03-12 Brigham Young University Cationic steroidal antimicrobial compositions for the treatment of dermal tissue
WO2017189621A1 (en) * 2016-04-26 2017-11-02 Symbiotic Health Inc. Stable macroemulsion for oral delivery of solubilized peptides, protein, and cellular therapeutics
WO2018000082A2 (en) * 2016-05-19 2018-01-04 Molly Shoichet Encapsulation-free controlled protein release system
EP3471874B1 (en) * 2016-06-17 2020-03-18 TRuCapSol, LLC. Controlled release particles and methods for preparation thereof
USD802757S1 (en) 2016-06-23 2017-11-14 Warsaw Orthopedic, Inc. Drug pellet cartridge
EP3478287A4 (en) 2016-06-29 2020-04-08 Tulavi Therapeutics, Inc. TREATMENT OF SEPTICEMIA AND ASSOCIATED INFLAMMATORY CONDITIONS BY LOCAL NEUROMODULATION OF THE AUTONOMOUS NERVOUS SYSTEM
US10434261B2 (en) 2016-11-08 2019-10-08 Warsaw Orthopedic, Inc. Drug pellet delivery system and method
US10959433B2 (en) 2017-03-21 2021-03-30 Brigham Young University Use of cationic steroidal antimicrobials for sporicidal activity
AU2018265415A1 (en) 2017-05-10 2019-10-31 Graybug Vision, Inc. Extended release microparticles and suspensions thereof for medical therapy
EP3630066A4 (en) * 2017-05-26 2021-04-07 Dakota Biotech, LLC STABILIZED COMPOSITIONS FOR THE CONTROLLED RELEASE OF PROBIOTICS AND MANUFACTURING PROCESSES FOR THEM
GB201711644D0 (en) 2017-07-19 2017-08-30 Satie8 Ltd Polymer Compositions
WO2019173062A1 (en) 2018-03-07 2019-09-12 Trucapsol, Llc Reduced permeability microcapsules
US11344502B1 (en) 2018-03-29 2022-05-31 Trucapsol Llc Vitamin delivery particle
US11806407B2 (en) 2018-04-06 2023-11-07 University Of Notre Dame Du Lac Refillable drug delivery by affinity homing
US20210315587A1 (en) 2018-07-02 2021-10-14 Tulavi Therapeutics, Inc. Methods and devices for in situ formed nerve cap with rapid release
CA3105343A1 (en) 2018-07-02 2020-01-09 Corinne Bright Methods and devices for in situ formed nerve cap
US11794161B1 (en) 2018-11-21 2023-10-24 Trucapsol, Llc Reduced permeability microcapsules
US11571674B1 (en) 2019-03-28 2023-02-07 Trucapsol Llc Environmentally biodegradable microcapsules
US11542392B1 (en) 2019-04-18 2023-01-03 Trucapsol Llc Multifunctional particle additive for enhancement of toughness and degradation in biodegradable polymers
US11383006B2 (en) 2019-08-06 2022-07-12 Dose Medical Corporation Bioerodible cross-linked hydrogel implants and related methods of use
US20230000772A1 (en) * 2019-09-13 2023-01-05 University Of Utah Research Foundation Opioid independent surgical anesthetic
WO2021051080A1 (en) * 2019-09-13 2021-03-18 University Of Utah Research Foundation Opioid independent surgical anesthetic
WO2021058651A1 (en) * 2019-09-25 2021-04-01 Technische Universität München Hydrogel compositions for the controlled and constant release of active agents
US11547978B2 (en) 2020-01-30 2023-01-10 Trucapsol Llc Environmentally biodegradable microcapsules
IL295357A (en) 2020-02-06 2022-10-01 Ocular Therapeutix Inc Preparations and methods for the treatment of eye diseases
HUE062928T2 (hu) 2020-03-25 2023-12-28 Ocular Therapeutix Inc Tirozin-kináz inhibitort tartalmazó szemészeti készítmény
AU2021347318A1 (en) 2020-09-24 2023-03-23 Ocular Therapeutix, Inc. Sustained release biodegradable intracanalicular inserts comprising a hydrogel and cyclosporine
CA3209420A1 (en) 2021-02-24 2022-09-01 Peter Jarrett Intracanalicular depot inserter device
CN115227639A (zh) * 2021-04-22 2022-10-25 武汉大学 一种温敏改性甲壳素水凝胶载局部麻药缓释镇痛体系、制备方法及应用
KR102665295B1 (ko) * 2021-08-03 2024-05-09 인제대학교 산학협력단 다중코팅 캡슐형 약물 전달 복합체 및 이의 제조방법
EP4395796A1 (en) 2021-09-01 2024-07-10 Shanghai Qisheng Biological Preparation Co., Ltd. Cartilage regeneration using injectable, in situ polymerizable collagen compositions containing chondrocytes or stem cells
US11878280B2 (en) 2022-04-19 2024-01-23 Trucapsol Llc Microcapsules comprising natural materials
WO2023212033A1 (en) * 2022-04-26 2023-11-02 University Of Maryland, Baltimore Extended-release formulation containing cresol
EP4307412A1 (en) * 2022-07-11 2024-01-17 BeFC Hydrophobic biobinder for cathodic formulation
US11904288B1 (en) 2023-02-13 2024-02-20 Trucapsol Llc Environmentally biodegradable microcapsules
US11969491B1 (en) 2023-02-22 2024-04-30 Trucapsol Llc pH triggered release particle

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE622026A (ja) 1961-09-05
US3242237A (en) 1963-09-11 1966-03-22 Sun Oil Co Method of preparing slow release fertilizer particles
US3423489A (en) 1966-11-01 1969-01-21 Minnesota Mining & Mfg Encapsulation process
US3640741A (en) 1970-02-24 1972-02-08 Hollister Inc Composition containing gel
US3779942A (en) 1970-12-04 1973-12-18 Minnesota Mining & Mfg Capsules and process for forming capsules
US3865108A (en) 1971-05-17 1975-02-11 Ortho Pharma Corp Expandable drug delivery device
US3833003A (en) 1972-07-05 1974-09-03 A Taricco Intravascular occluding catheter
US3975350A (en) 1972-08-02 1976-08-17 Princeton Polymer Laboratories, Incorporated Hydrophilic or hydrogel carrier systems such as coatings, body implants and other articles
US3991766A (en) 1973-05-31 1976-11-16 American Cyanamid Company Controlled release of medicaments using polymers from glycolic acid
US4002173A (en) 1974-07-23 1977-01-11 International Paper Company Diester crosslinked polyglucan hydrogels and reticulated sponges thereof
DE2437629C3 (de) 1974-08-05 1978-09-21 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von unlöslichen in Wasser nur wenig quellbaren Polymerisaten von N-Vinyllactamen
US4107288A (en) 1974-09-18 1978-08-15 Pharmaceutical Society Of Victoria Injectable compositions, nanoparticles useful therein, and process of manufacturing same
US3949073A (en) 1974-11-18 1976-04-06 The Board Of Trustees Of Leland Stanford Junior University Process for augmenting connective mammalian tissue with in situ polymerizable native collagen solution
US4014335A (en) 1975-04-21 1977-03-29 Alza Corporation Ocular drug delivery device
IL47468A (en) 1975-06-12 1979-05-31 Rehovot Res Prod Process for the cross-linking of proteins using water soluble cross-linking agents
US4141973A (en) 1975-10-17 1979-02-27 Biotrics, Inc. Ultrapure hyaluronic acid and the use thereof
US4195129A (en) 1975-11-26 1980-03-25 Kansai Paint Co., Ltd. Method for immobilizing enzymes and microbial cells
US4148874A (en) * 1977-06-13 1979-04-10 The Procter & Gamble Company Dermatological compositions
US4207893A (en) 1977-08-29 1980-06-17 Alza Corporation Device using hydrophilic polymer for delivering drug to biological environment
US4247406A (en) 1979-04-23 1981-01-27 Widder Kenneth J Intravascularly-administrable, magnetically-localizable biodegradable carrier
US4311146A (en) 1980-05-08 1982-01-19 Sorenson Research Co., Inc. Detachable balloon catheter apparatus and method
US4532134A (en) 1981-04-06 1985-07-30 Malette William Graham Method of achieving hemostasis, inhibiting fibroplasia, and promoting tissue regeneration in a tissue wound
US4530840A (en) 1982-07-29 1985-07-23 The Stolle Research And Development Corporation Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US4568737A (en) 1983-01-07 1986-02-04 The Dow Chemical Company Dense star polymers and dendrimers
US4507466A (en) 1983-01-07 1985-03-26 The Dow Chemical Corporation Dense star polymers having core, core branches, terminal groups
US4631188A (en) 1983-08-31 1986-12-23 S.K.Y. Polymers, Ltd. (Kingston Technologies) Injectable physiologically-acceptable polymeric composition
ZA846640B (en) * 1983-09-15 1985-04-24 Kendall & Co Microphase separated hydrogels for controlled release of bioactive materials
US4693887A (en) * 1983-09-15 1987-09-15 The Kendall Company Microphase separated hydrogels for controlled release of bioactive materials
JPS6111139A (ja) * 1984-06-27 1986-01-18 Snow Brand Milk Prod Co Ltd 不安定な機能性物質を内包したカプセル体およびその製造法
US4597970A (en) 1984-10-05 1986-07-01 Warner-Lambert Company Chewing gum compositions containing novel sweetener delivery systems and method of preparation
US4828857A (en) 1984-10-05 1989-05-09 Warner-Lambert Company Novel sweetener delivery systems
US4839345A (en) 1985-03-09 1989-06-13 Nippon Oil And Fats Co., Ltd. Hydrated adhesive gel and method for preparing the same
US4740534A (en) 1985-08-30 1988-04-26 Sanyo Chemical Industries, Ltd. Surgical adhesive
US5510254A (en) 1986-04-18 1996-04-23 Advanced Tissue Sciences, Inc. Three dimensional cell and tissue culture system
US5160745A (en) 1986-05-16 1992-11-03 The University Of Kentucky Research Foundation Biodegradable microspheres as a carrier for macromolecules
US4741872A (en) 1986-05-16 1988-05-03 The University Of Kentucky Research Foundation Preparation of biodegradable microspheres useful as carriers for macromolecules
US4979959A (en) 1986-10-17 1990-12-25 Bio-Metric Systems, Inc. Biocompatible coating for solid surfaces
IL82834A (en) 1987-06-09 1990-11-05 Yissum Res Dev Co Biodegradable polymeric materials based on polyether glycols,processes for the preparation thereof and surgical artiicles made therefrom
US4804691A (en) 1987-08-28 1989-02-14 Richards Medical Company Method for making a biodegradable adhesive for soft living tissue
US5843156A (en) 1988-08-24 1998-12-01 Endoluminal Therapeutics, Inc. Local polymeric gel cellular therapy
US5213580A (en) 1988-08-24 1993-05-25 Endoluminal Therapeutics, Inc. Biodegradable polymeric endoluminal sealing process
US4990610A (en) 1988-08-25 1991-02-05 Applied Analytical Industries, Inc. Method for preparing high potency sucralfate
US5041292A (en) 1988-08-31 1991-08-20 Theratech, Inc. Biodegradable hydrogel matrices for the controlled release of pharmacologically active agents
US4925677A (en) 1988-08-31 1990-05-15 Theratech, Inc. Biodegradable hydrogel matrices for the controlled release of pharmacologically active agents
US5702716A (en) 1988-10-03 1997-12-30 Atrix Laboratories, Inc. Polymeric compositions useful as controlled release implants
US4938763B1 (en) 1988-10-03 1995-07-04 Atrix Lab Inc Biodegradable in-situ forming implants and method of producing the same
US5126141A (en) 1988-11-16 1992-06-30 Mediventures Incorporated Composition and method for post-surgical adhesion reduction with thermo-irreversible gels of polyoxyalkylene polymers and ionic polysaccharides
US4911926A (en) 1988-11-16 1990-03-27 Mediventures Inc. Method and composition for reducing postsurgical adhesions
US5306500A (en) 1988-11-21 1994-04-26 Collagen Corporation Method of augmenting tissue with collagen-polymer conjugates
US5936035A (en) 1988-11-21 1999-08-10 Cohesion Technologies, Inc. Biocompatible adhesive compositions
US5122614A (en) 1989-04-19 1992-06-16 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
US5152782A (en) 1989-05-26 1992-10-06 Impra, Inc. Non-porous coated ptfe graft
US5171148A (en) 1989-06-30 1992-12-15 Ethicon, Inc. Dental inserts for treatment of periodontal disease
HU221294B1 (en) * 1989-07-07 2002-09-28 Novartis Ag Process for producing retarde compositions containing the active ingredient in a polymeric carrier
US5487897A (en) 1989-07-24 1996-01-30 Atrix Laboratories, Inc. Biodegradable implant precursor
US4994277A (en) 1989-10-31 1991-02-19 Pfizer Hospital Products Group, Inc. Use of xanthan gum for preventing adhesions
US5093319A (en) 1989-10-31 1992-03-03 Pfizer Hospital Products Group, Inc. Use of derivatives of chitin soluble in aqueous solutions for preventing adhesions
US5468811A (en) 1989-11-02 1995-11-21 National Patent Development Corporation Hydrophilic composite polymer articles formed from a settable paste comprising a mixture of hydrophilic polymer and unsaturated monomer
US5198220A (en) 1989-11-17 1993-03-30 The Procter & Gamble Company Sustained release compositions for treating periodontal disease
JP2650498B2 (ja) 1990-02-20 1997-09-03 日本油脂株式会社 飼料用ビタミンc被覆製剤、その製造方法および用途
US6517824B1 (en) 1990-05-14 2003-02-11 University Of Medicine & Denistry Of New Jersey Polymer compositions comprising antifibrotic agents, and methods of treatment, pharmaceutical compositions, and methods of preparation therefor
US5631329A (en) 1990-08-27 1997-05-20 Dendritech, Inc. Process for producing hyper-comb-branched polymers
US5410016A (en) 1990-10-15 1995-04-25 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5232984A (en) 1990-10-15 1993-08-03 The Board Of The Regents The University Of Texas Biocompatible microcapsules
US5529914A (en) 1990-10-15 1996-06-25 The Board Of Regents The Univeristy Of Texas System Gels for encapsulation of biological materials
US5380536A (en) 1990-10-15 1995-01-10 The Board Of Regents, The University Of Texas System Biocompatible microcapsules
US5626863A (en) 1992-02-28 1997-05-06 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5167624A (en) 1990-11-09 1992-12-01 Catheter Research, Inc. Embolus delivery system and method
US5143662A (en) 1991-02-12 1992-09-01 United States Surgical Corporation Process for preparing particles of bioabsorbable polymer
CA2083165C (en) 1991-03-29 1996-07-09 Ann Brannan Device and method for treating facial lines
US5330768A (en) * 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
IL102941A0 (en) 1991-08-27 1993-01-31 Thomas R Johnson Injection syringe
FR2681248B1 (fr) * 1991-09-13 1995-04-28 Oreal Composition pour un traitement cosmetique et/ou pharmaceutique de longue duree des couches superieures de l'epiderme par une application topique sur la peau.
US5318780A (en) 1991-10-30 1994-06-07 Mediventures Inc. Medical uses of in situ formed gels
JP2855307B2 (ja) 1992-02-05 1999-02-10 生化学工業株式会社 光反応性グリコサミノグリカン、架橋グリコサミノグリカン及びそれらの製造方法
US5573934A (en) 1992-04-20 1996-11-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
PT627911E (pt) 1992-02-28 2001-04-30 Univ Texas Hidrogeis biodegradaveis fotopolimerizaveis como materiais de contacto de tecidos e veiculos de libertacao controlada
US5296228A (en) 1992-03-13 1994-03-22 Allergan, Inc. Compositions for controlled delivery of pharmaceutical compounds
US5622725A (en) * 1992-03-20 1997-04-22 Alcide Corporation Wound disinfection and repair
US5266326A (en) 1992-06-30 1993-11-30 Pfizer Hospital Products Group, Inc. In situ modification of alginate
AU4198793A (en) 1992-07-24 1994-01-27 Takeda Chemical Industries Ltd. Microparticle preparation and production thereof
US5514379A (en) 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
ES2170074T3 (es) 1992-09-10 2002-08-01 Childrens Medical Center Matrices de polimero biodegradables para la liberacion prolongada de agentes anestesicos locales.
EP0690736B1 (en) 1993-03-23 1998-11-11 Focal, Inc. Apparatus and method for local application of polymeric material to tissue
US5709854A (en) 1993-04-30 1998-01-20 Massachusetts Institute Of Technology Tissue formation by injecting a cell-polymeric solution that gels in vivo
US5565215A (en) 1993-07-23 1996-10-15 Massachusettes Institute Of Technology Biodegradable injectable particles for imaging
WO1995005161A1 (en) 1993-08-13 1995-02-23 Vitaphore Corporation Hydrogel-based microsphere drug delivery systems
US5773025A (en) 1993-09-09 1998-06-30 Edward Mendell Co., Inc. Sustained release heterodisperse hydrogel systems--amorphous drugs
US5589194A (en) 1993-09-20 1996-12-31 Minnesota Mining And Manufacturing Company Method of encapsulation and microcapsules produced thereby
US5446090A (en) 1993-11-12 1995-08-29 Shearwater Polymers, Inc. Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules
US5650173A (en) 1993-11-19 1997-07-22 Alkermes Controlled Therapeutics Inc. Ii Preparation of biodegradable microparticles containing a biologically active agent
DE4341113B4 (de) * 1993-12-02 2006-04-13 IFAC Institut für angewandte Colloidtechnologie GmbH & Co. KG Stabile multiple X/O/Y-Emulsion
WO1995015748A1 (en) 1993-12-08 1995-06-15 Vitaphore Corporation Microsphere drug delivery system
US5385561A (en) 1994-01-18 1995-01-31 Bard International, Inc. Apparatus and method for injecting a viscous material into the tissue of a patient
CA2140053C (en) 1994-02-09 2000-04-04 Joel S. Rosenblatt Collagen-based injectable drug delivery system and its use
KR0141431B1 (ko) 1994-05-17 1998-07-01 김상웅 생분해성 하이드로겔 고분자
US5665063A (en) 1994-06-24 1997-09-09 Focal, Inc. Methods for application of intraluminal photopolymerized gels
US5583114A (en) 1994-07-27 1996-12-10 Minnesota Mining And Manufacturing Company Adhesive sealant composition
US5509899A (en) 1994-09-22 1996-04-23 Boston Scientific Corp. Medical device with lubricious coating
MY114536A (en) 1994-11-24 2002-11-30 Apic Yamada Corp A resin molding machine and a method of resin molding
US5588960A (en) 1994-12-01 1996-12-31 Vidamed, Inc. Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence
US5932462A (en) 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
US5849412A (en) 1995-02-17 1998-12-15 Medlogic Global Corporation Encapsulated materials
US5618850A (en) 1995-03-09 1997-04-08 Focal, Inc. Hydroxy-acid cosmetics
US6962979B1 (en) 1995-03-14 2005-11-08 Cohesion Technologies, Inc. Crosslinkable biomaterial compositions containing hydrophobic and hydrophilic crosslinking agents
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
JPH11510837A (ja) * 1995-07-28 1999-09-21 フォーカル,インコーポレイテッド 薬物送達のための制御された放出薬剤および組織処置薬剤としての使用のためのマルチブロック生分解性ヒドロゲル
FR2741628B1 (fr) * 1995-11-29 1998-02-06 Centre Nat Rech Scient Nouveaux hydrogels a base de copolymeres trisequences et leur application notamment a la liberation progressive de principes actifs
US5985177A (en) 1995-12-14 1999-11-16 Shiseido Co., Ltd. O/W/O type multiple emulsion and method of preparing the same
JP3340310B2 (ja) * 1996-03-28 2002-11-05 株式会社資生堂 複合エマルジョンおよびその製造方法
ES2420106T3 (es) 1995-12-18 2013-08-22 Angiodevice International Gmbh Composiciones de polímeros reticulados y métodos para su uso
US6833408B2 (en) 1995-12-18 2004-12-21 Cohesion Technologies, Inc. Methods for tissue repair using adhesive materials
US5752974A (en) 1995-12-18 1998-05-19 Collagen Corporation Injectable or implantable biomaterials for filling or blocking lumens and voids of the body
US5650450A (en) * 1996-01-25 1997-07-22 Foamex L.P. Hydrophilic urethane foam
AU712953B2 (en) * 1996-03-11 1999-11-18 Focal, Inc. Polymeric delivery of radionuclides and radiopharmaceuticals
WO1998012274A1 (en) 1996-09-23 1998-03-26 Chandrashekar Pathak Methods and devices for preparing protein concentrates
WO1998012243A1 (en) * 1996-09-23 1998-03-26 Focal, Inc. Polymerizable biodegradable polymers including carbonate or dioxanone linkages
US6214966B1 (en) 1996-09-26 2001-04-10 Shearwater Corporation Soluble, degradable poly(ethylene glycol) derivatives for controllable release of bound molecules into solution
US6515016B2 (en) * 1996-12-02 2003-02-04 Angiotech Pharmaceuticals, Inc. Composition and methods of paclitaxel for treating psoriasis
US6495579B1 (en) * 1996-12-02 2002-12-17 Angiotech Pharmaceuticals, Inc. Method for treating multiple sclerosis
JP4039542B2 (ja) * 1997-07-17 2008-01-30 株式会社資生堂 O/w/o型複合エマルジョン
CN1271277A (zh) 1997-07-18 2000-10-25 因菲米德有限公司 用于生物活性物质控释的生物可降解的大分子的单体
US6162241A (en) 1997-08-06 2000-12-19 Focal, Inc. Hemostatic tissue sealants
US6007833A (en) 1998-03-19 1999-12-28 Surmodics, Inc. Crosslinkable macromers bearing initiator groups
GB9817470D0 (en) * 1998-08-11 1998-10-07 Andaris Ltd Pharmaceutical formulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11298444B2 (en) 2005-04-01 2022-04-12 Trivascular, Inc. Non-degradable, low swelling, water soluble radiopaque hydrogel polymer

Also Published As

Publication number Publication date
US20040033264A1 (en) 2004-02-19
US6632457B1 (en) 2003-10-14
US7413752B2 (en) 2008-08-19
US9254267B2 (en) 2016-02-09
EP1104286A4 (en) 2009-04-15
CA2339482C (en) 2009-10-20
CA2339482A1 (en) 2000-02-24
AU5486399A (en) 2000-03-06
EP1104286A1 (en) 2001-06-06
US20080279944A1 (en) 2008-11-13
JP2003523926A (ja) 2003-08-12
WO2000009088A1 (en) 2000-02-24

Similar Documents

Publication Publication Date Title
JP4601169B2 (ja) 複合ヒドロゲル薬物送達システム
CN1201729C (zh) 用于药物输送的由聚合物和疏水化合物形成的基质
ES2200375T3 (es) Metodos para fabricar preparaciones de liberacion controlada basadas en polimero.
Shi et al. Current advances in sustained-release systems for parenteral drug delivery
US5780044A (en) Liquid delivery compositions
JP5792691B2 (ja) 塞栓剤からの薬物送達
ES2172574T5 (es) Preparación de micropartículas biodegradables que contienen un agente biológicamente activo
US20020009415A1 (en) Microspheres for use in the treatment of cancer
JP2014533740A (ja) 疎水性薬物送達材料、その製造方法および薬物送達組成物の送達方法
JP2000503663A (ja) 微粒子
CN101163464A (zh) 优选含有PEG和PLG混合物的控制释放GnRH的聚合物植入物
JP2002538195A (ja) 生物活性化合物の持続放出用の無針注射器を使用する微粒子製剤の送達
CN1470289A (zh) 一种高分子纳米药物载体和制剂的制备方法
US20040219175A1 (en) Thermogelling emulsions for sustained release of bioactive substances
CN113786393A (zh) 一种利伐沙班微球及其制备方法与应用
Snežana et al. Polymeric matrix systems for drug delivery
Ravivarapu et al. Biodegradable polymeric delivery systems
AU684931C (en) Liquid delivery compositions
Samad et al. 20 Microsphere
MXPA96004634A (en) Compositions for controlled supply, liqui

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20021211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20021219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20021211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100427

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees