JP2005106065A - 排出ガス浄化用触媒劣化検出装置 - Google Patents

排出ガス浄化用触媒劣化検出装置 Download PDF

Info

Publication number
JP2005106065A
JP2005106065A JP2004379792A JP2004379792A JP2005106065A JP 2005106065 A JP2005106065 A JP 2005106065A JP 2004379792 A JP2004379792 A JP 2004379792A JP 2004379792 A JP2004379792 A JP 2004379792A JP 2005106065 A JP2005106065 A JP 2005106065A
Authority
JP
Japan
Prior art keywords
catalyst
fuel ratio
air
temperature
gas component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004379792A
Other languages
English (en)
Other versions
JP2005106065A5 (ja
JP4069924B2 (ja
Inventor
Hisayo Yoshikawa
久代 吉川
Masaaki Nakayama
中山  昌昭
Yasuo Mukai
向井  弥寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004379792A priority Critical patent/JP4069924B2/ja
Publication of JP2005106065A publication Critical patent/JP2005106065A/ja
Publication of JP2005106065A5 publication Critical patent/JP2005106065A5/ja
Application granted granted Critical
Publication of JP4069924B2 publication Critical patent/JP4069924B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/47

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 触媒活性化前のエミッション増加を考慮した触媒劣化検出を行うことで、触媒劣化検出精度を向上させる。
【解決手段】 触媒温度TCATが150℃を越えた後に、所定のサンプリング周期(例えば64ms)で触媒下流側の酸素センサの出力電圧VOX2の変化幅を積算して、浄化ガス成分量を反映したデータΣVを求めると共に、触媒上流側の空燃比センサで検出した空燃比(A/F)の目標A/Fからの偏差と排出ガス流量(=吸気流量Q)とを乗算してその乗算値を積算することで、触媒流入ガス成分変動のデータΣΔA/F・Qを求める(ステップ100〜160)。そして、触媒温度TCATが所定温度(例えば550℃)に達した時点で、それまで積算したΣVを、ΣΔA/F・Qに応じて設定した劣化判定値と比較して、触媒劣化の有無を判定する(ステップ180〜210)。
【選択図】 図2

Description

本発明は、内燃機関の排気系に設置された排出ガス浄化用の触媒が劣化したときにその劣化を検出する排出ガス浄化用触媒劣化検出装置に関するものである。
車両の排出ガス浄化システムでは、触媒が劣化して排出ガス浄化能力が低下した状態で運転が続けられるのを防ぐため、触媒の劣化を検出する触媒劣化検出装置が開発されている(例えば特許文献1や特許文献2参照)。従来の触媒劣化検出装置は、いずれも触媒が活性化温度(一般には300〜400℃以上)に暖機された後の排出ガス浄化能力の低下から触媒の劣化を検出するようになっている。
特開平2−136538号公報 特開平3−253714号公報
ところで、エンジン始動後に触媒が活性化温度に暖機されるまでは、正常な触媒でも排出ガス浄化能力が低く、まして、劣化した触媒では、排出ガス浄化能力が更に低下して排出ガス中の有害成分(エミッション)が増加することになる。しかし、従来の触媒劣化検出方法では、いずれも触媒活性化後の排出ガス浄化能力の低下から触媒の劣化を検出するため、触媒活性化前のエミッション増加度合を考慮した触媒劣化検出を行うことは困難であり、触媒活性化前のエミッション増加により本来は劣化状態であると判定されるべき触媒が劣化無しと判定されるおそれがある。
エンジンを冷間始動すると、冷間始動後の時間の経過に伴って、触媒の活性化が排出ガス流入側(上流側)から進行し、最終的に触媒全体が活性化した状態となる。一般に、触媒全体の容量はある程度余裕を持たせてあるため、触媒全体が活性化した状態では、触媒が多少劣化していても、新品の触媒に近い浄化率が得られ、劣化触媒と新品触媒との間で浄化率の差が少なくなる。従って、触媒の活性化が進むほど、劣化触媒と新品触媒との判別(つまり触媒劣化の検出)が困難となる。よって、触媒活性化後の排出ガス浄化能力の低下から触媒の劣化を検出すると、触媒活性化前のエミッション増加により本来は劣化状態であると判定されるべき触媒が劣化無しと判定されるおそれがある。
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、触媒活性化前のエミッション増加を考慮した触媒劣化検出を行うことができて、触媒劣化検出精度を向上することができる排出ガス浄化用触媒劣化検出装置を提供することにある。
請求項1に係る発明では、排出ガス浄化用の触媒の上流側に空燃比センサ、下流側に酸素センサを設置したシステムにおいて、下流側酸素センサの出力に基づいて触媒の飽和(下流側酸素センサの出力がストイキから外れること)を飽和判定手段により判定し、上流側空燃比センサの出力波形と目標空燃比とで囲まれる部分の面積を第1の演算手段により算出して触媒流入ガス成分量を求めると共に、下流側酸素センサの出力変化量を第2の演算手段により積算して触媒流出ガス成分量を求める。そして、前記飽和判定手段により触媒飽和を判定した時に前記第2の演算手段による触媒流出ガス成分量を上流側空燃比センサの出力に基づいて飽和補正手段により補正し、この補正した触媒流出ガス成分量と前記第1の演算手段により求めた触媒流入ガス成分量とに基づいて触媒劣化検出手段により触媒の劣化を検出する。
ここで、図21に示すように、下流側酸素センサの出力電圧は、ストイキ付近では空気過剰率λ(空燃比)に対してリニアに変化するが、ストイキから外れた領域では、空気過剰率λが変化しても、下流側酸素センサの出力電圧はあまり変化せず、触媒流出ガス成分量を正確に検出できないため、ストイキから外れた領域では触媒飽和とみなす。触媒飽和の状態では、触媒内で浄化される割合が低くなり、触媒流出ガス成分量は触媒流入ガス成分量と相関関係がある。従って、上記請求項1のように、触媒飽和と判定された時に、触媒流出ガス成分量を上流側空燃比センサの出力に基づいて補正すれば、触媒飽和の状態になっても、触媒流出ガス成分量を精度良く判定することができ、触媒劣化検出精度を更に向上できる。
この場合、請求項2のように、前記第1の演算手段により前記面積を積算する際に目標空燃比よりリーン側/リッチ側のいずれか一方側の面積を第1のキャンセル手段によりキャンセルすると共に、前記第2の演算手段により前記下流側酸素センサの出力変化量を積算する際に該下流側酸素センサの出力変化方向が前記第1のキャンセル手段によりキャンセルされる面積と同じ側に向っている時にその方向への出力変化量を第2のキャンセル手段によりキャンセルするようにしても良い。このようにすれば、リーン側/リッチ側のいずれか一方側についてのみ触媒流入/流出ガス成分量を演算することができ、例えばリッチ側についてのみ触媒流入/流出ガス成分量を演算すれば、触媒のHC浄化率の劣化度合を判定することができる。
更に、請求項3のように、燃料カット中及び燃料カット復帰から所定期間が経過するまでは触媒劣化検出処理を禁止するようにしても良い。燃料カット中は燃料が供給されないため、排出ガス中の空燃比がリーンとなり、上流側空燃比センサにて空燃比を正しく測定できる範囲を越えてしまう。また、燃料カット復帰後、空燃比フィードバック制御が安定するのに必要な所定期間が経過するまで、すなわち上流側空燃比センサの出力値がしきい値をよぎるまでは、精度良く空燃比を検出できない。従って、上記請求項3のように、燃料カット中の場合、又は燃料カット復帰後、所定期間が経過するまでは、触媒劣化検出処理を禁止することで、触媒劣化検出精度を更に向上できる。ここで、燃料カット復帰後、触媒劣化検出処理を禁止する“所定期間”とは、燃料カット復帰後に空燃比フィードバックが安定するのに必要な期間であり、燃料カット復帰後の経過時間で設定しても良いし、或は、燃料カット復帰後に上流側空燃比センサの出力が最初にしきい値を横切るまでの期間としても良い。
《実施形態(1)》
以下、本発明の実施形態(1)を図1乃至図10に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側には、吸気温度Tamを検出する吸気温度センサ14と、吸気流量Qを検出するエアフローメータ10とが設けられている。このエアフローメータ10の下流側には、スロットルバルブ15とスロットル開度THを検出するスロットル開度センサ16とが設けられている。更に、スロットルバルブ15の下流側には、吸気管圧力PMを検出する吸気管圧力センサ17が設けられ、この吸気管圧力センサ17の下流側にサージタンク18が設けられている。このサージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド19が接続され、この吸気マニホールド19の各気筒の分岐管部にそれぞれ燃料を噴射するインジェクタ20が取り付けられている。
また、エンジン11には各気筒毎に点火プラグ21が取り付けられ、各点火プラグ21には、点火回路22で発生した高圧電流がディストリビュータ23を介して供給される。このディストリビュータ23には、720℃A(クランク軸2回転)毎に例えば24個のパルス信号を出力するクランク角センサ24が設けられ、このクランク角センサ24の出力パルス間隔によってエンジン回転数Neを検出するようになっている。また、エンジン11には、エンジン冷却水温Thwを検出する水温センサ38が取り付けられている。
一方、エンジン11の排気ポート(図示せず)には、排気マニホールド25を介して排気管26が接続され、この排気管26の途中に、排出ガス中の有害成分(CO,HC,NOx等)を低減させる三元触媒等の触媒27が設けられている。この触媒27の上流側には、排出ガスの空燃比A/Fに応じたリニアな空燃比信号を出力する上流側空燃比センサ28が設けられている。この上流側空燃比センサ28には、活性化を促進するためのヒータ(図示せず)が内蔵されている。また、触媒27の下流側には、排出ガスの空燃比A/Fが理論空燃比に対してリッチかリーンかによって出力電圧VOX2が反転する下流側酸素センサ29が設けられている。この下流側酸素センサ29には、該酸素センサ29の活性化を促進するためのヒータ39が内蔵されている。
上述した各種のセンサの出力は電子制御回路30内に入力ポート31を介して読み込まれる。電子制御回路30は、マイクロコンピュータを主体として構成され、CPU32、ROM33、RAM34、バックアップRAM35を備え、各種センサ出力から得られたエンジン運転状態パラメータを用いて燃料噴射量TAUや点火時期Ig等を演算し、その演算結果に応じた信号を出力ポート36からインジェクタ20や点火回路22に出力してエンジン11の運転を制御する。
また、この電子制御回路30は、後述する図2に示す触媒劣化検出ルーチン及び図3に示す触媒温度推定ルーチンをROM33(記憶媒体)に記憶し、これらのルーチンを実行することにより、触媒27内で浄化されるガス成分量(浄化ガス成分量)を演算する演算手段及び触媒27の劣化を検出する触媒劣化検出手段として機能する。また、触媒27の劣化を検出したときには、出力ポート36から警告ランプ37に点灯信号を出力して警告ランプ37を点灯し、運転者に警告する。
以下、図2に示す触媒劣化検出ルーチンの処理の流れを説明する。本ルーチンは、特許請求の範囲でいう触媒温度推定手段として機能し、所定時間毎(例えば64msec毎)に割込み処理にて実行される。本ルーチンの処理が開始されると、まずステップ100で、図3に示す触媒温度推定ルーチンを実行し、次のようにして触媒温度TCATを推定する。
図3に示す触媒温度推定ルーチンでは、まずステップ101で、エンジン11が始動されたか否かを判定し、始動前であれば、触媒温度TCAT=吸気温度Tam(=外気温度)と設定し、本ルーチンを終了する。
一方、エンジン11が始動されていれば、ステップ103に進み、燃料カット中か否かを判定し、燃料カット中でなければ、ステップ104に進み、排気温度TEXを次のようにして推定する。予め、図4に示すように、エンジン回転数Neと吸気流量Q(=排出ガス流量)とから排気温度TEXを推定するマップをROM33に記憶しておき、ステップ104の処理を行う毎に、その時点のエンジン回転数Neと吸気流量Qとに応じて図4に示すマップから排気温度TEXを推定する。この推定法は、エンジン負荷(Ne,Q)が増加するほど、排気温度TEXが高くなるという特性を利用したものである。
これに対し、燃料カット中は、燃料の燃焼熱が無くなり、排気温度TEXが急激に低下するため、排気温度TEXをエンジン回転数Neと吸気流量Qとから推定できなくなる。従って、ステップ103で燃料カット中と判定された場合にはステップ105に進み、ROM33に記憶されている図5に示すマップを用いて燃料カット開始時の触媒温度TCAT(推定値)から排気温度TEXを推定する。この推定法は、触媒温度TCATが高くなるほど、その触媒27の放熱で排気温度TEXが高くなるという特性を利用したものである。
以上のようにしてステップ104又は105で排気温度TEXを推定した後、ステップ106に進み、前回の処理で推定した触媒温度TCAT(n−1)を排気温度TEXと比較し、触媒温度が下降傾向か、上昇傾向かを判別する。そして、触媒温度TCATが下降傾向の場合(TCAT(n−1)>排気温度TEX)には、ステップ107に進み、次式により今回の触媒温度TCAT(n)を算出する。
TCAT(n)=TCAT(n−1)−K1×|TCAT(n−1)−TEX|
ここで、K1は、ROM33に記憶されている図6のデータテーブルを用いて吸気流量Qに応じて設定される係数である。尚、エンジン回転数Neの変動値が大きいとき(非定常時)と小さいとき(定常時)とでK1を異なる値に設定するようにしても良い。
一方、触媒温度TCATが上昇傾向の場合(TCAT(n−1)≦排気温度TEX)には、ステップ108に進み、次式により今回の触媒温度TCAT(n)を算出する。
TCAT(n)=TCAT(n−1)+K2×|TCAT(n−1)−TEX|
ここで、K2は、ROM33に記憶されている図6のデータテーブルを用いて吸気流量Qに応じて設定される係数である。尚、燃料カット中は、K1とK2を一定値に
固定するようにしても良い。
以上のようにしてステップ107又は108で触媒温度TCATを推定した後、図2のステップ110に戻り、触媒温度TCATが劣化検出開始温度、例えば150℃を越えたか否かを判定し、越えていなければ、以降の触媒劣化検出処理を行うことなく、本ルーチンを終了する。これは、触媒温度TCATが劣化検出開始温度に達しない状態では、下流側酸素センサ29の温度が低く、そのセンサ出力VOX2が安定しないので、この期間中に触媒劣化検出処理を禁止することで、劣化検出精度低下を防ぐものである。
そして、触媒温度TCATが劣化検出開始温度(例えば150℃)を越えた時点で、ステップ120に進み、タイムカウンタ1をインクリメントし、次のステップ130で、浄化ガス成分量を反映するデータΣV1(下流側酸素センサ29の出力電圧変動の軌跡)を次式により算出する(図7参照)。
ΣV1(n)=ΣV1(n−1)+|VOX2(i)−VOX2(i−1)|
ここで、VOX2(i)は今回処理時における下流側酸素センサ29の出力電圧であり、VOX2(i−1)は前回処理時における下流側酸素センサ29の出力電圧である。つまり、上式は、所定のサンプリング周期(例えば64msec)で下流側酸素センサ29の出力電圧VOX2の変化幅を積算することで、下流側酸素センサ29の出力電圧変動の軌跡を求め、触媒27内での浄化ガス成分量を評価するものである。
更に、ステップ130では、触媒流入ガス成分変動を数値化したデータΣΔA/F・Q1を次式により算出する(図8参照)。
ΣΔA/F・Q1(n)=ΣΔA/F・Q1(n−1)+Q×|目標A/F−A/F|
ここで、Qは、エアフローメータ10により検出した吸気流量Qであり、排出ガス流量を代用するデータとして用いている。尚、排出ガス流量は吸気流量で代用する他、実際に測定しても良いし、他のデータから推定するようにしても良い。勿論、吸気流量から推定するようにしても良い。A/Fは、上流側空燃比センサ28の出力電圧(つまり排出ガスの空燃比)であり、目標A/Fは、空燃比制御の目標となる空燃比(例えば論空燃比)である。上式は、所定のサンプリング周期(例えば64msec)で上流側空燃比センサ28で検出したA/Fの目標A/Fからの偏差|目標A/F−A/F|と排出ガス流量(=吸気流量Q)とを乗算してその乗算値を積算することで、触媒流入ガス成分変動のデータΣΔA/F・Q1を求めるものである。
この後、ステップ140で、タイムカウンタ1のカウント値が10secを越えたか否かを判定し、10secを越えていなければ、上記ステップ110〜130の処理を繰り返す。これにより、10sec間のΣV1とΣΔA/F・Q1が算出される。そして、タイムカウンタ1のカウント値が10secを越えた時点で、ステップ150に進み、10sec間の触媒流入ガス成分変動のデータΣΔA/F・Q1が所定範囲内か否かを判定し、所定範囲内であれば、ステップ160に進み、前回のΣV1の積算値ΣVに今回のΣV1を積算してΣVを更新すると共に、前回のΣΔA/F・Q1の積算値ΣΔA/F・Qに今回のΣΔA/F・Q1を積算してΣΔA/F・Qを更新する。この後、ステップ170に進み、タイムカウンタ1、ΣV1及びΣΔA/F・Q1を共にクリアする。
一方、上記ステップ150で触媒流入ガス成分変動のデータΣΔA/F・Q1が所定範囲内に入っていないと判定された場合には、ステップ160の積算処理を行うことなく、ステップ170に進み、タイムカウンタ1、ΣV1及びΣΔA/F・Q1を共にクリアする(無効にする)。これは、触媒流入ガス成分変動が過大又は過小の場合には、浄化ガス成分量の演算精度が低下するため、触媒流入ガス成分変動のデータΣΔA/F・Q1が所定範囲内に入らないときに、ΣV1及びΣΔA/F・Q1を共にクリアして、積算処理を行わないことで、触媒流入ガス成分変動による劣化検出精度低下を防止するものである。
そして、次のステップ180では、ステップ100で推定した触媒温度TCATが所定温度である550℃を越えたか否かを判定し、越えていなければ、触媒27の劣化を判定することなく、本ルーチンを終了する。そして、触媒温度TCATが所定温度である550℃を越えた時点で、ステップ190に進み、それまでに積算した浄化ガス成分量を反映するデータΣV(下流側酸素センサ29の出力電圧変動の軌跡)を所定の劣化判定値と比較して、触媒27の劣化の有無を判定する。
ここで、触媒劣化検出方法を図9に基づいて説明する。図9は、浄化ガス成分量を反映するデータΣVと触媒流入ガス成分変動のデータΣΔA/F・Qとの関係を実測したものである。図9において、○印は新品触媒、□印は劣化触媒、△印はダミー触媒(表面に触媒層が形成されていないセラミック担体のみのもの)についての測定値である。新品触媒(○印)では、ΣΔA/F・Qの大小に拘らず、ΣVが小さいが、劣化触媒(□印)では、ΣΔA/F・Qが増加するに従って、ΣVが増加する傾向がある。触媒劣化が極端に進み、触媒作用が無くなると、ダミー触媒(△印)と同じ状態になる。従って、ΣΔA/F・Qが同じであれば、ΣVが大きいほど、触媒劣化が進んでいることを意味する。
この関係を利用し、ROM33に記憶されている図10に示すデータテーブルを用いて劣化判定値をΣΔA/F・Qに応じて設定し、この劣化判定値よりΣVが大きいか否かで触媒27の劣化の有無を判定する。ΣVが劣化判定値より大きい場合には、劣化と判定
し(ステップ200)、ΣVが劣化判定値以下の場合には、正常と判定する(ステップ210)。
尚、本実施形態において、ΣVを演算する処理が演算手段に相当し、ΣVとΣΔA/F・Qとに基づいて触媒劣化を検出する処理が触媒劣化検出手段に相当する。
この場合、触媒27の劣化を検出するに際して、浄化ガス成分量を反映するデータΣVに加え、触媒27が所定温度(550℃)に達するまでの触媒流入ガス成分変動のデータΣΔA/F・Qも考慮されるので、触媒流入ガス成分変動の影響を排除した高精度な触媒劣化検出を行うことができる。
以上、本実施形態によれば、図12に示すように、触媒暖機前の浄化率(浄化ガス成分量)に基づいて触媒劣化の検出を行う。つまり、触媒暖機前は、新品触媒と劣化触媒との浄化率の差が大きいため、容易且つ正確に触媒劣化を検出することができる。
尚、本実施形態では、劣化判定値をΣΔA/F・Qに応じて変化させるようにしたが、ΣVをΣΔA/F・Qに応じて補正するようにしても良い。
また、図9に示すΣVとΣΔA/F・Qとの関係から明らかなように、触媒劣化が進むほど、ΣVの傾き(ΣV÷ΣΔA/F・Q)が大きくなる傾向があるため、ΣVの傾き(ΣV÷ΣΔA/F・Q)の大小で触媒劣化の有無を判定するようにしても良い。
また、本実施形態では、エンジン負荷(Ne,Q)から排気温度を推定し、その排気温度に基づいて触媒温度を推定するようにしたので、触媒温度を検出する温度センサが不要となり、部品コストを削減できる利点がある。しかしながら、本発明は、排気温度又は触媒温度を検出する温度センサを排気系に設置する構成としても良く、この場合でも、本発明の所期の目的は十分に達成できる。
また、本実施形態では、触媒温度が150℃〜550℃の浄化ガス成分量に基づいて触媒劣化を検出しているが、浄化ガス成分量の演算期間はこれに限らず、図12に示すように新品触媒と劣化触媒との浄化率の差が大きい期間であれば良い。
尚、図2の触媒劣化検出ルーチンは、エンジン11を冷間始動したとき(つまり触媒27が冷えているとき)に実行され、暖機状態のエンジン11を再始動する場合には実行されない。つまり、暖機状態のエンジン11を再始動する場合には、始動直後から既に触媒温度TCATが活性化温度若しくはそれに近い温度になっているため、この状態では図12に示すように、劣化触媒と新品触媒との間で排出ガス浄化能力の差が少なく、劣化触媒と新品触媒との判別(つまり触媒劣化の検出)が困難となるためである。この際、冷間始動か否かは、水温センサ38により検出したエンジン冷却水温Thwと吸気温度センサ14により検出した吸気温度Tamによって判定される。
同様の理由から、図2の触媒劣化検出ルーチンは、冷間始動の場合でも触媒温度TCATが高温(例えば550℃)になった以後は実行されない。上述したように、触媒温度TCATが高温になれば、劣化触媒と新品触媒との間で排出ガス浄化能力の差が少なく、劣化触媒と新品触媒との判別が困難となり、触媒劣化検出精度が低下するためである。
《実施形態(2)》
上記実施形態(1)では、触媒27の下流側に下流側酸素センサ29を設置したが、実施形態(2)では、下流側酸素センサ29に代えて、下流側空燃比センサを設置し、触媒の上流側と下流側の双方に空燃比センサを設置している。
このシステムでは、所定のサンプリング周期(例えば64msec周期)で上流側空燃比センサで検出した上流側A/Fの目標A/Fからの偏差|目標A/F−上流側A/F|と排出ガス流量(=吸気流量Q)とを乗算してその乗算値を積算して、触媒流入ガス成分変動のデータΣΔA/Fin・Qを求める(この機能が特許請求の範囲の請求項11でいう第1の積算手段となる)。
ΣΔA/Fin・Q(n)=ΣΔA/Fin・Q(n−1)+Q×|目標A/F−上流側A/F|
更に、前記所定のサンプリング周期で下流側空燃比センサで検出した下流側A/Fの目標A/Fからの偏差|目標A/F−下流側A/F|と排出ガス流量(=吸気流量Q)とを乗算してその乗算値を積算して、触媒流出ガス成分変動のデータΣΔA/Fout・Qを求める(この機能が特許請求の範囲の請求項11でいう第2の積算手段となる)。
ΣΔA/Fout・Q(n)=ΣΔA/Fout・Q(n−1)+Q×|目標A/F−下流側A/F|
そして、触媒が所定温度に達するまでの触媒流入ガス成分変動のデータΣΔA/Fin・Qから触媒流出ガス成分変動のデータΣΔA/Fout・Qを差し引くことにより、図11に斜線で示される浄化ガス成分量を算出する。
浄化ガス成分量=ΣΔA/Fin・Q−ΣΔA/Fout・Q
この後、浄化ガス成分量を所定の劣化判定値と比較し、浄化ガス成分量が劣化判定値以下であれば、触媒劣化と判定し、浄化ガス成分量が劣化判定値より大きければ、正常と判定する。これにより、触媒流入ガス成分変動と触媒流出ガス成分変動とを考慮した高精度な触媒劣化検出が可能となる。
尚、この場合も、ΣΔA/Fin・Q又はΣΔA/Fout・Qが所定範囲内に入らないときには、触媒劣化検出のために演算されたデータを無効にするか、又は触媒劣化検出処理を禁止することが好ましい。
《実施形態(3)》
この実施形態(3)では、図13に示す触媒温度推定ルーチンを実行する(この触媒温度推定ルーチンは特許請求の範囲でいう触媒温度推定手段としての役割を果たす)。この実施形態(3)のシステム構成は、前述した実施形態(1)と同じく、触媒27の上流側に上流側空燃比センサ28を設置し、触媒27の下流側に下流側酸素センサ29を設置した図1の構成となっている。また、前述した実施形態(1)では、エンジン始動時の触媒温度を吸気温度と推定したが、この実施形態(3)では、エンジン停止後の経過時間を計測するタイマ(停止時間測定手段)を備え、エンジン停止後の経過時間とエンジン停止時の触媒温度と吸気温度(又は冷却水温)とに基づいてエンジン始動時の触媒温度TCATintを設定することで、触媒温度の推定精度を向上させている。
以下、触媒温度を推定する図13の触媒温度推定ルーチンの処理内容を説明する。エンジン停止後に経過時間をタイマで計測し、エンジン始動時に、ステップ301からステップ302に進み、タイマの計測時間Ttimer、つまりエンジン停止から始動までの経過時間Ttimerが所定時間ktimerを越えているか否かを判定する。ここで、所定時間ktimerは、エンジン停止後に触媒温度が外気温度(又は冷却水温)まで温度低下するのに要する時間に設定されている。従って、エンジン停止後の経過時間Ttimerが所定時間ktimerを越えていれば、ステップ303に進み、エンジン始動時の触媒温度TCATintを吸気温度Tam(又は外気温度)に設定する。或は、エンジン始動時の触媒温度TCATintを冷却水温THWに設定しても良い。エンジン11が完全に冷機状態(温度が下がりきった状態)になると、吸気温度Tam(又は外気温度)と冷却水温THWとがほぼ同じ温度になるためである。
一方、上記ステップ302で、エンジン停止後の経過時間Ttimerが所定時間ktimerを経過していないと判定された場合には、ステップ304に進み、エンジン停止時の触媒温度TCATendとエンジン停止後の経過時間Ttimerとをパラメータとする下記の表1の二次元マップから、その時のTCATendとTtimerに応じてエンジン始動時の触媒温度TCATintを検索する。
Figure 2005106065
ここで、図14は外気温度が25℃の場合のエンジン停止後の触媒温度と冷却水温の挙動を測定したグラフであり、触媒温度の挙動については、エンジン停止時の触媒温度が600℃と380℃の2つの例が測定されている。この測定結果から明らかなように、エンジン停止後の触媒温度の変化は、エンジン停止時の触媒温度とエンジン停止後の経過時間とに依存し、エンジン停止時の触媒温度が異なっても、ある程度の時間が経過すると、ほぼ一定の触媒温度に収束する。このような特性を考慮し、予め、エンジン停止時の触媒温度TCATendとエンジン停止後の経過時間Ttimerと触媒温度TCATintとの関係を試験結果又はシミュレーションによりマップ化し、これをROM33に記憶して、上述したステップ304で利用する。
尚、エンジン停止後の触媒温度の変化は、TCATend、Ttimerの他に外気温度にも依存する。ちなみに、図15は外気温度が15℃の場合のエンジン停止後の触媒温度と冷却水温の挙動を測定したグラフであるが、図14に示す外気温度が25℃の場合の測定結果と触媒温度の変化具合が異なる。これは、エンジン停止時の触媒温度が同じであっても、外気温度が低くなるほど、触媒27の放熱が促進され、エンジン停止後の触媒温度が速く低下するためである。従って、上記マップから検索した触媒温度TCATintを外気温度によって補正するようにしても良い。この補正は、例えば外気温度(又は吸気温度)による補正係数kamを用いて次式によって行えば良い。
TCATint=TCATint×kam
ここで、外気温度(又は吸気温度)による補正係数kamは、例えば下記の表2のテーブルから検索する。
Figure 2005106065
以上のようにして、図13のステップ303又は304で、エンジン始動時の触媒温度TCATintを設定した後、ステップ305〜307の処理により、燃料カット中か否かを考慮して排気温度TEXを推定する。この排気温度TEXの推定方法は、前述した実施形態(1)で説明した図3のステップ103〜105の処理と同じである。
ステップ306又は307で排気温度TEXを推定した後、ステップ308に進み、前回の処理で推定した触媒温度TCAT(n−1)を排気温度TEXと比較して、触媒温度が下降傾向か、上昇傾向かを判別する。そして、触媒温度TCATが下降傾向の場合(TCAT(n−1)>排気温度TEX)には、ステップ309に進み、今回の触媒温度TCAT(n)を、エンジン始動時の触媒温度TCATintを考慮して次式により算出する。
TCAT(n)=TCAT(n−1)−K1×|TCAT(n−1)−TEX|+TCATint
ここで、K1は、ROM33に記憶されている図6のデータテーブルを用いて吸気流量Qに応じて設定される係数である。尚、エンジン回転数Neの変動値が大きいとき(非定常時)と小さいとき(定常時)とでK1を異なる値に設定するようにしても良い。
一方、触媒温度TCATが上昇傾向の場合(TCAT(n−1)≦排気温度TEX)には、ステップ108に進み、今回の触媒温度TCAT(n)を、エンジン始動時の触媒温度TCATintを考慮して次式により算出する。
TCAT(n)=TCAT(n−1)+K2×|TCAT(n−1)−TEX|+TCATint
ここで、K2は、ROM33に記憶されている図6のデータテーブルを用いて吸気流量Qに応じて設定される係数である。尚、燃料カット中は、K1とK2を一定値に固定するようにしても良い。
以上のようにしてステップ309又は310で触媒温度TCATを推定した後、図2のステップ110に戻り、触媒劣化検出処理を実行する。
この実施形態(3)では、ステップ302〜303の処理により、エンジン停止後の経過時間とエンジン停止時の触媒温度と吸気温度(又は冷却水温)とに基づいてエンジン始動時の触媒温度TCATintを推定し、このTCATintを基準にしてエンジン始動後の触媒温度TCATを推定するようにしたので、触媒温度の推定精度を向上でき、ひいては触媒劣化検出精度を向上できる。
《実施形態(4)》
この実施形態(4)では、図16及び図17に示す触媒劣化検出ルーチンを実行する。この実施形態(4)のシステム構成は、前述した実施形態(1)と同じく、触媒27の上流側に上流側空燃比センサ28を設置し、触媒27の下流側に下流側酸素センサ29を設置した図1の構成となっている。
図16及び図17に示す触媒劣化検出ルーチンは、所定時間毎(例えば64msec毎)に割込み処理にて実行される。本ルーチンの処理が開始されると、まずステップ401で、触媒劣化判定演算開始条件が成立しているか否かを判定する。ここで、触媒劣化判定演算開始条件が成立しているか否かは、図18又は図19に示す触媒劣化判定演算開始条件判定ルーチンによって判定される。
図18に示す触媒劣化判定演算開始条件判定ルーチンは、触媒温度センサ又はエンジン停止後の経過時間を計測するタイマが無いシステムに適用される。このシステムでは、エンジン始動時の触媒温度を推定することができない。そこで、本ルーチンでは、まずステップ501で、エンジン始動時に触媒温度が十分に下がりきっているか否かを判定するために、エンジン始動時の冷却水温THWと吸気温度Tamとの差(THW−Tam)が所定値ktempより小さいか否かを判定する。エンジン始動時に触媒温度が十分に下がりきっていれば、冷却水温THWも十分に下がりきっているため、エンジン始動時の冷却水温THWと吸気温度Tamとがほぼ同じ温度となり、THW−Tam<ktempとなる。尚、吸気温度Tamの代わりに外気温度を用いても良い。
THW−Tam<ktempの場合には、ステップ502に進み、エンジン始動時の冷却水温THWが所定温度khotより低いか否かでエンジン11が冷機状態であるか否かを判定し、「Yes」であれば、ステップ503に進み、前述した図3の触媒温度推定ルーチンによって推定した触媒温度TCATが所定温度(触媒27の一部が活性化し始める温度、例えば150℃)より高いか否かを判定し、「Yes」であれば、ステップ504に進み、上流側空燃比センサ28が完全に活性化した後(空燃比フィードバックを開始した後)、空燃比フィードバックが安定するのに必要な所定時間kactiveが経過したか否かを判定し、「Yes」であれば、ステップ505に進み、触媒劣化判定演算開始条件が成立していると判定する。
これに対し、ステップ501〜504の判定がいずれか1つでも「No」であれば、ステップ506に進み、触媒劣化判定演算開始条件が不成立と判定し、触媒劣化判定演算を禁止する。
ここで、触媒劣化判定演算開始条件として、ステップ504で、上流側空燃比センサ28が完全に活性化した後(空燃比フィードバックを開始した後)、所定時間kactiveが経過したか否かを判定する理由は、次の通りである。エンジン始動直後は、空燃比フィードバックが開始されるまでの間、始動時の燃料増量により空燃比がリッチとなる。この間は、まだ触媒温度が低く、触媒27内にリッチ成分が吸着されていく。これにより、触媒27内に多くのリッチ成分が吸着された状態で、空燃比フィードバックが開始されるため、空燃比フィードバック開始直後は、空燃比フィードバックが不安定である。従って、空燃比フィードバックが安定してから、触媒劣化判定演算を開始するために、ステップ504で、所定時間kactiveが経過したか否かを判定するものである。
この場合、空燃比フィードバックが開始されてから所定時間kactiveが経過したか否かで空燃比フィードバックが安定しているか否かを判断するが、これに代えて、空燃比フィードバック開始後、上流側空燃比センサ28の出力が目標空燃比を横切ったか否かで、空燃比フィードバックが安定したか否かを判断し、空燃比フィードバックが開始されてから上流側空燃比センサ28の出力が最初に目標空燃比を横切るまで、触媒劣化判定演算を禁止するようにしても良い。このようにしても、空燃比フィードバックが安定してから、触媒劣化判定演算を開始することができる。
一方、図19に示す触媒劣化判定演算開始条件判定ルーチンは、触媒温度センサ又はエンジン停止後の経過時間を計測するタイマが装備されているシステムに適用される。このシステムでは、触媒温度センサの出力値又は前述した図13の触媒温度推定ルーチンによってエンジン始動時の触媒温度を推定することが可能である。そこで、本ルーチンでは、まずステップ511で、エンジン始動時の触媒温度TCATが所定温度khotcより低いか否かで冷機状態であるか否かを判定し、「Yes」であれば、ステップ512に進み、触媒温度TCATが所定温度(触媒27の一部が活性化し始める温度、例えば150℃)より高いか否かを判定し、「Yes」であれば、ステップ513に進み、上流側空燃比センサ28が完全に活性化した後(空燃比フィードバックを開始した後)、空燃比フィードバックが安定するのに必要な所定時間kactiveが経過したか否かを判定し、「Yes」であれば、ステップ514に進み、触媒劣化判定演算開始条件が成立していると判定する。
これに対し、ステップ511〜513の判定がいずれか1つでも「No」であれば、ステップ515に進み、触媒劣化判定演算開始条件が不成立と判定し、触媒劣化判定演算を禁止する。
以上のようにして、図18又は図19の触媒劣化判定演算開始条件判定ルーチンによって触媒劣化判定演算開始条件が不成立と判定されれば、図16の触媒劣化検出ルーチンは実行されず、触媒劣化検出は行われない。そして、触媒劣化判定演算開始条件が成立した時に、図16のステップ402に進み、タイムカウンタ1をインクリメントし、タイムカウンタ1が所定時間kdly(例えば10sec)となるまで、ステップ403〜409の処理を繰り返す。ここで、所定時間kdlyは、触媒流入ガスを上流側空燃比センサ28で検出し、そのガスが触媒27内の反応を経て下流側酸素センサ29で検出されるまでの遅れ時間による影響を吸収できる時間に設定されている。
ステップ403では、図21に示す下流側酸素センサ29の静特性を考慮して触媒飽和判定を行う(この処理が特許請求の範囲でいう飽和判定手段としての役割を果たす)。下流側酸素センサ29の出力電圧VOX2は、ストイキ付近では空気過剰率λ(空燃比)に対してリニアに変化するが、ストイキから外れた領域では、空気過剰率λが変化しても、下流側酸素センサ29の出力電圧VOX2はあまり変化せず、触媒流出ガス成分量を正確に検出できないため、ストイキから外れた領域、すなわち、VOX2>krich又はVOX2<kleanの領域では触媒飽和とみなす。触媒飽和の状態では、触媒27内で浄化される割合が低くなり、触媒流出ガス成分量は触媒流入ガス成分量と相関関係がある。
そこで、触媒飽和の場合には、ステップ404に進み、下流側酸素センサ29の出力変化量から検出できない触媒流出ガス成分量(以下「触媒飽和補正量」という)VSATUを上流側空燃比センサ28の出力値を利用して次式により算出する。
VSATU=|ΔA/F|×Q×k
ここで、|ΔA/F|は、上流側空燃比センサ28の出力値(実空燃比)と目標空燃比との偏差の絶対値、Qはシリンダ流入空気量、kは上流側空燃比センサ28の出力値と下流側酸素センサ29の出力値との変換係数である。
一方、上記ステップ403で、触媒飽和でない場合、つまりklean≦VOX2≦krich(ストイキ領域)の場合には、ステップ405に進み、触媒飽和補正量VSATUを0とする。これは、下流側酸素センサ29の出力電圧VOX2の変化量から触媒流出ガス成分量を算出できるためである。
このようにして設定される触媒飽和補正量VSATUの一例が図22に示されている。この図22からも明らかなように、klean≦VOX2≦krichの場合には、触媒飽和補正量VSATUが0に維持される。一方、VOX2<klean又はVOX2>krichの場合には、触媒飽和補正量VSATUを|ΔA/F|×Q×kの計算から求める。従って、触媒飽和補正量VSATU
は|ΔA/F|×Qに比例し、|ΔA/F|やシリンダ流入空気量Qが大きくなるほど、触媒飽和補正量VSATUが大きくなる。
以上のようにして、図16のステップ404又は405で触媒飽和補正量VSATUを設定した後、ステップ406に進み、次式により触媒流入ガス成分量GASinを演算する(この処理が特許請求の範囲でいう第1の演算手段としての役割を果たす)。
GASin(n)=GASin(n−1)+|ΔA/F|×Q
ここで、GASin(n)は今回の触媒流入ガス成分量、GASin(n−1)は前回計算された触媒流入ガス成分量である。
この後、ステップ407で、触媒飽和補正量VSATUを用いて触媒流出ガス成分量GASoutを次式により演算する。
GASout(n)=GASout(n−1)+|dV|×Q+VSATU
ここで、GASout(n)は今回の触媒流出ガス成分量、GASout(n−1)は前回計算された触媒流出ガス成分量、|dV|は下流側酸素センサ29の出力電圧変化量の絶対値{|dV|=VOX2(n)−VOX2(n−1)}である。
このステップ407の処理は、特許請求の範囲でいう第2の演算手段としての役割を果たし、更に、ステップ404,407の処理は、特許請求の範囲でいう飽和補正手段としての役割を果たす。
そして、次のステップ408で、第1のキャンセル判定基準として、所定時間kdly(10sec)内の上流側空燃比センサ28の出力変化量A/Flocsを次式により演算する。
A/Flocs(n)=A/Flocs(n−1)+|dA/F|
ここで、|dA/F|は今回の上流側空燃比センサ28の出力値と前回の上流側空燃比センサ28の出力値との差の絶対値である。
この後、ステップ409で、第2のキャンセル判定基準として、INamountを次式により演算する。
INamount(n)=INamount(n−1)+|ΔA/F|×Q
ここで、INamount(n)は、前記ステップ406で算出する触媒流入ガス成分量GASinと同じである。
以上説明したステップ402〜409の処理を所定時間kdly(10sec)繰り返し、所定時間kdly経過後に、図17のステップ410からステップ411に進み、ステップ408で算出した所定時間kdly内の上流側空燃比センサ28の出力変化量A/Flocsが所定範囲内(klmin<A/Flocs<klmax)であるか否かを判定し、所定範囲内でなければ、後述する触媒劣化指標値に反映せず、ステップ417に飛び越す。
所定時間kdly内の上流側空燃比センサ28の出力変化量A/Flocsが所定範囲以下(A/Flocs≦klmin)の場合には、上流側空燃比センサ28の出力値はストイキである。上流側空燃比センサ28は、ストイキ近傍の分解能が低く、触媒流入ガス成分量の演算精度が悪くなる。従って、A/Flocs≦klminの場合には、触媒劣化指標値に反映しない。
また、A/Flocsが所定範囲以上(A/Flocs≧klmax)の場合には、上流側空燃比センサ28の出力値がストイキから極端に外れるような領域で制御されることを意味する。上流側空燃比センサ28の出力値がストイキから極端に外れると、空気過剰率λ(空燃比)に対して上流側空燃比センサ28の出力はリニアな関係を維持できなくなる。従って、A/Flocs≧klmaxの場合にも、触媒流入ガス成分量の演算精度が悪くなるため、触媒劣化指標値に反映しない。
一方、A/Flocsが所定範囲内(klmin<A/Flocs<klmax)である場合には、上流側空燃比センサ28の分解能が良く、且つ上流側空燃比センサ28の出力のリニア特性が良い領域であるので、触媒流入ガス成分量の演算精度を十分に確保できる。従って、A/Flocsが所定範囲内の場合には、ステップ412に進み、前述したステップ409で算出したINamountが所定範囲内(kamin<INamount<kamax)であるか否かを判定し、所定範囲内でなければ、触媒劣化指標値に反映せず、ステップ417に飛び越す。ここで、INamountは、所定時間kdly内に触媒反応に寄与する触媒流入ガス成分量に相当し、INamountが所定範囲以下(INamount≦kamin)の場合には、上述したA/Flocs≦klminの場合と同じ理由で、触媒劣化指標値に反映しない。
また、INamountが所定範囲以上(INamount≧kamax)の場合には、触媒27に流入するガスの流速が速くなり過ぎるため、触媒27に吸着若しくは触媒反応に寄与する割合が低くなる。このため、上流側空燃比センサ28の出力値(実空燃比)と目標空燃比との偏差ΔA/Fが同じ値でも、シリンダ流入空気量Qが小さい時と、大きい時とでは触媒下流の空燃比が異なってしまう。本来、同じ劣化度合の触媒であれば、触媒劣化指標値の演算結果が同じ値にならなければならないが、INamount≧kamaxの場合には、上述した理由により触媒劣化指標値がずれてしまう。従って、INamount≧kamaxの場合には、触媒劣化指標値に反映しない。
一方、INamountが所定範囲内(kamin<INamount<kamax)である場合には、ステップ413に進み、燃料カット(F/C)中でないか、又は燃料カット(F/C)復帰後、所定時間kfcretが経過しているか否かを判定する。燃料カット中は、燃料が供給されないため、排出ガス中の空燃比がリーンとなり、上流側空燃比センサ28にて空燃比を正しく測定できる範囲を越えてしまう。また、燃料カット復帰後、空燃比フィードバック制御が安定するのに必要な所定時間kfcretが経過するまで、すなわち上流側空燃比センサ28の出力値が目標空燃比をよぎるまでは、精度良く空燃比を検出できない。従って、燃料カット中の場合、又は燃料カット復帰後、所定時間kfcret経過していない場合には、触媒劣化指標値に反映しない。
この場合、燃料カット復帰後、所定時間kfcretが経過したか否かで空燃比フィードバックが安定しているか否かを判断するが、これに代えて、燃料カット復帰後、上流側空燃比センサ28の出力が目標空燃比を横切ったか否かで、空燃比フィードバックが安定したか否かを判断し、燃料カット復帰後に上流側空燃比センサ28の出力が最初に目標空燃比を横切るまで、触媒劣化判定演算を禁止するようにしても良い。このようにしても、燃料カット復帰後に空燃比フィードバックが安定してから、触媒劣化判定演算を開始することができる。
以上説明したステップ411〜413の処理により、(1)klmin<A/Flocs<klmax、(2)kamin<INamount<kamax、(3)燃料カット中でないか、又は燃料カット復帰後の所定時間kfcret経過後、という全ての条件を満たした時、すなわち、正しく空燃比を検出できる時にのみ、所定時間kdly内の触媒流入・流出ガス成分量(積算値)を触媒劣化判定に反映させるために、ステップ414に進む。このステップ414では、前述したステップ406,407で算出した所定時間kdly毎の触媒流入ガス成分量GASin、触媒流出ガス成分量GASoutを次式により積算する。
TGASin(n)=TGASin(n−1)+GASin(n)
TGASout(n)=TGASout(n−1)+GASout(n)
TGASin(n):今回までの触媒流入ガス成分量GASinの積算値
TGASin(n−1):前回までの触媒流入ガス成分量GASinの積算値
TGASout(n):今回までの触媒流出ガス成分量GASoutの積算値
TGASout(n−1):前回までの触媒流出ガス成分量GASoutの積算値
この後、ステップ415に進み、触媒劣化判定に反映させる回数をカウントする触媒劣化判定カウンタをインクリメントする。次のステップ416で、所定時間kdlyを計測するタイムカウンタ1、触媒流入ガス成分量GASin及び触媒流出ガス成分量GASoutを共に0にして、ステップ417に進む。上述したステップ411〜413のいずれか1つでも「No」と判定されれば、ステップ414〜416の処理を飛び越してステップ417に進む。
このステップ417では、触媒劣化判定演算終了条件が成立しているか否かを判定する。ここで、触媒劣化判定演算終了条件が成立しているか否かは、図20に示す触媒劣化判定演算終了条件判定ルーチンによって次の手順で判定される。まず、ステップ521で、触媒温度TCATが所定温度(例えば550℃)を越えたか否かを判定し、越えていなければ、ステップ526に進み、触媒劣化判定演算終了条件が不成立と判定する。
触媒温度TCATが所定温度(例えば550℃)を越えた時点で、ステップ521からステップ522に進み、触媒劣化判定に反映する回数をカウントする触媒劣化判定カウンタが所定値kcatcountを越えたか否かを判定し、越えていなければ、ステップ525に進み、触媒劣化判定カウンタをクリアしてステップ526に進み、触媒劣化判定演算終了条件が不成立と判定する。
触媒劣化判定カウンタが所定値kcatcountを越えた時点で、ステップ522からステップ523に進み、触媒劣化判定カウンタをクリアして、ステップ524に進み、触媒劣化判定演算終了条件が成立していると判定する。
以上のようにして、図20の触媒劣化判定演算終了条件判定ルーチンによって触媒劣化判定演算終了条件の成立/不成立を判定し、不成立の場合には、図17のステップ418以降の触媒劣化検出処理を行わずに、触媒劣化検出ルーチンを終了する。
そして、触媒劣化判定演算終了条件が成立していれば、ステップ418に進み、前述したステップ414で算出した触媒流入ガス成分量積算値TGASinと触媒流出ガス成分量積算値TGASoutとを用いて、触媒劣化指標値JUDGEを次式により演算する。
JUDGE=TGASout/TGASin
この触媒劣化指標値JUDGEは、触媒温度が150℃から550℃までの間の触媒反応に寄与する触媒流出ガス成分量積算値TGASoutと触媒流入ガス成分量積算値TGASinとの比であり、触媒27で浄化されなかった割合(非浄化率)に相当する。従って、この触媒劣化指標値JUDGEが大きくなるほど、触媒劣化が進んでいることを意味する。
そこで、次のステップ419では、触媒劣化指標値JUDGEを所定の劣化判定値kjudgeと比較し、JUDGE>kjudgeであれば、触媒劣化と判定し(ステップ420)、JUDGE≦kjudgeであれば、正常(触媒劣化無し)と判定する(ステップ421)。これらステップ418〜420の処理が特許請求の範囲でいう触媒劣化検出手段としての役割を果たす。
《実施形態(5)》
図23及び図25に示す実施形態(5)は、上記実施形態(4)の一部の処理を変更したものである。上記実施形態(4)では、触媒流出ガス成分量積算値TGASoutと触媒流入ガス成分量積算値TGASinは、触媒反応に寄与するリッチ成分(HC,CO,H2等の還元性成分)とリーン成分(NOx,O2等の酸化性成分)の双方を合計するようにしたが、リッチ成分とリーン成分のいずれか一方のみを積算して触媒流出ガス成分量積算値TGASoutと触媒流入ガス成分量積算値TGASinを求め、触媒劣化判定を行うようにしても良い。
この実施形態(5)では、触媒27のHC浄化率の劣化度合を判定するためにリッチ成分のみを積算し、触媒流出リッチガス成分量積算値TGASoutと触媒流入リッチガス成分量積算値TGASinを求め、触媒劣化判定を行う。
この触媒劣化判定は、図23に示す触媒劣化検出ルーチンにより行われる。前記実施形態(4)の図16及び図17に示す触媒劣化検出ルーチンの処理と異なる部分は、図23に一点鎖線で囲むステップ403a〜403iの処理のみであり、他の処理は前記実施形態(4)と同じである。
図23に示す触媒劣化検出ルーチンでは、触媒劣化判定演算開始条件が成立した時にタイムカウンタ1をインクリメントし(ステップ401,402)、続くステップ403aで、VOX2>krichであるか否かによってリッチ側の触媒飽和判定を行う。前記実施形態(4)では、リッチ側/リーン側の双方の触媒飽和判定を行ったが、この実施形態(5)では、リッチ成分のみを積算するため、リッチ側のみの触媒飽和判定を行う。もし、触媒飽和でなければ(VOX2≦krich)、ステップ403eに進み、触媒飽和補正量VSATUを0として、ステップ304fに進む。
これに対し、触媒飽和の場合(VOX2>krich)には、ステップ403bに進み、目標空燃比と上流側空燃比センサ28の出力値(実空燃比)との偏差ΔA/F(=目標空燃比−上流側空燃比センサ28の出力値)が負の値であるか否か、つまり目標空燃比よりリッチであるか否かを判定し、ΔA/F≧0(リーン)の場合には、ステップ403cに進み、ΔA/F=0とし、触媒流入ガス成分量GASinの演算にはΔA/Fを反映させない。これにより、ΔA/F<0(リッチ)の場合のみ、ΔA/Fを触媒流入ガス成分量GASinの演算に反映させる。このステップ403b,403cの処理が特許請求の範囲でいう第1のキャンセル手段としての役割を果たす。
そして、次のステップ403dでは、下流側酸素センサ29の出力変化量から検出できない触媒流出ガス成分量(触媒飽和補正量)VSATUを次式により算出する。
VSATU=|ΔA/F|×Q×k
ここで、Qはシリンダ流入空気量、kは上流側空燃比センサ28の出力値と下流側酸素センサ29の出力値との変換係数である。ΔA/F≧0(リーン)の場合には、ステップ403cでΔA/F=0とセットされるため、この触媒飽和補正量VSATUは0となる。従って、ΔA/F<0(リッチ)の場合のみ、触媒飽和補正量VSATU≠0となる。
以上のようにして設定される触媒飽和補正量VSATUの一例が図24に示されている。この図24からも明らかなように、触媒飽和補正量VSATU≠0となる条件は、VOX2>krich且つΔA/F<0の場合のみであり、この条件を満たさない場合には、触媒飽和補正量VSATU=0となる。
上記ステップ403d又は403eで触媒飽和補正量VSATUを設定した後、ステップ403fに進み、再度、ΔA/F<0(リッチ)であるか否かを判定し、ΔA/F≧0(リーン)の場合には、ステップ403gに進み、ΔA/F=0として、ステップ403hに進むが、ΔA/F<0(リッチ)の場合には、そのままステップ403hに進む。このステップ403hでは、下流側酸素センサ29の出力電圧変化量dVが正の値か否か、つまり触媒流出ガスがリッチ方向に変化しているか否かを判定し、dV≦0(リーン方向に変化)の場合には、ステップ403iに進み、dV=0にセットして、触媒流出ガス成分量GASoutの演算にはdVを反映させない。dV>0(リッチ方向に変化)の場合のみ、dVを触媒流出ガス成分量GASoutの演算に反映させる。このステップ403h,403iの処理が特許請求の範囲でいう第2のキャンセル手段としての役割を果たす。
以上の処理を行った後、ステップ406に進む。これ以降の処理は、前記実施形態(4)と同じである。従って、図23の処理を終了すると、図17の処理を実行する。尚、この実施形態(5)においても、前記実施形態(4)で用いられた図18(又は図19)の触媒劣化判定演算開始条件判定ルーチンと図20の触媒劣化判定演算終了条件判定ルーチンを実行する。また、エンジン停止後の経過時間を計測するタイマが有るシステムに適用する場合には、図13の触媒温度推定ルーチンによってエンジン始動時の触媒温度を推定する。
この実施形態(5)では、触媒反応に寄与するガス成分のうち、リッチ成分のみを積算し、触媒流出リッチガス成分量積算値TGASoutと触媒流入リッチガス成分量積算値TGASinを求め、リッチガス成分の非浄化率(触媒劣化指標値JUDGE=TGASout/TGASin)から触媒劣化判定を行う。これにより、触媒27のHC浄化率の劣化度合を判定することができる。
尚、この実施形態(5)では、リッチ成分のみを積算したが、これとは反対に、リーン成分のみを積算し、リーンガス成分の非浄化率から触媒劣化判定を行うようにしても良い。
《実施形態(6)》
触媒27が劣化するほど、下流側酸素センサ29の出力値VOX2がストイキから外れる頻度が多くなる。ストイキから外れると、下流側酸素センサ29の出力変化量によって触媒流出ガス成分量を検出できないので、上記実施形態(4),(5)では、図16のステップ403、図23のステップ403aで、触媒飽和判定により下流側酸素センサ29の出力値VOX2がストイキから外れたか否かを判定し、ストイキから外れた時に、上流側空燃比センサ28の出力値と目標空燃比との偏差に応じて触媒飽和補正量VSATUを算出し、この触媒飽和補正量VSATUによって触媒流出ガス成分量GASoutを補正することで、触媒流出ガス成分量GASoutの演算精度を向上させるようにしている。このようにすれば、HCの浄化率が新品触媒と劣化触媒とで差が小さくなる触媒完全活性後においても触媒劣化を検出することができる。
そこで、この実施形態(6)では、触媒劣化判定演算開始/終了条件を図25と図26に示す条件判定ルーチンによって判定することで、触媒27が完全活性した後に触媒劣化判定を行う。以下、この処理について説明する。
図25に示す触媒劣化判定演算開始条件判定ルーチンでは、まずステップ601で、冷却水温THWがエンジン完全暖機完了時の水温(例えば80℃)を越えたか否かで、触媒27が完全活性したか否かを判定し、「Yes」であれば、ステップ602に進み、上流側空燃比センサ28が完全に活性化した後(空燃比フィードバックを開始した後)、所定時間kactiveが経過したか否かを判定し、「Yes」であれば、ステップ603に進み、触媒劣化判定演算開始条件が成立していると判定する。ここで、完全活性後の所定時間kactiveの経過を必要とする理由は、再始動時において、水温が高い状態(上流側空燃比センサ28が完全に活性化した状態)でも、空燃比フィードバックが安定していない状態で触媒劣化判定演算を開始しないようにするためである。
この場合、上流側空燃比センサ28の完全活性後(空燃比フィードバック開始後)、所定時間kactiveが経過したか否かで空燃比フィードバックが安定しているか否かを判断するが、これに代えて、空燃比フィードバック開始後、上流側空燃比センサ28の出力が目標空燃比を横切ったか否かで、空燃比フィードバックが安定したか否かを判断し、空燃比フィードバックが開始されてから上流側空燃比センサ28の出力が最初に目標空燃比を横切るまで、触媒劣化判定演算を禁止するようにしても良い。
以上説明したステップ601〜603の処理により、触媒劣化判定演算開始条件が成立した時には、図16又は図23の触媒劣化検出ルーチンのステップ402以降の処理が実行される。
これに対し、ステップ601と602のいずれかで「No」と判定されれば、ステップ604に進み、触媒劣化判定演算開始条件が不成立と判定し、触媒劣化判定演算を禁止する。
また、図26に示す触媒劣化判定演算終了条件判定ルーチンでは、まずステップ611で、触媒劣化判定に反映する回数をカウントする触媒劣化判定カウンタが所定値kcatcount2に達したか否かを判定し、達してなければ、ステップ614に進み、触媒劣化判定演算終了条件が不成立と判定する。
そして、触媒劣化判定カウンタが所定値kcatcount2に達した時点で、ステップ611からステップ612に進み、触媒劣化判定カウンタをクリアして、ステップ613に進み、触媒劣化判定演算終了条件が成立していると判定する。触媒劣化判定演算終了条件が成立した時には、図17のステップ418の以降処理を実行し、触媒劣化指標値JUDGE(=TGASout/TGASin)を算出し、この触媒劣化指標値JUDGEを所定の劣化判定値kjudgeと比較し、JUDGE>kjudgeであれば、触媒劣化と判定し、JUDGE≦kjudgeであれば、正常(触媒劣化無し)と判定する。尚、劣化判定値kjudgeは、触媒活性途中で劣化判定する実施形態(4),(5)の場合よりも小さな値とする。これにより、HCの浄化率が新品触媒と劣化触媒とで差が小さくなる触媒完全活性後においても触媒劣化を検出することができる。
本発明の実施形態(1)におけるエンジン制御システム全体の概略構成図 触媒劣化検出ルーチンの処理の流れを示すフローチャート 触媒温度推定ルーチンの処理の流れを示すフローチャート エンジン回転数Neと吸気流量Qとから排気温度TEXを推定するマップを概念的に示す図 燃料カット開始時の触媒温度TCATと排気温度TEXとの関係を規定するデータテーブルを示す図 吸気流量Qと係数K1,K2との関係を規定するデータテーブルを示す図 浄化ガス成分量を反映するデータΣV(下流側酸素センサの出力電圧変動の軌跡)の算出方法を説明する図 触媒流入ガス成分変動を数値化したデータΣΔA/FQの算出方法を説明する図 浄化ガス成分量を反映するデータΣVと触媒流入ガス成分変動のデータΣΔA/F・Qとの関係を実測した図 触媒流入ガス成分変動のデータΣΔA/F・Qと劣化判定値との関係を規定するデータテーブルを示す図 本発明の実施形態(2)における触媒劣化検出方法を説明する図 新品触媒と劣化触媒について冷間始動後のH C浄化率の経時的変化の一例を示す図 本発明の実施形態(3)における触媒温度推定ルーチンの処理の流れを示すフローチャート 外気温度25℃の場合のエンジン停止後の触媒温度と冷却水温の挙動の一例を示すタイムチャート 外気温度15℃の場合のエンジン停止後の触媒温度と冷却水温の挙動の一例を示すタイムチャート 本発明の実施形態(4)における触媒劣化検出ルーチンの前半部の処理の流れを示すフローチャート 図16の触媒劣化検出ルーチンの後半部の処理の流れを示すフローチャート 触媒温度センサ又はエンジン停止後の経過時間を計測するタイマが無いシステムで用いられる触媒劣化判定演算開始条件判定ルーチンの処理の流れを示すフローチャート 触媒温度センサ又はエンジン停止後の経過時間を計測するタイマが有るシステムで用いられる触媒劣化判定演算開始条件判定ルーチンの処理の流れを示すフローチャート 触媒劣化判定演算終了条件判定ルーチンの処理の流れを示すフローチャート 下流側酸素センサの静特性を示す図 本発明の実施形態(4)における上流側空燃比センサの出力値、触媒飽和補正量VSATU及び下流側酸素センサの出力値との関係を説明するタイムチャート 本発明の実施形態(5)における触媒劣化検出ルーチンの前半部の処理の流れを示すフローチャート 本発明の実施形態(5)における上流側空燃比センサの出力値、触媒飽和補正量VSATU及び下流側酸素センサの出力値との関係を説明するタイムチャート 本発明の実施形態(6)における触媒劣化判定演算開始条件判定ルーチンの処理の流れを示すフローチャート 触媒劣化判定演算終了条件判定ルーチンの処理の流れを示すフローチャート
符号の説明
10…エアフローメータ、11…エンジン(内燃機関)、14…吸気温度センサ、
17…吸気管圧力センサ、24…クランク角センサ、26…排気管、27…触媒、
28…上流側空燃比センサ、29…下流側酸素センサ、30…電子制御回路(演算手段,触媒劣化検出手段,飽和判定手段,第1の演算手段,第2の演算手段,飽和補正手段,第1のキャンセル手段,第2のキャンセル手段,第1の積算手段,第2の積算手段)、
37…警告ランプ、38…水温センサ、39…下流側酸素センサのヒータ。

Claims (3)

  1. 排出ガス浄化用の触媒の上流側に空燃比センサ、下流側に酸素センサを設置したシステムにおいて、
    前記下流側酸素センサの出力に基づいて前記触媒の飽和を判定する飽和判定手段と、
    前記上流側空燃比センサの出力波形と目標空燃比とで囲まれる部分の面積を算出して触媒流入ガス成分量を求める第1の演算手段と、
    前記下流側酸素センサの出力変化量を積算して触媒流出ガス成分量を求める第2の演算手段と、
    前記飽和判定手段により前記触媒の飽和を判定した時に前記第2の演算手段による触媒流出ガス成分量を前記上流側空燃比センサの出力に基づいて補正する飽和補正手段と、
    前記飽和補正手段により補正した触媒流出ガス成分量と前記第1の演算手段により求めた触媒流入ガス成分量とに基づいて前記触媒の劣化を検出する触媒劣化検出手段とを備えていることを特徴とする排出ガス浄化用触媒劣化検出装置。
  2. 前記第1の演算手段により前記面積を積算する際に目標空燃比よりリーン側/リッチ側のいずれか一方側の面積をキャンセルする第1のキャンセル手段と、
    前記第2の演算手段により前記下流側酸素センサの出力変化量を積算する際に該下流側酸素センサの出力変化方向が前記第1のキャンセル手段によりキャンセルされる面積と同じ側に向かっている時にその方向への出力変化量をキャンセルする第2のキャンセル手段とを備えていることを特徴とする請求項1に記載の排出ガス浄化用触媒劣化検出装置。
  3. 燃料カット中及び燃料カット復帰から所定期間が経過するまでは触媒劣化検出処理を禁止する手段を有することを特徴とする請求項1又は2に記載の排出ガス浄化用触媒劣化検出装置。
JP2004379792A 1996-03-19 2004-12-28 排出ガス浄化用触媒劣化検出装置 Expired - Fee Related JP4069924B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004379792A JP4069924B2 (ja) 1996-03-19 2004-12-28 排出ガス浄化用触媒劣化検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6221796 1996-03-19
JP2004379792A JP4069924B2 (ja) 1996-03-19 2004-12-28 排出ガス浄化用触媒劣化検出装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02469797A Division JP3674017B2 (ja) 1996-03-19 1997-02-07 排出ガス浄化用触媒劣化検出装置

Publications (3)

Publication Number Publication Date
JP2005106065A true JP2005106065A (ja) 2005-04-21
JP2005106065A5 JP2005106065A5 (ja) 2008-01-24
JP4069924B2 JP4069924B2 (ja) 2008-04-02

Family

ID=34553842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379792A Expired - Fee Related JP4069924B2 (ja) 1996-03-19 2004-12-28 排出ガス浄化用触媒劣化検出装置

Country Status (1)

Country Link
JP (1) JP4069924B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085891A (ja) * 2005-09-22 2007-04-05 National Traffic Safety & Environment Laboratory 自動車の実走行における排気流量計測による触媒劣化試験装置及び触媒劣化試験方法
JP2007162681A (ja) * 2005-11-18 2007-06-28 Toyota Motor Corp 排気浄化システム
JP2008175134A (ja) * 2007-01-18 2008-07-31 Toyota Motor Corp 内燃機関の触媒劣化診断装置
JP2009299575A (ja) * 2008-06-12 2009-12-24 Honda Motor Co Ltd 触媒の劣化判定装置
WO2016108518A1 (ko) * 2014-12-31 2016-07-07 두산엔진주식회사 선택적 촉매 환원 시스템 및 이의 성능 진단 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085891A (ja) * 2005-09-22 2007-04-05 National Traffic Safety & Environment Laboratory 自動車の実走行における排気流量計測による触媒劣化試験装置及び触媒劣化試験方法
JP2007162681A (ja) * 2005-11-18 2007-06-28 Toyota Motor Corp 排気浄化システム
JP2008175134A (ja) * 2007-01-18 2008-07-31 Toyota Motor Corp 内燃機関の触媒劣化診断装置
JP2009299575A (ja) * 2008-06-12 2009-12-24 Honda Motor Co Ltd 触媒の劣化判定装置
WO2016108518A1 (ko) * 2014-12-31 2016-07-07 두산엔진주식회사 선택적 촉매 환원 시스템 및 이의 성능 진단 방법

Also Published As

Publication number Publication date
JP4069924B2 (ja) 2008-04-02

Similar Documents

Publication Publication Date Title
JP3674017B2 (ja) 排出ガス浄化用触媒劣化検出装置
US7096861B1 (en) Control system for internal combustion engine
JP3997599B2 (ja) 内燃機関の空燃比制御装置
JPH07127441A (ja) 車両の触媒温度検出装置
JP3759567B2 (ja) 触媒劣化状態検出装置
JP2005002854A (ja) エンジンの排気ガス浄化装置
JPH1182114A (ja) 内燃機関の空燃比制御装置
JP4103379B2 (ja) 内燃機関の制御装置
JP2008019790A (ja) 内燃機関用排ガス浄化装置
JP2000034946A (ja) 内燃機関の排ガス浄化装置
JP4069924B2 (ja) 排出ガス浄化用触媒劣化検出装置
JP3528698B2 (ja) 燃料中イオウ濃度推定装置
JP4101133B2 (ja) 内燃機関の空燃比制御装置の自己診断装置
JP4366976B2 (ja) 排気ガスセンサの異常検出装置
US10072593B2 (en) Control device of internal combustion engine
JP4055256B2 (ja) 内燃機関の排ガス浄化装置
US10190517B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2020045814A (ja) 内燃機関の燃料噴射制御装置
JP4736797B2 (ja) 内燃機関の診断装置及び診断方法
JPH09228824A (ja) 触媒劣化検出装置
JP4277776B2 (ja) 内燃機関の診断装置及び診断方法
JP4135372B2 (ja) 内燃機関の制御装置
JP2004285949A (ja) 排気ガスセンサの異常検出装置
JP7204426B2 (ja) 内燃機関の燃料噴射制御装置
JPH1136848A (ja) 内燃機関の触媒劣化判定装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees