JP2005102485A - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP2005102485A
JP2005102485A JP2004241305A JP2004241305A JP2005102485A JP 2005102485 A JP2005102485 A JP 2005102485A JP 2004241305 A JP2004241305 A JP 2004241305A JP 2004241305 A JP2004241305 A JP 2004241305A JP 2005102485 A JP2005102485 A JP 2005102485A
Authority
JP
Japan
Prior art keywords
power supply
switching power
circuit
supply device
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004241305A
Other languages
English (en)
Other versions
JP4558407B2 (ja
Inventor
Yoshihiro Takeshima
由浩 竹島
Koji Yoshida
幸司 吉田
Satoshi Ikeda
敏 池田
Mitsuhiro Matsuo
光洋 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004241305A priority Critical patent/JP4558407B2/ja
Publication of JP2005102485A publication Critical patent/JP2005102485A/ja
Application granted granted Critical
Publication of JP4558407B2 publication Critical patent/JP4558407B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Dc-Dc Converters (AREA)
  • Electronic Switches (AREA)

Abstract

【課題】 低電圧大電流の直流を負荷の消費電力に関わらず一定の電圧で供給し得る高効率かつ小型のスイッチング電源装置を提供する。
【解決手段】 本発明のスイッチング電源装置100は、直流を断続してパルス電圧を生成するスイッチング回路と、一次巻線と二次巻線とがコアで磁気的に結合されてなるトランス9と、前記一次巻線と前記二次巻線とを構成する配線を備える多層配線基板2と、交流を整流する整流回路と、リプルを抑制する平滑回路と、前記平滑回路の出力電圧を制御する制御回路とを有するスイッチング電源装置であって、前記多層配線基板が、少なくとも前記スイッチング回路と前記整流回路とを備えかつ主配線基板1上に配設され、かつ前記主配線基板に前記制御回路が配設されている。
【選択図】 図1

Description

本発明は、電子機器の内部に設置されるスイッチング電源装置に関する。
従来から、パーソナルコンピュータ等の電子機器に搭載されている電源装置には、スイッチング電源装置が用いられている。このスイッチング電源装置は直流安定化電源の一種であり、商用電源又は蓄電池等の電源から得た直流をトランジスタ等の半導体デバイスの高速スイッチング作用によって可聴周波数以上(数百kHz程度)のパルス電圧に変換し、そのパルス電圧のパルス幅及びパルス間隔を制御することによって、一定の電圧の直流を出力するように構成されている。このように構成されたスイッチング電源装置は、負荷の消費電力の変動に関わらず出力電圧が常に一定であると共に、比較的小型でかつ軽量であり、更に高効率を特徴としているため、特に中央演算処理装置(以下、CPU)を搭載する様々な情報機器や通信機器において、従来から好適に用いられている。
図19は従来のスイッチング電源装置の一例の構成を示した模式図である。尚、図19(a)は従来のスイッチング電源装置の側面図であり、図19(b)は従来のスイッチング電源装置の上面図である。図19に示すように、従来のスイッチング電源装置1000では、所定の電子回路を構成するように構成された複数の配線を備えるプリント基板Pの中央部に、トランスTが配設されている。又、前記プリント基板Pの所定の位置には、スイッチング制御回路U1と、スイッチング素子Q1及びQ2と、ダイオードD1及びD2と、コンデンサC1とが、それぞれ配設されている。そして、これらのトランスT、スイッチング制御回路U1、スイッチング素子Q1及びQ2、ダイオードD1及びD2、コンデンサC1がプリント基板Pに設けられた前記配線と電気的に接続するように配設されることによって、スイッチング電源装置1000が構成されている。このように構成されたスイッチング電源装置1000では、スイッチング素子Q1及びQ2の高速スイッチング作用によって生成されたパルス電圧が、トランスTの一次巻線に印加される。その際、トランスTの二次巻線には、一次巻線に印加されたパルス電圧の電圧の変化に応じた交流が誘起する。そして、その誘起した交流がダイオードD1及びD2の整流作用によって整流され、更にコンデンサC1によってリプルが抑制されることによって得られた直流が、スイッチング電源装置1000の出力端子から出力される。この際、スイッチング制御回路U1は、出力電圧の変動に応じてスイッチング素子Q1及びQ2のON時間及びOFF時間を制御することによって、出力電圧を一定にすべく動作する。従って、このように動作するスイッチング電源装置1000を用いることによって、変動する負荷に対して常に一定の電圧の直流を供給することが可能となる。ここで、図19に例示した従来のスイッチング電源装置1000では、トランスT、スイッチング制御回路U1、スイッチング素子Q1及びQ2、ダイオードD1及びD2、コンデンサC1等の、スイッチング電源装置1000を構成するための全ての電子部品等が、一枚のプリント基板P上に全て配設される構成が採用されている(例えば、特許文献1参照)。
ところで、近年では、パーソナルコンピュータ等の情報機器や携帯電話等の通信機器等の電子機器に搭載されているCPUへの電源供給条件は、低電圧大電流化の傾向にある。このため、上記の情報機器や通信機器等に搭載されるスイッチング電源装置に対しても、特に大電流の直流出力が得られる仕様が強く求められている。このような要求に対応するためには、スイッチング電源装置に配設されるトランスの一次巻線に流れる電流を大電流化する必要がある。そして、その大電流の高周波スイッチング電流や、トランスの二次巻線に誘起する大電流の交流を効率良く伝搬するためには、プリント基板の配線を幅広く形成する必要がある。より具体的には、プリント基板に形成される、特にスイッチング素子、トランス、整流素子及び平滑素子等と電気的に接続する配線を、従来以上に幅広くかつ短配線で形成する必要がある。その理由は、配線の寄生インダクタンスや表皮効果等の影響を最小限とし、スイッチング電源装置内における電力損失を最小限にするためである。
一方、スイッチング電源装置からCPUへの電源供給が大電流化する場合には、スイッチング電源装置とCPUとを電気的に接続する配線における電圧降下等の影響を考慮する必要が生じる。そして、スイッチング電源装置とCPUとを電気的に接続する配線における電圧降下等の影響を最小限に抑えるためには、スイッチング電源装置とCPUとが近接するように配設する必要がある。より具体的には、スイッチング電源装置とCPUとを電気的に接続する配線の配線長を極力短くする必要がある。そして、このような要求に対応するためには、スイッチング電源装置を可能な限り小型化する必要がある。
特許第3196187号公報
しかしながら、従来のスイッチング電源装置1000では、スイッチング電源装置1000を構成するためのトランスT、スイッチング素子Q1及びQ2、整流素子D1及びD2、コンデンサC1及びスイッチング制御回路U1等が、一枚のプリント基板P上に二次元状に配設される構成が採られている。そのため、上記の如く大電流の高周波スイッチング電流等を効率良く伝搬させるために必要十分な線幅の配線をプリント基板Pに形成する場合には、特にスイッチング素子Q1及びQ2、トランスT、ダイオードD1及びD2、及びコンデンサC1等が配設される領域における電子部品等の二次元的な実装密度が低下するので、その実装密度の低下に応じてプリント基板Pを大型化する必要がある。又、従来のスイッチング電源装置1000では大きさの異なる電子部品等が混在するように配設されているため、プリント基板Pの上部には使用しない空間領域が発生する。つまり、従来のスイッチング電源装置1000の構成では、低電圧大電流の直流を出力し得る高効率のスイッチング電源装置を小型化することが非常に困難であるという問題が発生する。
本発明は、上記のような課題を解決するためになされたものであり、低電圧大電流の直流を負荷の消費電力に関わらず一定の電圧で供給し得る高効率かつ小型のスイッチング電源装置を提供することを目的とする。
そして、これらの目的を達成するために、本発明に係るスイッチング電源装置は、直流を断続してパルス電圧を生成するスイッチング回路と、一次巻線と二次巻線とがコアで磁気的に結合されてなるトランスと、前記一次巻線と前記二次巻線とを構成する配線を備える多層配線基板と、交流を整流する整流回路と、リプルを抑制する平滑回路と、前記平滑回路の出力電圧を制御する制御回路とを有し、前記パルス電圧が前記一次巻線の第一接続部に印加されて前記二次巻線の第二接続部に誘起する交流を前記整流回路で整流しかつ前記平滑回路で平滑して得る直流を出力するスイッチング電源装置であって、前記多層配線基板が、少なくとも前記スイッチング回路と前記整流回路とを備えかつ主配線基板上に配設され、かつ前記主配線基板に前記制御回路が配設されている。ここで、本明細書では、直流又は交流とは直流又は交流の電圧又は電流をいう。
このような構成とすることにより、トランスの一次巻線に流れる大電流の高周波スイッチング電流及び二次巻線に誘起する大電流の交流等が流れる配線を、制御回路等を構成するための他の配線との相互関係を考慮することなく、任意に設計することができるようになる。つまり、スイッチング回路、トランス、整流回路及び平滑回路等を構成するための配線を必要に応じて幅広くかつ短配線で形成することが可能になるため、配線の導体抵抗、表皮効果及び寄生インダクタンス等の悪影響を最小限に抑えることが可能になる。又、スイッチング電源装置を構成する能動素子及び受動素子等がスイッチング電源装置の内部において三次元的に配設されるようになるため、使用しない空間領域を飛躍的に減少させることが可能になる。それらの結果、低電圧大電流の直流を負荷の消費電力に関わらず一定の電圧で供給し得る高効率かつ小型のスイッチング電源装置を容易に構成することが可能になるという効果が得られる。
前記コアは中足部を備え、前記中足部の短軸方向において該中足部の両側に前記トランスの前記第一接続部と前記第二接続部とが配置されていても良い。
このような構成とすることにより、多層配線基板上に配設される能動素子及び受動素子等の実装密度を低下させることなく、トランスの第一接続部と第二接続部との電気的な絶縁距離を確保することが可能になる。その結果、電気的な信頼性及び安全性に優れた小型のスイッチング電源装置を容易に構成することが可能になるという効果が得られる。
前記第一接続部側に前記スイッチング回路が、前記第二接続部側に前記整流回路が、それぞれ配設されており、前記第一接続部と前記スイッチング回路とが、及び、前記第二接続部と前記整流回路とが、それぞれ電気的に直結する部分を有し配設されていても良い。
このような構成とすることにより、スイッチング回路、整流回路及び平滑回路等とトランスの第一接続部又は第二接続部とを接続するための配線を極力短く形成することが可能になるため、それらの配線に起因する導体抵抗、表皮効果及び寄生インダクタンス等による悪影響をより一層効果的に抑制することが可能になる。その結果、電気的な信頼性及び安全性がより一層優れた小型のスイッチング電源装置を容易に構成することが可能になるという効果が得られる。又、スイッチング回路、整流回路及び平滑回路等とトランスの第一接続部又は第二接続部とを接続するための配線を部分的に省略することが可能になるため、プリント基板の配線に起因する導体抵抗、表皮効果及び寄生インダクタンス等による悪影響を更に効果的に抑制することが可能になる。その結果、電気的な信頼性及び安全性が更に優れた小型のスイッチング電源装置を容易に構成することが可能になるという効果が得られる。
前記多層配線基板が前記主配線基板の第一主面に配設され、前記制御回路が前記主配線基板の第二主面に配設されていても良い。
このような構成とすることにより、回路構成の複雑な制御回路を構成する場合や、大きさの異なる複数の能動素子及び受動素子等を多数使用して制御回路を構成する場合であっても、それらの素子等の実装密度を下げることなく、小領域において制御回路を構成することが可能になるという効果が得られる。
前記主配線基板の第二主面には、前記制御回路のみが配設されていても良い。
このような構成とすることにより、回路構成の複雑な制御回路を構成する場合や、大きさの異なる複数の能動素子及び受動素子等を多数使用して制御回路を構成する場合であっても、それらの素子等の実装密度を下げることなく、小領域において制御回路をより容易に構成することが可能になる。又、制御回路がスイッチング素子等の高周波ノイズ源から完全に遮蔽されることになるので、制御回路の動作の信頼性は高まることになる。その結果、電気的な信頼性及び安全性がより一層優れ、かつ誤動作が生じない小型のスイッチング電源装置を容易に構成することが可能になるという効果が得られる。
前記制御回路は前記スイッチング回路から前記パルス電圧を生成させるべく駆動する駆動部を備え、前記駆動部は、前記主配線基板上において前記スイッチング回路に対し実質的に最短距離となる位置に配設され、かつ前記スイッチング回路と実質的に最短距離の配線で接続されていても良い。
前記制御回路は前記整流回路を前記整流するように駆動する駆動部を備え、前記駆動部は、前記主配線基板上において前記整流回路に対し実質的に最短距離となる位置に配設され、かつ前記整流回路と実質的に最短距離の配線で接続されていても良い。
このような構成とすることにより、配線に存在する寄生インダクタンスが最小となり、これにより配線による電流制限作用を低減することが可能になる。従って、高速のスイッチングが可能になり、スイッチング損失を低減することが可能になるという効果が得られる。
又、本発明に係るスイッチング電源装置は、直流を断続してパルス電圧を生成するスイッチング回路と、一次巻線と二次巻線とがコアで磁気的に結合されてなるトランスと、前記一次巻線と前記二次巻線とを構成する配線を備える多層配線基板と、交流を整流する整流回路と、リプルを抑制する平滑回路と、前記平滑回路の出力電圧を制御する制御回路とを有し、前記パルス電圧が前記一次巻線の第一接続部に印加されて前記二次巻線の第二接続部に誘起する交流を前記整流回路で整流しかつ前記平滑回路で平滑して得る直流を出力するスイッチング電源装置であって、前記スイッチング電源装置が、略二次元状に形成された配線層と放熱板とが少なくとも電気絶縁性樹脂とフィラーとを含む混合物からなる電気絶縁性部材を介して積層されてなるリードフレーム基板を有し、前記リードフレーム基板の前記配線層上には、少なくとも前記スイッチング回路と前記整流回路とを備える前記多層配線基板が配設されている。
このような構成とすることにより、スイッチング電源装置の動作中において特にスイッチング素子、トランス、整流素子等から発生する熱を、リードフレーム基板を介してスイッチング電源装置の外部へ放出することが可能になる。即ち、スイッチング電源装置を長時間に渡り動作させる場合においても、スイッチング素子、トランス、整流素子等の温度は比較的低温となりかつ安定するようになる。その結果、スイッチング電源装置は長時間に渡り安定して動作するようになる。又、スイッチング素子、整流素子等の半導体素子の経時的な熱破壊が低減されるという効果も得られる。
前記コアは中足部を備え、前記中足部の短軸方向において該中足部の両側に前記トランスの前記第一接続部と前記第二接続部とが配置されていても良い。
このような構成とすることにより、多層配線基板上に配設される能動素子及び受動素子等の実装密度を低下させることなく、トランスの第一接続部と第二接続部との電気的な絶縁距離を確保することが可能になる。その結果、電気的な信頼性及び安全性に優れた小型のスイッチング電源装置を容易に構成することが可能になるという効果が得られる。
前記第一接続部側に前記スイッチング回路が、前記第二接続部側に前記整流回路が、それぞれ配設されており、前記第一接続部と前記スイッチング回路とが、及び、前記第二接続部と前記整流回路とが、それぞれ電気的に直結する部分を有し配設されていても良い。
このような構成とすることにより、スイッチング回路、整流回路及び平滑回路等とトランスの第一接続部又は第二接続部とを接続するための配線を極力短く形成することが可能になるため、それらの配線に起因する導体抵抗、表皮効果及び寄生インダクタンス等による悪影響をより一層効果的に抑制することが可能になる。その結果、電気的な信頼性及び安全性がより一層優れた小型のスイッチング電源装置を容易に構成することが可能になるという効果が得られる。又、スイッチング回路、整流回路及び平滑回路等とトランスの第一接続部又は第二接続部とを接続するための配線を部分的に省略することが可能になるため、プリント基板の配線に起因する導体抵抗、表皮効果及び寄生インダクタンス等による悪影響を更に効果的に抑制することが可能になる。その結果、電気的な信頼性及び安全性が更に優れた小型のスイッチング電源装置を容易に構成することが可能になるという効果が得られる。
前記多層配線基板の配線と前記リードフレーム基板の前記配線層とが、略鉛直方向に延出する前記配線層の一部分によって接続されていても良い。
このような構成とすることにより、多層配線基板の配線とリードフレーム基板の配線層との間における電気的な接続抵抗を低減することが可能になるという効果が得られる。又、多層配線基板、及び多層配線基板上に配設された電子部品等から発生する熱を、リードフレーム基板に効果的に放熱することが可能になるという効果が得られる。
前記電気絶縁性樹脂が、エポキシ樹脂、フェノール樹脂、シアネート樹脂、弗素樹脂、ポリエステル、ポリフェニレンエーテル又はポリイミドの何れかであっても良い。
このような構成とすることにより、リードフレーム基板の耐熱性及び電気的特性等を向上させることが可能になる。又、これらの電気絶縁性樹脂は容易に入手することが可能である。その結果、電気的特性及び信頼性の優れたリードフレーム基板を容易に構成することが可能になるという効果が得られる。
前記フィラーが、酸化アルミニウム、酸化マグネシウム、窒化ボロン、窒化アルミニウム、二酸化珪素、炭化珪素又はフェライトの何れかであっても良い。
このような構成とすることにより、リードフレーム基板の熱伝導率を著しく向上させることが可能になる。又、これらの無機質フィラーは容易に入手することが可能である。その結果、熱伝導率が高く、スイッチング素子、トランス、整流素子等から発生した熱を効率良くスイッチング電源装置の外部へ放出することが可能なリードフレーム基板を容易に構成することが可能になるという効果が得られる。
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本発明は、以上に説明したような手段で実施され、低電圧大電流の直流を負荷の消費電力に関わらず一定の電圧で供給し得る高効率かつ小型のスイッチング電源装置を提供することが可能になるという効果を奏する。
以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図4は、本発明の実施の形態1に係るスイッチング電源装置100の回路図である。図4に示すように、本実施の形態で示すスイッチング電源装置100は、入力平滑コンデンサ6a及び6bと、nチャネル型のMOS形電界効果トランジスタ(以下、MOSFET)8a及び8bと、トランス用一次巻線9aとトランス用二次巻線9b(巻線比N:1)とトランス用コア9cとを有してなるトランス9と、第一のダイオード10a及び第二のダイオード10bと、インダクタンス13と、出力平滑コンデンサ7と、制御回路17とを有して構成されている。そして、それぞれの能動素子及び受動素子等が所定の回路を形成するように電気的に接続されることにより、スイッチング電源装置100が構成されている。
本実施の形態に示すスイッチング電源装置100の回路図について、図4を用いて詳細に説明する。外部から印加される電圧VINの直流は、入力平滑コンデンサ6a及び6bの両端子にそれぞれ印加される。そして、入力平滑コンデンサ6a及び6bのそれぞれの一方の端子はトランス9のトランス用一次巻線9aの一方の端子に接続されており、更に、入力平滑コンデンサ6a及び6bの他方の端子のそれぞれはMOSFET8a及び8bのソース端子に接続されている。又トランス9のトランス用一次巻線9aの他方の端子は、MOSFET8a及び8bのドレイン端子に接続されている。尚、MOSFET8a及び8bのゲート端子は、配線101によって制御回路17に接続されている。
トランス9のトランス用二次巻線9bは、トランス用コア9cによってトランス用一次巻線9aと磁気的に接続されている。従って、トランス用二次巻線9bには、トランス用一次巻線9aに印加される電圧の変化に応じた交流が発生する。このトランス9のトランス用二次巻線9bの一方の端子は、第一のダイオード10aのアノード端子に接続されている。又、トランス9のトランス用二次巻線9bの他方の端子は、第二のダイオード10bのアノード端子に接続されている。そして、第一のダイオード10aのカソード端子と第二のダイオード10bのカソード端子とは相互に接続され、更にインダクタンス13の一方の端子(入力側)に接続されている。このインダクタンス13の他方の端子(出力側)は出力平滑コンデンサ7の一方の端子に接続されており、この出力平滑コンデンサ7の他方の端子は、第二のダイオード10bのアノード端子と接続されている。出力平滑コンデンサ7の両端からは、電圧VOUTの直流が出力される。
図1は、本実施の形態におけるスイッチング電源装置100の構造を模式的に示す斜視図である。又、図2は、図1に示したスイッチング電源装置100の構造を模式的に示す側面図である。更に、図3は、図1及び図2で示したスイッチング電源装置100のトランス9の内部構成を模式的に示した断面図であり、図3(a)はトランス9を構成するトランス用コア9cのX方向の垂直断面を模式的に示した断面図、図3(b)はトランス9を構成するトランス用コア9cのY方向の水平断面を模式的に示した断面図である。尚、X軸方向及びY軸方向を図1に示すように定義する。
図1及び図2に示すように、本実施の形態におけるスイッチング電源装置100では、接続端子4a〜4dを有する多層プリント基板2と、インダクタンス13と、出力平滑コンデンサ7と、制御回路17とが、接続端子5a〜5dを有するメインプリント基板1上の所定の位置に配置され、構成されている。
多層プリント基板2は、エポキシ樹脂やポリイミド樹脂等の熱硬化性樹脂とガラスクロスと配線とにより構成されている。そして、この多層プリント基板2の構成要素である図示されない配線は、多層プリント基板2に配設される複数の半導体素子等を所定の回路を形成するように電気的に接続するための複数の配線と、後述するトランス9を構成するためのトランス用一次巻線9aとトランス用二次巻線9bとで構成されている。以下、トランス9を構成するための前記トランス用一次巻線9aとトランス用二次巻線9bとについて説明する。
図1及び図2に示すように、多層プリント基板2は、一次側インバータ領域aと、トランス巻線領域bと、二次側整流領域cとの三つの領域に区分される。そして、前記トランス用一次巻線9aとトランス用二次巻線9bとは多層プリント基板2のトランス巻線領域bの内部に形成されており、多層プリント基板2の各層に形成された渦巻き状の配線が電気絶縁部材14を介して相互に積層され、更にスルーホール11又は12によって立体的かつ電気的に接続されることによって構成されている。ここで、図3を用いて、トランス9の内部構造について更に詳細に説明する。図3(a)及び図3(b)に示すように、多層プリント基板2におけるトランス巻線領域bの所定の位置には、所定の形状の貫通孔16が形成されている。又、フェライト等の材料で構成されるトランス用コア9cが、前記貫通孔16の内部に前記トランス用コア9cの中足部9dが嵌入されるようにして、多層プリント基板2を取り囲むように配設されている。中足部9dは、ここでは矩形の短辺が円弧で構成された断面形状を有している。尚、中足部9dの断面形状は前記断面形状に限定されることはなく、例えば、円形、矩形、又は楕円形等の形状を有していても良い。一方、多層プリント基板2の前記貫通孔16の外周部には、前記の如く形成されたトランス用一次巻線9a及びトランス用二次巻線9bが配設されている。このトランス用一次巻線9a及びトランス用二次巻線9bは、貫通孔16の周囲において各々渦巻き状に配設されている。又、トランス用一次巻線9a及びトランス用二次巻線9bの各々の末端部、即ち、トランス用一次巻線9aと能動素子又は受動素子等とのここでは図示されない接続部(以下、第一接続部)と、トランス用二次巻線9bと能動素子又は受動素子等とのここでは図示されない接続部(以下、第二接続部)とは、中足部9dを介して隔離されるような配置関係となるよう位置している。そして、これらのトランス用一次巻線9a及びトランス用二次巻線9bは、トランス用コア9cの中足部9dによって磁気的に結合されている。つまり、トランス9のトランス用二次巻線9bの第二接続部には、トランス9のトランス用一次巻線9aの第一接続部に印加される電圧に応じた交流が発生することになる。以上、多層プリント基板2に構成されるトランス9は、トランス用コア9cと、トランス用一次巻線9a及びトランス用二次巻線9bと、スルーホール11及び12等とが上記のように配設され、第一接続部と第二接続部とが前記配置関係となる重要な特徴点を有して構成されている。
一方、図1及び図2に示すように、多層プリント基板2の第一主面2a及び第二主面2bの一次側インバータ領域aには、MOSFET8a及び8b、及び入力平滑コンデンサ6a及び6bが実装されている。これらのMOSFET8a及び8b、及び入力平滑コンデンサ6a及び6bは、一次側インバータ領域aにおいて、トランス用一次巻線9aから引き出された特に図示されない接続端子の近傍に配設されている。又、多層プリント基板2の第一主面2a及び第二主面2bの二次側整流領域cには、第一のダイオード10aと第二のダイオード10bとが実装されている。これらのダイオード10a及び10bは、二次側整流領域cにおいて、トランス用二次巻線9bから引き出された特に図示されない接続端子の近傍に配設されている。そして、入力平滑コンデンサ6a及び6bと、MOSFET8a及び8bと、トランス9のトランス用一次巻線9aとが多層プリント基板2に形成された特に図示されない複数の配線によって所定の回路を構成するよう電気的に接続されることによって、インバータ回路が形成されている。又、第一のダイオード10aと、第二のダイオード10bと、トランス9のトランス用二次巻線9bとが多層プリント基板2に形成された特に図示されない複数の配線によって所定の回路を構成するよう電気的に接続されることによって、整流回路が構成されている。尚、接続端子4a及び4bは入力平滑コンデンサ6a及び6bの両端に直流を印加するための、メインプリント基板1と多層プリント基板2との接続端子である。又、接続端子4c及び4dは、後述する平滑回路に直流を印加するための、メインプリント基板1と多層プリント基板2との接続端子である。そして、多層プリント基板2にトランス9が形成され、更に上記の如く能動素子及び受動素子及び接続端子4a〜4dが配設されることによって、パワーモジュール18が構成されている。
図2に示すように、メインプリント基板1の第一主面1aには、パワーモジュール18と、インダクタンス13と、出力平滑コンデンサ7とがそれぞれ所定の位置に配設されている。又、メインプリント基板1の第二主面1bには、複数の能動素子及び受動素子によって構成される制御回路17が形成されている。そして、インダクタンス13と、出力平滑コンデンサ7とがメインプリント基板1に形成された特に図示されない複数の配線によって所定の回路を構成するよう電気的に接続されることによって、平滑回路が形成されている。尚、接続端子5a及び5bは、接続端子4a及び4bに直流を印加するために外部機器と接続する接続端子である。又、接続端子5c及び5dは、CPU等の外部素子等に直流を印加するための接続端子である。
尚、本実施の形態では、フォワード型コンバータ回路を用いた比較的小電流の直流を出力するためのスイッチング電源装置を示しているが、より大電流の直流を出力するためにスイッチング素子及び整流素子を更に複数個並列接続する構成にすることによって、本発明の効果がより一層高まる。以下、スイッチング素子及び整流素子をそれぞれ並列接続して構成する本実施の形態における他のスイッチング電源装置について説明する。
図6は、本発明の実施の形態1に係る他のスイッチング電源装置200の回路図である。図6に示すように、本実施の形態における他のスイッチング電源装置200は、入力平滑コンデンサ6aと、並列接続されたnチャネル型のMOSFET8a〜8dと、トランス用一次巻線9aとトランス用二次巻線9b(巻線比N:1)とトランス用コア9cとを有してなるトランス9と、並列接続された第一のダイオード10a及び10bと、並列接続された第二のダイオード10c及び10dと、インダクタンス13と、出力平滑コンデンサ7と、制御回路17とを有して構成されている。そして、それぞれの能動素子及び受動素子等が所定の回路を形成するように電気的に接続されることにより、スイッチング電源装置200が構成されている。
本実施の形態における他のスイッチング電源装置200の回路図について、図6を用いて詳細に説明する。外部から印加される電圧VINの直流は、入力平滑コンデンサ6aの両端子にそれぞれ印加される。そして、入力平滑コンデンサ6aの一方の端子はトランス9のトランス用一次巻線9aの一方の端子に接続されており、更に、入力平滑コンデンサ6aの他方の端子はMOSFET8a〜8dのそれぞれのソース端子に接続されている。又トランス9のトランス用一次巻線9aの他方の端子は、MOSFET8a〜8dのそれぞれのドレイン端子に接続されている。尚、MOSFET8a〜8dのそれぞれのゲート端子は、配線101によって制御回路17に接続されている。
トランス9のトランス用二次巻線9bは、トランス用コア9cによってトランス用一次巻線9aと磁気的に接続されている。従って、トランス用二次巻線9bには、トランス用一次巻線9aに印加される電圧の変化に応じた交流が発生する。このトランス9のトランス用二次巻線9bの一方の端子は、第一のダイオード10a及び10bのアノード端子に接続されている。又、トランス9のトランス用二次巻線9bの他方の端子は、第二のダイオード10c及び10dのアノード端子に接続されている。そして、第一のダイオード10a及び10bのカソード端子と第二のダイオード10c及び10dのカソード端子とは相互に接続され、更にインダクタンス13の一方の端子(入力側)に接続されている。このインダクタンス13の他方の端子(出力側)は出力平滑コンデンサ7の一方の端子に接続されており、この出力平滑コンデンサ7の他方の端子は、第二のダイオード10c及び10dのアノード端子と接続されている。出力平滑コンデンサ7の両端からは、電圧VOUTの直流が出力される。
図5は、本実施の形態における他のスイッチング電源装置200の構造を模式的に示す斜視図である。
図5に示すように、本実施の形態における他のスイッチング電源装置200は、接続端子4a〜4dを有する多層プリント基板2と、インダクタンス13と、出力平滑コンデンサ7と、図5においては図示されない制御回路17とを、接続端子5a〜5dを有するメインプリント基板1上の所定の位置に有して構成されている。そして、そのように構成されている点では、本実施の形態で示したスイッチング電源装置100と同一の構成を有している。しかしながら、図6で示したように、本実施の形態における他のスイッチング電源装置200では、MOSFET8a〜8dと、第一のダイオード10a及び10bと、第二のダイオード10c及び10dとが、それぞれ並列に接続されるように構成されている。そのため、図5に示すスイッチング電源装置200は、多層プリント基板2上に四つのMOSFET8a〜8dと四つのダイオード10a〜10dとが実装されている点で、本実施の形態で示したスイッチング電源装置100と異なっている。尚、その他については本実施の形態におけるスイッチング電源装置100の場合と同様であるため、ここでは詳細な説明は省略する。
次に、このように構成されたスイッチング電源装置100及びスイッチング電源装置200の動作について説明する。尚、本実施の形態で示すスイッチング電源装置100と、他のスイッチング電源装置200とでは、スイッチング素子と整流素子とがそれぞれ並列接続されているか否かの点で異なっているのみであり、スイッチング電源装置100及びスイッチング電源装置200の基本的な動作は同一である。従って、以下、本実施の形態におけるスイッチング電源装置100の動作について説明する。
メインプリント基板1に設けられた接続端子5a及び5bに直流が印加されると、その直流はメインプリント基板1に形成された特に図示されない配線と接続端子4a及び4bとを通って、入力平滑コンデンサ6a及び6bの両端に印加される。そして、MOSFET8a及び8bが制御回路17から出力されるターンオン信号によりスイッチング動作を行うことによって、トランス9のトランス用一次巻線9aにはパルス状電圧が印加される。その際、トランス9のトランス用二次巻線9bには、トランス用一次巻線9aに印加されたパルス状電圧の変化に応じた交流が誘起する。トランス9のトランス用二次巻線9bの両端に発生した交流は、第一及び第二のダイオード10a〜10bによって整流されることによって直流に変換される。そして、この直流は、多層プリント基板2に設けられた接続端子4c及び4dと、メインプリント基板1に形成された特に図示されない配線とを通って、インダクタンス13と出力平滑コンデンサ7とによって構成される平滑回路に印加される。その理由は、第一及び第二のダイオード10a〜10bによって整流されることで得られる直流にはリプル(交流成分)が含まれており、このリプルを抑制するためである。このようにして平滑回路によりリプルが抑制された直流は、メインプリント基板1に設けられた接続端子5c及び5dからスイッチング電源装置100の外部へ出力される。尚、前記出力平滑コンデンサ7の両端の出力電圧は制御回路17によって常時監視されており、この制御回路17は、出力電圧を安定化すべくターンオン信号を変化させてMOSFET8a及び8bのスイッチング動作のオンオフ比を制御する。制御回路17がこのように動作することによって、スイッチング電源装置100から出力される直流の出力電圧は安定化される。
ここで、本実施の形態では、多層プリント基板2は、前記インバータ回路と前記整流回路とを備えかつメインプリント基板1の第一主面1aに配設されている。又、制御回路17はメインプリント基板1の第二主面1bに配設されている。そのため、制御回路17で必要とされる微細配線と、パワー部で必要とされる非微細配線との使い分けが可能になることで回路素子等の実装密度が飛躍的に向上し、スイッチング電源装置100の小型化が可能になるという効果が得られる。具体的には、体積比で約30%の小型化が可能になる。又、大電流の高周波スイッチング電流が流れる配線を短配線化することが可能になり、例えばトランス9のトランス用二次巻線9bとダイオード10a及び10bとの間の配線に発生する寄生インダクタンスを、ほぼ皆無とすることが可能になる。又、スイッチング電源装置100のスイッチング周波数が従来以上に上昇した場合でも、表皮効果等の影響を抑制することが可能になる。又、トランス用一次巻線9a及びトランス用二次巻線9bのターンオフ時のサージ電圧を抑制することが可能になる。又、大電流の高周波スイッチング電流が流れる電流経路と、制御回路を流れる小電流の電流経路とが物理的に隔離されるため、制御回路17はノイズの影響を受け難くなるという効果が得られる。より具体的には、例えば、スイッチング電源装置100の出力電圧を低電圧化する場合には、上記のノイズ低減効果により、より一層安定した出力電圧の直流を得ることが可能になる。又、スイッチング電源装置100の出力電流を大電流化する場合には、各素子間の配線パターンの短配線化により、電力損失を低減することが可能になる。又、スイッチング電源装置100の出力電圧を他の電圧に変更する場合にはパワーモジュール18のみを交換するだけでよく、従ってスイッチング電源装置100の製造性が容易になり、低コスト化が図れるという有利な効果が得られる。又、パワーモジュール18とメインプリント基板1との間の電流伝達がほぼ直流となるため、パワーモジュール18とメインプリント基板1との間の接続により発生する寄生インダクタンスに係る問題を回避することができるという効果が得られる。
尚、本実施の形態におけるスイッチング電源装置100及び200ではスイッチング素子としてMOSFET8a〜8dを用いる形態を示しているが、MOSFET8a〜8dの代わりにバイポーラトランジスタ又は絶縁ゲートバイポーラトランジスタ(以下、IGBT)等を用いても良い。又、多層プリント基板2及びメインプリント基板1は熱硬化性樹脂とガラスクロスとを用いる構成を示したが、熱硬化性樹脂と無機質フィラーとを用いる構成としても良い。
又、本実施の形態においては主回路としてフォワード型コンバータ回路を用いる形態を示したが、図7に示すようなハーフブリッジ型コンバータ回路を用いる構成としても良い。このような構成とすることによって、トランス9のトランス用一次巻線9aとトランス用二次巻線9bとの間の漏れインダクタンスが小さくなるため、トランス用一次巻線9aに大電流が流れた場合にもサージ電圧がほとんど発生しないという利点が得られる。又、この場合には、トランス用一次巻線9aの巻き数を少なくすることができるという利点も得られる。尚、フォワード型コンバータ回路及びハーフブリッジ型コンバータ回路に限らず、その他のコンバータ回路を用いる構成としても良い。
又、本実施の形態においては一枚のメインプリント基板1上に一組のパワーモジュール18及び平滑回路を配設する構成としているが、図8に示すように一枚のメインプリント基板1上に二組のパワーモジュール18及び平滑回路を有するスイッチング電源装置300のような構成としても良い。又、特に図示しないが、二組のパワーモジュール18を一体化させ、一組のパワーモジュールとしてメインプリント基板1上に配設する構成としても良い。つまり、本発明の効果は、メインプリント基板1上に搭載するパワーモジュール18の数や形成する回路の数に関係無く、様々な実施形態において同様に得られる。
一方、本実施の形態において、MOSFET8a及び8bのスイッチングスピードを高速化することにより、スイッチング時に発生する電力損失(スイッチング損失)を低減化することが可能である。この場合、MOSFET8a及び8bのスイッチングスピードを高速化するためには、MOSFET8a及び8bと、それらMOSFET8a及び8bをスイッチング動作させるための駆動部とを電気的に接続する配線に存在する寄生インダクタンスを低減させる必要がある。即ち、寄生インダクタンスを低減することにより配線における電流抑制作用を低減することが可能になるので、高速のスイッチングが可能になり、スイッチング損失を低減することが可能になる。
以下、スイッチング損失を低減化するために好適な構成を備えるスイッチング電源装置の実施形態について説明する。
図9は、本実施の形態に係る駆動部をスイッチング回路の近傍に配置したスイッチング電源装置の構成を模式的に示した構成図であり、図9(a)は上面図、図9(b)は側面図、図9(c)は下面図である。
図9(a)及び図9(b)に示すように、本実施の形態に係るスイッチング電源装置400は、入力平滑コンデンサ6a及び6bとMOSFET8a及び8bとトランス9とダイオード10a及び10bとを有する多層プリント基板2と、インダクタンス13と、出力平滑コンデンサ7と、図9(b)では図示されない制御回路とを、接続端子5a〜5dを有するメインプリント基板1上の所定の位置に有して構成されている。即ち、本実施の形態に係るスイッチング電源装置400は、図4で示した回路構成と同様の回路構成を有しており、かつ図2で示したMOSFET8b及びダイオード10bが多層プリント基板2の第一主面2a上に配設された構成を有している。そして、図9(b)及び図9(c)で示すように、本実施の形態に係るスイッチング電源装置400では、メインプリント基板1の第二主面1b上の、多層プリント基板2の厚み方向におけるMOSFET8a及び8bと対向する位置に、MOSFET8a及び8bをスイッチング動作させるための駆動部21a及び21bが配設されている。つまり、駆動部21a及び21bが、メインプリント基板1の第二主面1b上において、MOSFET8a及び8bに対して実質的に最短距離となる位置に配設されている。又、図9(a)〜図9(c)に示す実施形態において、MOSFET8a及び8bと駆動部21a及び21bとが、ここでは図示しないメインプリント基板1内のスルーホールと、導線等の配線25aと、ここでは図示しない多層プリント基板2内のスルーホールとを介して、相互に電気的に接続されている。即ち、MOSFET8a及び8bと駆動部21a及び21bとが実質的に最短距離の配線によって相互に接続されている。このような点において、本実施の形態で示したスイッチング電源装置100の構成と、スイッチング電源装置400の構成とが異なっている。尚、その他については本実施の形態におけるスイッチング電源装置100の場合と同様であるため、ここでは詳細な説明は省略する。
本実施の形態において、駆動部21a及び21bは、図2で示した制御回路17内に構成されている。
図10は、図9で示したスイッチング電源装置における制御回路の内部構成を模式的に示したブロック図である。
図10に示すように、本実施の形態に係るスイッチング電源装置400が備える制御回路17は、基準電圧Vstd.と出力電圧VOUTとの電圧差を増幅するエラーアンプ22と、このエラーアンプ22から出力される出力信号に応じてPWM信号を出力するPWM信号発生部23と、このPWM信号発生部23から出力される出力信号に応じてMOSFET8a及び8bをスイッチング動作させるためのゲート信号を出力する駆動部24(図9では、駆動部21a及び21bに相当)を備えている。ここで、駆動部24は、NPN型トランジスタ及びPNP型トランジスタがプッシュプル接続された構成を有している。そして、図4に示した出力平滑コンデンサ7の両端子に接続する配線104が、エラーアンプ22の入力端子に接続されている。この場合、エラーアンプ22の一方の端子には、基準電圧Vstd.が更に印加されている。又、エラーアンプ22とPWM信号発生部23とが、PWM信号発生部23と駆動部24(駆動部24における各トランジスタのベース端子)とが、それぞれ接続されている。又、駆動部24(駆動部24における各トランジスタのエミッタ端子)とMOSFET8a及び8bのゲート端子とが、配線101によって接続されている。
図10に示すように構成された制御回路17では、配線104を介して印加されるスイッチング電源装置400の出力電圧がエラーアンプ22に印加されると、その印加された電圧と基準電圧Vstd.との電圧差が増幅されて、エラー信号として出力される。すると、PWM信号発生部23からは、入力されるエラー信号に応じてデューティ比が制御されたPWM信号が出力される。駆動部24は、このPWM信号発生部23が出力するPWM信号を所定の増幅率で増幅する。この増幅されたPWM信号は、配線101を介して、MOSFET8a及び8bのゲート端子に印加される。これにより、MOSFET8a及び8bは、スイッチング電源装置400の出力電圧を安定化させるべく、スイッチング動作を行う。
このような構成を有するスイッチング電源装置400では、MOSFET8a及び8bと駆動部21a及び21bとが最短距離となるように配置され、かつ最短距離の配線で接続されているので、MOSFET8a及び8bと駆動部21a及び21bとを電気的に接続する配線に存在する寄生インダクタンスを低減化することが可能になる。そして、これにより配線における電流抑制作用を低減化することが可能になるので、MOSFET8a及び8bの高速スイッチング動作が可能になり、図19に示した従来の2次元状に電子部品等が配置されるスイッチング電源装置1000の場合と比して、スイッチング素子におけるスイッチング損失を低減化することが可能になる。
(実施の形態2)
図11は、本発明の実施の形態2におけるスイッチング電源装置500の構造を模式的に示す斜視図である。又、図12は、図11に示したスイッチング電源装置500の構造を模式的に示す側面図である。
本実施の形態で示すスイッチング電源装置500の回路図は、実施の形態1で示したスイッチング電源装置100の回路図と同一である。従って、ここでは、本実施の形態におけるスイッチング電源装置500の回路図及び動作に係る説明は省略する。しかしながら、本実施の形態におけるスイッチング電源装置500の構成は、実施の形態1におけるスイッチング電源装置100と比して、インダクタンス13の形態及び配設位置と、出力平滑コンデンサ7の配設位置が、それぞれ異なっている。従って、本実施の形態で示すスイッチング電源装置500の構造について、実施の形態1で示したスイッチング電源装置100と比較しながら以下に説明する。
図11及び図12に示すように、本実施の形態におけるスイッチング電源装置500は、接続端子4a〜4dを有する多層プリント基板2と、制御回路17とを、接続端子5a〜5dを有するメインプリント基板1上の所定の位置に有して構成されている。そして、多層プリント基板2にはインダクタンス13が形成されている。又、出力平滑コンデンサ7は、多層プリント基板2上の所定の位置に配設されている。
多層プリント基板2は、一次側インバータ領域aと、トランス巻線領域bと、二次側整流領域cと、二次側平滑領域dとの四つの領域に区分される。そして、インダクタンス13を構成するためのインダクタンス用巻線13aが、多層プリント基板2の二次側平滑領域dの内部に形成されている。このインダクタンス用巻線13aは、例えば、多層プリント基板2の各層に形成された渦巻き状の配線が電気絶縁部材14を介して相互に積層され、更に、特に図示されないスルーホールによって立体的かつ電気的に接続されることによって構成されている。そして、実施の形態1で示したトランス9の場合と同様にしてフェライト等の材料で構成されるインダクタンス用コア13bが多層プリント基板2に配設されることによって、インダクタンス13が形成されている。
一方、多層プリント基板2の第一主面2a及び第二主面2bの一次側インバータ領域aには、MOSFET8a及び8b、及び入力平滑コンデンサ6a及び6bが実装されている。これらのMOSFET8a及び8b、及び入力平滑コンデンサ6a及び6bは、一次側インバータ領域aにおいて、トランス用一次巻線9aから引き出された特に図示されない接続端子の近傍に配設されている。又、多層プリント基板2の第一主面2a及び第二主面2bの二次側整流領域cには、第一のダイオード10aと第二のダイオード10bとが実装されている。これらのダイオード10a〜10bは、二次側整流領域cにおいて、トランス用二次巻線9bから引き出された特に図示されない接続端子の近傍に配設されている。又、多層プリント基板2の第一主面2aの二次側平滑領域dには、インダクタンス13と出力平滑コンデンサ7とが配設されている。そして、入力平滑コンデンサ6a及び6bと、MOSFET8a及び8bと、トランス9のトランス用一次巻線9aとが多層プリント基板2に形成された特に図示されない複数の配線によって所定の回路を構成するよう電気的に接続されることによって、インバータ回路が形成されている。又、第一のダイオード10aと、第二のダイオード10bと、トランス9のトランス用二次巻線9bとが多層プリント基板2に形成された特に図示されない複数の配線によって所定の回路を構成するよう電気的に接続されることによって、整流回路が構成されている。更に、インダクタンス13と出力平滑コンデンサ7とが多層プリント基板2に形成された特に図示されない複数の配線によって所定の回路を構成するよう電気的に接続されることによって、平滑回路が構成されている。尚、接続端子4a及び4bは、入力平滑コンデンサ6a及び6bの両端に直流を印加するための、メインプリント基板1と多層プリント基板2との接続端子である。又、接続端子4c及び4dは、メインプリント基板の接続端子5c及び5dに出力平滑コンデンサ7の出力を印加するための、メインプリント基板1と多層プリント基板2との接続端子である。尚、多層プリント基板2にトランス9及びインダクタンス13が形成され、更に上記の如く能動素子及び受動素子及び接続端子4a〜4dが配設されることによって、パワーモジュール18が構成されている。
図12に示すように、メインプリント基板1の第一主面1aには、パワーモジュール18が配設されている。又、メインプリント基板1の第二主面1bには、複数の能動素子及び受動素子によって構成される制御回路17が形成されている。尚、接続端子5a及び5bは、接続端子4a及び4bに直流を印加するために外部機器と接続する接続端子である。又、接続端子5c及び5dは、CPU等の外部素子等に直流を印加するための接続端子である。
このように構成されたスイッチング電源装置500でも、実施の形態1で示したスイッチング電源装置100と同様に動作すると共に、同様の効果を得ることが可能である。尚、その他については、実施の形態1と同様である。
(実施の形態3)
図13は、本発明の実施の形態3に係るスイッチング電源装置の回路図である。図13に示すように、本実施の形態で示すスイッチング電源装置は、入力平滑コンデンサ6a及び6bと、nチャネル型のMOSFET8a及びMOSFET8bと、トランス用一次巻線9aとトランス用二次巻線9b(巻線比N:1)とトランス用コア9cとを有してなるトランス9と、第一の整流素子として機能するMOSFET8cと、第二の整流素子として機能するMOSFET8dと、インダクタンス13と、出力平滑コンデンサ7と、制御回路17とを有して構成されている。そして、それぞれの能動素子及び受動素子等が所定の回路を形成するように電気的に接続されることにより、スイッチング電源装置が構成されている。
本実施の形態に示すスイッチング電源装置の回路図について、図13を用いて詳細に説明する。外部から印加される電圧VINの直流は、入力平滑コンデンサ6a及び6bの両端子にそれぞれ印加される。そして、入力平滑コンデンサ6a及び6bのそれぞれの一方の端子はトランス9のトランス用一次巻線9aの一方の端子に接続されており、更に、入力平滑コンデンサ6a及び6bのそれぞれの他方の端子はMOSFET8a及び8bのソース端子に接続されている。又、トランス9の一次巻線9aの他方の端子は、MOSFET8a及びMOSFET8bのドレイン端子に接続されている。尚、MOSFET8a及びMOSFET8bのゲート端子は、配線101によって制御回路17に接続されている。
トランス9のトランス用二次巻線9bは、トランス用コア9cによってトランス用一次巻線9aと磁気的に接続されている。従って、トランス用二次巻線9bには、トランス用一次巻線9aに印加される電圧の変化に応じた交流が発生する。このトランス9のトランス用二次巻線9bの一方の端子は、MOSFET8cのソース端子に接続されている。又、トランス9のトランス用二次巻線9bの他方の端子は、MOSFET8dのソース端子に接続されている。そして、MOSFET8cのドレイン端子とMOSFET8dのドレイン端子とは相互に接続され、更にインダクタンス13の一方の端子(入力側)に接続されている。このインダクタンス13の他方の端子(出力側)は出力平滑コンデンサ7の一方の端子に接続されており、この出力平滑コンデンサ7の他方の端子は、MOSFET8dのソース端子と接続されている。出力平滑コンデンサ7の両端からは、電圧VOUTの直流が出力される。尚、MOSFET8c及びMOSFET8dのゲート端子は、配線102及び配線103によって制御回路17に接続されている。
本実施の形態におけるスイッチング電源装置の構成は、実施の形態1で示したスイッチング電源装置100におけるダイオード10a及び10bをMOSFET8c及びMOSFET8dに置き換えた点で異なっている。しかしながら、実施の形態1で示したスイッチング電源装置100と、本実施の形態で示すスイッチング電源装置とは、外観上において実質的に同一である。従って、本実施の形態におけるスイッチング電源装置の構造に係る説明は省略する。尚、実施の形態1で示したスイッチング電源装置100と、本実施の形態で示すスイッチング電源装置とは、その動作において大きく異なっている。従って、本実施の形態で示すスイッチング電源装置の動作について、以下に、実施の形態1で示したスイッチング電源装置100と比較しながら説明する。
入力平滑コンデンサ6a及び6bの両端に印加された直流は、制御回路17から出力されるターンオン信号によりMOSFET8a及びMOSFET8bがスイッチング動作を行うことによって断続される。その結果、トランス9のトランス用一次巻線9aにはパルス状電圧が印加される。その際、トランス9のトランス用二次巻線9bには、トランス用一次巻線9aに印加されたパルス状電圧の変化に応じた交流が誘起する。トランス9のトランス用二次巻線9bの両端に発生した交流は、整流素子として機能するMOSFET8c及びMOSFET8dによって、リプルを含む直流に整流される。そして、インダクタンス13及び出力平滑コンデンサ7で構成される平滑回路によりリプルが除去された直流は、スイッチング電源装置から電圧VOUTで出力される。尚、出力平滑コンデンサ7の両端の出力電圧は制御回路17によって常時監視されており、この制御回路17は、出力電圧を安定化すべくターンオン信号を変化させてMOSFET8a及びMOSFET8bのスイッチング動作のオンオフ比を制御する。尚、このターンオン信号は、前記MOSFET8c及びMOSFET8dのゲート端子にも同一位相で印加される。従って、MOSFET8c及びMOSFET8dは、このターンオン信号に応じて整流動作を行うようになる(通称、同期整流)。制御回路17がこのように動作することによって、スイッチング電源装置から出力される直流の電圧は安定化される。
尚、本実施の形態では整流素子としてMOSFET8c及びMOSFET8dを用いる形態を示しているが、MOSFET8c及びMOSFET8dの代わりにバイポーラトランジスタ又はIGBT等を用いても良い。又、本実施の形態で示したスイッチング電源装置においては主回路としてフォワード型コンバータ回路を用いる形態を示したが、図14に示すようなハーフブリッジ型コンバータ回路を用いる構成としても良い。このような構成とすることによって、トランス9のトランス用一次巻線9aとトランス用二次巻線9bとの間の漏れインダクタンスが小さくなるため、トランス用一次巻線9aに大電流が流れた場合にもサージ電圧がほとんど発生しないという利点が得られる。又、この場合、トランス用一次巻線9aの巻き数を少なくすることができるという利点も得られる。その他については、実施の形態1の場合と同様である。
一方、同期整流が行われるスイッチング電源装置において、図9で示したスイッチング電源装置400の場合と同様にして、パルス電圧を発生させるためのMOSFET8a及び8bにおけるスイッチング損失を抑えると共に、整流のために用いられるMOSFET8c及び8dにおけるスイッチング損失を低減化することも可能である。
図15は、本発明の実施の形態3に係る各駆動部をスイッチング回路及び整流回路の近傍に配置したスイッチング電源装置の構成を模式的に示した構成図であり、図15(a)は上面図、図15(b)は側面図、図15(c)は下面図である。
図15に示すスイッチング電源装置600と、図9に示すスイッチング電源装置400とでは、ダイオード10a及び10bで行っていた整流をMOSFET8c及び8dを用いる同期整流とする点で、その構成が異なっている。つまり、図15(a)に示すように、図9(a)で示したスイッチング電源装置400におけるダイオード10a及び10bが、スイッチング電源装置600ではMOSFET8c及び8dに置き換えられている。そして、図15(b)及び図15(c)に示すように、本実施の形態に係るスイッチング電源装置600では、メインプリント基板1の第二主面1b上の、多層プリント基板2の厚み方向におけるMOSFET8a及び8bと対向する位置に、MOSFET8a及び8bをスイッチング動作させるための駆動部21a及び21bが配設されている。つまり、駆動部21a及び21bが、メインプリント基板1の第二主面1b上において、MOSFET8a及び8bに対して実質的に最短距離となる位置に配設されている。又、MOSFET8a及び8bと駆動部21a及び21bとが、ここでは図示しないメインプリント基板1内のスルーホールと、導線等の配線25aと、ここでは図示しない多層プリント基板2内のスルーホールとを介して、相互に電気的に接続されている。即ち、MOSFET8a及び8bと駆動部21a及び21bとが実質的に最短距離の配線によって相互に接続されている。
又、図15(b)及び図15(c)に示すように、本実施の形態に係るスイッチング電源装置600では、メインプリント基板1の第二主面1b上の、多層プリント基板2の厚み方向におけるMOSFET8c及び8dと対向する位置に、MOSFET8c及び8dをスイッチング動作させるための駆動部21c及び21dが配設されている。即ち、駆動部21c及び21dが、メインプリント基板1の第二主面1b上において、MOSFET8c及び8dに対して実質的に最短距離となる位置に配設されている。又、MOSFET8c及び8dと駆動部21c及び21dとが、ここでは図示しないメインプリント基板1内のスルーホールと、導線等の配線25bと、ここでは図示しない多層プリント基板2内のスルーホールとを介して、相互に電気的に接続されている。即ち、MOSFET8c及び8dと駆動部21c及び21dとが実質的に最短距離の配線によって相互に接続されている。この点において、本実施の形態で示したスイッチング電源装置600の構成と、実施の形態1で示したスイッチング電源装置400の構成とが異なっている。尚、その他については本実施の形態におけるスイッチング電源装置100の場合と同様であるため、ここでは詳細な説明は省略する。
尚、本実施の形態では、駆動部21a〜21dは何れも制御回路17内に設けられている。又、駆動部21a及び21bの構成と駆動部21c及び21dの構成とは、基本的に同様である。又、駆動部21c及び21dとMOSFET8c及び8dとは、図10、図13、及び図14に示すように、配線102及び103によって接続される。
このような構成を有するスイッチング電源装置600では、MOSFET8a〜8dと駆動部21a〜21dとが最短距離となるように配置され、かつ最短距離の配線で接続されているので、MOSFET8a〜8dと駆動部21a〜21dとを電気的に接続する配線に存在する寄生インダクタンスを低減化することが可能になる。そして、これにより配線における電流抑制作用を低減化することが可能になるので、MOSFET8a〜8dの高速スイッチング動作が可能になり、スイッチング素子におけるスイッチング損失を低減化することが可能になる。
(実施の形態4)
図16は、本発明の実施の形態4におけるスイッチング電源装置700の構造を模式的に示す側面図である。尚、本実施の形態で示すスイッチング電源装置700の回路図は、実施の形態1において図4に示したスイッチング電源装置100の回路図と同一である。従って、本実施の形態で示すスイッチング電源装置700の回路図及び動作に係る説明は省略する。又、多層プリント基板2及び図16に示す制御回路17が形成される制御回路用基板26は、実施の形態1で示したスイッチング電源装置100における多層プリント基板2及びメインプリント基板1と実質的に同様の構成を有している。従って、ここでは、多層プリント基板2及び制御回路用基板26に関する説明は省略する。
図16に示すように、本実施の形態におけるスイッチング電源装置700は、放熱板19とリードフレーム基板用配線20とが電気絶縁性部材15を介して積層されてなるリードフレーム基板3(主配線基板)と、リードフレーム基板3の四隅から略鉛直方向に延出する接続端子5a,5b,5c,5d(接続端子5a及び5dは、接続端子5b及び5cの背後に存在する)と、接続端子4a,4b,4c,4d(接続端子4a及び4dは、接続端子4b及び4cの背後に存在する)を有する多層プリント基板2と、インダクタンス13と、出力平滑コンデンサ7と、制御回路17が形成された制御回路用基板26とを有して構成されている。
リードフレーム基板3は、所定の形状に成形されたリードフレーム基板用配線20と放熱板19とが電気絶縁性部材15を介して積層されることによって構成されている。電気絶縁性部材15は、少なくとも、熱硬化性樹脂からなる電気絶縁性樹脂と無機質フィラーとの混合物で構成されている。
ここで、電気絶縁性樹脂を構成する熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、シアネート樹脂、弗素樹脂、ポリエステル、ポリフェニレンエーテル又はポリイミドの内の少なくとも何れか一種類であることが好ましい。その理由は、これらの熱硬化性樹脂は高温時における耐熱性及び電気絶縁性に優れており、従って物理的及び電気的特性が優れた電気絶縁性部材15を構成することが可能になるからである。特に、エポキシ系樹脂は、従来からICやLSI等の半導体集積回路における封止樹脂やプリント基板等で好適に用いられており、電気的特性に限定されず、耐薬品性、機械的性能(機械的強度)等に優れた電気絶縁性部材15を構成し得る。
又、無機質フィラーとしては、酸化アルミニウム、酸化マグネシウム、窒化ボロン、窒化アルミニウム、二酸化珪素、炭化珪素又はフェライトの内の少なくとも何れか一種類であることが好ましい。その理由は、このような無機質フィラーを前記熱硬化性樹脂と混合することによって、電気絶縁性部材15の熱伝導率を飛躍的に高めることが可能になるからである。特に、無機質フィラーとして酸化マグネシウムを用いる場合には、電気絶縁性部材15の熱伝導性が非常に良好となると共に、電気委絶縁性部材15の熱膨張係数を大きくすることが可能になる。反対に、無機質フィラーとして二酸化珪素(特に、非晶質体)を用いることによって、電気絶縁性部材15の熱膨張係数及び比誘電率を小さくすることが可能になる。尚、無機質フィラーの添加量は、電気絶縁性部材15の重量に対して70〜95重量%程度であることが好ましい。尚、より一層良好な熱伝導性が要求される場合には、無機質フィラーの添加量を88重量%以上とすることが望ましい。
リードフレーム基板3の第一主面3aに配設されるリードフレーム基板用配線20は、多層プリント基板2、インダクタンス13、出力平滑コンデンサ7及び制御回路17のそれぞれが所定の回路を形成するように、所定の形状に形成されている。尚、リードフレーム基板用配線20の材料としては配線材料として一般的に用いられている銅、アルミニウム等が望ましいが、特にこれらに限定されるものではない。又、リードフレーム基板3の第二主面3bに配設される放熱板19は、略平面状に形成された板状の金属板である。尚、この放熱板19の材料としては、銅、アルミニウム等の熱伝導率の比較的大きい材料が望ましいが、特にこれらに限定されるものではない。
リードフレーム基板3の第一主面3aのリードフレーム基板用配線20上には、多層プリント基板2とインダクタンス13と出力平滑コンデンサ7とが、それぞれ所定の位置に配設されている。多層プリント基板2は、入力平滑コンデンサ6a、MOSFET8a、及びダイオード10aがリードフレーム基板3の第一主面3aに形成されたリードフレーム基板用配線20に当接するようにして、リードフレーム基板用配線20上に配設されている。そして、リードフレーム基板用配線20の四隅の所定の位置からは、それぞれ略等しい長さとされた四本の接続端子5a〜5dが、リードフレーム基板3に対して略鉛直方向に延出している。これらの接続端子5a〜5dは、リードフレーム基板3のリードフレーム基板用配線20と電気的に接続するように、リードフレーム基板用配線20上の所定の位置に固定されている。
一方、この接続端子5a〜5dの先端部は、制御回路用基板26の四隅の所定の位置に形成された対応するスルーホール等の孔に挿入されている。そして、接続端子5a〜5dの先端部と対応するスルーホール等とは、半田付け等の所定の固定手段によって電気的に接続されている。このように構成されることによって、接続端子5a〜5dは、制御回路用基板26を下方より支持している。
このように構成されたスイッチング電源装置700でも、実施の形態1で示したスイッチング電源装置100と同様に動作すると共に、同様の効果を得ることが可能である。又、本実施の形態で示したスイッチング電源装置700では、多層プリント基板2に配設されたMOSFET8a及び8b、トランス9、ダイオード10a及び10b、及び、インダクタンス13等の、特に大電流の高周波スイッチング電流又は交流が流れる素子が熱伝導率の大きいリードフレーム基板3に当接して配設されているため、それら能動素子及び受動素子等が発熱した場合でも、その熱をスイッチング電源装置700の外部へ放出することが可能である。つまり、スイッチング電源装置700を例えば長時間に渡り動作させる場合でも、スイッチング電源装置700が安定して動作するという効果が得られる。尚、その他の点については、実施の形態1の場合と同様である。
又、リードフレーム基板3のリードフレーム基板用配線20を利用してリードフレーム基板3と多層プリント基板2とを電気的に接続することにより、リードフレーム基板3と多層プリント基板2との電気的な接続抵抗を低減化することや、多層プリント基板2及び多層プリント基板2上に実装された電子部品等から発生する熱を効果的にリードフレーム基板3に放熱することが可能になる。
図17は、本発明の実施の形態4における他のスイッチング電源装置の構造を模式的に示す側面図である。
図17に示すように、本実施の形態に係るスイッチング電源装置800は、図16で示したスイッチング電源装置700と実質的に同様の構成を有している。しかしながら、図16で示したスイッチング電源装置700では多層プリント基板2とリードフレーム基板3とが接続端子4a〜4dによって接続されているのに対し、図17で示したスイッチング電源装置800では、多層プリント基板2とリードフレーム基板3とが、リードフレーム基板用配線20の一部分が略鉛直方向に延出するように変形された接続端子20a及び20bによって接続されている。ここで、接続端子20a及び20bと、多層プリント基板2の特に図示しない配線とは、半田付け等の接続手段によって電気的に接続されている。この点において、スイッチング電源装置700の構成とスイッチング電源装置800の構成とが異なっている。
このように、リードフレーム基板3のリードフレーム基板用配線20の一部分を略鉛直方向に向くよう変形させて接続端子20a及び20bを形成し、この接続端子20a及び20bを用いてリードフレーム基板3と多層プリント基板2とを接続することにより、従来から用いていた接続端子4a〜4dの全部又は一部を用いる必要が無くなる。そして、リードフレーム基板3と多層プリント基板2との電気的な接続抵抗を低減化することや、多層プリント基板2及び多層プリント基板2上に実装された電子部品等から発生する熱を効果的にリードフレーム基板3に放熱することが可能になる。
(実施の形態5)
図18は、本発明の実施の形態5におけるスイッチング電源装置900の構造を模式的に示す側面図である。本実施の形態で示すスイッチング電源装置900は、前記実施の形態4で示したスイッチング電源装置700と実質的に同様の構成である。しかしながら、本実施の形態におけるスイッチング電源装置900では、実施の形態4におけるスイッチング電源装置700と比して、インダクタンス13の形態及び配設位置が異なっている。尚、このインダクタンス13の形態及び配設位置については、実施の形態2で示したスイッチング電源装置500の場合と同様である。従って、ここでは詳細な説明は省略する。
このように構成されたスイッチング電源装置900でも、実施の形態1で示したスイッチング電源装置100と同様に動作すると共に、同様の効果を得ることが可能である。又、本実施の形態で示したスイッチング電源装置900でも、多層プリント基板2に配設されたMOSFET8a及び8b、トランス9、ダイオード10a及び10b、及び、インダクタンス13等の、特に大電流の高周波スイッチング電流又は交流が流れる素子が熱伝導率の大きいリードフレーム基板3に当接して配設されているため、それら能動素子及び受動素子等が発熱した場合でも、その熱をスイッチング電源装置900の外部へ放出することが可能である。つまり、スイッチング電源装置900を例えば長時間に渡り動作させる場合でも、スイッチング電源装置900が安定して動作するという効果が得られる。尚、その他の点については、実施の形態1の場合と同様である。
又、本実施の形態においても、実施の形態4に係るスイッチング電源装置800の場合と同様、リードフレーム基板3のリードフレーム基板用配線20を利用してリードフレーム基板3と多層プリント基板2とを電気的に接続することにより、リードフレーム基板3と多層プリント基板2との電気的な接続抵抗を低減化することや、多層プリント基板2及び多層プリント基板2上に実装された電子部品等から発生する熱を効果的にリードフレーム基板3に放熱することが可能になる。
尚、以上の説明では、スイッチング電源装置についての各種例を挙げて説明したが、単なる電源装置やその他の一般的な電子装置であっても、本発明を応用することが可能である。
本発明に係るスイッチング電源装置は、電子機器の内部に設置され、低電圧大電流の直流を負荷の消費電力に関わらず一定の電圧で供給し得る高効率かつ小型のスイッチング電源装置として有用である。
本発明の実施の形態1に係るスイッチング電源装置の構成を模式的に示した斜視図である。 本発明の実施の形態1に係るスイッチング電源装置の構成を模式的に示した側面図である。 図1及び図2で示したスイッチング電源装置のトランスの内部構成を模式的に示した断面図であり、図3(a)はトランスを構成するコアのX方向の垂直断面を模式的に示した断面図、図3(b)はトランスを構成するコアのY方向の水平断面を模式的に示した断面図である。 本発明の実施の形態1に係るフォワード型コンバータ回路を適用したスイッチング電源装置の回路図である。 本発明の実施の形態1に係る他のスイッチング電源装置の構造を模式的に示す斜視図である。 本発明の実施の形態1に係るフォワード型コンバータ回路を適用した他のスイッチング電源装置の回路図である。 本発明の実施の形態1に係るハーフブリッジ形コンバータ回路を適用したスイッチング電源装置の回路図である。 本発明の実施の形態1に係る二組のパワーモジュール及び平滑回路を備えるスイッチング電源装置の構造を模式的に示す斜視図である。 本発明の実施の形態1に係る駆動部をスイッチング回路の近傍に配置したスイッチング電源装置の構成を模式的に示した構成図であり、図9(a)は上面図、図9(b)は側面図、図9(c)は下面図である。 図9で示したスイッチング電源装置における制御回路の構成を模式的に示したブロック図である。 本発明の実施の形態2におけるスイッチング電源装置の構造を模式的に示す斜視図である。 図11に示したスイッチング電源装置の構造を模式的に示す側面図である。 本発明の実施の形態3に係るフォワード型コンバータ回路を適用したスイッチング電源装置の回路図である。 本発明の実施の形態3に係るハーフブリッジ型コンバータ回路を適用したスイッチング電源装置の回路図である。 本発明の実施の形態3に係る各駆動部をスイッチング回路及び整流回路の近傍に配置したスイッチング電源装置の構成を模式的に示した構成図であり、図15(a)は上面図、図15(b)は側面図、図15(c)は下面図である。 本発明の実施の形態4におけるスイッチング電源装置の構造を模式的に示す側面図である。 本発明の実施の形態4における他のスイッチング電源装置の構造を模式的に示す側面図である。 本発明の実施の形態5におけるスイッチング電源装置の構造を模式的に示す側面図である。 従来のスイッチング電源装置の構造を模式的に示した構成図であり、図19(a)は側面図、図19(b)は上面図である。
符号の説明
1 メインプリント基板(主配線基板)
1a 第一主面
1b 第二主面
2 多層プリント基板(多層配線基板)
2a 第一主面
2b 第二主面
3 リードフレーム基板
3a 第一主面
3b 第二主面
4a〜4d 接続端子
5a〜5d 接続端子
6a,6b 入力平滑コンデンサ
7 出力平滑コンデンサ
8a〜8d MOSFET
9 トランス
9a トランス用一次巻線
9b トランス用二次巻線
9c トランス用コア
9d 中足部
10a〜10d ダイオード
11〜12 スルーホール
13 インダクタンス
13a インダクタンス用巻線
13b インダクタンス用コア
14 電気絶縁性部材
15 電気絶縁性部材
16 貫通孔
17 制御回路
18 パワーモジュール
19 放熱板
20 リードフレーム基板用配線
20a,b 接続端子
21a〜d 駆動部
22 エラーアンプ
23 PWM信号発生部
24 駆動部
25a,b 配線
26 制御回路用基板
101〜104 配線
100〜1000 スイッチング電源装置
a 一次側インバータ領域
b トランス巻線領域
c 二次側整流領域
d 二次側平滑領域
U1 スイッチング制御回路
Q1〜Q2 スイッチング素子
T トランス
D1〜D2 ダイオード
C1 コンデンサ
P プリント基板

Claims (13)

  1. 直流を断続してパルス電圧を生成するスイッチング回路と、一次巻線と二次巻線とがコアで磁気的に結合されてなるトランスと、前記一次巻線と前記二次巻線とを構成する配線を備える多層配線基板と、交流を整流する整流回路と、リプルを抑制する平滑回路と、前記平滑回路の出力電圧を制御する制御回路とを有し、前記パルス電圧が前記一次巻線の第一接続部に印加されて前記二次巻線の第二接続部に誘起する交流を前記整流回路で整流しかつ前記平滑回路で平滑して得る直流を出力するスイッチング電源装置であって、
    前記多層配線基板が、少なくとも前記スイッチング回路と前記整流回路とを備えかつ主配線基板上に配設され、かつ前記主配線基板に前記制御回路が配設されている、スイッチング電源装置。
  2. 前記コアは中足部を備え、
    前記中足部の短軸方向において該中足部の両側に前記トランスの前記第一接続部と前記第二接続部とが配置されている、請求項1記載のスイッチング電源装置。
  3. 前記第一接続部側に前記スイッチング回路が、前記第二接続部側に前記整流回路が、それぞれ配設されており、前記第一接続部と前記スイッチング回路とが、及び、前記第二接続部と前記整流回路とが、それぞれ電気的に直結する部分を有し配設されている、請求項2記載のスイッチング電源装置。
  4. 前記多層配線基板が前記主配線基板の第一主面に配設され、前記制御回路が前記主配線基板の第二主面に配設されている、請求項1記載のスイッチング電源装置。
  5. 前記主配線基板の第二主面には、前記制御回路のみが配設されている、請求項4記載のスイッチング電源装置。
  6. 前記制御回路は前記スイッチング回路から前記パルス電圧を生成させるべく駆動する駆動部を備え、
    前記駆動部は、前記主配線基板上において前記スイッチング回路に対し実質的に最短距離となる位置に配設され、かつ前記スイッチング回路と実質的に最短距離の配線で接続されている、請求項1記載のスイッチング電源装置。
  7. 前記制御回路は前記整流回路を前記整流するように駆動する駆動部を備え、
    前記駆動部は、前記主配線基板上において前記整流回路に対し実質的に最短距離となる位置に配設され、かつ前記整流回路と実質的に最短距離の配線で接続されている、請求項1記載のスイッチング電源装置。
  8. 直流を断続してパルス電圧を生成するスイッチング回路と、一次巻線と二次巻線とがコアで磁気的に結合されてなるトランスと、前記一次巻線と前記二次巻線とを構成する配線を備える多層配線基板と、交流を整流する整流回路と、リプルを抑制する平滑回路と、前記平滑回路の出力電圧を制御する制御回路とを有し、前記パルス電圧が前記一次巻線の第一接続部に印加されて前記二次巻線の第二接続部に誘起する交流を前記整流回路で整流しかつ前記平滑回路で平滑して得る直流を出力するスイッチング電源装置であって、
    前記スイッチング電源装置が、略二次元状に形成された配線層と放熱板とが少なくとも電気絶縁性樹脂とフィラーとを含む混合物からなる電気絶縁性部材を介して積層されてなるリードフレーム基板を有し、
    前記リードフレーム基板の前記配線層上には、少なくとも前記スイッチング回路と前記整流回路とを備える前記多層配線基板が配設されている、スイッチング電源装置。
  9. 前記コアは中足部を備え、
    前記中足部の短軸方向において該中足部の両側に前記トランスの前記第一接続部と前記第二接続部とが配置されている、請求項8記載のスイッチング電源装置。
  10. 前記第一接続部側に前記スイッチング回路が、前記第二接続部側に前記整流回路が、それぞれ配設されており、前記第一接続部と前記スイッチング回路とが、及び、前記第二接続部と前記整流回路とが、それぞれ電気的に直結する部分を有し配設されている、請求項9記載のスイッチング電源装置。
  11. 前記多層配線基板の配線と前記リードフレーム基板の前記配線層とが、略鉛直方向に延出する前記配線層の一部分によって接続されている、請求項8記載のスイッチング電源装置。
  12. 前記電気絶縁性樹脂が、エポキシ樹脂、フェノール樹脂、シアネート樹脂、弗素樹脂、ポリエステル、ポリフェニレンエーテル又はポリイミドの何れかである、請求項8記載のスイッチング電源装置。
  13. 前記フィラーが、酸化アルミニウム、酸化マグネシウム、窒化ボロン、窒化アルミニウム、二酸化珪素、炭化珪素又はフェライトの何れかである、請求項8記載のスイッチング電源装置。

JP2004241305A 2003-08-20 2004-08-20 スイッチング電源装置 Expired - Fee Related JP4558407B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241305A JP4558407B2 (ja) 2003-08-20 2004-08-20 スイッチング電源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003296365 2003-08-20
JP2004241305A JP4558407B2 (ja) 2003-08-20 2004-08-20 スイッチング電源装置

Publications (2)

Publication Number Publication Date
JP2005102485A true JP2005102485A (ja) 2005-04-14
JP4558407B2 JP4558407B2 (ja) 2010-10-06

Family

ID=34466990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241305A Expired - Fee Related JP4558407B2 (ja) 2003-08-20 2004-08-20 スイッチング電源装置

Country Status (1)

Country Link
JP (1) JP4558407B2 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089542A (ja) * 2007-10-01 2009-04-23 Ihi Corp 直流チョッパ装置の平滑コンデンサ配置構造
JP2010153724A (ja) * 2008-12-26 2010-07-08 Tdk Corp コイル基板構造及びスイッチング電源装置
JP2011023384A (ja) * 2009-07-13 2011-02-03 Denso Corp 回路基板
JP2011087367A (ja) * 2009-10-14 2011-04-28 Fujitsu Telecom Networks Ltd 配線パターン長の増大を低減した電源装置
JP2013027250A (ja) * 2011-07-25 2013-02-04 Murata Mfg Co Ltd スイッチング電源
JP2013236078A (ja) * 2012-05-03 2013-11-21 Alstom Transport Sa 高速スイッチング速度を有する電子コンポーネントを備えたデバイス
JP2014121123A (ja) * 2012-12-13 2014-06-30 Fujitsu Ltd 電源装置
JP2014168038A (ja) * 2013-02-04 2014-09-11 Nec Tokin Corp 磁芯、インダクタ、及びインダクタを備えたモジュール
JP2017055652A (ja) * 2013-10-28 2017-03-16 インフィネオン テクノロジーズ オーストリア アクチエンゲゼルシャフト 回路基板に取り付けられた電力段を収容する出力インダクタを有するdc−dcコンバータアセンブリ
KR101782026B1 (ko) 2011-10-31 2017-10-23 프로니우스 인터내셔널 게엠베하 동기 정류기
JP2018022778A (ja) * 2016-08-03 2018-02-08 株式会社豊田自動織機 多層基板
US10333407B2 (en) 2015-05-06 2019-06-25 Infineon Technologies Austria Ag Power stage packages of a multi-phase DC-DC converter under a coupled inductor
CN110556238A (zh) * 2018-06-01 2019-12-10 株式会社田村制作所 电子元件
WO2020179161A1 (ja) * 2019-03-05 2020-09-10 アイシン・エィ・ダブリュ株式会社 半導体装置
US10855178B2 (en) 2015-05-29 2020-12-01 Infineon Technologies Austria Ag Discrete power stage transistor dies of a DC-DC converter under an inductor
JP2021197462A (ja) * 2020-06-15 2021-12-27 愛三工業株式会社 半導体装置
US11935819B2 (en) 2021-03-15 2024-03-19 Murata Manufacturing Co., Ltd. Circuit module having a plurality of lead frames connected to a substrate by metal posts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091499A (ja) * 1998-09-11 2000-03-31 Hitachi Ltd パワー半導体モジュール並びにそれを用いた電動機駆動システム
JP2000091138A (ja) * 1998-09-08 2000-03-31 Sharp Corp シート型トランス、その製造方法およびシート型トランスを含むスイッチング電源モジュール
JP2000357866A (ja) * 1999-04-08 2000-12-26 Lucent Technol Inc 表面実装可能な電源及びその製造方法
JP3196187B2 (ja) * 1993-05-11 2001-08-06 横河電機株式会社 電磁気回路の実装構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196187B2 (ja) * 1993-05-11 2001-08-06 横河電機株式会社 電磁気回路の実装構造
JP2000091138A (ja) * 1998-09-08 2000-03-31 Sharp Corp シート型トランス、その製造方法およびシート型トランスを含むスイッチング電源モジュール
JP2000091499A (ja) * 1998-09-11 2000-03-31 Hitachi Ltd パワー半導体モジュール並びにそれを用いた電動機駆動システム
JP2000357866A (ja) * 1999-04-08 2000-12-26 Lucent Technol Inc 表面実装可能な電源及びその製造方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089542A (ja) * 2007-10-01 2009-04-23 Ihi Corp 直流チョッパ装置の平滑コンデンサ配置構造
JP2010153724A (ja) * 2008-12-26 2010-07-08 Tdk Corp コイル基板構造及びスイッチング電源装置
JP2011023384A (ja) * 2009-07-13 2011-02-03 Denso Corp 回路基板
JP2011087367A (ja) * 2009-10-14 2011-04-28 Fujitsu Telecom Networks Ltd 配線パターン長の増大を低減した電源装置
JP2013027250A (ja) * 2011-07-25 2013-02-04 Murata Mfg Co Ltd スイッチング電源
KR101782026B1 (ko) 2011-10-31 2017-10-23 프로니우스 인터내셔널 게엠베하 동기 정류기
JP2013236078A (ja) * 2012-05-03 2013-11-21 Alstom Transport Sa 高速スイッチング速度を有する電子コンポーネントを備えたデバイス
JP2014121123A (ja) * 2012-12-13 2014-06-30 Fujitsu Ltd 電源装置
JP2014168038A (ja) * 2013-02-04 2014-09-11 Nec Tokin Corp 磁芯、インダクタ、及びインダクタを備えたモジュール
US9892851B2 (en) 2013-10-28 2018-02-13 Infineon Technologies Austria Ag DC-DC converter assembly, method of manufacturing a DC-DC converter assembly and method of manufacturing an output inductor for a DC-DC converter assembly
JP2017055652A (ja) * 2013-10-28 2017-03-16 インフィネオン テクノロジーズ オーストリア アクチエンゲゼルシャフト 回路基板に取り付けられた電力段を収容する出力インダクタを有するdc−dcコンバータアセンブリ
US10333407B2 (en) 2015-05-06 2019-06-25 Infineon Technologies Austria Ag Power stage packages of a multi-phase DC-DC converter under a coupled inductor
US11283356B2 (en) 2015-05-29 2022-03-22 Infineon Technologies North America Corp. Method of assembling a DC-DC converter
US10855178B2 (en) 2015-05-29 2020-12-01 Infineon Technologies Austria Ag Discrete power stage transistor dies of a DC-DC converter under an inductor
JP2018022778A (ja) * 2016-08-03 2018-02-08 株式会社豊田自動織機 多層基板
CN110556238A (zh) * 2018-06-01 2019-12-10 株式会社田村制作所 电子元件
JP2019212709A (ja) * 2018-06-01 2019-12-12 株式会社タムラ製作所 電子部品
CN110556238B (zh) * 2018-06-01 2024-06-11 株式会社田村制作所 电子元件
US11424066B2 (en) 2018-06-01 2022-08-23 Tamura Corporation Electronic component including planar transformer
WO2020179161A1 (ja) * 2019-03-05 2020-09-10 アイシン・エィ・ダブリュ株式会社 半導体装置
JPWO2020179161A1 (ja) * 2019-03-05 2021-10-21 株式会社アイシン 半導体装置
JP7124951B2 (ja) 2019-03-05 2022-08-24 株式会社アイシン 半導体装置
CN113519049B (zh) * 2019-03-05 2024-03-29 株式会社爱信 半导体装置
CN113519049A (zh) * 2019-03-05 2021-10-19 株式会社爱信 半导体装置
JP2021197462A (ja) * 2020-06-15 2021-12-27 愛三工業株式会社 半導体装置
US11935819B2 (en) 2021-03-15 2024-03-19 Murata Manufacturing Co., Ltd. Circuit module having a plurality of lead frames connected to a substrate by metal posts

Also Published As

Publication number Publication date
JP4558407B2 (ja) 2010-10-06

Similar Documents

Publication Publication Date Title
US6970367B2 (en) Switching power supply
JP4558407B2 (ja) スイッチング電源装置
JP7119842B2 (ja) Mosトランジスタ内蔵基板及びこれを用いたスイッチング電源装置
JP5304231B2 (ja) コイル基板構造及びスイッチング電源装置
EP1760867B1 (en) Switching power supply unit
CN102360808B (zh) 线圈基板结构、基板保持结构以及转换电源装置
JP5359749B2 (ja) トランス及びスイッチング電源装置
US10832858B2 (en) High-frequency transformer design for DC/DC resonant converters
US7262973B2 (en) Power conversion module device and power unit using the same
US10811958B2 (en) Water-cooling power supply module
US10256718B2 (en) Low-inductance half-bridge arrangement
WO2014141673A1 (ja) コイル一体型プリント基板、磁気デバイス
TWI449136B (zh) 金屬芯印刷電路板及電子封裝結構
JP5529100B2 (ja) スイッチングレギュレータおよびそれを備える電源装置
TW201433072A (zh) 電源供應裝置
JP4757683B2 (ja) 電源
US20220005795A1 (en) Integrated component and porwer switching device
JP2011087367A (ja) 配線パターン長の増大を低減した電源装置
JPWO2017038369A1 (ja) 電力変換装置
JP2017199940A (ja) 磁気デバイス
JP2014192517A (ja) 磁気デバイス
JP2010251582A (ja) Dc−dcコンバータ
JP2011181889A (ja) 電源装置およびパワーモジュール
JP2002369528A (ja) Dc−dcコンバータ装置
JP3022180B2 (ja) プリントコイル形トランスの実装構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Ref document number: 4558407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees