JP2005102075A - 受信方法および装置 - Google Patents

受信方法および装置 Download PDF

Info

Publication number
JP2005102075A
JP2005102075A JP2003335603A JP2003335603A JP2005102075A JP 2005102075 A JP2005102075 A JP 2005102075A JP 2003335603 A JP2003335603 A JP 2003335603A JP 2003335603 A JP2003335603 A JP 2003335603A JP 2005102075 A JP2005102075 A JP 2005102075A
Authority
JP
Japan
Prior art keywords
signal
phase
signals
error
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003335603A
Other languages
English (en)
Other versions
JP4183592B2 (ja
Inventor
Shiyougo Nakao
正悟 中尾
Norio Higashida
宣男 東田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo IT Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
NTT Data Sanyo System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, NTT Data Sanyo System Corp filed Critical Sanyo Electric Co Ltd
Priority to JP2003335603A priority Critical patent/JP4183592B2/ja
Priority to TW093128531A priority patent/TWI271947B/zh
Priority to US10/948,746 priority patent/US7079593B2/en
Priority to CNB2004100119799A priority patent/CN1328858C/zh
Publication of JP2005102075A publication Critical patent/JP2005102075A/ja
Application granted granted Critical
Publication of JP4183592B2 publication Critical patent/JP4183592B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0851Joint weighting using training sequences or error signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

【課題】 複数のアンテナで受信した信号間の位相誤差を補正する。
【解決手段】 測定部200は、トレーニング信号期間中において、デジタル受信信号300の中から、最も受信電力の高いものを基準信号とし、それ以外を処理対象信号とする。分類部50は、トレーニング信号期間終了後に、基準通知信号352にもとづいてデジタル受信信号300の順番を入れかえる。合成部60は、乗算部62において、デジタル受信信号300を受信ウエイトベクトル信号312で重み付けして乗算信号350を生成し、これらを加算部64で加算する。受信ウエイトベクトル計算部68は、トレーニング信号期間中にわたって、受信ウエイトベクトル信号312適応アルゴリズムによって計算する。一方、トレーニング信号期間終了後は、乗算信号350にもとづいて受信ウエイトベクトル信号312を更新する。
【選択図】 図4

Description

本発明は、受信技術に関し、特に複数のアンテナによって信号を受信する受信方法および装置に関する。
ワイヤレス通信において、一般的に限りある周波数資源の有効利用が望まれている。周波数資源を有効利用するための技術のひとつが、アダプティブアレイアンテナ技術である。アダプティブアレイアンテナ技術は、複数のアンテナでそれぞれ送受信される信号の振幅と位相を制御して、アンテナの指向性パターンを形成する。すなわち、アダプティブアレイアンテナを備えた装置は、複数のアンテナで受信した信号の振幅と位相をそれぞれ変化させ、変化させた複数の受信信号をそれぞれ加算して、当該振幅と位相との変化量(以下、「ウエイト」という)に応じた指向性パターンのアンテナで受信される信号と同等の信号を受信する。また、ウエイトに応じたアンテナの指向性パターンによって信号が送信される。
アダプティブアレイアンテナ技術において、ウエイトを算出するための処理の一例には、最小二乗誤差(MMSE:Minimum Mean Square Error)法にもとづく方法がある。MMSE法において、ウエイトの最適値を与える条件としてウィナー解が知られており、さらにウィナー解を直接解くよりも計算量が少ない漸化式も知られている。漸化式としては、例えば、RLS(Recursive Least Squares)アルゴリズムやLMS(Least Mean Squares)アルゴリズムなどの適応アルゴリズムが使用される。
アダプティブアレイアンテナを設けない場合においても、送信装置に含まれた局部発振器が発振する信号と、受信装置に含まれた局部発振器が発振する信号には、通常周波数オフセットと呼ばれる位相誤差が存在する。位相誤差によって、例えば、送信装置と受信装置間の変調方式にQPSK(Quadrature Phase Shift Keying)等の位相変調が使用される場合、受信装置で受信した信号のコンスタレーション上のQPSK信号点は回転する。このような信号点の回転は、信号の伝送品質を低下させるので、通常はこれを防止するためのAFC(Automatic Frequency Controler)が受信装置に設けられる(例えば、特許文献1参照。)。
特開2001−285161号公報
適応アルゴリズム等においては、一般的に既知の参照信号区間でウエイトを計算し、参照信号に続くデータ信号をウエイトで重み付けしながら合成する。しかしながら、アダプティブアレイを構成する複数のアンテナに対して、複数の局部発振器がそれぞれ設けられている場合、参照信号区間では、複数のアンテナで受信した合成すべき信号を同相合成可能であるが、データ信号区間では、同相合成できるとは限らない。特に、複数の局部発振器に周波数安定度の低いものが使用されていれば、一般的に複数の信号間の位相誤差が時間の経過と共に大きくなっていく。その結果、参照信号区間では同相合成できていた複数の信号が、データ信号の終わりでは同相合成できないこともありえる。これを回避するためには、参照信号区間経過後も、ウエイトを適応的に更新すればよい。しかしながら、ウエイトを適応的に更新する方法は、一般的に計算量が増加し、回路規模の増大と回路価格の上昇につながる。
本発明はこうした状況に鑑みてなされたものであり、その目的は、複数のアンテナでそれぞれ受信した信号間に含まれた周波数誤差を補正するための受信技術を提供することにある。
本発明のある態様は、受信装置である。この装置は、複数のアンテナを介して、既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信する受信部と、少なくとも既知の信号を含んだ区間にわたって、受信した複数の信号の位相を揃えるための複数の位相回転信号をそれぞれ生成する生成部と、生成した複数の位相回転信号によって、受信した複数の信号をそれぞれ位相回転する位相回転部と、位相回転した複数の信号のうちのひとつを基準信号に選択し、位相回転した複数の信号のうちの残りを処理対象信号とする分類部と、既知の信号を含んだ区間終了以降に、基準信号の位相成分に対する処理対象信号の位相成分の誤差をそれぞれ検出する誤差検出部と、検出した位相成分の誤差にもとづいて、処理対象信号に対応した位相回転信号をそれぞれ更新する更新部とを備える。
以上の装置により、既知の信号を含んだ区間終了以降であっても、処理対象の信号の位相成分を基準信号の位相成分に揃えるため、位相成分のずれを補正可能である。
複数のアンテナを介して、既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信する受信部と、受信した複数の信号のうちのひとつを基準信号に選択し、受信した複数の信号のうちの残りを処理対象信号とする分類部と、既知の信号を含んだ区間で、基準信号の位相成分に対する処理対象信号の位相成分の誤差を初期位相誤差としてそれぞれ検出する初期検出部と、既知の信号を含んだ区間終了以降に、基準信号の位相成分に対する処理対象信号の位相成分の誤差をそれぞれ検出し、さらに当該位相成分の誤差から、対応した初期位相誤差をそれぞれ除去する誤差検出部と、初期位相誤差を除去した位相成分の誤差によって、処理対象信号をそれぞれ位相回転する第1位相回転部と、少なくとも既知の信号を含んだ区間にわたって、受信した複数の信号の位相を揃えるための複数の位相回転信号をそれぞれ生成する生成部と、生成した複数の位相回転信号によって、基準信号と位相回転した処理対象信号を含めた複数の信号をそれぞれ位相回転する第2位相回転部とを備える。
以上の装置により、既知の信号を含んだ区間終了以降であっても、既知の信号を含んだ区間での基準信号との誤差を保持するように処理対象の信号の位相成分を回転させるため、既知の信号を含んだ区間終了以降で生じる位相成分のずれを補正可能である。
位相回転した複数の信号を合成する合成部をさらに備えてもよい。
「合成」は、複数の信号の位相のみを合成してもよいし、複数の信号の位相と振幅を合成してもよい。
本発明の別の態様も、受信装置である。この装置は、複数のアンテナを介して、既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信する受信部と、少なくとも既知の信号を含んだ区間にわたって、受信した複数の信号のそれぞれに対する受信重み係数を複数導出する導出部と、導出した複数の受信重み係数と受信した複数の信号をそれぞれ乗算し、さらに複数の乗算結果を合成する合成部と、複数の乗算結果のうちのひとつを基準信号に選択し、複数の乗算結果のうちの残りを処理対象信号とする分類部と、既知の信号を含んだ区間で、基準信号の位相成分に対する処理対象信号の位相成分の誤差を初期位相誤差としてそれぞれ検出する初期検出部と、既知の信号を含んだ区間終了以降に、基準信号の位相成分に対する処理対象信号の位相成分の誤差をそれぞれ検出し、さらに当該位相成分の誤差から、対応した初期位相誤差をそれぞれ除去する誤差検出部と、初期位相誤差を除去した位相成分の誤差によって、処理対象信号に対応した受信重み係数をそれぞれ更新する更新部とを備える。
以上の装置により、既知の信号を含んだ区間が終了する際の複数の信号間の誤差を保持するように、既知の信号を含んだ区間終了後の受信重み係数を制御するため、既知の信号がなくても既知の信号を含んでいる場合と同様に、合成する前の信号の位相関係を一定に保持できる。
受信部は、複数の信号発生器からそれぞれ出力される複数のローカル信号にもとづいて、複数の信号をそれぞれ受信してもよい。受信した複数の信号の強度を測定する測定部をさらに備え、分類部は、測定した複数の信号の強度に応じて、複数の乗算結果のうちのひとつを基準信号として選択してもよい。
「複数の信号をそれぞれ受信」する一例は、直交検波であるが、それ以外の方法で受信してもよい。
本発明のさらに別の態様は、受信方法である。この方法は、既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信し、少なくとも既知の信号を含んだ区間にわたって、受信した複数の信号の位相を揃えるための複数の位相回転信号をそれぞれ生成するステップと、生成した複数の位相回転信号によって受信した複数の信号をそれぞれ位相回転し、さらに複数の位相回転結果のうちのひとつを基準信号に選択し、複数の位相回転結果のうちの残りを処理対象信号とするステップと、既知の信号を含んだ区間終了以降に、検出した基準信号の位相成分に対する処理対象信号の位相成分の誤差にもとづいて、処理対象信号に対応した位相回転信号をそれぞれ更新するステップとを備える。
複数の位相回転結果を合成して、当該合成した信号を出力するステップをさらに備えてもよい。
本発明のさらに別の態様も、受信方法である。この方法は、既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信し、少なくとも既知の信号を含んだ区間にわたって、受信した複数の信号のそれぞれに対する受信重み係数を複数導出するステップと、導出した複数の受信重み係数と受信した複数の信号をそれぞれ乗算し、さらに複数の乗算結果のうちのひとつを基準信号に選択し、複数の乗算結果のうちの残りを処理対象信号とするステップと、既知の信号を含んだ区間で、基準信号の位相成分に対する処理対象信号の位相成分の誤差を初期位相誤差としてそれぞれ検出するステップと、既知の信号を含んだ区間終了以降に、検出した基準信号の位相成分に対する処理対象信号の位相成分の誤差から、初期位相誤差をそれぞれ除去した信号によって、処理対象信号に対応した受信重み係数をそれぞれ更新するステップとを備える。
受信重み係数を複数導出するステップは、複数の信号発生器からそれぞれ出力される複数のローカル信号にもとづいて、複数の信号をそれぞれ受信してもよい。受信した複数の信号の強度を測定するステップをさらに備え、基準信号を選択するステップは、測定した複数の信号の強度に応じて、複数の乗算結果のうちのひとつを基準信号として選択してもよい。
本発明のさらに別の態様は、プログラムである。このプログラムは、無線ネットワークを介して、既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信するステップと、少なくとも既知の信号を含んだ区間にわたって、受信した複数の信号の位相を揃えるための複数の位相回転信号をそれぞれ生成し、メモリに記憶するステップと、メモリに記憶した複数の位相回転信号によって、受信した複数の信号をそれぞれ位相回転するステップと、位相回転した複数の信号のうちのひとつを基準信号に選択し、位相回転した複数の信号のうちの残りを処理対象信号とするステップと、既知の信号を含んだ区間終了以降に、基準信号の位相成分に対する処理対象信号の位相成分の誤差をそれぞれ検出するステップと、検出した位相成分の誤差にもとづいて、処理対象信号に対応した位相回転信号をそれぞれメモリ上で更新するステップとをコンピュータに実行させる。
位相回転した複数の信号を合成して、当該合成した信号を出力するステップをさらに備えてもよい。
本発明のさらに別の態様も、プログラムである。このプログラムは、無線ネットワークを介して、既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信するステップと、少なくとも既知の信号を含んだ区間にわたって、受信した複数の信号のそれぞれに対する受信重み係数を複数導出し、メモリに記憶するステップと、メモリに記憶した複数の受信重み係数と受信した複数の信号をそれぞれ乗算し、さらに複数の乗算結果を合成するステップと、複数の乗算結果のうちのひとつを基準信号に選択し、複数の乗算結果のうちの残りを処理対象信号とするステップと、既知の信号を含んだ区間で、基準信号の位相成分に対する処理対象信号の位相成分の誤差を初期位相誤差としてそれぞれ検出するステップと、既知の信号を含んだ区間終了以降に、基準信号の位相成分に対する処理対象信号の位相成分の誤差をそれぞれ検出し、さらに当該位相成分の誤差から、対応した初期位相誤差をそれぞれ除去するステップと、初期位相誤差を除去した位相成分の誤差によって、処理対象信号に対応した受信重み係数をそれぞれメモリ上で更新するステップとをコンピュータに実行させる。
受信するステップは、複数の信号発生器からそれぞれ出力される複数のローカル信号にもとづいて、複数の信号をそれぞれ受信してもよい。受信した複数の信号の強度を測定するステップをさらに備え、基準信号を選択するステップは、測定した複数の信号の強度に応じて、複数の乗算結果のうちのひとつを基準信号として選択してもよい。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、複数のアンテナでそれぞれ受信した信号間に含まれた周波数誤差を補正できる。
本発明を具体的に説明する前に、概要を述べる。本発明の実施例1は、無線LAN(Local Area Network)で使用される基地局装置の様に、端末装置を接続可能な基地局装置に関する。本発明の実施例における基地局装置は、複数のアンテナを備えており、複数のアンテナで受信した通信対象の端末装置からの信号をそれぞれの信号に対応した複数の周波数発振器で直交検波する。さらに、基地局装置は、直交検波した複数の信号からそれぞれに対応した複数の重み係数(以下、「受信ウエイトベクトル」という)を計算し、計算した複数の受信ウエイトベクトルによって、端末装置からの複数の信号をアダプティブアレイ信号処理する。端末装置からの信号は、バースト的に送信されており、バースト信号の先頭部分に既知の信号が配置され、当該既知の信号に続いてデータ信号が配置されている。基地局装置は、受信した信号のうちの既知の信号が含まれた区間において、受信ウエイトベクトルを計算する。なお、複数の周波数発振器は、周波数の安定性が高くなく、それぞれの周波数がずれているために、データ信号区間で複数の受信信号間に位相誤差が生じる。
本発明の実施例における基地局装置は、複数のアンテナで受信された複数の受信信号のうち最も受信電力の大きい信号を選択し(以下、「基準信号」という)、それ以外の信号を処理対象信号とする。既知の信号区間の終了時に、基準信号に対応した受信ウエイトベクトル(以下、「基準受信ウエイトベクトル」という)の位相と処理対象信号に対応した受信ウエイトベクトル(以下、「処理対象受信ウエイトベクトル」という)との位相誤差が、処理対象信号単位で計算され、それらを初期位相誤差とする。データ信号区間では、基準信号と基準受信ウエイトベクトルとの乗算結果(以下、これも「基準信号」というが、前述の基準信号とは区別せずに使用する)と、処理対象信号と処理対象受信ウエイトベクトルとの乗算結果(以下、これも「処理対象信号」というが、前述の処理対象信号とは区別せずに使用する)との間の位相誤差を計算する。さらに、位相誤差から初期位相誤差を除去した信号によって、処理対象受信ウエイトベクトルの位相を補正する。すなわち、既知の信号区間の終了後においても、基準受信ウエイトベクトルと処理対象受信ウエイトベクトルの位相関係を既知の信号区間の終了時のものと同一になるように制御する。
(実施例1)
図1は、実施例1に係る通信システム100の構成を示す。通信システム100は、端末装置10、基地局装置34、ネットワーク32を含む。端末装置10は、ベースバンド部26、モデム部28、無線部30、端末用アンテナ16を含み、基地局装置34は、基地局用アンテナ14と総称される第1基地局用アンテナ14a、第2基地局用アンテナ14b、第N基地局用アンテナ14n、無線部12と総称される第1無線部12a、第2無線部12b、第N無線部12n、信号処理部18、モデム部20、ベースバンド部22、制御部24を含む。また、信号として、デジタル受信信号300と総称される第1デジタル受信信号300a、第2デジタル受信信号300b、第Nデジタル受信信号300n、デジタル送信信号302と総称される第1デジタル送信信号302a、第2デジタル送信信号302b、第Nデジタル送信信号302n、合成信号304、分離前信号308、信号処理部制御信号310、無線部制御信号318を含む。
基地局装置34のベースバンド部22は、ネットワーク32とのインターフェースであり、端末装置10のベースバンド部26は、端末装置10と接続したPCや、端末装置10内部のアプリケーションとのインターフェースであり、それぞれ通信システム100で伝送の対象となる情報信号の送受信処理を行う。また、誤り訂正や自動再送処理がなされてもよいが、ここではこれらの説明を省略する。
基地局装置34のモデム部20、端末装置10のモデム部28は、変調処理として、キャリアを送信したい情報信号で変調して、送信信号を生成するが、ここでは、変調方式として、BPSK(Binary Phase Shift Keying)、QPSKを対象とする。また、復調処理として、受信信号を復調して、送信された情報信号を再生する。
信号処理部18は、アダプティブアレイアンテナによる送受信処理に必要な信号処理を行う。
基地局装置34の無線部12、端末装置10の無線部30は、信号処理部18、モデム部20、ベースバンド部22、ベースバンド部26、モデム部28で処理されるベースバンドの信号と無線周波数の信号間の周波数変換処理、増幅処理、ADまたはDA変換処理等を行う。詳細は後述するが、直交検波および直交変調するための周波数発振器が、後述の基地局用アンテナ14に対応して無線部12の中に複数含まれるものとする。
基地局装置34の基地局用アンテナ14、端末装置10の端末用アンテナ16は、無線周波数の信号を送受信処理する。アンテナの指向性は任意でよく、基地局用アンテナ14のアンテナ数はNとされる。
制御部24は、無線部12、信号処理部18、モデム部20、ベースバンド部22のタイミングやチャネル配置を制御する。
図2は、実施例1に係るバーストフォーマットの構成を示すが、これはCSMA(Carrier Sense Multiple Access)をベースとした無線LAN(Local Area Network)のひとつであるIEEE802.11b標準のバーストフォーマットである。バーストの先頭から144ビットの間にプリアンブルが、それに続く48ビットの間に、ヘッダが配置されている。プリアンブルは、端末装置10や基地局装置34にとって既知であるため、後述するトレーニング信号としても使用できる。
図3は、第1無線部12aの構成を示す。第1無線部12aは、スイッチ部140、受信部142、送信部144、周波数発振部166を含む。さらに、受信部142は、周波数変換部146、AGC(Automatic Gain Control)148、直交検波部150、AD変換部152、逆拡散部154を含み、送信部144は、増幅部164、周波数変換部156、直交変調部158、DA変換部160、拡散部162を含む。
スイッチ部140は、図示しない制御部24からの無線制御信号318にもとづいて、受信部142と送信部144に対する信号の入出力を切りかえる。すなわち、送信時には送信部144からの信号を選択し、受信時には受信部142への信号を選択する。
受信部142の周波数変換部146と送信部144の周波数変換部156は、対象とする信号に対して無線周波数と中間周波数間の周波数変換を行う。
AGC148は、受信した信号の振幅をAD変換部152のダイナミックレンジ内の振幅にするために、利得を自動的に制御する。
直交検波部150は、中間周波数の信号を直交検波して、ベースバンドのアナログ信号を生成する。一方、直交変調部158は、ベースバンドのアナログ信号を直交変調して、中間周波数の信号を生成する。
周波数発振部166は、直交検波部150と直交変調部158に対して、所定の周波数を有した信号を供給する。図示のごとくひとつの無線部12にひとつの周波数発振部166が設けられるため、複数の無線部12に対して複数の周波数発振部166が設けられる。
AD変換部152は、ベースバンドのアナログ信号をデジタル信号に変換し、DA変換部160は、ベースバンドのデジタル信号をアナログ信号に変換する。
逆拡散部154は、ベースバンドのデジタル信号を拡散符号系列で逆拡散処理する。ここで、逆拡散部154から出力される逆拡散処理されたベースバンドのデジタル信号を第1受信デジタル信号300aとする。なお、当該逆拡散処理はウォルシュ変換に対応してもよく、その場合、基地局装置34はCCK(Complementary Code Keying)変調で通信可能になる。
拡散部162は、ベースバンドのデジタル信号を拡散符号系列で拡散処理する。ここで、拡散部162に入力される拡散処理されるべきベースバンドのデジタル信号を第1送信デジタル信号302aとする。
増幅部164は、送信すべき無線周波数の信号を増幅する。
図4は、信号処理部18の構成を示す。信号処理部18は、分類部50、合成部60、受信ウエイトベクトル計算部68、参照信号記憶部70、測定部200、分離部72、送信ウエイトベクトル設定部76を含む。また、合成部60は、乗算部62と総称される第1乗算部62a、第2乗算部62b、第N乗算部62n、加算部64を含み、分離部72は、乗算部74と総称される第1乗算部74a、第2乗算部74b、第N乗算部74nを含む。
また信号として、参照信号306、出力受信ウエイトベクトル信号402、受信ウエイトベクトル信号312と総称される第1受信ウエイトベクトル信号312a、第2受信ウエイトベクトル信号312b、第N受信ウエイトベクトル信号312n、送信ウエイトベクトル信号314と総称される第1送信ウエイトベクトル信号314a、第2送信ウエイトベクトル信号314b、第N送信ウエイトベクトル信号314n、乗算信号350と総称される第1乗算信号350a、第2乗算信号350b、第N乗算信号350n、基準通知信号352を含む。
測定部200は、トレーニング信号期間中において、デジタル受信信号300の受信電力をそれぞれ測定し、最も受信電力の高いデジタル受信信号300のひとつを基準信号に選択する。また前述のごとく、基準信号以外のデジタル受信信号300を処理対象信号とする。選択した基準信号に関する情報は、基準通知信号352として出力される。ここで、トレーニング信号期間中の認識は、信号処理部制御信号310によってなされる。
分類部50は、トレーニング信号期間終了後において、基準通知信号352にもとづいてデジタル受信信号300の順番を入れかえる。具体的には後述の乗算部62のうち、第1乗算部62aに基準信号が入力されるようにする。一方、トレーニング信号期間中は、入力したデジタル受信信号300を入れかえなくてもよく、あるいは前のバースト信号での基準通知信号352にもとづいてデジタル受信信号300の順番を入れかえてもよい。
合成部60は、乗算部62において、デジタル受信信号300を受信ウエイトベクトル信号312で重み付けして乗算信号350を生成した後、乗算信号350を加算部64で加算して、合成信号304を出力する。
参照信号記憶部70は、トレーニング信号期間中に予め記憶した既知のトレーニング信号を参照信号306として出力する。
受信ウエイトベクトル計算部68は、トレーニング信号期間中にわたって、デジタル受信信号300、合成信号304、参照信号306から、デジタル受信信号300の重み付けに必要な受信ウエイトベクトル信号312を、RLSアルゴリズムやLMSアルゴリズムなどの適応アルゴリズムによって計算する。一方、トレーニング信号期間終了後は、乗算信号350にもとづいて受信ウエイトベクトル信号312を更新する。更新方法の詳細は後述する。
送信ウエイトベクトル設定部76は、分離前信号308の重み付けに必要な送信ウエイトベクトル信号314を、出力受信ウエイトベクトル信号402にもとづいて設定する。処理を簡略化するために、受信ウエイトベクトル信号312と送信ウエイトベクトル信号314が同一であってもよい。
分離部72は、乗算部74において、分離前信号308を送信ウエイトベクトル信号314で重み付けし、デジタル送信信号302を出力する。
この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリのロードされた予約管理機能のあるプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
図5は、受信ウエイトベクトル計算部68の構成を示す。受信ウエイトベクトル計算部68は、受信ウエイトベクトル更新部114、出力設定部116、初期検出部118、初期ウエイトベクトル計算部120を含む。また信号として、初期ウエイトベクトル信号362と総称される第1初期ウエイトベクトル信号362a、第2初期ウエイトベクトル信号362b、第N初期ウエイトベクトル信号362n、初期位相誤差信号366と総称される第1初期位相誤差信号366a、第N−1初期位相誤差信号366(n−1)、出力受信ウエイトベクトル信号402と総称される第1出力受信ウエイトベクトル信号402a、第2出力受信ウエイトベクトル信号402b、第N出力受信ウエイトベクトル信号402nを含む。
初期ウエイトベクトル計算部120は、トレーニング信号期間でデジタル受信信号300、合成信号304、参照信号306から、前述の適応アルゴリズムによって初期ウエイトベクトル信号362を計算する。
初期検出部118は、基準通知信号352にもとづいて初期ウエイトベクトル信号362の中から、基準信号に対応した初期ウエイトベクトル信号362(以下、「基準用初期ウエイトベクトル」とし、これに対して処理対象信号に対応した初期ウエイトベクトル信号362を「処理対象用初期ウエイトベクトル」という)を選択し、基準用初期ウエイトベクトルを第1初期ウエイトベクトル信号362aとして受信ウエイトベクトル更新部114に出力する。さらに、トレーニング終了時の基準用初期ウエイトベクトルに対する処理対象用初期ウエイトベクトルの位相誤差を計算し、これを初期位相誤差信号366として後述の受信ウエイトベクトル更新部114に出力する。なお、初期位相誤差信号366は、処理対象用初期ウエイトベクトルの数だけ計算される。
受信ウエイトベクトル更新部114は、トレーニング信号期間終了後において、初期ウエイトベクトル信号362を初期値として受信ウエイトベクトル信号312を更新する。受信ウエイトベクトル更新部114は、乗算信号350のうち基準信号に対する処理対象信号の位相差を初期位相誤差信号366の値に保持するように受信ウエイトベクトル信号312を更新する。
出力設定部116は、受信ウエイトベクトル信号312を出力受信ウエイトベクトル信号402として出力する。出力受信ウエイトベクトル信号402は、受信ウエイトベクトル信号312を連続的に出力されてもよいし、バースト信号の終了時点での受信ウエイトベクトル信号312のように、特定の1時点の受信ウエイトベクトル信号312を出力されてもよい。
図6は、初期ウエイトベクトル計算部120の構成を示す。初期ウエイトベクトル計算部120は、第1初期ウエイトベクトル計算部120a、第2初期ウエイトベクトル計算部120b、第N初期ウエイトベクトル計算部120nを含み、第1初期ウエイトベクトル計算部120aは、加算部80、複素共役部82、乗算部84、ステップサイズパラメータ記憶部86、乗算部88、加算部90、遅延部92を含む。
加算部80は、合成信号304と参照信号306との間で、差分を計算し、誤差信号を出力する。この誤差信号は、複素共役部82で複素共役変換される。
乗算部84は、複素共役変換された誤差信号と、第1デジタル受信信号300aを乗算し、第1の乗算結果を生成する。
乗算部88は、第1の乗算結果にステップサイズパラメータ記憶部86で記憶されているステップサイズパラメータを乗算し、第2の乗算結果を生成する。第2の乗算結果は、遅延部92と加算部90によって、フィードバックされた後に、新たな第2の乗算結果と加算される。このような、LMSアルゴリズムによって、逐次更新された加算結果が、第1受信ウエイトベクトル312aとして出力される。
図7は、受信ウエイトベクトル更新部114の構成を示す。受信ウエイトベクトル更新部114は、乗算部122と総称される第1乗算部122a、第N−1乗算部122(n−1)、信号間誤差検出部124、初期誤差検出部126、保持部128と総称される第1保持部128a、第2保持部128b、第N保持部128nを含む。
信号間誤差検出部124は、乗算信号350のうち基準信号に対する処理対象信号の位相誤差を計算する。すなわち、第1乗算信号350aに対する第2乗算信号350bから第N乗算信号350nの位相誤差を計算する。位相誤差の計算は、位相の値の演算によって実行してもよいし、ベクトル演算によって実行してもよい。
初期誤差検出部126は、信号間誤差検出部124で計算した位相誤差の値から初期位相誤差信号366に対応した値を除去する。すなわち、初期位相誤差信号366での位相の値からのずれを計算する。
乗算部122は、初期誤差検出部126から出力された位相誤差を反転した値で、過去の受信ウエイトベクトル信号312を更新し、新たな受信ウエイトベクトル信号312を出力する。当該計算も信号間誤差検出部124と同様に位相の値の演算によって実行してもよいし、ベクトル演算によって実行してもよい。なお、位相の値の演算で実行する場合は、振幅の値を別途記憶する必要がある。
保持部128は、トレーニング信号期間終了時に初期ウエイトベクトル信号362を保持し、トレーニング終了後に乗算部122で更新された受信ウエイトベクトル信号312を保持する。ここで、前述のごとく基準用初期ウエイトベクトルを第1初期ウエイトベクトル信号362aとする。
図8は、ウエイトベクトルの更新処理手順を示すフローチャートである。受信した信号がトレーニング信号期間の場合(S10のY)、初期ウエイトベクトル計算部120は初期ウエイトベクトル信号362を計算する(S12)。トレーニング信号期間の終了時点で、初期検出部118は基準通知信号352にもとづいて、初期ウエイトベクトル信号362を基準用初期ウエイトベクトルと処理対象用初期ウエイトベクトルに分類する(S14)。さらに初期検出部118は、処理対象用初期ウエイトベクトルと基準用初期ウエイトベクトルの誤差を初期位相誤差として計算し(S16)、初期位相誤差信号366を出力する。一方、トレーニング信号期間でなければ(S10のN)、受信ウエイトベクトル更新部114は、乗算信号350のうち基準信号に対する処理対象信号の位相誤差を検出する(S18)。さらに、検出した位相誤差から初期位相誤差を除去する(S20)。当該初期位相誤差を除去した位相誤差の値によって、受信ウエイトベクトル信号312を更新する(S22)。
図9は、シミュレーションによって得られた出力信号を示す。条件として、基地局用アンテナ14の数を4とし、基地局用アンテナ14のそれぞれに対応した周波数発振部166に0.948kHz、0.294kHz、0.588kHz、0.441kHzの位相オフセットが与えられている。また、バースト信号の長さは約1msecとしている。図9は、合成信号304の同相成分と直交成分の値の時間経過を示しており、x軸とy軸の値はデジタル信号として量子化された値である。また基地局用アンテナ14で受信した信号の変調方式は、BPSKとした。図中の×印は、本実施例による受信ウエイトベクトル信号312の更新を行わない場合の合成信号304を示す。図示のごとく、時間経過とともに、周波数発振部166間の周波数オフセットによって乗算信号350の位相関係が、トレーニング信号終了時の位相関係から崩れ、複数の乗算信号350の間で振幅を互いに打ち消しあうために、合成信号304の振幅が小さくなっている。一方、図中の●印は、本実施例による受信ウエイトベクトル信号312の更新を行う場合の合成信号304を示す。本実施例の受信ウエイトベクトル計算部68では、トレーニング終了時の乗算信号350の位相関係を保持するように受信ウエイトベクトル信号312を補正するため、合成信号304の振幅は小さくならない。
以上の構成による基地局装置34の動作を説明する。基地局用アンテナ14で受信された信号は、それぞれ異なった周波数オフセットの周波数発振部166によって直交検波される。直交検波された信号は、ディジタル変換されてデジタル受信信号300となる。受信したバースト信号のトレーニング信号期間において、初期ウエイトベクトル計算部120は、適応アルゴリズムにもとづいて初期ウエイトベクトル信号362を計算する。また、測定部200は、デジタル受信信号300の電力を測定し、最も電力の大きいデジタル受信信号300を基準信号とする。トレーニング信号期間の終了時において、初期ウエイトベクトル信号362のうちの基準用初期ウエイトベクトルに対する処理対象用ウエイトベクトルの位相誤差を計算し、その結果を初期位相誤差として保持する。また、受信ウエイトベクトル信号312の初期値を初期ウエイトベクトル信号362に設定する。
トレーニング信号期間の終了後において、受信ウエイトベクトル信号312とデジタル受信信号300を乗算した乗算信号350の中で、基準信号に対する処理対象信号の位相誤差をそれぞれ計算する。さらに、計算した位相誤差の値から初期位相誤差の値を除去して、当該除去した値によって、受信ウエイトベクトル信号312を更新する。また、加算部64は、乗算信号350を合成した合成信号304を出力する。
本発明の実施例1によれば、複数のアンテナに対して設けられた周波数発振器が周波数オフセットを有している場合であっても、既知の信号を受信している際に求められた複数のアンテナで受信された信号間の位相誤差を保持できる。また、既知の信号を受信していない場合であっても、既知の信号を受信している場合の位相誤差によって、複数の信号を合成した信号の振幅を保持できる。また、位相誤差を求めるための基準となる信号は、複数のアンテナで受信された信号のうち、最も受信電力の大きい信号であるため、誤差を小さくできる。また、基準信号との位相誤差を保持するだけのため、処理量を小さくできる。
(実施例2)
本発明の実施例2は、実施例1と同様に複数のアンテナと、当該複数のアンテナのそれぞれに対応した複数の周波数発振器を備えた基地局装置に関する。しかしながら、実施例2は、実施例1と異なってアダプティブアレイアンテナ処理を実行せず、複数のアンテナで受信した信号を等利得合成や最大比合成などのダイバーシティ処理する基地局装置に関する。
図10は、実施例2に係る信号処理部18の構成を示す。図10の信号処理部18は、図4の信号処理部18のうちの受信機能に相当し、位相回転部180、位相計算部182を含む。また、信号として位相回転信号370と総称される第1位相回転信号370a、第2位相回転信号370b、第N位相回転信号370n、乗算信号372と総称される第1乗算信号372a、第2乗算信号372b、第N乗算信号372nを含む。図10の信号処理部18のうち、図4の信号処理部18に含まれた部材と同一の符号を有した部材は、同様の動作を行うため、説明を省略する。
位相計算部182は、トレーニング信号期間中にわたって、デジタル受信信号300、参照信号306から、デジタル受信信号300の位相回転に必要な位相回転信号370を計算する。一方、トレーニング信号期間終了後は、後述の乗算信号372にもとづいて位相回転信号370を更新する。詳細は後述する。
位相回転部180は、位相回転信号370によってデジタル受信信号300を位相回転させて、乗算信号372を出力する。
図11は、位相計算部182の構成を示す。位相計算部182は、初期位相誤差検出部184、位相誤差更新部186を含む。また信号として、初期位相誤差信号374と総称される第1初期位相誤差信号374a、第2初期位相誤差信号374b、第N初期位相誤差信号374nを含む。
初期位相誤差検出部184は、トレーニング信号期間において、参照信号306にもとづいてデジタル受信信号300の位相をそれぞれ検出する。検出方法の一例は、逆変調方法である。さらに、トレーニング信号期間の終了時において、基準通知信号352にもとづいて基準信号に対応した初期位相誤差信号374と処理対象信号に対応した初期位相誤差信号374を分類し、基準信号に対応した初期位相誤差信号374を第1初期位相誤差信号374aとして出力する。
位相誤差更新部186は、初期位相誤差信号374を初期値として、乗算信号372にもとづいて位相回転信号370を更新する。具体的な構成は、図7の受信ウエイトベクトル更新部114と同様であるが、受信ウエイトベクトル更新部114のうち初期誤差検出部126は含まれていない。すなわち、乗算信号372の位相がすべて揃うように制御する。
図12は、実施例2に係る信号処理部18の構成を示す。信号処理部18は、分類部50、乗算部216と総称される第1乗算部216a、第2乗算部216b、第N乗算部216n、位相回転部180、加算部64、測定部200、初期位相誤差検出部210、位相誤差検出部212、初期同期信号検出部214、参照信号記憶部70を含む。また信号として、デジタル受信信号300と総称される第1デジタル受信信号300a、第2デジタル受信信号300b、第Nデジタル受信信号300n、合成信号304、参照信号306、信号処理部制御信号310を含む。
測定部200は、トレーニング信号期間中において、デジタル受信信号300の受信電力をそれぞれ測定し、最も受信電力の高いデジタル受信信号300のひとつを基準信号に選択する。また前述のごとく、基準信号以外のデジタル受信信号300を処理対象信号とする。選択した基準信号に関する情報は、基準通知信号352として出力される。ここで、トレーニング信号期間中の認識は、信号処理部制御信号310によってなされる。
分類部50は、トレーニング信号期間終了後において、基準通知信号352にもとづいてデジタル受信信号300の順番を入れかえる。具体的には後述の乗算部62のうち、第1乗算部62aに基準信号が入力されるようにする。一方、トレーニング信号期間中は、入力したデジタル受信信号300を入れかえなくてもよく、あるいは前のバースト信号での基準通知信号352にもとづいてデジタル受信信号300の順番を入れかえてもよい。
初期位相誤差検出部210は、トレーニング信号期間内において、デジタル受信信号300のうちの基準信号に対する処理対象信号の位相誤差をそれぞれ計算し、トレーニング信号期間が終了するときまでに初期位相誤差として決定する。トレーニング信号期間終了後は動作せず、初期位相誤差を保持し、位相誤差検出部212に出力する。
位相誤差検出部212は、トレーニング信号期間終了後にデジタル受信信号300のうち基準信号に対する処理対象信号の位相誤差を逐次計算し、計算した位相誤差から初期位相誤差の成分をそれぞれ除去する。乗算部216は、デジタル受信信号300と初期位相誤差の成分を除去した位相誤差を乗算する。その結果、トレーニング期間終了後においても、デジタル受信信号300間の位相関係は、トレーニング期間中の状態を保持する。
初期同期信号検出部214は、トレーニング信号期間中にデジタル受信信号300と参照信号306から、デジタル受信信号300間の位相をそろえるための信号を生成する。当該信号の生成には、例えば逆変調方法が使用される。トレーニング信号期間終了後は、乗算部62で生成した信号によって乗算部216の出力信号を位相回転し、それらを加算部64で加算して、合成信号304を出力する。
参照信号記憶部70は、トレーニング信号期間中に予め記憶した既知のトレーニング信号を参照信号306として出力する。
合成部60は、乗算部62において、デジタル受信信号300を受信ウエイトベクトル信号312で重み付けして乗算信号350を生成した後、乗算信号350を加算部64で加算して、合成信号304を出力する。
本発明の実施例2によれば、複数のアンテナに対して設けられた周波数発振器が周波数オフセットを有している場合であっても、複数のアンテナで受信された信号間の位相を揃えて合成できる。また、位相誤差を求めるための基準となる信号は、複数のアンテナで受信された信号のうち、最も受信電力の大きい信号であるため、誤差を小さくできる。また、基準信号との位相誤差を保持するだけのため、処理量を小さくできる。
以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
本発明の実施例1と2において、受信ウエイトベクトル計算部68は、受信ウエイトベクトル信号312の推定のために適応アルゴリズムを使用している。しかし、受信ウエイトベクトル計算部68でこれら以外の処理が実行されてもよく、例えば、受信ウエイトベクトル計算部68が、既知信号との相関処理によって受信ウエイトベクトル信号312を求めてもよい。また、受信ウエイトベクトル計算部68において、適応アルゴリズムや相関処理とは異なるMUSIC(MUltiple SIgnal Classification)アルゴリズムなどの到来方向推定が実行されてもよい。この変形例によって、より詳細に希望波と不要波が識別される。つまり、アダプティブアレイアンテナについての信号処理において、複数の受信信号を分離可能な値が推定されればよい。
本発明の実施例1と2において、通信システム100をCSMAをベースにした通信システム100に適用している。しかし、基地局装置34はそれ以外の通信システムに適用されてもよく、例えば、TDMA(Time Division Multiple Access)、CDMA(Code Division Multiple Access)、SDMA(Space Division Multiple Access)などである。この変形例によれば、様々な通信システムに本発明を適用できる。つまり、端末装置10からの信号を受信する基地局装置34であればよい。
本発明の実施例1において、初期検出部118は、トレーニング信号期間終了時の初期ウエイトベクトル信号362間の誤差を初期位相誤差として計算している。しかしこれに限らず例えば、初期検出部118は、トレーニング信号期間の任意の1時点での初期ウエイトベクトル信号362間の誤差を初期位相誤差として計算してもよい。本変形例によれば、処理を前倒しで実行できるため、所定の信号を遅延させるためのメモリ量を小さくできる。つまり、初期位相誤差として正確な値が得られれば、それを求めるためのタイミングはトレーニング信号期間終了時から前後してもよい。
本発明の実施例2において、信号処理部18は、等利得合成のダイバーシティを実行している。しかしこれに限らず例えば、最大比合成のダイバーシティであってもよい。この場合は、加算部64の前段にデジタル受信信号300間の電力比に応じた重み付けを行う重み付け部を付加する。本変形例によれば、受信した信号の誤り率を改善可能である。つまり、複数の信号間の位相を揃えて合成する場合に適用されればよい。
実施例1に係る通信システムの構成を示す図である。 実施例1に係るバーストフォーマットの構成を示す図である。 図1の第1無線部の構造を示す図である。 図1の信号処理部の構成を示す図である。 図4の受信ウエイトベクトル計算部の構成を示す図である。 図5の初期ウエイトベクトル計算部の構成を示す図である。 図5の受信ウエイトベクトル更新部の構成を示す図である。 図1のウエイトベクトルの更新処理手順を示すフローチャートである。 図1のシミュレーションによって得られた出力信号を示す図である。 実施例2に係る信号処理部の構成を示す図である。 図10の位相計算部の構成を示す図である。 実施例2に係る信号処理部の構成を示す図である。
符号の説明
10 端末装置、 12 無線部、 14 基地局用アンテナ、 16 端末用アンテナ、 18 信号処理部、 20 モデム部、 22 ベースバンド部、 24 制御部、 26 ベースバンド部、 28 モデム部、 30 無線部、 32 ネットワーク、 34 基地局装置、 50 分類部、 60 合成部、 62 乗算部、 64 加算部、 68 受信ウエイトベクトル計算部、 70 参照信号記憶部、 72 分離部、 74 乗算部、 76 送信ウエイトベクトル設定部、 80 加算部、 82 複素共役部、 84 乗算部、 86 ステップサイズパラメータ記憶部、 88 乗算部、 90 加算部、 92 遅延部、 100 通信システム、 114 受信ウエイトベクトル更新部、 116 出力設定部、 118 初期検出部、 120 初期ウエイトベクトル計算部、 122 乗算部、 124 信号間誤差検出部、 126 初期誤差検出部、 128 保持部、 140 スイッチ部、 142 受信部、 144 送信部、 146 周波数変換部、 148 AGC、 150 直交検波部、 152 AD変換部、 154 逆拡散部、 156 周波数変換部、 158 直交変調部、 160 DA変換部、 162 拡散部、 164 増幅部、 166 周波数発振部、 180 位相回転部、 182 位相計算部、 184 初期位相誤差検出部、 186 位相誤差更新部、 200 測定部、 210 初期位相誤差検出部、 212 位相誤差検出部、 214 初期同期信号検出部、 216 乗算部、 300 デジタル受信信号、 302 デジタル送信信号、 304 合成信号、 306 参照信号、 308 分離前信号、 310 信号処理部制御信号、 312 受信ウエイトベクトル信号、 314 送信ウエイトベクトル信号、 318 無線部制御信号、 350 乗算信号、 352 基準通知信号、 362 初期ウエイトベクトル信号、 366 初期位相誤差信号、 370 位相回転信号、 372 乗算信号、 374 初期位相誤差信号、 402 出力受信ウエイトベクトル信号。

Claims (10)

  1. 複数のアンテナを介して、既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信する受信部と、
    少なくとも前記既知の信号を含んだ区間にわたって、前記受信した複数の信号の位相を揃えるための複数の位相回転信号をそれぞれ生成する生成部と、
    前記生成した複数の位相回転信号によって、前記受信した複数の信号をそれぞれ位相回転する位相回転部と、
    前記位相回転した複数の信号のうちのひとつを基準信号に選択し、前記位相回転した複数の信号のうちの残りを処理対象信号とする分類部と、
    前記既知の信号を含んだ区間終了以降に、前記基準信号の位相成分に対する前記処理対象信号の位相成分の誤差をそれぞれ検出する誤差検出部と、
    前記検出した位相成分の誤差にもとづいて、前記処理対象信号に対応した位相回転信号をそれぞれ更新する更新部と、
    を備えることを特徴とする受信装置。
  2. 複数のアンテナを介して、既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信する受信部と、
    前記受信した複数の信号のうちのひとつを基準信号に選択し、前記受信した複数の信号のうちの残りを処理対象信号とする分類部と、
    前記既知の信号を含んだ区間で、前記基準信号の位相成分に対する前記処理対象信号の位相成分の誤差を初期位相誤差としてそれぞれ検出する初期検出部と、
    前記既知の信号を含んだ区間終了以降に、前記基準信号の位相成分に対する前記処理対象信号の位相成分の誤差をそれぞれ検出し、さらに当該位相成分の誤差から、対応した初期位相誤差をそれぞれ除去する誤差検出部と、
    前記初期位相誤差を除去した位相成分の誤差によって、前記処理対象信号をそれぞれ位相回転する第1位相回転部と、
    少なくとも前記既知の信号を含んだ区間にわたって、前記受信した複数の信号の位相を揃えるための複数の位相回転信号をそれぞれ生成する生成部と、
    前記生成した複数の位相回転信号によって、前記基準信号と前記位相回転した処理対象信号を含めた複数の信号をそれぞれ位相回転する第2位相回転部と、
    を備えることを特徴とする受信装置。
  3. 前記位相回転した複数の信号を合成する合成部をさらに備えることを特徴とする請求項1または2に記載の受信装置。
  4. 複数のアンテナを介して、既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信する受信部と、
    少なくとも前記既知の信号を含んだ区間にわたって、前記受信した複数の信号のそれぞれに対する受信重み係数を複数導出する導出部と、
    前記導出した複数の受信重み係数と前記受信した複数の信号をそれぞれ乗算し、さらに複数の乗算結果を合成する合成部と、
    前記複数の乗算結果のうちのひとつを基準信号に選択し、前記複数の乗算結果のうちの残りを処理対象信号とする分類部と、
    前記既知の信号を含んだ区間で、前記基準信号の位相成分に対する前記処理対象信号の位相成分の誤差を初期位相誤差としてそれぞれ検出する初期検出部と、
    前記既知の信号を含んだ区間終了以降に、前記基準信号の位相成分に対する前記処理対象信号の位相成分の誤差をそれぞれ検出し、さらに当該位相成分の誤差から、対応した初期位相誤差をそれぞれ除去する誤差検出部と、
    前記初期位相誤差を除去した位相成分の誤差によって、前記処理対象信号に対応した受信重み係数をそれぞれ更新する更新部と、
    を備えることを特徴とする受信装置。
  5. 前記受信部は、複数の信号発生器からそれぞれ出力される複数のローカル信号にもとづいて、前記複数の信号をそれぞれ受信することを特徴とする請求項4に記載の受信装置。
  6. 前記受信した複数の信号の強度を測定する測定部をさらに備え、
    前記分類部は、前記測定した複数の信号の強度に応じて、前記複数の乗算結果のうちのひとつを基準信号として選択することを特徴とする請求項4または5のいずれかに記載の受信装置。
  7. 既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信し、少なくとも前記既知の信号を含んだ区間にわたって、前記受信した複数の信号の位相を揃えるための複数の位相回転信号をそれぞれ生成するステップと、
    前記生成した複数の位相回転信号によって前記受信した複数の信号をそれぞれ位相回転し、さらに前記複数の位相回転結果のうちのひとつを基準信号に選択し、前記複数の位相回転結果のうちの残りを処理対象信号とするステップと、
    前記既知の信号を含んだ区間終了以降に、検出した前記基準信号の位相成分に対する前記処理対象信号の位相成分の誤差にもとづいて、前記処理対象信号に対応した位相回転信号をそれぞれ更新するステップと、
    を備えることを特徴とする受信方法。
  8. 既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信し、少なくとも前記既知の信号を含んだ区間にわたって、前記受信した複数の信号のそれぞれに対する受信重み係数を複数導出するステップと、
    前記導出した複数の受信重み係数と前記受信した複数の信号をそれぞれ乗算し、さらに前記複数の乗算結果のうちのひとつを基準信号に選択し、前記複数の乗算結果のうちの残りを処理対象信号とするステップと、
    前記既知の信号を含んだ区間で、前記基準信号の位相成分に対する前記処理対象信号の位相成分の誤差を初期位相誤差としてそれぞれ検出するステップと、
    前記既知の信号を含んだ区間終了以降に、検出した前記基準信号の位相成分に対する前記処理対象信号の位相成分の誤差から、前記初期位相誤差をそれぞれ除去した信号によって、前記処理対象信号に対応した受信重み係数をそれぞれ更新するステップと、
    を備えることを特徴とする受信方法。
  9. 無線ネットワークを介して、既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信するステップと、
    少なくとも前記既知の信号を含んだ区間にわたって、前記受信した複数の信号の位相を揃えるための複数の位相回転信号をそれぞれ生成し、メモリに記憶するステップと、
    前記メモリに記憶した複数の位相回転信号によって、前記受信した複数の信号をそれぞれ位相回転するステップと、
    前記位相回転した複数の信号のうちのひとつを基準信号に選択し、前記位相回転した複数の信号のうちの残りを処理対象信号とするステップと、
    前記既知の信号を含んだ区間終了以降に、前記基準信号の位相成分に対する前記処理対象信号の位相成分の誤差をそれぞれ検出するステップと、
    前記検出した位相成分の誤差にもとづいて、前記処理対象信号に対応した位相回転信号をそれぞれメモリ上で更新するステップと、
    をコンピュータに実行させるためのプログラム。
  10. 無線ネットワークを介して、既知の信号を所定の区間に連続して含んだ複数の信号をそれぞれ受信するステップと、
    少なくとも前記既知の信号を含んだ区間にわたって、前記受信した複数の信号のそれぞれに対する受信重み係数を複数導出し、メモリに記憶するステップと、
    前記メモリに記憶した複数の受信重み係数と前記受信した複数の信号をそれぞれ乗算し、さらに複数の乗算結果を合成するステップと、
    前記複数の乗算結果のうちのひとつを基準信号に選択し、前記複数の乗算結果のうちの残りを処理対象信号とするステップと、
    前記既知の信号を含んだ区間で、前記基準信号の位相成分に対する前記処理対象信号の位相成分の誤差を初期位相誤差としてそれぞれ検出するステップと、
    前記既知の信号を含んだ区間終了以降に、前記基準信号の位相成分に対する前記処理対象信号の位相成分の誤差をそれぞれ検出し、さらに当該位相成分の誤差から、対応した初期位相誤差をそれぞれ除去するステップと、
    前記初期位相誤差を除去した位相成分の誤差によって、前記処理対象信号に対応した受信重み係数をそれぞれメモリ上で更新するステップと、
    をコンピュータに実行させるためのプログラム。
JP2003335603A 2003-09-26 2003-09-26 受信方法および装置 Expired - Fee Related JP4183592B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003335603A JP4183592B2 (ja) 2003-09-26 2003-09-26 受信方法および装置
TW093128531A TWI271947B (en) 2003-09-26 2004-09-21 Receiving method and receiving apparatus
US10/948,746 US7079593B2 (en) 2003-09-26 2004-09-24 Receiving method and receiving apparatus
CNB2004100119799A CN1328858C (zh) 2003-09-26 2004-09-27 接收方法和接收设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003335603A JP4183592B2 (ja) 2003-09-26 2003-09-26 受信方法および装置

Publications (2)

Publication Number Publication Date
JP2005102075A true JP2005102075A (ja) 2005-04-14
JP4183592B2 JP4183592B2 (ja) 2008-11-19

Family

ID=34462946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003335603A Expired - Fee Related JP4183592B2 (ja) 2003-09-26 2003-09-26 受信方法および装置

Country Status (4)

Country Link
US (1) US7079593B2 (ja)
JP (1) JP4183592B2 (ja)
CN (1) CN1328858C (ja)
TW (1) TWI271947B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035364A (ja) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd 受信方法ならびにそれを利用した受信装置および無線装置
JP2008072245A (ja) * 2006-09-12 2008-03-27 Sanyo Electric Co Ltd 受信方法ならびにそれを利用した受信装置および無線装置
US8213541B2 (en) 2006-09-12 2012-07-03 Hera Wireless S.A. Receiving method for receiving signals by a plurality of antennas, and a receiving apparatus and a radio apparatus using the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295312A (ja) * 2004-04-01 2005-10-20 Hitachi Ltd 携帯無線装置
KR101206116B1 (ko) * 2008-09-10 2012-11-28 한국전자통신연구원 다중 셀 협력 통신을 위한 전송 다이버시티 기법
CN106935983A (zh) 2011-09-08 2017-07-07 英特尔公司 重叠的和交错的天线阵列
US8736481B2 (en) * 2011-10-28 2014-05-27 Texas Instruments Incorporated Carrier frequency offset compensation in beamforming systems
CN103634037B (zh) * 2012-08-28 2020-01-14 中兴通讯股份有限公司 波束成形方法及装置
JP2014204305A (ja) 2013-04-05 2014-10-27 株式会社Nttドコモ 無線通信システム、無線基地局装置、およびユーザ装置
CN112737651B (zh) * 2020-12-31 2022-05-10 展讯通信(上海)有限公司 用于Wi-Fi的多输入多输出接收机和电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2313523B (en) * 1996-05-23 2000-06-07 Motorola Ltd Self-calibration apparatus and method for communication device
JP2001196834A (ja) * 2000-01-13 2001-07-19 Matsushita Electric Ind Co Ltd アレーアンテナ無線通信装置およびキャリブレーション方法
JP3597101B2 (ja) * 2000-02-21 2004-12-02 埼玉日本電気株式会社 受信回路及びアダプティブアレイアンテナシステム
JP3505468B2 (ja) 2000-04-03 2004-03-08 三洋電機株式会社 無線装置
JP3558053B2 (ja) * 2001-06-06 2004-08-25 日本電気株式会社 適応アンテナ受信装置
JP4299083B2 (ja) * 2003-09-09 2009-07-22 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び無線通信方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035364A (ja) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd 受信方法ならびにそれを利用した受信装置および無線装置
JP2008072245A (ja) * 2006-09-12 2008-03-27 Sanyo Electric Co Ltd 受信方法ならびにそれを利用した受信装置および無線装置
JP4698536B2 (ja) * 2006-09-12 2011-06-08 三洋電機株式会社 受信方法ならびにそれを利用した受信装置および無線装置
US8213541B2 (en) 2006-09-12 2012-07-03 Hera Wireless S.A. Receiving method for receiving signals by a plurality of antennas, and a receiving apparatus and a radio apparatus using the same

Also Published As

Publication number Publication date
US7079593B2 (en) 2006-07-18
CN1328858C (zh) 2007-07-25
US20050101276A1 (en) 2005-05-12
TWI271947B (en) 2007-01-21
CN1601923A (zh) 2005-03-30
TW200520433A (en) 2005-06-16
JP4183592B2 (ja) 2008-11-19

Similar Documents

Publication Publication Date Title
JP3779063B2 (ja) 無線通信装置及び無線通信方法
US8081672B2 (en) Method and system for channel estimation in a single channel (SC) single-input multiple-output (SIMO) system
JP4108029B2 (ja) キャリブレーション方法およびそれを利用した無線装置
JPH10341200A (ja) アダプティブアレーアンテナ受信装置
JP3933597B2 (ja) 送信方法およびそれを利用した無線装置
JP4183592B2 (ja) 受信方法および装置
JP3386738B2 (ja) フレーム同期回路及びフレームタイミング抽出方法
JP3641118B2 (ja) ディジタル無線受信機の性能改善装置及びその方法
JP4190406B2 (ja) 周波数オフセット推定方法およびそれを利用した周波数オフセット補正装置
JP3920794B2 (ja) 送信方法およびそれを利用した無線装置
JP4338624B2 (ja) 周波数オフセット推定方法およびそれを利用した周波数オフセット補正装置
JP4133890B2 (ja) 受信装置
JP2008035364A (ja) 受信方法ならびにそれを利用した受信装置および無線装置
JP4095602B2 (ja) 受信装置
JP2001053660A (ja) 適応アレーアンテナ受信機、適応アレーアンテナ送信機および適応アレーアンテナ通信システム
JPWO2008152800A1 (ja) 無線装置およびそれを用いた測定システム
JP4470798B2 (ja) 無線通信装置及び方法
JP4183613B2 (ja) 受信方法および装置
JP6983367B1 (ja) 受信装置、通信システム、受信方法、制御回路および記憶媒体
JP2006237935A (ja) 受信方法および装置
JP3935750B2 (ja) 無線受信装置、受信応答ベクトル推定方法および受信応答ベクトル推定プログラム
JP2005102074A (ja) キャリブレーション方法およびそれを利用した無線装置
JP4555651B2 (ja) 通信方法およびそれを利用した無線装置
JP2002101030A (ja) 受信装置
JP2005277668A (ja) 無線受信装置及び無線受信方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees