JP2005088176A - 極細工作具の測定装置 - Google Patents

極細工作具の測定装置 Download PDF

Info

Publication number
JP2005088176A
JP2005088176A JP2003329173A JP2003329173A JP2005088176A JP 2005088176 A JP2005088176 A JP 2005088176A JP 2003329173 A JP2003329173 A JP 2003329173A JP 2003329173 A JP2003329173 A JP 2003329173A JP 2005088176 A JP2005088176 A JP 2005088176A
Authority
JP
Japan
Prior art keywords
image data
tool
predetermined
ultrafine
binary image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003329173A
Other languages
English (en)
Inventor
Hiroyuki Hasegawa
浩幸 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J NET KK
J-NET KK
Original Assignee
J NET KK
J-NET KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J NET KK, J-NET KK filed Critical J NET KK
Priority to JP2003329173A priority Critical patent/JP2005088176A/ja
Publication of JP2005088176A publication Critical patent/JP2005088176A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)

Abstract

【課題】加工機械における極細工作具の位置制御原点の決定、その径及び回転ぶれの検出を精度良く行なうことを可能にする。
【解決手段】加工機械100の極細工作具141の先端部分を含む所定視野範囲を撮影して画像信号を生成する撮影手段300と、該画像信号を2値画像データに変換する画像データ生成手段(S2)と、該2値画像データをメモリに展開し、該2値画像データを処理する画像処理手段とを有し、前記画像処理手段は、前記所定視野範囲における所定座標軸方向での所定位置を仮想原点として設定し、該仮想原点を設定した旨を前記加工機械に通知する仮想原点設定手段(S5、S6)と、前記所定軸方向における2値画像データの変化位置に基づいて前記極細工作具の先端位置を検出する先端位置検出手段(S7)と、前記仮想原点と前記先端位置との差分を演算して、該差分を前記加工機械に通知する位置差分検出手段(S8)とを有する構成となる。
【選択図】 図3

Description

本発明は、本発明は、加工機械にセットされたドリル、エンドミル等の極細工作具の測定装置に関する。
近年、直径10μm〜100μm程度の穴を公差数μmの精度で加工することのできる穴あけ加工機械が実現されている(例えば、非特許文献1参照)。また、この加工機械におけるドリルの位置合わせの分解能も1μm以下を実現している。このような加工機械では、穴あけ加工に用いるドリルが極細(10μm〜100μm径)となるため、ドリルがワークに衝突してしまうと容易に破損してしまう。このため、ドリル先端の位置(Z軸(高さ)方向の位置)を正確に制御することが重要である。加工機械におけるドリルの位置合わせの分解能は十分であることから、ドリル先端の正確な位置制御を行なうためには、加工機械における座標系でのドリル先端位置の正確な捕捉が必要である。また、加工精度を維持するためには、そのドリルの直径、及び回転時のドリルのぶれを監視する必要がある。
このような要求に対して、従来、レーザ光を用いた測定装置がある。加工機械における座標系でのドリル先端位置を捕捉する場合、この測定装置では、図10に示すように、加工機械の基台(X−Y平面)から所定高さの位置(Z方向位置)を前記基台に平行となるように進むレーザビーム光20に対してドリル10の先端部を進入させる。そして、レーザビーム光20がドリル10の先端部分にて遮断されたことを受光素子にて検出したときにその検出信号が加工機械に送られる。加工機械は、この検出信号を入力したときの制御位置(Z軸方向位置)をドリル10の先端位置として捕捉する。以後、加工機械は、自機の座標系において前述したように捕捉したドリル10の先端位置を基準(原点)にしてドリル10の先端位置の位置制御を精度よく行なうことができる。
日刊工業新聞社 日刊工業新聞平成15年6月26日付け記事
しかし、前述したようなレーザビーム光20を用いた測定装置では、レーザビーム光20の断面が真円ではなく、縦方向a、横方向bとなる楕円であること、迷光22が存在すること、レーザビーム光20の光軸内のパワー分布が不規則であること、ドリル10のX−Y方向(横方向)のずれによりドリル10の先端部によるレーザビーム光20に対する遮光条件が変わることなど、からドリル10の先端位置を十分正確に捕捉することができないことから、加工機械でのドリル10の位置制御における原点を十分正確に設定することができない。
例えば、直径50μmのドリル10に対して縦方向a=30μm、横方向b=15μmの楕円となるレーザビーム光20を用いて測定した場合、ドリル10の先端の捕捉位置は100μmのバラつきが生じた(100回の繰り返し測定)。従って、従来、前述したように、数μmの精度でドリル10の先端位置を捕捉する場合、経験豊かな作業者の勘に基づいた手作業により微調整を行なうことしかできなかった。
本発明は、前述したような従来の測定装置の問題を解決するためになされたものであって、加工機械における極細工作具の位置制御原点の決定、その径及び回転ぶれの検出を更に精度良く行なうことのできる測定装置を提供するものである。
本発明に係る極細工作具の測定装置は、加工機械の極細工作具の先端部分を含む所定視野範囲を撮影して画像信号を生成する撮影手段と、該撮影手段にて得られた画像信号を2値画像データに変換する画像データ生成手段と、該画像データ生成手段にて生成された2値画像データを所定のメモリに展開し、該2値画像データを処理する画像処理手段とを有し、前記画像処理手段は、前記メモリ上での前記所定視野範囲における所定座標軸方向での所定位置を仮想原点として設定し、該仮想原点を設定した旨を前記加工機械に通知する仮想原点設定手段と、前記所定軸方向における2値画像データの変化位置に基づいて前記極細工作具の前記所定軸方向における先端位置を検出する先端位置検出手段と、前記仮想原点と前記先端位置検出手段にて検出された先端位置との差分を演算して、該差分を前記加工機械に通知する位置差分検出手段とを有する構成となる。
このような構成により、仮想原点設定の通知を受けた加工機械は、その時点での極細工作具の所定座標軸方向における制御位置を仮想原点として認識することができる。そして、加工機械は、更に、前記仮想原点と前記極細工作具の前記所定座標軸方向における先端位置との差分の通知を受けると、前記仮想原点として認識した制御位置にその差分を加味して得られる制御位置を前記極細工作具の前記所定軸方向における位置制御の原点として認識することができる。
前記仮想原点、前記先端位置及びそれらの差分は、メモリ上に展開される2値画像データからピクセル(画素)の分解能をもって決定され得る。高倍率及び高解像度の撮影手段を用いることにより、その視野範囲及び解像度に応じて1ピクセル(画素)当たりの長さを数μm以下にすることができる。従って、前記仮想原点の位置、先端位置及びそれらの差分を数μm以下の分解能をもって決定することができることとなる。
また、本発明に係る極細工作具の測定装置は、加工機械の極細工作具の先端部分を含む所定視野範囲を撮影して画像信号を生成する撮影手段と、該撮影手段にて得られた画像信号を2値画像データに変換する画像データ生成手段と、該画像データ生成手段にて生成された2値画像データを所定のメモリに展開し、該2値画像データを処理する画像処理手段とを有し、前記画像処理手段は、前記メモリ上での前記所定視野範囲における所定座標軸方向での所定位置を仮想原点として設定し、該仮想原点を設定した旨を前記加工機械に通知する仮想原点設定手段と、前記所定軸方向における2値画像データの変化位置に基づいて前記極細工作具の前記所定軸方向における先端位置を検出する先端位置検出手段と、前記加工機械にて前記極細工作具を前記所定軸方向に移動させる過程で、前記先端位置検出手段にて検出される先端位置が前記仮想原点に一致したか否かを判定する判定手段と、前記先端位置が前記仮想原点に一致したとの判定が前記判定手段にてなされたときに、その旨を前記加工機械に通知する原点検出手段とを有する構成となる。
このような構成により、仮想原点設定の通知を受けた加工機械は、その時点での極細工作具の所定座標軸方向における制御位置を仮想原点として認識することができる。そして、加工機械は、更に、極細工作具の先端位置が前記仮想原点に一致したとの通知を受けると、前記仮想原点として認識した制御位置から更に前記極細工作具を所定軸方向に移動させた位置制御位置を前記極細工作具の先端位置として捕捉することができ、その制御位置を前記極細工作具の位置制御の原点として認識することができる。
この場合も、前記仮想原点及び前記先端位置は、メモリ上に展開される2値画像データからピクセル(画素)の分解能をもって決定することができる。高倍率及び高解像度の撮影手段を用いることにより、その視野範囲及び解像度に応じて1ピクセル(画素)当たりの長さを数μm以下にすることができる。従って、前記仮想原点の位置及び先端位置を数μm以下の分解能をもって決定することができることとなる。
更に、本発明に係る極細工作具の測定装置は、前記仮想原点設定手段が、メモリ上に展開される2値画像データから得られる前記極細工作具の画像部分の形状に基づいて、該画像部分の近傍位置を仮想原点として決定する構成とすることができる。
このような構成により、2値画像データから得られる極細工作具の画像部分の近傍に仮想原点が設定されることから、メモリ上において前記極細工作具の先端位置と仮想原点との距離を極力小さくすることができる。従って、仮想原点と先端位置との差分に係る測定誤差を小さくすることができ、また、前記先端位置と仮想原点との一致判定を効率的に行うことができることとなる。
本発明に係る極細工作具の測定装置は、加工機械において回転される極細工作具の所定部分を含む所定視野範囲を撮影して画像信号を生成する撮影手段と、該撮影手段にて得られた画像信号を2値画像データに変換する画像データ生成手段と、該画像データ生成手段にて生成された画像データを所定のメモリに展開し、該2値画像データを処理する画像処理手段とを有し、前記画像処理手段は、前記極細工作具の回転軸に垂直な方向における前記2値画像データの変化位置に基づいて前記極細工作具の前記回転軸に垂直な方向における幅を検出する幅検出手段を有する構成となる。
このような構成により、極細工作具が回転している状態で得られた2値画像データから前記極細工作具の回転軸に垂直な方向における幅を検出することができる。
メモリ上における前記2値画像データの変化位置はピクセル(画素)の分解能をもって決定することができる。高倍率及び高解像度の撮像手段を用いることにより、その視野範囲及び解像度に応じて1ピクセル(画素)当たりの長さを数μm以下にすることができる。従って、前記極細工作具の幅を数μm以下の分解能をもって検出することができることとなる。
また、本発明に係る極細工作具の測定装置は、加工機械において回転される極細工作具の所定部分を含む所定視野範囲を撮影して画像信号を生成する撮影手段と、該撮影手段にて得られた画像信号を2値画像データに変換する画像データ生成手段と、該画像データ生成手段にて生成された2値画像データを所定のメモリに展開し、該2値画像データを処理する画像処理手段とを有し、前記画像処理手段は、前記極細工作具の回転軸に垂直な方向における前記2値画像データの変化位置に基づいて回転軸の位置を検出する回転位置検出手段と、複数のタイミングで得られた複数の2値画像データから前記回転位置検出手段にて検出された複数の回転軸の位置の変化範囲を検出する回転ぶれ検出手段とを有する構成となる。
このような構成により、極細工作具が回転している状態で得られた複数の2値画像データから回転軸の位置が複数検出され、その複数得られた回転軸の位置の変化範囲から極細工作具の回転ぶれを検出することができる。
この場合も、メモリ上に展開される2値画像データの変化位置はピクセル(画素)の分解能をもって決定することができるので、前記回転ぶれについてもそのピクセル(画素)の分解能をもって検出することができることとなる。
更に、本発明に係る極細工作具の測定装置は、前記撮影手段が、前記極細工作具の先端部分または所定部分に対して平行光線を照射する光源と、前記平行光線をバックライトとした前記極細工作具の先端部分または所定部分の影を撮影して前記画像信号を生成するカメラ手段とを有する構成とすることができる。
このような構成により、極細工作具の先端部分または所定部分の影に対応した画像部分を含む2値画像データを得ることができる。そして、その2値画像データの変化位置が前記画像部分の縁となることから、その変化位置に基づいて前記極細工作具の先端位置、幅、回転軸の位置を検出することが可能となる。
本発明に係る極細工作具の測定装置によれば、メモリに展開された極細工作具の先端部分または所定部分に対応した画像部分を含む2値画像データからピクセル(画素)の分解能をもって、前記極細工作具の先端位置、幅、及び回転軸の位置を検出することができるので、加工機械における極細工作具の位置制御原点の決定、径及び回転ぶれの検出を更に精度良く行なうことのできる測定装置を提供することが可能となる。
本発明の実施の形態について、図面を用いて説明する。
本発明に係る極細工作具の測定装置が適用される加工機械の概略構成は、図1に示すようになっている。
図1において、この加工機械100は、穴あけ加工機であり、基台110上にX軸方向、Y軸方向で移動自在となるワークテーブル120が設けられている。ワークテーブル120の上方には、回転及び上下動可能となるドリルチャック130が設けられている。ドリルチャック130によりドリル140のチャッキング部141がチャッキングされ、チャッキング部141に続くドリル本体141がワーキングテーブル120に対して垂直に(Z軸方向に水平に)セットされる。ワーキングテーブル120上には、被加工体となるワーク200がセットされており、チャッキング130を回転させながら下降させることにより、ドリル本体141がワーク200に対して穴あけ加工を行なう。ドリル本体141の直径は、例えば、50μmであり、ワーク200に対して50μmの穴あけ加工がなされる。
基台110上の所定位置には、測定ユニット300が設置されている。測定ユニット300は、図2に示すように構成されている。
図2において、この測定ユニット300は、高輝度LEDにて平行光線を出力する光源装置301、レンズユニット302、CCDカメラ303、コネクタ304及びカメラケーブル305を備えている。レンズユニット302は、高倍率のレンズ系で構成され、CCDカメラ303の受光面に対して例えば、448μm×388μmの視野範囲の画像を結像させる。光源装置301は、出力される平行光線がワークテーブル120の面(X−Y平面)に平行となるように基台110上にセットされる。CCDカメラ303は、高解像度のCCDを備え、例えば、1024×760ピクセル(画素)の解像度を有する。CCDカメラ303は、受光面に結像される前記視野範囲の画像に対応した画像信号を出力する。この画像信号は、ピクセル(画素)毎の多階調(例えば、256階調)輝度信号となる。
光源装置301とレンズユニット302との間にドリル本体141の先端部分が位置づけられた状態で光源装置301からの平行光線が出力されると、その平行光線をバックライトとしたドリル本体141の先端部分の影(外形形状を表す)に対応した画像部分を含む前記視野範囲の画像がCCDカメラ302の受光面に結像される。そして、ドリル本体141の先端部分を含む前記結像画像に対応した画像信号がCCDカメラ302からコネクタ304及びカメラケーブル305を介して処理ユニット350に供給される。処理ユニット350は、その画像信号を処理して、加工機械100に対して所定の信号及びデータを送る。
処理ユニット350は、図3に示す手順に従って処理を実行する。
光源装置301とレンズユニット302との間にドリル本体141の先端部分が位置づけられた状態で光源装置301から平行光線が出力されると(バックライト点灯:S1)、処理ユニット350は、CCDカメラ303からの画像信号に基づいてドリル本体141のドリル2値画像捕捉処理を行なう。このドリル2値画像捕捉処理では、CCDカメラ303からのピクセル毎の多階調輝度信号(画像信号)が所定の閾値で2値化されてピクセル毎の2値画像データに変換され、その2値画像データが内部メモリに展開される。その結果、図4に示すように、光源装置301からの平行光線(バックライト)にて得られるドリル本体141先端部分の影に対応した画像部分IDを視野範囲EVの他の画像部分から区別して表す2値画像データがメモリ上に展開される。これにより、測定ユニット300は、ドリル本体141の2値画像を捕捉することとなる。
前記ドリル2値画像捕捉処理が終了すると、処理ユニット350は、前記メモリ上に展開された2値画像データに基づいて、図5に示すように、その2値画像ID化されたドリル本体141の先端部分の先端角αを演算することが可能であるか否かを判定し(S3)、可能である場合には(S3でYES)、その先端角αを演算する。次いで、処理ユニット350は、その演算された先端角αに合わせてドリル本体141の先端に沿った仮想ラインA1、A2を設定し(S4)、その仮想ラインA1、A2の交点のZ軸方向の座標値を仮想原点Cとして演算する(S5)。その結果、2値画像ID化されたドリル本体141の先端部分の極めて近傍に仮想原点Cが設定されることとなる。処理ユニット350は、この時点で、仮想原点Cの決定信号を加工機械100に送る(S6)。この仮想原点Cの決定信号を受信した加工機械100は、その時点で、自機におけるドリル140のZ軸方向の制御位置を仮想原点として認識する。
次いで、処理ユニット350は、前記仮想ラインA1、A2に挟まれたドリル本体141に対応する画像部分IDに対してZ軸方向に1ピクセルずつずらしながらライン走査(図5における破線参照)を実行する(ラインセンサスキャン:S7)。このライン走査の過程で、処理ユニット350は、Z軸方向において2値画像データが変化した位置(例えば、黒レベルから白レベル)の1ピクセル前の位置B(最下端位置)を先端位置として検出し、前記仮想原点Cとその検出した先端位置Bとの差分値を補正値として演算する(S8)。処理ユニット350は、その差分値を原点補正値として加工機械100に供給する(S9)。その後、光源装置301からの平行光線の出力が停止(バックライト消灯)され(S10)、処理が終了する。
前記差分値を処理ユニット100から入力した加工機械100は、前述したように仮想原点として認識したドリル140の制御位置に対してその差分値を加味(加算、または、減算)することにより得られるZ軸方向の制御位置をドリル140の位置制御の原点として認識する。その後、加工機械100は、その認識した原点を基準にしてドリル140のZ軸方向の位置制御を行なう。
なお、前述した処理において、ドリル本体141の先端の破損、磨耗などで、前記2値画像ID化されたドリル本体141の先端角αの演算が不可能であるとの判定がなされると(S3でNO)、処理ユニット350は、所定の異常信号を出力して処理を終了する。例えば、この異常信号に基づいた警報等により、加工機械100の作業者は、ドリル140の異常を知ることができる。
前述したような測定ユニット300及び処理ユニット350(測定装置)では、前記仮想原点C、先端位置B及びそれらの差分値が、メモリ上に展開される2値画像データからピクセル(画素)の分解能をもって決定されることとなる。レンズユニット302による視野範囲が、例えば、448μm×388μmであり、CCDカメラ303の解像度が、例えば、1024×760ピクセルとなることから、メモリ上の縦方向(Z軸方向)における1ピクセル当たりの長さは、0.495μmとなる。従って、この場合、前記仮想原点C、ドリル本体141の先端位置B及びそれらの差分値は、0.495μmの分解能をもって決定することができる。その結果、前記差分値に基づいて加工機械100は、ドリル本体141の位置制御の原点をより正確に認識することができる。
なお、図3に示す手順に従った処理において、仮想原点Cは、図5に示すように、ドリル本体141の画像部分IDの仮想ラインA1、A2の交点をZ軸方向の仮想原点Cとしたが、この仮想原点Cは、視野範囲に対応した画像中におけるZ方向の任意の位置に設定することができる。ただし、前記仮想ラインA1、A2の交点を仮想原点Cとした場合、ドリル本体141の先端部分に対応した2値画像部分IDの近傍に仮想原点Cが設定されるので、その先端位置Bと仮想原点Cとの差分値が比較的小さい値となり、その誤差も小さくすることができる。また、その先端位置Bを仮想原点Cに位置づける場合のドリル140の移動量も小さくなることから、その先端位置Bを仮想原点Cに効率的に位置づけることができる。
加工機械100において、前述したように認識した原点を基準にして140の位置制御がなされ、ワーク200に対する穴あけ加工が行なわれる。その加工中の適当なタイミングで、ドリル本体141の先端位置の捕捉処理が行なわれる。これにより、ドリル本体141の先端が磨耗しても、ドリル140の位置制御の原点を常に正確に把握することができることとなる。この加工中における捕捉処理は、図3に示す手順に従ってもよいが、例えば、図6に示す手順に従って処理ユニット350が実行する。
図6において、光源装置301とレンズユニット302との間にドリル本体141の先端部分が位置づけられた状態で光源装置310から平行光線が出力されると(S21)、処理ユニット350は、前述した処理(図3のS2参照)と同様に、CCDカメラ303から供給される画像信号を2値画像データに変換して内部メモリに展開する(ドリル2値画像捕捉処理:S22)。その後、処理ユニット350は、前記メモリ上に展開された2値画像データに基づいて、2値画像ID化されたドリル本体141の先端部分の先端角αを演算することが可能であるか否かを判定し(S23)、可能である場合には(S23でYES)、その先端角αを演算する。そして、処理ユニット350は、その先端角αに合わせてドリル本体141の先端に沿った仮想ラインA1、A2を設定し(図5参照)、それら仮想ラインA1、A2に挟まれたドリル本体141に対応する画像部分IDに対してZ軸方向に1ピクセルずつずらしながらライン走査(図5における破線参照)を実行する(S24)。このライン走査の過程で、Z軸方向において2値画像データが変化する位置の1ピクセル前の位置Bが先端位置として検出される(S25)。
処理ユニット350は、このようにして検出されたドリル本体141の先端位置Bが前述したようにして設定された(図3におけるS5参照)仮想原点Cに一致するか否かを判定する(S26)。それらが一致しない場合(S26でNO)、加工機械100により、例えば、位置制御における単位距離だけドリル140を移動(上昇または下降)させる。そして、その状態で、再度ドリル2値画像捕捉の処理を行なって(S22)、ドリル本体141の先端位置Bの検出を行なう(S23、S24、S25)。このような処理を繰り返し実行する過程で、検出されたドリル本体141の先端位置Bが前記仮想原点Cに一致したとの判定(S26でYES)がなされると、測定装置300は、原点一致信号を加工機械100に出力する(S27)。その後、光源装置301からの平行光線の出力が停止(バックライト消灯)され(S28)、処理が終了する。
前記原点一致信号を入力した加工機械100は、その時点でのドリル140の制御位置が前述したように測定ユニット300において設定された仮想原点Cに対応する点として認識された原点(図3におけるS8、S9参照)になったことを認識し、その制御位置をZ軸方向のドリル140の位置制御原点として認識する。以後、加工機械100は、その認識した原点を基準にしてドリル140のZ軸方向の位置制御を行なう。
このように、その加工中の適当なタイミングで、ドリル本体141の先端位置の捕捉を行なって、その捕捉された先端位置に基づいて加工機械100におけるドリル140の位置制御の原点が更新されるので、加工中にドリル本体141が磨耗しても、その磨耗量に応じて更新される原点を基準にしてドリル140の位置制御がなされることとなる。従って、加工機械100ではドリル140の位置制御をより精度良く行なうことができる。そして、この場合も、前記仮想原点C及び先端位置Bが、メモリ上に展開される2値画像データからピクセル(画素)の分解能をもって決定されることとなることから、前述した場合(図3の処理参照)と同様に、それら仮想原点Cと先端位置Bとの一致をもって加工機械100にて認識される位置制御原点はより精度の良いものとなる。
前述した処理(図3に示す手順に従った処理または図6に示す手順に従った処理)を実行する際に、処理ユニット350は、ドリル140を回転させて、ドリル本体141の径及びその回転ぶれを検出することができる。その処理は、例えば、図7に示す手順に従って行なわれる。
図7において、処理ユニット350は、カウンタNをゼロに初期設定し後(S31)に、回転するドリル本体141の先端部分の2値画像IDを捕捉する(S32)。これにより、ドリル本体141の先端部分に対応した画像部分IDを含む2値画像データが内部メモリに展開される。この状態で、処理ユニット350は、例えば、図5に示すラインLでのライン走査を行い、2画像データの変化点の位置X1N(左端位置)、X2N(右端位置)を検出する(S33)。処理ユニット350は、その検出した左端位置X1Nが最小値X1minより小さいか否かを判定し(S34)、小さい場合(S34でYES)にはその検出された左端位置X1Nを最小値X1minとして設定する(S35)。次いで、処理ユニット350は、前記検出した右端位置X2Nが最大値X2maxより大きいか否かを判定し(S36)、大きい場合(S36でYES)にはその検出された右端位置X2Nを最大値X2maxとして設定する(S4)。なお、左端位置X1Nが最小値X1min以上である場合(S34でNO)、右端位置X2Nが最大値X2max以下である場合(S36でNO)、特に処理を行なわない。
更に、処理ユニット350は、ドリル本体141の中心位置XCN
XCN=(X2N−X1N)/2
に従って演算する(S38)。処理ユニット350は、その中心位置XCNが最小値XCminより小さいか否かを判定し(S39)、小さい場合(S39でYES)にはその中心位置XCNを最小値XCminとして設定する(S40)。また、処理ユニット350は、その中心位置XCNが最大値XCmaxより大きいか否かを判定し(S41)、大きい場合(S41でYES)にはその中心位置XCNを最大値XCmaxとして設定する(S42)。なお、前記中心位置XCNが前記最小値XCmin以上で前記最大値Xmaxの間の範囲内にある場合(S39でNO、S41でNO)、処理ユニット350は特に処理を行なわない。
その後、処理ユニット350は、カウンタNが所定値Noに達したか否かを判定し(S43)、達していなければ(S43でNO)、カウンタNを+1インクリメントして(S44)、再度、回転するドリル本体141の先端部分の2値画像IDを捕捉する(S32)。そして、前述した処理(S33〜S42)を実行する。その過程で、検出される左端位置X1Nの値に応じてその最小値X1minが、検出される右端位置X2Nに応じてその最大値X2maxが、更に、検出される中心位置XCNに応じてその最小値XCminまたは最大値XCmaxがそれぞれ更新される。
上述した処理(S32〜S44)を繰り返し実行する過程で、カウンタNが所定値Noに達すると(S43でYES)、処理ユニット350は、前記右端位置の最大値X2maxと前記左端位置の最小値X1minとの差(=X2max−X1min)をドリル本体141の画像部分IDの幅、即ち、ドリル本体141の径Wとして演算し(S45)、前記中心位置の最大値XCmaxとその最小値XCminとの差(=XCmax−XCmin)をドリル本体141の回転ぶれΔとして演算する(S46)。そして、処理ユニット350は、前記ドリル141の径Wと回転ぶれΔとを所定の出力ユニット(例えば、表示ユニット)に出力させる。これにより、作業者は、ドリル本体141の磨耗の状態、回転ぶれの状態を知ることができることとなる。
なお、前述した処理おいて設定されるラインLは、図5に示すものに限られない。ドリル本体141の画像部分IDの任意の部分を横切るラインとすることができる。
上述した測定装置(測定ユニット300及び処理ユニット350)の測定対象は、ドリル140(ドリル本体141)であったが、その測定対象をボールエンドミルとすることができる。
加工機械100にセットされたボールエンドミルのZ軸方向における位置制御の原点を設定する場合、図3または図6に示す手順と同様の手順に従ってその原点の設定を行なうことができる。この場合、測定ユニット350は、図8に示すように、ボールエンドミル143のボール部分に対応した仮想円Aを設定し、その仮想円AのZ軸方向の最下位置を仮想原点Cとして設定することができる。そして、その仮想円Aの中心位置から下方をライン走査(図8における破線参照)することによりボールエンドミル143の先端位置Bを検出することができる。前記仮想原点Cと検出された先端位置Bとに基づいて、前述したのと同様(図3または図6参照)にZ軸方向における位置制御の原点が設定される。
また、ボールエンドミルが加工機械100にセットされる場合、横方向(X軸方向、Y軸方向)における位置制御の原点を設定する必要がある。この場合も、図3または図6に示す手順と同様の手順に従ってその原点の設定を行なうことができる。例えば、X軸方向における原点を設定する場合、測定ユニット350は、図9に示す湯鬼、ボールエンドミル143のボール部分に対応した仮想円Aを設定し、その仮想円Aの中心位置を仮想原点Cとして設定することができる。そして、その仮想円Aの中心位置からX軸方向に1ピクセル毎にライン走査(図9における破線参照)することにより、ボールエンドミル143の右端部Bを検出することができる。前記仮想原点Cと検出された右端部Bとに基づいて、前述したのと同様(図3または図6参照)にX軸方向における位置制御の原点が設定される。
以上のように、本発明に係る極細工作具の測定装置は、加工機械における極細工作具の位置制御原点の決定、その径及び回転ぶれの検出を更に精度良く行なうことのできるので、加工機械にセットされたドリル、エンドミル等の極細工作具の測定装置等として有用である。
本発明の実施の形態に係る測定装置が適用される工作機械を概略的に示す図である。 本発明の実施の形態に係る測定装置における測定ユニットの構成を示す図である。 処理ユニットでの処理の一例を示すフローチャートである。 光源装置からの平行光線、ドリル本体、及び捕捉される2値画像データの関係を示す図である。 ドリル本体の先端部分の画像と、先端位置、仮想原点、走査ラインの関係を示す図である。 処理ユニットでの処理の他の一例を示すフローチャートである。 処理ユニットでの処理の更に他の一例を示すフローチャートである。 ボールエンドミルにおける仮想原点、先端位置、走査ラインの関係を示す図である。 ボールエンドミルにおける仮想原点、右端部位置、走査ラインの関係を示す図である。 従来の測定装置の原理を示す図である。
符号の説明
100 加工機械
110 基台
120 ワークテーブル
130 ドリルチャック
140 ドリル
141 チャッキング部
142 ドリル本体
143 エンドミル本体
200 ワーク
300 測定ユニット
301 光源装置
302 レンズユニット
303 CCDカメラ
304 コネクタ
305 カメラケーブル
350 処理ユニット

Claims (6)

  1. 加工機械の極細工作具の先端部分を含む所定視野範囲を撮影して画像信号を生成する撮影手段と、
    該撮影手段にて得られた画像信号を2値画像データに変換する画像データ生成手段と、
    該画像データ生成手段にて生成された2値画像データを所定のメモリに展開し、該2値画像データを処理する画像処理手段とを有し、
    前記画像処理手段は、前記メモリ上での前記所定視野範囲における所定座標軸方向での所定位置を仮想原点として設定し、該仮想原点を設定した旨を前記加工機械に通知する仮想原点設定手段と、
    前記所定軸方向における2値画像データの変化位置に基づいて前記極細工作具の前記所定軸方向における先端位置を検出する先端位置検出手段と、
    前記仮想原点と前記先端位置検出手段にて検出された先端位置との差分を演算して、該差分を前記加工機械に通知する位置差分検出手段とを有することを特徴とする測定装置。
  2. 加工機械の極細工作具の先端部分を含む所定視野範囲を撮影して画像信号を生成する撮影手段と、
    該撮影手段にて得られた画像信号を2値画像データに変換する画像データ生成手段と、
    該画像データ生成手段にて生成された2値画像データを所定のメモリに展開し、該2値画像データを処理する画像処理手段とを有し、
    前記画像処理手段は、前記メモリ上での前記所定視野範囲における所定座標軸方向での所定位置を仮想原点として設定し、該仮想原点を設定した旨を前記加工機械に通知する仮想原点設定手段と、
    前記所定軸方向における2値画像データの変化位置に基づいて前記極細工作具の前記所定軸方向における先端位置を検出する先端位置検出手段と、
    前記加工機械にて前記極細工作具を前記所定軸方向に移動させる過程で、前記先端位置検出手段にて検出される先端位置が前記仮想原点に一致したか否かを判定する判定手段と、
    前記先端位置が前記仮想原点に一致したとの判定が前記判定手段にてなされたときに、その旨を前記加工機械に通知する原点検出手段とを有することを特徴とする測定装置。
  3. 前記仮想原点設定手段は、メモリ上に展開される2値画像データから得られる前記極細工作具の画像部分の形状に基づいて、該画像部分の近傍位置を仮想原点として決定することを特徴とする請求項1また2記載の測定装置。
  4. 加工機械において回転される極細工作具の所定部分を含む所定視野範囲を撮影して画像信号を生成する撮影手段と、
    該撮影手段にて得られた画像信号を2値画像データに変換する画像データ生成手段と、
    該画像データ生成手段にて生成された画像データを所定のメモリに展開し、該2値画像データを処理する画像処理手段とを有し、
    前記画像処理手段は、前記極細工作具の回転軸に垂直な方向における前記2値画像データの変化位置に基づいて前記極細工作具の前記回転軸に垂直な方向における幅を検出する幅検出手段を有することを特徴とする測定装置。
  5. 加工機械において回転される極細工作具の所定部分を含む所定視野範囲を撮影して画像信号を生成する撮影手段と、
    該撮影手段にて得られた画像信号を2値画像データに変換する画像データ生成手段と、
    該画像データ生成手段にて生成された2値画像データを所定のメモリに展開し、該2値画像データを処理する画像処理手段とを有し、
    前記画像処理手段は、前記極細工作具の回転軸に垂直な方向における前記2値画像データの変化位置に基づいて回転軸の位置を検出する回転位置検出手段と、
    複数のタイミングで得られた複数の2値画像データから前記回転位置検出手段にて検出された複数の回転軸の位置の変化範囲を検出する回転ぶれ検出手段とを有することを特徴とする測定装置。
  6. 前記撮影手段は、前記極細工作具の先端部分または所定部分に対して平行光線を照射する光源と、前記平行光線をバックライトとした前記極細工作具の先端部分または所定部分の影を撮影して前記画像信号を生成するカメラ手段とを有することを特徴とする請求項1乃至5のいずれかに記載の測定装置。
JP2003329173A 2003-09-19 2003-09-19 極細工作具の測定装置 Pending JP2005088176A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329173A JP2005088176A (ja) 2003-09-19 2003-09-19 極細工作具の測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329173A JP2005088176A (ja) 2003-09-19 2003-09-19 極細工作具の測定装置

Publications (1)

Publication Number Publication Date
JP2005088176A true JP2005088176A (ja) 2005-04-07

Family

ID=34458493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329173A Pending JP2005088176A (ja) 2003-09-19 2003-09-19 極細工作具の測定装置

Country Status (1)

Country Link
JP (1) JP2005088176A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326196A (ja) * 2006-06-09 2007-12-20 J-Net:Kk 工作具検査装置
JP2010019559A (ja) * 2008-07-08 2010-01-28 J-Net:Kk 測定装置
JP2011131297A (ja) * 2009-12-22 2011-07-07 Toyama Prefecture 工具位置測定方法と装置
JP2020530405A (ja) * 2017-08-07 2020-10-22 フランツ・ハイマー・マシーネンバウ・カーゲー 加工センタにおけるデジタルツインの生成

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321151A (ja) * 1988-06-23 1989-12-27 Toyo Seiki Kk Ccd画素を用いた工具測定調整装置
JPH0453508U (ja) * 1990-09-14 1992-05-07
JPH06109440A (ja) * 1992-09-28 1994-04-19 Makino Furaisu Seiki Kk 工具測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321151A (ja) * 1988-06-23 1989-12-27 Toyo Seiki Kk Ccd画素を用いた工具測定調整装置
JPH0453508U (ja) * 1990-09-14 1992-05-07
JPH06109440A (ja) * 1992-09-28 1994-04-19 Makino Furaisu Seiki Kk 工具測定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326196A (ja) * 2006-06-09 2007-12-20 J-Net:Kk 工作具検査装置
JP2010019559A (ja) * 2008-07-08 2010-01-28 J-Net:Kk 測定装置
JP2011131297A (ja) * 2009-12-22 2011-07-07 Toyama Prefecture 工具位置測定方法と装置
JP2020530405A (ja) * 2017-08-07 2020-10-22 フランツ・ハイマー・マシーネンバウ・カーゲー 加工センタにおけるデジタルツインの生成

Similar Documents

Publication Publication Date Title
JP5307462B2 (ja) 測定装置
US10006941B2 (en) Position accuracy inspecting method, position accuracy inspecting apparatus, and position inspecting unit
US9453716B2 (en) Method of measurement and apparatus for measurement of tool dimensions
JP6608682B2 (ja) 位置決め方法、外観検査装置、プログラム、コンピュータ可読記録媒体および外観検査方法
US8503758B2 (en) Image measurement device, method for image measurement, and computer readable medium storing a program for image measurement
JP5437679B2 (ja) 工具の判定装置、ワーク加工装置
KR101399669B1 (ko) 거리 측정 기능을 갖는 연마기
JP5021957B2 (ja) 工作具検査装置
JP2011089826A (ja) ねじ穴または穴の内部表面欠陥検査装置
JP5158365B2 (ja) 基板の欠陥検査装置
JP2010179373A (ja) 工作機械用の工具、工具検査方法および工具検査装置
JP2019153037A (ja) 加工支援装置、加工支援方法
KR20160118722A (ko) 3d 비전검사 시스템
US20060007449A1 (en) Method for measuring a contour of a workpiece by scanning
JP2005088176A (ja) 極細工作具の測定装置
JP2000074644A (ja) 棒状切削工具の測定装置並びに該測定装置を使用したドリルの測定方法
JP4800590B2 (ja) 極細工作具の測定装置、及びその測定装置を用いた基準位置設定装置及び傾き測定装置
JPH03184742A (ja) Nc加工装置における原点補正方法
KR100293698B1 (ko) 플라즈마디스플레이패널의패턴검사기및그검사방법
JP2000326082A (ja) レーザ加工機
JP2007111750A (ja) レーザ加工装置とレーザ加工方法
TWI413756B (zh) 微型鑽針之破壞式芯厚值量測系統及其方法
JP2009192296A (ja) 形状測定装置
JP2008046010A (ja) 丸棒状ワークの外形の計測方法
JP6487183B2 (ja) レーザ加工方法及びレーザ加工装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Effective date: 20091224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100222

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100623