JP2005071941A - ガス拡散部材、ガス拡散部材の製造方法、燃料電池 - Google Patents

ガス拡散部材、ガス拡散部材の製造方法、燃料電池 Download PDF

Info

Publication number
JP2005071941A
JP2005071941A JP2003303573A JP2003303573A JP2005071941A JP 2005071941 A JP2005071941 A JP 2005071941A JP 2003303573 A JP2003303573 A JP 2003303573A JP 2003303573 A JP2003303573 A JP 2003303573A JP 2005071941 A JP2005071941 A JP 2005071941A
Authority
JP
Japan
Prior art keywords
gas
layer
diffusion member
gas diffusion
distribution plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003303573A
Other languages
English (en)
Other versions
JP4087766B2 (ja
Inventor
Kenji Io
健児 井尾
Atsushi Otani
淳 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Chemical Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2003303573A priority Critical patent/JP4087766B2/ja
Publication of JP2005071941A publication Critical patent/JP2005071941A/ja
Application granted granted Critical
Publication of JP4087766B2 publication Critical patent/JP4087766B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】粗層と密層とを備えた複層構造を採用することにより、上流領域おける電解質膜の乾燥を抑えつつ、ガス出口側である下流領域における水の排出性を確保でき、且つ、ガス出口側である下流領域における活物質の供給に有利なガス拡散部材、ガス拡散部材の製造方法、燃料電池を提供する。
【解決手段】ガス拡散部材は、厚み方向の一方側が触媒層に対向し、厚み方向の他方側がガス配流板に対向し、且つ、ガス配流板のガスを触媒層に送るガス透過性及び導電性をもつ。ガス配流板に対向すると共に密度が相対的に低い粗層8と、触媒層に対向すると共に密度が粗層8よりも相対的に高い密層9とを有する複層構造を備えており、少なくともガス下流領域において微小透過穴10が密層9に形成されている。
【選択図】図2

Description

本発明は、燃料電池に搭載されるガス拡散部材、及び、ガス拡散部材を搭載した燃料電池に関する。
燃料電池は、一般的には、電解質膜と、電解質膜の厚み方向の一方側に配置された燃料極用の触媒層と、燃料極用の触媒層のうち電解質膜と反対側に配置された燃料極用のガス拡散部材と、燃料極用のガス拡散部材のうち電解質膜と反対側に配置された燃料極用のガス配流板と、電解質膜の厚み方向の他方側に配置された酸化剤極用の触媒層と、酸化剤極用の触媒層のうち電解質膜と反対側に配置された酸化剤極用のガス拡散部材と、酸化剤極用のガス拡散部材のうち電解質膜と反対側に配置された酸化剤極用のガス配流板とを有する。
燃料電池の発電時には、燃料は、燃料極用のガス配流板、燃料極用のガス拡散部材を経て燃料極用の触媒層に送られる。酸素を含む酸化剤ガスは、酸化剤極用のガス配流板、酸化剤極用のガス拡散部材を経て、酸化剤極用の触媒層に送られる。燃料が燃料極側の触媒層に到達すると、触媒反応によりプロトンと電子とが生成する。プロトンは電解質膜を透過し、酸化剤極側に移行する。電子は外部導線により負荷を経て酸化剤極側に移行する。これに対して酸化剤極においては、燃料極側から電解質膜を透過してきたプロトンと、外部導線を経て供給された電子と、酸素とが反応して、水が生成される。このように発電反応が行われる。
上記したように生成された水は、主に酸化剤極側のガス拡散部材を経て排出され、一部は電解質膜を透過して燃料極側のガス拡散部材を経て排出される。しかし水を効率よく排出させないと、ガス拡散部材におけるガス通過流路が水で塞がれ、ガス透過性が阻害され、満足できる発電性能が得られない。特に、酸化剤極において発電反応で水が生成する関係上、水を効率よく排出させないと、ガス拡散部材におけるガス通過流路が水で塞がれ、ガス透過性が阻害され、満足できる発電性能が得られない。
上記したガス拡散部材は、これの面内においてほぼ同様の物性構造をもつため、水が溜まりやすいガス出口側では、ガス入口側に比較して、水の排出性が不足し易い。この結果、ガス出口側では、ガス拡散部材と触媒層との境界において凝縮した水によりガス通過流路が塞がれ、ガス拡散性が低下し易い。また、ガス出口側でガス拡散性の低下が起こらないような燃料電池の運転条件(ガス加湿条件、ガス温度等)に設定すると、ガス出口側での水詰まりを抑え得るものの、逆に、ガス入口側において電解質膜が乾燥し易くなり、電解質膜のプロトン伝導性が低下し、満足できる発電性能が得られにくい。
また、燃料電池においては、上記した燃料ガスの活物質は発電反応により消費されるため、燃料ガスの上流から下流に向かうにつれて次第に減少していく。同様に、酸化剤ガスの活物質は発電反応により消費されるため、酸化剤ガスの上流から下流に向かうにつれて次第に減少していく。このためガスの下流領域ではガスの上流領域よりも、活物質の濃度が低下し、活物質が供給されにくいという性状がある。このため発電反応のむらがガス入口側とガス出口側とで生じるおそれがある。
上記のようなガス出口側におけるガス拡散性の低下を防止する技術として、特許文献1〜特許文献5には、ガス拡散部材におけるガス透気度を、ガス入口側からガス出口側に向けて次第に高くするものが知られている。
特許文献1には、燃料電池において、拡散機能を有する集電体をカーボンクロスで形成し、ガス入口からガス出口に向かうにつれて、カーボンクロスの編み目を次第に粗くすることにより、ガス入口側よりもガス出口側のガス拡散性を高めた技術が開示されている。また、特許文献2には、ガス拡散部材においてガス入口に近い部分をガス出口に近い部分よりも、ガス透過度を小さくしている技術が開示されている。この場合、ガス拡散部材の気孔率や厚みを制御している。
特許文献3には、燃料電池のガス拡散部材において、酸化剤ガス供給側のガス拡散性を、酸化剤ガス排出側のガス拡散性よりも低くしている技術が開示されている。特許文献4には、PTFEを含む撥水剤を部分的に後加工によりアノードガス拡散部材に付着させ、アノードガス拡散部材のガス導入口側の第1領域の水分透過性を、ガス導出口側の第2領域の水分透過性よりも向上させる技術が開示されている。特許文献5には、燃料電池のカソード側のガス拡散部材において、前部におけるフッ素樹脂含有量を後部よりも多くして、撥水性を高めて固体電解質膜の湿潤性を維持する技術が開示されている。
また特許文献6には、フッ素樹脂とカーボンブラックとからなる混合層を触媒層とガス拡散部材との間に形成し、反応ガスの入口及び出口で混合層の厚さを変えた技術が開示されている。この場合、混合層の厚みとしては、ガス入口側では厚く、ガス出口側では薄く設定されている。またこの特許文献6には、混合層の気孔率を反応ガスの入口側で小さくし、反応ガス出口側で大きくする技術も併せて開示されている。
特開平8−124583号公報 特開平11−154523号公報 特開2001−6698号公報 特開2001−236976号公報 特開2001−6708号公報 特開2001−135326号公報
上記した公報技術によれば、ガス出口側である下流領域における水の排出性を確保できるものの、上流領域おける電解質膜の乾燥を抑えるには限界がある。
本発明は上記した実情に鑑みてなされたものであり、ガス透過性が相対的に高い粗層とガス透過性が相対的に低い密層とを備えた複層構造を採用することにより、上流領域おける電解質膜の乾燥を密層により抑えつつ、ガス出口側である下流領域における水の排出性を密層の微小透過穴により確保でき、且つ、ガス出口側である下流領域における活物質の供給に有利なガス拡散部材、ガス拡散部材の製造方法、燃料電池を提供することを課題とするにある。
様相1に係るガス拡散部材は、厚み方向の一方側が触媒層に対向し、厚み方向の他方側がガス配流板に対向し、且つ、ガス配流板のガスを触媒層に送るガス透過性及び導電性をもつガス拡散部材において、ガス配流板に対向すると共に密度が相対的に低い粗層と、触媒層に対向すると共に密度が粗層よりも相対的に高い密層とを有する複層構造を備えており、少なくともガス下流領域において微小透過穴が密層に形成されていることを特徴とするものである。
この場合、燃料ガスまたは酸化剤ガス等のガスは、ガス拡散部材の粗層の内部を透過して触媒層に至り、触媒層の触媒により発電反応を発生させる。様相1によれば、相対的に密度が粗層よりも高い密層は、粗層と触媒層との間に配置されている。このためガス拡散部材の粗層から触媒層に向かうガス流れは、相対的に密度が高い密層により規制される。同様に、電解質膜側の水分もガス拡散部材側に放出されることも規制される。従って固体電解質の過剰乾燥を密層により抑制するのに有利である。様相1によれば、ガス下流領域において微小透過穴が密層に形成されているため、触媒層側の過剰の水は密層の微小透過穴からガス拡散部材に向けて排出される。穴の径は適宜選択できるが、10〜200μm、20〜100μmを例示することができるが、これに限定されるものではない。穴の深さは適宜選択できるが、10μm〜ガス拡散部材を貫通する状態、10μm〜密層を貫通する状態、または、10〜30μmを例示することができが、これらに限定されるものではない。
様相2に係るガス拡散部材によれば、微小透過穴は、高エネルギ密度ビームの照射または針状部材の差し込みにより形成されている。高エネルギ密度ビームの照射で微小透過穴を形成すると、微小透過穴の周縁部付近の撥水性材料の改質(炭化)が進行して、微小透過穴の周縁部付近の撥水性が低下する。このため、微小透過穴の周縁部付近は、親水性が高まる。このため微小透過穴を介しての水の排出に貢献できる。なお、微小透過穴を形成する内壁壁が撥水性に富む場合には、微小透過穴を介しての水の排出は制約され易い。高エネルギ密度ビームとしてはレーザビーム、電子ビーム等が挙げられる。
これに対して、針状部材の差し込みにより微小透過穴を形成するときには、針状部材の差し込み部分の尖り角度を変更すれば、微小透過穴の断面形状を容易に変更することができる。
様相3に係るガス拡散部材によれば、単位面積あたりの微小透過穴の穴数は、ガスの上流領域よりもガスの下流領域において大きく設定されていることを特徴とする。この場合、ガスの下流領域において、水の排出性が向上する。またガスの下流領域において、触媒層に対する活物質の供給性が向上する。
様相4に係るガス拡散部材によれば、微小透過穴の深さは、ガス上流領域よりもガス下流領域において深く設定されていることを特徴とする。この場合、ガスの下流領域において、水の排出性が向上する。またガスの下流領域において、触媒層に対する活物質の供給性が向上する。
様相5に係るガス拡散部材によれば、ガス配流板は、ガスの流れが曲がるガス曲走領域を有しており、ガス拡散部材のうちガス配流板のガス曲走領域に対向する部分において、微小透過穴が形成されていることを特徴とする。この場合、ガス配流板のうちガスの流れが曲がるガス流曲走領域においては、水が溜まることがある。故に、ガス拡散部材においても、ガス配流板のうちガス流曲走領域付近では、水が溜まり易い性質を有する。そこで、ガス拡散部材のうちガス配流板のガス流曲走領域に対向する部分において微小透過穴を形成すれば、ガス拡散部材のうちガス配流板のガス流曲走領域に対向する部分における水排出性が確保される。
様相6に係るガス拡散部材の製造方法は、厚み方向の一方側が触媒層に対向し、厚み方向の他方側がガス配流板に対向し、且つ、ガス配流板のガスを触媒層に送るガス透過性及び導電性をもつガス拡散部材を製造する製造方法において、
ガス配流板に対向すると共に密度が相対的に低い粗層と、触媒層に対向すると共に密度が粗層よりも相対的に高い密層とを有する複層構造を有するシートを形成するシート成形工程と、高エネルギ密度ビームを密層に照射することにより、シートのうち少なくとも密層に複数の微小透過穴を形成する穴形成工程とを含むことを特徴とするものである。
この場合、高エネルギ密度ビームの照射で微小透過穴を密層に形成するため、密層に形成した微小透過穴の周縁部付近の撥水性材料の改質(炭化)が進行して撥水性が低下するため、微小透過穴の周縁部付近は親水性をもつことになり易い。このため密層に形成した微小透過穴を介しての水の排出に貢献できる。なお、微小透過穴の周縁部が撥水性に富む場合には、微小透過穴を介しての水の排出は制約され易い。
前記したシート成形工程は、カーボン繊維及び焼失物質を基材とする液状物を抄紙することにより、カーボン繊維及び焼失材料を基材とする抄紙シートを形成する抄紙工程と、抄紙シートの内部の空隙に撥水性材料を含浸させてベースシートを得る含浸工程と、ベースシートを熱処理して焼失材料を焼失させる熱処理工程と、導電性物質を含む流動物を熱処理後のベースシートに塗布する塗布工程を含む形態を例示できる。導電性物質を含む流動物をベースシートの表面に塗布するため、粗層の表面に密層を積層させた複層構造を形成し易い。
様相7に係るガス拡散部材の製造方法は、厚み方向の一方側が触媒層に対向し、厚み方向の他方側がガス配流板に対向し、且つ、ガス配流板のガスを触媒層に送るガス透過性及び導電性をもつガス拡散部材において、
ガス配流板に対向すると共に密度が相対的に低い粗層と、触媒層に対向すると共に密度が粗層よりも相対的に高い密層とを有する複層構造を有するシートを形成するシート成形工程と、針状部材を密層に差し込むことにより、シートのうち少なくとも密層に複数の微小透過穴を形成する穴形成工程とを含むことを特徴とするものである。針状部材の差し込みにより微小透過穴を形成するため、複数の微小透過穴をまとめて形成することができる。また針状部材の差し込み部分の尖り角度を変更すれば、微小透過穴の断面形状、微小透過穴の内壁面の傾斜角を変更することができる。
様相8に係る燃料電池は、電解質を基材とする電解質膜と、電解質膜の厚み方向の一方側に配置された燃料極用触媒層と、燃料極用触媒層のうち電解質膜と反対側に配置された燃料極用ガス拡散部材と、燃料極用ガス拡散部材のうち電解質膜と反対側に配置された燃料極用ガス配流板と、電解質膜の厚み方向の他方側に配置された酸化剤極用触媒層と、酸化剤極用触媒層のうち電解質膜と反対側に配置された酸化剤極用ガス拡散部材と、酸化剤極用ガス拡散部材のうち電解質膜と反対側に配置された酸化剤極用ガス配流板とを具備する燃料電池において、
燃料極用ガス拡散部材及び酸化剤極用ガス拡散部材のうちの少なくとも一方は、前記した様相のいずれかに記載のガス拡散部材で形成されていることを特徴とするものである。
この場合、燃料ガスまたは酸化剤ガス等のガスは、ガス拡散部材の粗層の内部を透過して触媒層に至り、触媒層の触媒により発電反応を発生させる。様相8によれば、相対的に密度が粗層よりも高い密層は、粗層と触媒層との間に配置されている。このためガス拡散部材の粗層から触媒層に向かうガス流れは、相対的に密度が高い密層により規制される。同様に、電解質膜側の水分がガス拡散部材側に放出されることも規制される。従って固体電解質の過剰乾燥を抑制するのに有利である。様相8によれば、ガス下流領域において微小透過穴が密層に形成されているため、触媒層側の過剰の水は密層の微小透過穴からガス拡散部材に向けて排出される。
本発明によれば、粗層と密層とを備えた複層構造を採用することにより、上流領域おける電解質膜の乾燥を抑えつつ、ガス出口側である下流領域における水の排出性を確保でき、且つ、ガス出口側である下流領域における活物質の供給に有利なガス拡散部材、ガス拡散部材の製造方法、燃料電池を提供することができる。
(実施形態1)
以下、本発明の実施形態1を図1〜図3を参照して説明する。燃料電池は、図1に示すように、高分子型の固体電解質を基材とする電界質膜1と、電界質膜1の厚み方向の一方側に配置された燃料極用の触媒層2と、燃料極用の触媒層2のうち電界質膜1と反対側に配置された燃料極用のガス拡散部材3と、燃料極用のガス拡散部材3のうち電界質膜1と反対側に配置された燃料極用のガス配流板4と、電界質膜1の厚み方向の他方側に配置された酸化剤極用の触媒層5と、酸化剤極用の触媒層5のうち電界質膜1と反対側に配置された酸化剤極用のガス拡散部材6と、酸化剤極用のガス拡散部材6のうち電界質膜1と反対側に配置された酸化剤極用のガス配流板7とを有する。酸化剤極用のガス配流板7は活物質である酸素を含む酸化剤ガスが流れるガス通路7aを有する。燃料極用のガス配流板4は、活物質である水素ガス、水素含有ガス等の燃料ガスが流れるガス通路4aを有する。触媒層2,5は白金等の触媒金属を担持している。
酸化剤極用のガス拡散部材6は、酸化剤極用のガス配流板7のガス通路7aを流れる酸素を含む酸化剤ガスを、酸化剤極用の触媒層5に送るガス透過性をもつ。酸化剤極用のガス拡散部材6は、厚み方向の一方側が酸化剤極用の触媒層5に対向し、厚み方向の他方側が酸化剤極用のガス配流板7のガス通路7aに対向している。燃料極用のガス拡散部材3は、燃料極用のガス配流板4のガス通路4aを流れる燃料ガスを、燃料極用の触媒層2に送るガス透過性をもつ。燃料極用のガス拡散部材3は、導電繊維であるカーボン繊維の集積体で形成されており、導電性をもつ。燃料極用のガス拡散部材3は、厚み方向の一方側が燃料極用の触媒層2に対向し、厚み方向の他方側が燃料極用のガス配流板4のガス通路4aに対向している。
図2は酸化剤極用のガス拡散部材6の断面を模式的に示す。酸化剤極用のガス拡散部材6は、複層構造とされており、ガス透過性及び導電性を有する粗層8と、導電性を有する粗層8よりも相対的に緻密な密層9とを有する。密層9の厚みは粗層8の厚みよりも薄くされている。具体的には粗層8の厚みは200〜300μm程度に、密層9の厚みは10〜80μm程度に設定されているが、これに限定されるものではない。
粗層8は、酸化剤極用のガス配流板7のガス通路7a側に対向する。粗層8の密度は、ガス通過性を高めるべく、密層9よりも相対的に低く設定されている。密層9は、酸化剤極用の触媒層5に対向すると共に、密度が粗層8よりも相対的に高く設定されている。粗層8は、導電性を有するカーボン繊維の集積体と撥水性材料であるフッ素樹脂と導電物質であるカーボンブラックとを基材として形成されている。密層9はカーボン繊維を含まず、撥水性材料であるフッ素樹脂と導電物質であるカーボンブラックとを基材として形成されている。
本実施形態によれば、密層9が粗層8と酸化剤極用の触媒層5との間に設けられているため、次の(1)〜(3)の作用等を期待することができる。
(1)触媒層5と酸化剤極用ガス拡散部材6との密着性を向上させることができる。
(2)密層9は密度が粗層8よりも相対的に高いため、粗層8を構成する硬いカーボン繊維が酸化剤極用の触媒層5に突き刺さることを抑え、触媒層5を傷めることを抑制することができる。
(3)密層9は粗層8よりも密度が高いため、固体電界質膜1の乾燥、特に固体電界質膜1の上流領域における乾燥を抑制することができる。
図2に示すように、酸化剤極用のガス拡散部材6を構成する密層9においては、少なくともガス下流領域において微小透過穴10が形成されている。そして、密層9においては、ガス入口側であるガス下流領域から、ガス出口側であるガス上流領域に向かうにつれて、つまり、矢印X1方向に向かうにつれて微小透過穴10の数が増加するように形成されている。換言すると、隣設する微小透過穴10間の間隔であるピッチをPとすると、ピッチPは、ガス入口側であるガス下流領域から、ガス出口側であるガス上流領域に向かうにつれて、つまり、矢印X1方向に向かうにつれて小さくなるように設定されている。この結果、単位面積あたりの微小透過穴10の数は、ガス上流領域よりもガス下流領域において大きく設定されている。この結果、ガス下流領域において、酸化剤極用の触媒層5と密層9との間に存在する水を粗層8に排出させ易くなり、水の排出性が向上する。またガス中に含まれている活物質濃度が低下するガス下流領域において、粗層8から酸化剤極用の触媒層5に向かう活物質の供給性が向上する。
微小透過穴10は、レーザビームの照射により後処理で形成されている。レーザビームとしてはYAGレーザビーム、CO2レーザビーム等を例示できる。レーザビームの照射で微小透過穴10を形成すると、微小透過穴10の周縁部付近の撥水性材料であるフッ素樹脂(PTFE樹脂)の改質(炭化)が進行し、微小透過穴10の周縁部付近の撥水性が低下する。このため、後述する試験例でも示すように、微小透過穴10の周縁部付近は、親水性が高まる。このためガス下流領域において、酸化剤極用の触媒層5側のを微小透過穴10を介して粗層8側に排出することに貢献することができる。なお、微小透過穴10の周縁部が撥水性に富む場合には、微小透過穴10を介しての水の排出は制約され易い。レーザビームで微小透過穴10を形成するときには、微小透過穴10については、レーザビームの入射側の穴径を大きくするのに有利である。この結果、図2に示すように、微小透過穴10のうち酸化剤極用の触媒層5の側の径D1を大きくするの有利となる。この場合、水の排出促進に有利である。
本実施形態によれば、酸化剤極用の触媒層5に対向するように複数の微小透過穴10が酸化剤極用のガス拡散部材6の密層9に形成されており、微小透過穴10の周縁部は、レーザビームの照射によって、撥水材料の撥水性の低下、撥水材料の改質(炭化)が進行しているため、微小透過穴10が形成されていない部分よりも親水性が相対的に高い。このように微小透過穴10の周縁部、周縁部の内壁面は親水性が相対的に高いため、密層9と酸化剤極用の触媒層5との間に介在する過剰の水を微小透過穴10を介して粗層8側に排出させるのに有利である。
また、酸化剤極用のガス拡散部材6のうち微小透過穴10が形成されていない部分は、つまり、隣設する微小透過穴10の部分は、レーザビームが照射されておらず、撥水材料が存在しているため、撥水性が相対的に高い。このため、隣設する微小透過穴10の部分では、撥水機能により、酸化剤極用のガス拡散部材6のうちガスの通り道となる空隙部分が水で詰まりことを抑制するのに有利である。
なお、本実施形態によれば、図2に示すように、密層9に微小透過穴10を形成しているが、粗層8には微小透過穴10を実質的に形成していない。この場合、レーザビームの出力を調整すれば、微小透過穴10を密層9に形成するものの、粗層8には形成しないようにできる。場合によっては、微小透過穴10を密層9から粗層8に到達させても良い。
前記した酸化剤極用のガス拡散部材6の製造方法について説明を加える。まず、シート成形工程を実施する。即ち、カーボン繊維及び加熱すると焼失する焼失物質(パルプ繊維等)を水に分散させた液状物を用意する。この液状物を抄紙することにより、カーボン繊維及び焼失材料(パルプ繊維等)を基材とする抄紙シートを形成する。撥水性材料(フッ素樹脂)及び粉末状の導電物質(カーボンブラック等)を主要成分とするペースト状の第1流動物を含浸させてベースシートを得る。次に、このベースシートを大気中(酸素含有雰囲気)において温度T1(例えば350〜390℃)にて加熱して熱処理することにより、焼失材料(パルプ等)を焼失させる。これによりベースシートの内部に、焼失物質の焼失跡である空隙が形成される。次に、撥水性材料(フッ素樹脂)及び粉末状の導電物質(カーボンブラック等)を主要成分とするペースト状の第2流動物をベースシートの表面に塗布する。前記した空洞部分に撥水性材料や導電物質等が装填される。次にベースシートを大気中において温度T2(例えば300〜360℃)にて焼成する。これにより粗層8及び密層9からなるガス拡散部材6が形成される。なお温度T1>温度T2、温度T1≒温度T2、温度T1<温度T2にすることができる。燃料極用のガス拡散部材3も同様に粗層8と密層9とで形成される。これによりシート成形工程を終了する。
次に、穴形成工程を実施する。即ち、酸化剤極用のガス拡散部材6の上方にレーザ発振機を位置させ、レーザ発振機から発振させたレーザビームを酸化剤極用のガス拡散部材6の密層9に散点状に照射する。これにより密層9の表面に複数の微小透過穴10を形成する。レーザビームの出力、スポット径等は適宜選択することができる。
(適用形態)
図3は適用した形態を示す。図3に示すガス配流板7は酸化剤極用のものであり、仕切壁7bを有する。仕切壁7bにより区画されたガス通路7aは、逆Sの字を形成するように曲走構造に設定されている。従って、酸化剤極用のガス配流板7のガス通路7aを流れる酸化剤ガスは、ガス入口からガス出口に向けて、つまりガス上流からガス下流にかけて、逆S字方向に曲走するように流れる。
図3において、・の印は微小透過穴10を示す。図3に示すように、ガス上流領域UAにおける単位面積あたりの微小透過穴10の穴数NAは相対的に少な目とされ、ガス下流領域DAにおける単位面積あたりの微小透過穴10の穴数NDは相対的に多目とされている。穴数NAは例えば10〜1000個/cm2、殊に約750個/cm2とすることができる。穴数NDは例えば100〜5000個/cm2、殊に約5000個/cm2とされている。但し、単位面積あたりの微小透過穴10の穴数はこれに限定されるものではない。
(実施形態2)
図4は実施形態2を示す。実施形態2は基本的には実施形態1と同様の構成、作用効果を有する。以下、実施形態1と異なる部分を中心として説明する。図4に示すように、酸化剤極用のガス拡散部材6は、複層構造とされており、密度が相対的に低い粗層8と、密度が粗層8よりも相対的に高い密層9とを有する。図4に示すように、密層9においては、少なくともガス下流領域において微小透過穴10が形成されている。そして、密層9においては、ガス入口側であるガス下流領域から、ガス出口側であるガス上流領域に向かうにつれて、つまり、矢印X1方向に向かうにつれて、微小透過穴10の深さが増加するように形成されている。
換言すると、微小透過穴10の深さをhとすると、深さhは、ガス入口側であるガス下流領域から、ガス出口側であるガス上流領域に向かうにつれて、つまり、矢印X1方向に向かうにつれて深くなるように設定されている。この結果、ガス下流領域において、酸化剤極用の触媒層5と密層9との間に存在する水を粗層8に排出させる排出性が向上する。またガス下流領域において、粗層8から酸化剤極用の触媒層5へ向かうガスに含まれている活物質の供給性が向上する。微小透過穴10はレーザビームの照射により形成されている。レーザビーム20の照射で微小透過穴10を形成するため、微小透過穴10の周縁部付近の撥水性材料であるフッ素樹脂の改質(炭化)が進行し、微小透過穴10の周縁部付近の撥水性が低下する。このため、微小透過穴10の周縁部付近は、親水性が高まる。このため微小透過穴10を介しての水の排出に貢献できる。なお、一般的には、微小透過穴10の深さhが深いと、微小透過穴10の径が大きくなると共に、微小透過穴10の深さhが浅いと、微小透過穴10の径が小さくなる傾向が得られる。本実施形態によれば、密層9に微小透過穴10を形成しているが、粗層8には微小透過穴10を実質的に形成していない。
(実施形態3)
図5は実施形態3を示す。実施形態3は基本的には実施形態1と同様の構成、作用効果を有する。以下、実施形態1と異なる部分を中心として説明する。図5は酸化剤極用のガス拡散部材6の断面を示す。酸化剤極用のガス拡散部材6は、複層構造とされており、密度が相対的に低い粗層8と、密度が粗層8よりも相対的に高い密層9とを有する。粗層8は、導電性を有するカーボン繊維の集積体と撥水性材料であるフッ素樹脂と導電物質であるカーボンブラックとを基材として形成されている。密層9はカーボン繊維を含まず、撥水性材料であるフッ素樹脂と導電物質であるカーボンブラックとを基材として形成されている。
図5に示すように、密層9においては、少なくともガス下流領域において微小透過穴10が形成されている。そして、密層9においては、ガス入口側であるガス下流領域から、ガス出口側であるガス上流領域に向かうにつれて、つまり、矢印X1方向に向かうにつれて微小透過穴10の数が増加するように形成されている。換言すると、微小透過穴10間の間隔であるピッチをPとすると、ピッチPは、ガス入口側であるガス下流領域から、ガス出口側であるガス上流領域に向かうにつれて、つまり、矢印X1方向に向かうにつれて小さくなるように設定されている。この結果、単位面積あたりの微小透過穴10の数は、ガス上流領域よりもガス下流領域において大きく設定されている。この結果、ガス下流領域において、酸化剤極用の触媒層5と密層9との間の水を粗層8に排出させ易くなり、水の排出性が向上する。またガス中に含まれている活物質濃度が低下するガス下流領域において、粗層8から酸化剤極用の触媒層5に向かう活物質の供給性が向上する。
図5に示す実施形態によれば、微小透過穴10は、針状部材25の差し込みにより形成されている。この場合、図6に示すように、複数の針状部材25を一面側26aに保持したホルダ26を用い、ホルダ26を酸化剤極用のガス拡散部材6の密層9の上方に配置し、ホルダ26とガス拡散部材6とを相対的に接近させる。これによりホルダ26の針状部材25をガス拡散部材6の密層9に差し込むことにより複数の微小透過穴10をまとめて形成することができる。針状部材25を差し込むため、微小透過穴10の径については、微小透過穴10のうち針状部材25の進入入口側を大きくするのに有利である。この結果、図5に示すように、微小透過穴10のうち触媒層5の側の径D1を大きくするの有利となる。また、針状部材25の差し込み部分の尖り角度θ1を変更すれば、密層9に形成された微小透過穴10の断面形状、微小透過穴10の周縁部の傾斜角θ2を容易に変更することができる。
本実施形態によれば、密層9に微小透過穴10を形成しているが、粗層8には微小透過穴10を実質的に形成していない。この場合、図6に示すように、ホルダに当接可能なストッパ27を適宜設け、ストッパ27とホルダ26とを当接させることにより、針状部材25の差し込み量を調整し、微小透過穴10を密層9のみに形成している。
図7は適用した形態を示す。図7に示す酸化剤極用のガス配流板7のガス通路7aは、仕切壁7bで区画されており、逆Sの字を形成するように曲走構造に設定されている。従って、酸化剤極用のガス配流板7のガス通路7aを流れる酸化剤ガスは、ガス入口からガス出口に向けて逆S字方向に曲走するように流れる。ガス上流領域UA2における単位面積あたりの微小透過穴10の穴数NAは、相対的に少な目とされている。ガス下流領域DA2における単位面積あたりの微小透過穴10の穴数NDは、相対的に多目とされている。穴数NAは例えば10〜500個/cm2、殊に約300個/cm2とすることができる。穴数NDは例えば400〜1000個/cm2、殊に約750個/cm2とされている。但し、単位面積あたりの微小透過穴10の穴数はこれに限定されるものではない。
(実施形態4)
図8は実施形態4を示す。実施形態4は実施形態3と同様な構成、作用効果を有する。以下、実施形態3と異なる部分を中心として説明する。図8に示すように、酸化剤極用のガス拡散部材6は、複層構造とされており、密度が相対的に低い粗層8と、密度が粗層8よりも相対的に高い密層9とを有する。図8に示すように、密層9においては、少なくともガス下流領域において微小透過穴10が形成されている。そして、密層9においては、ガス入口側であるガス下流領域から、ガス出口側であるガス上流領域に向かうにつれて、つまり、矢印X1方向に向かうにつれて、微小透過穴10の深さhが増加するように形成されている。この結果、ガス下流領域において、酸化剤極用の触媒層5と密層9との間の水を粗層8に排出させ易くなり、水の排出性が向上する。またガス中に含まれている活物質濃度が低下するガス下流領域において、粗層8から酸化剤極用の触媒層5に向かう活物質の供給性が向上する。
微小透過穴10は、複数の針状部材25を密層9に差し込むことにより形成されている。本実施形態によれば、密層9に微小透過穴10を形成しているが、粗層8には微小透過穴10を実質的に形成していない。
(実施形態5)
図9は実施形態5を示す。実施形態5は基本的には実施形態1と同様の構成、作用効果を有する。以下、実施形態1と異なる部分を中心として説明する。図9に示すように、密層9に形成した微小透過穴10の先端は粗層8まで到達している。微小透過穴10はレーザビームの照射または針状部材25の差し込みにより形成されている。
(実施形態6)
図10は実施形態6を示す。実施形態6は基本的には実施形態1と同様の構成、作用効果を有する。以下、実施形態3と異なる部分を中心として説明する。ガス配流板7のガス通路7aは、酸化剤ガスの流れが曲がるガス曲走領域74a,74bを有する。上記したガス曲走領域74a,74bは一般的には水が溜まり易い部位である。そこで、図10に示すように、曲走領域74a,74bにおいて、単位面積当たりの微小透過穴10の数は、他の部分(乾燥が起こりがちのガス上流領域、あるいは、ガスが真っ直ぐ流れるガス直走領域)よりも高くなるように設定されている。
このように酸化剤極用のガス拡散部材6について、水が溜まり易いガス曲走領域74a,74bにおいて、単位面積当たりの微小透過穴10の数及び/または穴径を局所的に調整することにすれば、水出性、活物質の供給性を局所的に調整することができ、燃料電池の発電性能を向上させ得る利点が得られる。
(実施例1)
実施例1によれば、導電繊維としてのカーボン繊維(平均径14μm,平均長さ3mm)と、焼失物質としてのパルプ繊維とから抄紙した抄紙シートを用いた。抄紙シートは、カーボン繊維及びパルプ繊維を主要成分とする液状物を用い、液状物から液体部分を取り除くことにより形成されており、カーボン繊維及びパルプ繊維の集積体である。そして、カーボンブラック(キャボット株式会社 バルカン XC−72)と撥水材料(PTFE分散液 ダイキン工業 D−1)を分散したペースト状の第1流動物をロールコートにより抄紙シートに含浸した。次に、その抄紙シートを乾燥させた後に、温度T1(380℃)にて焼成した。これによりパルプ繊維を焼失させて空洞化させると共に、厚さ300μm程度のガス拡散部材6の粗層8となるベースシートを形成した。
更に、カーボンブラック(キャボット株式会社 バルカン XC−72)と撥水材料(PTFE分散液 ダイキン工業 D−1)を分散したペースト状の第2流動物をベースシートに更にロールコートにより塗布した。第2流動物は密層9を形成するものであり、第1流動物と同様の基材を用いているが、配合比が異なる。次に、乾燥させた後に、温度T2(320℃)にて焼成し、粗層8及び密層9からなる2層構造の酸化剤極用のガス拡散部材6を形成した。温度T2は温度T1より低いのは、パルプ繊維が既に焼失しているためである。
この酸化剤極用ガス拡散部材6に密層9側から、YAGレーザによりレーザビームを散点状に照射し、表面の直径が50μm程度の複数の微小透過穴10を形成した。微小透過穴10間のピッチPを図3に示すように設定した。単位面積あたりの微小透過穴10の数は、ガス上流領域UAでは、ガス下流領域DAよりも相対的に少な目(750個/cm2)とされている。単位面積あたりの微小透過穴10の数は、ガス下流領域DAでは、ガス上流領域UAよりも相対的に多め目(5000個/cm2)とされている。
(実施例2)
実施例2は実施例1と基本的には同様の構成、作用効果を奏する。実施例2によれば、実施例1で形成した酸化剤極用のガス拡散部材6を用い、直径0.64ミリメートルの縫い針を酸化剤極用のガス拡散部材6に密層9側から差し込むことにより、複数の微小透過穴10を形成した。単位面積あたりの微小透過穴10の穴数は、図7に示すガス上流領域UA2では、ガス下流領域DA2よりも相対的に少な目(300個/cm2)とされている。単位面積あたりの微小透過穴10の穴数は、ガス下流領域DA2では、ガス上流領域UA2よりも相対的に多め目(750個/cm2)とされている。
上記した実施例1及び実施例2に係る酸化剤極用のガス拡散部材6を燃料電池モデルにそれぞれ組み込んで、燃料電池モデルの性能を評価した。微小透過穴10が形成されていない酸化剤極用のガス拡散部材6を組み込んだ燃料電池を比較例とした。この試験によれば、燃料電池の性能評価のために12センチメートル×12センチメートルの電極サイズを有する膜電極接合体(MEA)を作製した。酸化剤極用のガス配流板7及び燃料極用のガス配流板4は、ストレートのガス通路をもつカーボン焼成品を用いた。得られたI−V特性を図11に示す。図11の縦軸は電圧の相対値を示し、横軸は電流密度の相対値を示す。図11に示すように、比較例よりも実施例1,実施例2は発電性能が良好であった。
(試験例)
表1に示す条件に基づいて、粗層8(厚み260μm)及び密層9(厚み40μm)を有すると共に、レーザビームにより密層9に微小透過穴10を形成した試験片を用い、密層9における水の接触角の変化を試験した。この場合、重量%でエタノールを20%含む水溶液を用いた。水のみでは、接触角が大きすぎ、差が出ないためである。
一般的には、水の接触角は90度を超えると撥水性とされ、90度以下であれば、親水性とされる。試験片Tは微小透過穴10を形成していないものである。試験片Vは針の差し込みにより微小透過穴10を形成したものである。試験片2−1,試験片2−2,試験片2−3,試験片4−1,試験片4−2,試験片4−3,試験片4−4は、レーザビームで微小透過穴10を形成したものである。
Figure 2005071941
試験結果を図12に示す。図12に示すように、微小透過穴10が形成されていない試験片Tによれば、接触角が136度と大きく、大きな撥水性を示した。密層9が撥水性材料を主要成分とするためである。針の差し込みにより微小透過穴10を形成した試験片Vにおいても、接触角が134〜136度と大きく、大きな撥水性を示した。これに対してレーザビームで微小透過穴10を形成した試験片2−1,試験片2−2,試験片2−3,試験片4−1,試験片4−2,試験片4−3,試験片4−4によれば、微小透過穴10が形成されていない試験片Tに比較して、接触角が低下しており、撥水性が低下していた。殊に、試験片2−1,試験片2−2,試験片2−3によれば、微小透過穴10の穴径を100μm以上と大きくしており、接触角が小さかった。なかでも試験片2−1,試験片2−2によれば、微小透過穴10の穴径を110μm以上と大きく、接触角が90度以下であり、親水性を示した。親水性が高い方が、微小透過穴10の毛細管圧が高くなり、微小透過穴10を介する水の排出性を高めることができる。
図13は微小透過穴10の表面穴径と密層9における水の接触角との関係を示す。図13に示すように、レーザビームの強度を大きくして微小透過穴10の表面穴径を大きくしたとき、密層9における水の接触角が相対的に小さくなる傾向、つまり親水性が高くなる傾向が得られた。
また、針の差し込みにより微小透過穴10を密層9に形成した試験片を用い、単位面積当たりの微小透過穴10の穴数と法線方向の透気度との関係を試験した。この場合、直径0.64ミリメートルの縫い針を132本束ねて試験片の密層9に対して指により押し付けて穴を形成した。穴径を0.14ミリメートルとした。試験結果を図14に示す。図14の縦軸は法線透気度を示し、横軸は単位面積当たりの穴数を示す。図14に示すように、穴数が増加するつれて法線透気度は増加する傾向が得られる。
本発明者による試験結果をまとめると、図15(A)〜(D)に示すようになる。図15(A),図15(B)に示すように、レーザ出力が増加するにつれて、ガス透過率及び排水速度が増加する。図15(C),図15(D)に示すように、単位面積当たりの微小透過穴の穴数が増加すると、ガス透過率及び排水速度が増加する。
上記したようにレーザビームの照射または針状部材の差し込みにより、密層9に微小透過穴10を形成する方法を採用すれば、図16に示すように、単位面積当たりの微小透過穴10の穴数をガス拡散部材6の部位に応じて変更することができる利点が得られる。従ってガス拡散部材6のうち水が溜まり易い部位において、単位面積当たりの微小透過穴10の穴数を局所的に調整することにすれば、水排出性、活物質の供給性を局所的に調整することができ、燃料電池の発電性能を向上させ得る利点が得られる。
場合によっては、微小透過穴10の深さをガス拡散部材6の部位に応じて局所的に変更することができる利点が得られる。従ってガス拡散部材6のうち水が溜まり易い部位において、微小透過穴10の深さを他の部分よりも深くなるように局所的に調整することにすれば、水排出性、活物質の供給性を局所的に調整することができ、燃料電池の発電性能を向上させ得る利点が得られる。
(その他)
上記した実施形態、実施例によれば、酸化剤極用のガス拡散部材6の密層9に微小透過穴10を形成しているが、これに限らず、燃料極用のガス拡散部材3を粗層と密層との複層構造とし、密層に微小透過穴10を形成しても良い。その他、本発明は上記し且つ図面に示した実施形態、実施例のみに限定されるものではなく、必要に応じて適宜変更して実施できるものである。
(付記)
上記した記載から次の技術的思想も把握できる。
(付記項1)厚み方向の一方側が触媒層に対向し、厚み方向の他方側がガス配流板に対向し、且つ、前記ガス配流板のガスを前記触媒層に送るガス透過性及び導電性をもつ燃料電池用のガス拡散部材において、
前記触媒層に対向するように複数の微小透過穴が形成されており、前記微小透過穴の周縁部は、微小透過穴が形成されていない部分よりも親水性が相対的に高いことを特徴とするガス拡散部材。微小透過穴の周縁部は、親水性が相対的に高いため、微小透過穴を介して過剰の水を排出させるのに有利である。酸化剤極用のガス拡散部材のうち微小透過穴が形成されていない部分は、撥水性が相対的に高いため、酸化剤極用のガス拡散部材のうちガスの通り道となる空隙部分が水で詰まりことを抑制するのに有利である。
(付記項2)各請求項において、微小透過穴の深さは、ガス上流領域よりもガス下流領域において深く設定されていることを特徴とするガス拡散部材。下流領域における水排出性、活物質の供給性を向上させることができる。
本発明は車両用燃料電池、定置用燃料電池、携帯用燃料電池等に適用することができる。
固体高分子型の燃料電池を模式的に示す断面図である。 レーザビームで微小透過穴を形成したガス拡散部材付近を模式的に示す断面図である。 ガス配流板のガス通路と、ガス通路に対向するガス拡散部材にレーザビームで形成する微小透過穴の分布形態とを併せて模式的に示す構成図である。 実施形態2に係り、レーザビームで微小透過穴を形成したガス拡散部材付近を模式的に示す断面図である。 実施形態3に係り、レーザビームで微小透過穴を形成したガス拡散部材付近を模式的に示す断面図である。 針状部材をガス拡散部材の密層に差し込む形態を模式的に示す断面図である。 ガス配流板のガス通路と、ガス通路に対向するガス拡散部材に針状部材で形成する微小透過穴の分布形態とを合わせて模式的に示す構成図である。 実施形態4に係り、針状部材の差し込みで微小透過穴を形成したガス拡散部材付近を模式的に示す断面図である。 実施形態5に係り、密層から粗層にかけて微小透過穴を形成したガス拡散部材付近を模式的に示す断面図である。 実施形態6に係り、ガス配流板のガス通路と、ガス通路に対向するガス拡散部材に形成した微小透過穴の分布形態とを併せて模式的に示す構成図である。 燃料電池のモデルにおける電流密度と電圧との関係を示すグラフである。 各試験片における接触角の変化を示すグラフである。 微小透過穴の表面穴径と接触角との関係を示すグラフである。 単位面積当たりの微小透過穴の穴数とガス拡散部材の法線透気度との関係を示すグラフである。 試験結果を模式的に示すグラフである。 ガス拡散部材の部位に応じて単位面積当たりの微小透過穴の穴数を調整した形態を示す構成図である。
符号の説明
図中、1は電解質膜、2は触媒層、3はガス拡散部材、4はガス配流板、5は触媒層、6はガス拡散部材、7はガス配流板、8は粗層、9は密層、10は微小透過穴、20はレーザビーム、25は針状部材、74a,74bはガス曲走領域を示す。

Claims (8)

  1. 厚み方向の一方側が触媒層に対向し、厚み方向の他方側がガス配流板に対向し、且つ、前記ガス配流板のガスを前記触媒層に送るガス透過性及び導電性をもつガス拡散部材において、
    前記ガス配流板に対向すると共に密度が相対的に低い粗層と、前記触媒層に対向すると共に密度が粗層よりも相対的に高い密層とを有する複層構造を備えており、
    少なくともガス下流領域において微小透過穴が前記密層に形成されていることを特徴とするガス拡散部材。
  2. 請求項1において、前記微小透過穴は、高エネルギ密度ビームの照射または針状部材の差し込みにより形成されていることを特徴とするガス拡散部材。
  3. 請求項1または請求項2において、単位面積あたりの前記微小透過穴の穴数は、ガスの上流領域よりもガスの下流領域において大きく設定されていることを特徴とするガス拡散部材。
  4. 請求項1〜請求項3のうちのいずれか一項において、前記微小透過穴の深さは、ガス上流領域よりもガス下流領域において深く設定されていることを特徴とするガス拡散部材。
  5. 請求項1〜請求項4のうちのいずれか一項において、前記ガス配流板は、ガスの流れが曲がるガス曲走領域を有しており、前記ガス拡散部材のうち前記ガス配流板のガス曲走領域に対向する部分において、前記微小透過穴が形成されていることを特徴とするガス拡散部材。
  6. 厚み方向の一方側が触媒層に対向し、厚み方向の他方側がガス配流板に対向し、且つ、前記ガス配流板のガスを前記触媒層に送るガス透過性及び導電性をもつガス拡散部材の製造方法において、
    前記ガス配流板に対向すると共に密度が相対的に低い粗層と、前記触媒層に対向すると共に密度が前記粗層よりも相対的に高い密層とを有する複層構造を備えたシートを形成するシート成形工程と、
    高エネルギ密度ビームを前記密層に照射することにより、前記シートのうち少なくとも密層に複数の微小透過穴を形成する穴形成工程とを含むことを特徴とするガス拡散部材の製造方法。
  7. 厚み方向の一方側が触媒層に対向し、厚み方向の他方側がガス配流板に対向し、且つ、前記ガス配流板のガスを前記触媒層に送るガス透過性及び導電性をもつガス拡散部材を製造する製造方法において、
    前記ガス配流板に対向すると共に密度が相対的に低い粗層と、前記触媒層に対向すると共に密度が前記粗層よりも相対的に高い密層とを有する複層構造を備えたシートを形成するシート成形工程と、
    針状部材を前記密層に差し込むことにより、前記シートのうち少なくとも密層に複数の微小透過穴を形成する穴形成工程とを含むことを特徴とするガス拡散部材の製造方法。
  8. 電解質を基材とする電解質膜と、前記電解質膜の厚み方向の一方側に配置された燃料極用触媒層と、前記燃料極用触媒層のうち前記電解質膜と反対側に配置された燃料極用ガス拡散部材と、前記燃料極用ガス拡散部材のうち前記電解質膜と反対側に配置された燃料極用ガス配流板と、前記電解質膜の厚み方向の他方側に配置された酸化剤極用触媒層と、前記酸化剤極用触媒層のうち前記電解質膜と反対側に配置された酸化剤極用ガス拡散部材と、前記酸化剤極用ガス拡散部材のうち前記電解質膜と反対側に配置された酸化剤極用ガス配流板とを具備する燃料電池において、
    前記燃料極用ガス拡散部材及び前記酸化剤極用ガス拡散部材のうちの少なくとも一方は、請求項1〜請求項7のいずれかに記載のガス拡散部材で形成されていることを特徴とする燃料電池。
JP2003303573A 2003-08-27 2003-08-27 ガス拡散部材、ガス拡散部材の製造方法、燃料電池 Expired - Fee Related JP4087766B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303573A JP4087766B2 (ja) 2003-08-27 2003-08-27 ガス拡散部材、ガス拡散部材の製造方法、燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303573A JP4087766B2 (ja) 2003-08-27 2003-08-27 ガス拡散部材、ガス拡散部材の製造方法、燃料電池

Publications (2)

Publication Number Publication Date
JP2005071941A true JP2005071941A (ja) 2005-03-17
JP4087766B2 JP4087766B2 (ja) 2008-05-21

Family

ID=34407528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303573A Expired - Fee Related JP4087766B2 (ja) 2003-08-27 2003-08-27 ガス拡散部材、ガス拡散部材の製造方法、燃料電池

Country Status (1)

Country Link
JP (1) JP4087766B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073415A (ja) * 2005-09-08 2007-03-22 Nitto Denko Corp 膜電極接合体および燃料電池
JP2007103241A (ja) * 2005-10-06 2007-04-19 Mitsubishi Electric Corp 燃料電池
JP2007227008A (ja) * 2006-02-21 2007-09-06 Mitsubishi Rayon Co Ltd 多孔質炭素電極基材およびそれを用いた燃料電池
JP2008097944A (ja) * 2006-10-11 2008-04-24 Hitachi Ltd 燃料電池用セパレータ
JP2008198567A (ja) * 2007-02-15 2008-08-28 Nippon Soken Inc 燃料電池
JP2017117543A (ja) * 2015-12-21 2017-06-29 トヨタ自動車株式会社 燃料電池及び燃料電池システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176307A (ja) * 1993-12-21 1995-07-14 Fuji Electric Co Ltd 燃料電池
JPH10326622A (ja) * 1997-03-25 1998-12-08 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池
JPH11511289A (ja) * 1995-08-25 1999-09-28 バラード パワー システムズ インコーポレイティド 反応体及び生成物の輸送の制御のための平面内不均等構造を有する電極基板を備えた電気化学的燃料電池
JP2002042823A (ja) * 2000-07-25 2002-02-08 Toyota Motor Corp 燃料電池
JP2002110182A (ja) * 2000-09-29 2002-04-12 Sony Corp ガス拡散電極及びその製造方法、並びに、電気化学デバイス及びその製造方法
JP2002319411A (ja) * 2001-04-23 2002-10-31 Matsushita Electric Ind Co Ltd ガス拡散電極およびこれを用いた燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176307A (ja) * 1993-12-21 1995-07-14 Fuji Electric Co Ltd 燃料電池
JPH11511289A (ja) * 1995-08-25 1999-09-28 バラード パワー システムズ インコーポレイティド 反応体及び生成物の輸送の制御のための平面内不均等構造を有する電極基板を備えた電気化学的燃料電池
JPH10326622A (ja) * 1997-03-25 1998-12-08 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池
JP2002042823A (ja) * 2000-07-25 2002-02-08 Toyota Motor Corp 燃料電池
JP2002110182A (ja) * 2000-09-29 2002-04-12 Sony Corp ガス拡散電極及びその製造方法、並びに、電気化学デバイス及びその製造方法
JP2002319411A (ja) * 2001-04-23 2002-10-31 Matsushita Electric Ind Co Ltd ガス拡散電極およびこれを用いた燃料電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073415A (ja) * 2005-09-08 2007-03-22 Nitto Denko Corp 膜電極接合体および燃料電池
JP2007103241A (ja) * 2005-10-06 2007-04-19 Mitsubishi Electric Corp 燃料電池
JP2007227008A (ja) * 2006-02-21 2007-09-06 Mitsubishi Rayon Co Ltd 多孔質炭素電極基材およびそれを用いた燃料電池
JP2008097944A (ja) * 2006-10-11 2008-04-24 Hitachi Ltd 燃料電池用セパレータ
JP2008198567A (ja) * 2007-02-15 2008-08-28 Nippon Soken Inc 燃料電池
JP2017117543A (ja) * 2015-12-21 2017-06-29 トヨタ自動車株式会社 燃料電池及び燃料電池システム

Also Published As

Publication number Publication date
JP4087766B2 (ja) 2008-05-21

Similar Documents

Publication Publication Date Title
CA2927098C (en) Carbon fiber nonwoven fabric, production method for carbon fiber nonwoven fabric, and nonwoven fabric of carbon fiber precurser fibers
JP5958660B1 (ja) 炭素シート、ガス拡散電極基材および燃料電池
JP2010073563A (ja) 燃料電池及び燃料電池用ガス拡散層とその製造方法
JP2006324104A (ja) 燃料電池用ガス拡散層、および、これを用いた燃料電池
JP2010129299A (ja) 燃料電池用セパレータ及びその製造方法
TW201601927A (zh) 氣體擴散電極基材以及具備其之膜電極接合體及燃料電池
US7625661B2 (en) Diffusion media with continuous micro-porous layers incorporating non-uniformity
CA3038024A1 (en) Gas diffusion electrode and fuel cell
JP4087766B2 (ja) ガス拡散部材、ガス拡散部材の製造方法、燃料電池
JP5153159B2 (ja) 燃料電池
JP2003036860A (ja) 電極基材およびその製造方法並びにそれを用いた燃料電池
JP2010102879A (ja) 燃料電池用ガス拡散層およびその製造方法
JP2008210725A (ja) ガス拡散電極、膜−電極接合体とその製造方法、および固体高分子型燃料電池
JP2007207685A (ja) 燃料電池、および燃料電池の製造方法
JP2006331786A (ja) 燃料電池用電極材料及びその製造方法
JP2005317240A (ja) 炭素繊維不織布、ガス拡散体、膜−電極接合体および燃料電池
JP2008098066A (ja) ガス拡散基材、その製造方法、ガス拡散層及び固体高分子形燃料電池
JP7355143B2 (ja) 多孔質電極基材及び、ガス拡散層、及びガス拡散電極とその製造方法
JP2006004787A (ja) 固体高分子電解質型燃料電池用ガス拡散膜
JP4321038B2 (ja) 固体高分子型燃料電池
JP2007149454A (ja) ガス拡散層、ガス拡散電極、膜電極接合体及び高分子電解質形燃料電池
JP2008277126A (ja) 燃料電池用電極・膜接合体、及び燃料電池
JP5349851B2 (ja) 燃料電池セル、および燃料電池
JP2008117786A (ja) 固体高分子型燃料電池
JP2006079938A (ja) ガス拡散層、およびこれを用いた燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees