JP2005056930A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2005056930A
JP2005056930A JP2003206328A JP2003206328A JP2005056930A JP 2005056930 A JP2005056930 A JP 2005056930A JP 2003206328 A JP2003206328 A JP 2003206328A JP 2003206328 A JP2003206328 A JP 2003206328A JP 2005056930 A JP2005056930 A JP 2005056930A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
substrate
forming
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003206328A
Other languages
English (en)
Other versions
JP4554898B2 (ja
Inventor
Eiko Shutto
栄子 出頭
Michihiro Kamishiro
道博 神代
Rikuo Endo
陸男 遠藤
Tsutomu Kameyama
勉 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003206328A priority Critical patent/JP4554898B2/ja
Publication of JP2005056930A publication Critical patent/JP2005056930A/ja
Application granted granted Critical
Publication of JP4554898B2 publication Critical patent/JP4554898B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】設備を改造することなく薄型の半導体装置を形成することが可能な半導体装置の製造方法を提供する。
【解決手段】第1の半導体基板に第1導電型の層および第2導電型の層を形成する工程と、第1の半導体基板の第2導電型の層若しくは第2の半導体基板の少なくとも一方に酸化膜を形成し、第1の半導体基板と第2の半導体基板を酸化膜を介して接合する工程と、第1の半導体基板を所定の厚さに研磨する工程と、第1の半導体基板にベース領域とエミッタ領域とゲート電極を形成する工程と、第2の半導体基板の表面に選択的にマスクを形成する工程と、第1の半導体基板のゲート電極およびエミッタ電極側の面に保護膜を塗布する工程と、酸化膜をストップ層として、第2の半導体基板の一部を除去する工程と、封止並びに保護膜を除去する工程と、第2導電型の層の表面に電極を形成する工程とを備えた。
【選択図】 図7

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に関し、特に、縦型の絶縁ゲート型バイポーラトランジスタ(IGBT)などの半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
従来、大電流を制御するための半導体素子として絶縁ゲート型バイポーラトランジスタ(IGBT)が知られている。このIGBTは、電界効果トランジスタ(FET)の高速スイッチング性とバイポーラトランジスタの低インピーダンス特性を兼ね備えているデバイス(素子)である(例えば、特許文献1参照)。
【0003】
【特許文献1】
特許第2657129号
【0004】
近年、電動車両などの発達によって、バッテリやキャパシタなどの比較的低い電圧源からの電力によりモータを駆動しており、そのモータの駆動制御を司るインバータにIGBTが多く用いられている。このような電動車両では、燃費、効率を向上させる目的で、IGBTのスイッチング損失の低減、オン抵抗の低減などが望まれている。
【0005】
図11は、従来のIGBTの製造工程を示すフローチャートである。また、図12と図13は従来のIGBTの製造工程の各工程における半導体基板の断面図である。IGBTの製造工程は、IGBT基板形成工程(ST100)とデバイス形成工程(ST110)から成っている。
【0006】
IGBT基板形成工程(ST100)では、まず、比較的低抵抗のP型シリコン基板100を準備する(図12(a))。このP型シリコン基板100上に比較的低抵抗のN型半導体バッファ層101を5〜30μm程度の厚さにエピタキシャル成長させる(図12(b))。このN型半導体バッファ層101上に比較的高抵抗のN型半導体層102をエピタキシャル成長させる(図12(c))。このようにして、IGBT基板を得ることができる。
【0007】
デバイス形成工程(ST110)では、まず、エピタキシャル成長させたN型半導体層102の表面にP型の不純物を選択的に添加してP型ベース領域103を形成する(図13(a))。P型ベース領域103の表面にN型の不純物を選択的に添加してN型エミッタ領域104を形成する(図13(b))。N型エミッタ領域104とN型半導体層102とによって挟まれるP型ベース領域103の表面部分がチャネル領域105となる。
【0008】
次に、各チャネル領域105上にゲート酸化膜106を介してゲート電極107を形成し、また、各N型エミッタ領域104とP型ベース領域103との一部にかけてエミッタ電極108を形成し(図13(c))、さらに、P型シリコン基板100の裏面にコレクタ電極109を形成する(図13(d))。図14は、上記の製造工程により製造されたIGBTの断面図である。
【0009】
上記のようにして製造されたIGBTの動作を図14と図15のコレクタ電圧VCEとコレクタ電流ICEの時間変化を表すグラフを用いて説明する。図15において、横軸は時間を表し、縦軸はコレクタ電圧VCEとコレクタ電流ICEを表し、曲線C10はコレクタ電圧VCEの時間変化を示し、曲線C11はコレクタ電流ICEの時間変化を示す。
【0010】
IGBTにおいては、エミッタ電極108とコレクタ電極109との間にコレクタ電圧を印加する。その状態でエミッタ電極108とゲート電極107との間に所定のゲート電圧を印加する。それにより、チャネル領域105においてチャネルが形成されて、このチャネルを通してエミッタ電極108から電子がN型半導体層102に注入され、また、コレクタ電極109側のP型シリコン基板100とN型半導体層102間が順バイアスされ、P型シリコン基板100からは正孔が注入される。注入された正孔のプラス電荷と同じ量の電子がN型半導体層102に集まり、N型半導体層102の抵抗低下が起こり、IGBTはオン状態になる。このオン状態までの過渡的現象が図15の範囲R10の曲線C10で見られるターンオン時のコレクタ電圧の徐々の減少であり、曲線C11に見られるコレクタ電流の徐々の増加である。
【0011】
図15の範囲R11におけるオン状態において、ゲート電圧の印加を停止すると、チャネル領域105を通してのエミッタ電極108からN型半導体層102への電子の注入がなくなり、また、P型シリコン基板100からN型半導体層102への正孔の注入が停止し、IGBTはオフ状態となる。このオフ状態に際しては、すでに注入された正孔も寿命がつきて減少する。N型半導体層102に残留中の正孔は電子との再結合による消滅とP型ベース領域へ直接流出することにより、オフ状態となる。これが図15の範囲R12の曲線C11に見られるターンオフ時のテイル電流として現れる。
【0012】
このように、IGBTは、P型シリコン基板100からN型半導体層102に注入される正孔の量により特性が変わるものである。そこで、注入される正孔の量を抑制する層として、N型半導体バッファ層が設けられている。
【0013】
このIGBTの電力損失にはスイッチング損失と導通損失がある。スイッチング損失は、図15の範囲R10で示したターンオン時および範囲R12で示したターンオフ時の損失である。そこで、ターンオン時間およびターンオフ時間を短くすることにより、スイッチング損失を少なくすることができる。また、導通損失は、図15の範囲R11で示したオン状態の損失である。そこで、オン抵抗を低減することにより、導通損失を少なくすることができる。
【0014】
ターンオフ時間を短くするには、一つには、正孔の寿命を小さくするために格子欠陥などをN型半導体層102に導入することが考えられている。もう一つには、IGBTを構成しているP型シリコン基板100から成るP型半導体層(コレクタ層)を薄くすることが考えられており、これにより、N型半導体層102に入る正孔の量を制限し、ターンオフ時のフォールタイム(テイル電流の流れる時間(図15の範囲R12))を短くでき、スイッチング損失を少なくすることが知られている。また、低オン抵抗を実現するには、N型半導体層102を主とするIGBTを薄くする必要がある。
【0015】
型半導体層を薄くして製造する方法としては、エピタキシャル成長法やイオン注入法を用いてP型半導体層を形成する方法、あるいはP型シリコン基板上にN型半導体バッファ層、N型半導体層を順次形成し、N型半導体層上にベース領域、エミッタ領域、ゲート電極、エミッタ電極を形成した後、P型シリコン基板を研削、研磨する方法が考えられる。
【0016】
また、P型半導体層を薄く形成すると共に、低オン抵抗の特性を得るために半導体装置を薄型に形成する際、第2半導体基板を第1半導体基板に接合し、第1半導体基板に半導体装置を形成した後、第2半導体基板を選択的にエッチングし、半導体装置を薄型に形成すると共に、半導体装置の周囲縁に厚い部分を残存させて、取り扱いや割れ反り等の問題を解決する技術が、本発明者等によって開発されている(特願2002−165254号)。
【0017】
【発明が解決しようとする課題】
しかしながら、エピタキシャル成長法やイオン注入法を用いてP型半導体層を形成する方法では、P型半導体層の厚みを精度よく薄く形成することが可能であり、厚みの制御性も良く行うことが可能であるが、通常のIGBT製造設備では、半導体基板は約500μm以上の厚みが必要なため、耐圧が500〜1000V程度のものに対応する半導体基板の厚さが50〜100μm程度のものは、通常のIGBT製造設備では作ることが困難であるという問題点がある。
【0018】
また、P型シリコン基板上にN型半導体バッファ層、N型半導体層を順次形成し、N型半導体層上にベース領域、エミッタ領域、ゲート電極、エミッタ電極を形成した後、P型シリコン基板を研削、研磨する方法では、P型シリコン基板として、通常のIGBT製造設備に通すことが可能な厚みのものを用いて行うことが考えられるが、この方法は、機械加工によるものであるため、P型半導体層を数μmにするには厚み寸法のばらつきが大きく厚み精度を確保することが困難であり、特性ばらつきの少ないIGBTを得ることが困難であるという問題点がある。
【0019】
さらに、P型半導体層を薄く形成することに加え、低オン抵抗の特性を得るため、IGBTを薄く、例えば100μm以下に、形成する場合、ウエハの割れや熱処理時の反りなどの問題が発生する。また、一般的に使用されている製造設備では、500μm程度のウエハを取り扱うものが多く、100μm以下のものに対しては、搬送系に係わる部分の改造や熱処理時の反り対策の必要がある。
【0020】
また、特願2002−165254号の技術により半導体装置の製造を行うと、第2の半導体基板をエッチングによって除去する際に、第1半導体基板のゲート電極とエミッタ電極が形成された面を保護するため、保護材(ワックス)を介してガラス基板にホットプレート上で加熱して貼り付けている。しかしながら、この場合、ガラス基板が一度の使用で劣化・汚染されてしまい、再利用ができないという課題があった。さらに、ガラス基板は、その重量のため、取り扱いが不便であり、また、専用の装置を導入する必要があるため、生産性が悪く、コストの上昇を招くという課題があった。
【0021】
本発明の目的は、上記問題を解決するため、設備を改造することなくP型半導体層を精度よく薄型に形成するとともに、薄型の半導体装置を形成することが可能な半導体装置の製造方法を提供することにある。
【0022】
【課題を解決するための手段および作用】
本発明に係る半導体装置の製造方法は、上記の目的を達成するために、次のように構成される。
【0023】
第1の半導体装置の製造方法(請求項1に対応)は、第1の半導体基板に第1の半導体基板の不純物濃度よりも高濃度の不純物を含む第1導電型の層および第2導電型の層を形成する工程と、第1の半導体基板の第2導電型の層若しくは第2の半導体基板の少なくとも一方に酸化膜を形成し、第1の半導体基板と第2の半導体基板を酸化膜を介して接合する工程と、第1の半導体基板を所定の厚さに研磨する工程と、第1の半導体基板に第2導電型のベース領域と、第1導電型のエミッタ領域と、エミッタ電極と、絶縁膜を介したゲート電極を形成する工程と、第2の半導体基板の表面に選択的にマスクを形成する工程と、第1の半導体基板のゲート電極およびエミッタ電極側の面に保護膜を塗布する工程と、酸化膜をストップ層として、第2の半導体基板の一部を除去する工程と、封止並びに保護膜を除去する工程と、第2導電型の層の表面に電極を形成する工程とを備えたことで特徴づけられる。
【0024】
第1の半導体装置の製造方法によれば、第1の半導体基板に第1の半導体基板の不純物濃度よりも高濃度の不純物を含む第1導電型の層および第2導電型の層を形成する工程と、第1の半導体基板の第2導電型の層若しくは第2の半導体基板の少なくとも一方に酸化膜を形成し、第1の半導体基板と第2の半導体基板を酸化膜を介して接合する工程と、第1の半導体基板を所定の厚さに研磨する工程と、第1の半導体基板に第2導電型のベース領域と、第1導電型のエミッタ領域と、エミッタ電極と、絶縁膜を介したゲート電極を形成する工程と、第2の半導体基板の表面に選択的にマスクを形成する工程と、第1の半導体基板のゲート電極およびエミッタ電極側の面に保護膜を塗布する工程と、酸化膜をストップ層として、第2の半導体基板の一部を除去する工程と、封止並びに保護膜を除去する工程と、第2導電型の層の表面に電極を形成する工程とを備えたため、第2半導体基板を第1半導体基板に接合し、第2半導体基板を選択的にエッチングすることにより周囲縁に厚い部分を残存させたので、エミッタ、ゲート電極面側を製造する設備を改造することなく、第2導電型の層が薄く、かつ、薄型の半導体装置を形成することが可能となるとともに、ウエハが薄くなり取り扱いが困難となることや、割れおよび反りの問題を解決することができる。
【0025】
第2の半導体装置の製造方法(請求項2に対応)は、上記の方法において、好ましくは保護膜は樹脂膜であることで特徴づけられる。
【0026】
第2の半導体装置の製造方法によれば、保護膜は樹脂膜であるため、軽量であり、取り扱いが容易であり、また、専用の装置を導入する必要がないので、生産性が良くなり、コストを低減することができる。
【0027】
第3の半導体装置の製造方法(請求項3に対応)は、上記の方法において、好ましくは第2の半導体基板の表面に選択的にマスクを形成する工程の前工程として、第2の半導体基板を所定の厚さに研磨する工程を有することで特徴づけられる。
【0028】
第3の半導体装置の製造方法によれば、第2半導体基板の表面に選択的にマスクを形成する工程の前工程として、第2半導体基板を所定の厚さに研磨する工程を有するため、第2半導体基板を薄くするので、マスクを形成する工程の後のエッチング工程におけるエッチング時間を短縮することができる。また、エッチング用のエッチング液を削減することができる。
【0029】
【発明の実施の形態】
以下、本発明の好適な実施形態を添付図面に基づいて説明する。
【0030】
図1と図2は、本発明の実施形態に係る半導体装置の製造方法により絶縁ゲート型バイポーラトランジスタ(IGBT)を製造する工程を示すフローチャートである。IGBTの製造工程は、IGBT基板形成工程(ST10)とエミッタ・ゲート電極面側形成工程(ST20)とコレクタ電極面側形成工程(ST30)から成っている。
【0031】
IGBT基板形成工程(ST10)は、第1半導体基板および第2半導体基板を準備し、第1半導体基板に第1半導体基板の不純物濃度よりも高濃度の不純物を含む第1導電型の層および第2導電型の層を形成する工程(ST11)と第1半導体基板に形成した第2導電型の層あるいは、第2半導体基板の少なくとも一方の表面に酸化膜を形成し、第1半導体基板と第2半導体基板を酸化膜を介して接合する工程(ST12)と、第1半導体基板を所定の厚さに研磨する工程(ST13)から成っている。
【0032】
エミッタ・ゲート電極面側形成工程(ST20)は、第1半導体基板に絶縁膜を介するゲート電極を形成する工程(ST21)と、第1半導体基板に第2導電型のベース領域を形成する工程(ST22)と、ベース領域の表面に第1導電型のエミッタ領域を形成する工程(ST23)、エミッタ電極を形成する工程(ST24)から成っている。
【0033】
コレクタ電極面側形成工程(ST30)は、第2半導体基板の表面に選択的にマスクを形成する工程(ST31)と、第1半導体基板に形成するゲート電極とエミッタ電極側の面を封止し、酸化膜をストップ層として、第2半導体基板を部分的に除去する工程(ST32)と、マスクおよび露出している酸化膜を除去する工程(ST33)と、封止を取り除く工程(ST34)と、第2導電型の層の表面に電極を形成する工程(ST35)とから成っている。
【0034】
IGBT基板形成工程(ST10)は、次のように行われる。図3は、IGBT基板形成工程(ST10)の各工程での半導体基板の断面図である。まず、第1半導体基板および第2半導体基板を準備し、第1半導体基板に第1半導体基板の不純物濃度よりも高濃度の不純物を含む第1導電型の層および第2導電型の層を形成する工程(ST11)では、図3(a)において、第1半導体基板として鏡面加工された厚さ500μm、直径5〜6インチ(127〜152mm)、リン(P)濃度1014cm−3以下のN型単結晶シリコン基板10と第2半導体基板として鏡面加工された厚さ500μm、直径5〜6インチ(127〜152mm)、任意の不純物濃度で任意の導電型の単結晶シリコン基板11をダミー基板として準備する。次に、図3(b)において、N型単結晶シリコン基板10に、N型単結晶シリコン基板10のリン濃度よりも高い濃度、例えば、リン濃度1016〜1018cm−3の第1導電型の層であるN型シリコン層12をエピタキシャル成長法により5〜20μmの厚さに形成する。
【0035】
エピタキシャル成長法は、例えば、次のようにして行われる。N型単結晶シリコン基板をエピタキシャル成長反応炉のサセプタ上に並べる。次に、水素雰囲気中で上記シリコン基板を1150℃まで加熱し、その後5リットル/minの流量のトリクロロシランと80リットル/minの流量の水素に加えて0.2リットル/minの流量の水素希釈のホスフィンを供給し、2.0±0.1μm/minの成長速度で5分間堆積させ、層厚10±1μmのN型シリコン層を形成する。
【0036】
なお、ここでは、N型シリコン層12は、エピタキシャル成長法により堆積させたが、イオン注入後、熱拡散によりN型シリコン層12を形成しても良い。
【0037】
次に、図3(c)において、エピタキシャル成長したN型シリコン層12の表面からイオン注入によりボロン(B)を注入し、その後、アニールをすることにより、ボロン濃度が1018cm−3以上の第2導電型の層であるP型シリコン層13を形成する。
【0038】
このイオン注入では、イオン注入装置の試料台にN型シリコン層12を堆積したN型単結晶シリコン基板10を設置し、30〜60keVの加速電圧、5×1014cm−2以上のドーズ量でボロンを注入し、その後、アニール炉内で1000℃で30分から1時間、アニールを行う。
【0039】
なお、ここでは、P型シリコン層13は、イオン注入法で形成させたが、エピタキシャル成長法により形成させても良い。
【0040】
次に、第1半導体基板に形成した第2導電型の層あるいは、第2半導体基板の少なくとも一方の表面に酸化膜を形成し、第1半導体基板と第2半導体基板を酸化膜を介して接合する工程(ST12)は、酸化膜を形成する工程と接合する工程から成る。酸化膜を形成する工程は、例えば、図3(d)において、第2半導体基板である単結晶シリコン基板11の表面に熱酸化により酸化膜14を形成する。
【0041】
この熱酸化では、単結晶シリコン基板11をウエハボートに設置し、そのウエハボートを電気炉内の石英管内に設置する。次に、石英管内に水蒸気を導入し、それと同時に、電気炉の温度を1000℃程度に加熱する。その状態で、30分程度保つ。それにより、厚さ0.3μm程度の酸化膜が形成される。
【0042】
その後、接合する工程では、図3(e)において、N型シリコン層12とP型シリコン層13を形成したN型単結晶シリコン基板10と酸化膜14を形成した単結晶シリコン基板11をP型シリコン層13の表面と酸化膜14の表面で貼り合わせ、その貼り合わせたウエハ(貼り合わせ基板)15を電気炉内で1000℃以上に加熱して熱処理する。これにより、貼り合わせシリコン基板が形成される。
【0043】
なお、この工程(ST12)では、酸化膜を単結晶シリコン基板11の表面に形成したが、酸化膜をN型単結晶シリコン基板10のP型シリコン層13の表面上に形成し、単結晶シリコン基板11には酸化膜を形成しないでN型単結晶シリコン基板10と単結晶シリコン基板11を接合しても良い。また、N型単結晶シリコン基板10と単結晶シリコン基板11の両方の基板に酸化膜を形成し、酸化膜を形成した表面でN型単結晶シリコン基板10と単結晶シリコン基板11を接合しても良い。
【0044】
第1半導体基板を所定の厚さに研磨する工程(ST13)では、図3(f)において、貼り合わせ基板15の第1半導体基板であるN型単結晶シリコン基板10を所定の厚さに研磨する。このとき、オン抵抗や耐圧などのデバイス特性を確保するために第1半導体基板であるN型単結晶シリコン基板10の厚み寸法を決め、研磨する。
【0045】
この研磨では、例えば、メカノケミカルポリシング法を用い、ポリッシャに粒径0.01〜0.5μmの砥粒をアルカリ性研磨液中にコロイド状に分散させたものを介し、N型単結晶シリコン基板10の面を研磨し、N型単結晶シリコン基板10の表面から単結晶シリコン基板11のSiOの界面までの厚さを約50〜100μmになるようにする。このN型単結晶シリコン基板10の厚さは薄い方がオン電圧が小さいが、あまり薄いと耐圧が保てない。耐圧を500V〜1000Vにするには、この程度の厚さが適当である。
【0046】
エミッタ・ゲート電極面側形成工程(ST20)は、次のように行われる。図4と図5は、エミッタ・ゲート電極面側形成工程(ST20)の各工程での半導体基板の断面図である。
【0047】
第1半導体基板に絶縁膜を介するゲート電極を形成する工程(ST21)では、図4(a)において、まず、N型単結晶シリコン基板の表面(研磨面)16を熱酸化し、酸化膜17を形成する。
【0048】
この熱酸化では、貼り合わせ基板15をウエハボートに設置し、そのウエハボートを電気炉内の石英管内に設置する。次に、石英管内に水蒸気を導入し、それと同時に、電気炉の温度を900℃程度に加熱する。その状態で、30分程度保つ。それにより、厚さ0.1μm程度の酸化膜が形成される。
【0049】
図4(b)において、ゲート電極材の多結晶シリコンを堆積し、フォトレジストにより、ゲート電極を形成する以外の領域を開口とするマスクを形成し、多結晶シリコンをエッチングして、ゲート電極18を形成する。
【0050】
第1半導体基板に第2導電型のベース領域を形成する工程(ST22)では、図4(c)において、第1半導体基板であるN型単結晶シリコン基板10の酸化膜17の下に第2導電型のP型導電領域をベース領域19として、形成する。
【0051】
例えば、ゲート電極18が形成されたN型単結晶シリコン基板10の酸化膜17の表面からイオン注入法によりボロンを注入し、その後、アニールして拡散することにより、ボロン濃度が1018cm−3以上の第2導電型の領域であるP型導電領域(ベース領域)19を形成する。
【0052】
このイオン注入では、イオン注入装置の試料台に貼り合わせ基板15を設置し、30〜60keVの加速電圧、5×1014cm−2以上のドーズ量でボロンを注入し、その後、アニール炉内で1000℃で30分から1時間、アニールを行う。
【0053】
ベース領域の表面に第1導電型のエミッタ領域を形成する工程(ST23)は、図4(d)において、ベース領域19の一部に第1導電型であるN型の導電領域をエミッタ領域20として形成する。
【0054】
例えば、エミッタ領域を形成する領域を開口としてもつようにフォトレジストを塗布し、マスクとしたN型単結晶シリコン基板10の酸化膜17の表面からイオン注入法によりヒ素を注入し、その後、アニールをすることにより、ヒ素濃度が1018cm−3以上で厚さ約0.5μmの第1導電型の領域であるN型導電領域(エミッタ領域)20を形成する。
【0055】
このイオン注入では、イオン注入装置の試料台に貼り合わせ基板15を設置し、80〜100keVの加速電圧、5×1014cm−2以上のドーズ量でヒ素を注入し、その後、アニール炉内で1000℃で30分から1時間、アニールを行う。
【0056】
エミッタ電極を形成する工程(ST24)では、図5(a)において、まず、N型単結晶シリコン基板上の酸化膜17とゲート電極18を覆うように絶縁膜を堆積し層間絶縁膜21を形成する。この層間絶縁膜21は、例えば、化学気相堆積法(CVD法)やプラズマを利用して堆積したシリコン酸化膜やシリコン窒化膜などの電気的な絶縁性が高いものである。
【0057】
次に、図5(b)において、フォトレジストにより、ゲート電極周辺の領域以外の部分を開口とするマスクを用い、ドライエッチングにより層間絶縁膜21と酸化膜17を部分的に除去する。その後、アルミニウムなどの電極材料を蒸着などして堆積し、エミッタ電極22を形成する。(図5(c))
【0058】
コレクタ電極面側形成工程(ST30)は、次のように行われる。図6と図7は、コレクタ電極面側形成工程(ST30)の各工程での半導体基板の断面図である。
【0059】
コレクタ電極面側形成工程(ST30)では、まず、貼り合わせ基板15の第2半導体基板である単結晶シリコン基板11を所定厚に研磨する。これにより、設備のハンドリングが可能な厚さ、熱処理時の反りが少ない厚さを確保し、余分な部分を削り、後工程のエッチング時間削減、エッチング液削減を行うことができる。このとき、単結晶シリコン基板の厚さが100μmであり、貼り合わせ基板全体の厚さとして約200μmになるようにする。また、図6と図7においては、図5で示したエミッタ・ゲート電極面側の構造は省略して示してある。
【0060】
第2半導体基板の表面に選択的にマスクを形成する工程(ST31)では、マスクとして化学気相堆積法(CVD法)による酸化膜や窒化膜があり、ここでは酸化膜を例として用い、まず、図6(b)において、貼り合わせ基板15の単結晶シリコン基板11に化学気相堆積法(CVD法)により、3000オングストロームの膜厚のSiO膜(CVD膜)23を成膜する。CVD法は300℃程度の温度で行うため、先に形成されたゲート電極側の構造の熱的破壊を起こらないようにすることができる。
【0061】
次に、図6(c)において、フォトレジストによりCVD膜をパターニングする。少なくともチップを形成する部分のCVD膜を除去する。このときのパターンとして、図8で示すようなパターンで形成する。図8の斜線の部分にCVD膜を残し、斜線のない部分は、CVD膜を除去した部分である。複数の正方形はデバイス形成部である。貼り合わせ基板15の単結晶シリコン基板11上に堆積したCVD膜であるSiO膜23の上にレジスト24をスピンコータなどにより、均一に塗布する。次に、CVD膜を除去する部分が光を通すようになっているマスクを貼り合わせ基板15のSiO膜23上のレジスト24に密着させ、レジスト24が反応する波長の光により露光し、その後、現像液に浸けることによりレジストの露光された部分が溶け、開口25を形成する。そして、リンス液により現像液を洗浄する。
【0062】
その後、レジスト24中に存在する現像液あるいはリンス液を除き、レジスト24とSiO膜23との接着性を増すため、ポストベークを行う。
【0063】
次に、図6(d)において、反応性イオンエッチング(RIE)により、レジスト24の開口部25のSiOをエッチングし、レジスト24を剥離する。
【0064】
なお、パターンとして、図9、図10で示すようなパターンも考えられる。図中、斜線の部分にCVD膜を残し、斜線のない部分は、CVD膜を除去した部分である。複数の正方形はデバイス形成部である。
【0065】
次に、第1半導体に形成するゲート電極とエミッタ電極側の面を封止し、CVD膜をマスクにするとともに、酸化膜をストップ層として、第2半導体基板を除去する工程(ST32)では、図7(a)において、貼り合わせ基板15の第1半導体基板であるN型単結晶シリコン基板10に形成したゲート電極21などを有する面にポリマー膜等の樹脂膜、例えば、フロロカーボン系のポリマー膜等の保護膜27を塗布する。これにより、貼り合わせ基板15のゲート電極とエミッタ電極側の面が封止され、後工程で用いるエッチング薬液から保護することができる。
【0066】
図7(b)において、CVD膜23をマスクとして、また、酸化膜14をストップ層として、エッチング液により第2半導体基板である単結晶シリコン基板11を部分的に除去する。
【0067】
その後、CVD膜23および露出している酸化膜14を除去する工程(ST33)では、図7(c)において、フッ酸などに浸けることにより除去する。
【0068】
封止を取り除く工程(ST34)では、図7(c)で示す保護膜付き貼り合わせ基板28を溶剤に浸し、保護膜を取り去る。
【0069】
第2導電型の層の表面に電極を形成する工程(ST35)では、図7(d)において、第2導電型の層であるP型シリコン層13の表面にアルミニウムなどの電極材料をスパッタリングなどにより形成する。
【0070】
このようにして得られたウエハ29からダイシングすることにより、チップが形成される(図7(e))。
【0071】
なお、このコレクタ電極面側形成工程(ST30)では、まず、貼り合わせ基板15の第2半導体基板である単結晶シリコン基板11を所定厚に研磨してから行ったが、研磨しないでそのまま、この工程を行っても良い。そのときには、後工程でのエッチング時間は長くなり、エッチング液は削減できなくなるが、研磨工程を省略することができる。
【0072】
以上のように、第2半導体基板を第1半導体基板に接合し、第2半導体基板を選択的にエッチングすることにより周囲縁に厚い部分を残存させたので、ウエハが薄くなり取り扱いが困難となることや、割れおよび反りの問題を解決することができる。その結果、設備を改造することなく、薄型のデバイスを形成することが可能となる。また、この方法では、P型シリコン層を薄くかつ不純物濃度を濃くすることによりスイッチング損失を低減することができる。
【0073】
なお、本実施形態においては、工程説明中のPとNの極性を逆にした逆極性タイプのものでも良い。
【0074】
【発明の効果】
以上の説明で明らかなように本発明によれば、次の効果を奏する。
【0075】
型半導体層を薄く形成すると共に、低オン抵抗の特性を得るために半導体装置を薄型に形成する際、第2半導体基板を第1半導体基板に接合し、第1半導体基板に半導体装置を形成した後、第2半導体基板を選択的にエッチングし、半導体装置を薄型に形成すると共に、半導体装置の周囲縁に厚い部分を残存させたので、薄型ウエハの取り扱いが困難になることや割れおよび反りの問題を解消し、設備を改造することなく、薄型の半導体装置を製造することができる。
【0076】
また、第2半導体基板を第1半導体基板に接合し、通常の設備を用いて第1半導体基板に半導体装置を形成するので、薄型の半導体装置であっても、P型半導体層をエピタキシャル成長法またはイオン注入法により厚み精度が良く、かつ厚み形成の制御性を良くすることができる。
【0077】
保護膜は樹脂膜であるため、軽量であり、取り扱いが容易であり、また、専用の装置を導入する必要がないので、生産性が良くなり、コストを低減することができる。
【0078】
第2半導体基板の表面に選択的にCVD膜を形成する工程の前工程として、第2半導体基板を所定の厚さに研磨する工程を有するため、第2半導体基板を薄くするので、CVD膜を形成する工程の後のエッチング工程におけるエッチング時間を短縮することができる。また、エッチング用のエッチング液を削減することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る半導体装置の製造方法により絶縁ゲート型バイポーラトランジスタ(IGBT)を製造する工程を示すフローチャートである。
【図2】本発明の実施形態に係る半導体装置の製造方法により絶縁ゲート型バイポーラトランジスタ(IGBT)を製造する工程を示すフローチャートである。
【図3】IGBT基板形成工程の各工程での半導体基板の断面図である。
【図4】エミッタ・ゲート電極面側形成工程の各工程での半導体基板の断面図である。
【図5】エミッタ・ゲート電極面側形成工程の各工程での半導体基板の断面図である。
【図6】コレクタ電極面側形成工程の各工程での半導体基板の断面図である。
【図7】コレクタ電極面側形成工程の各工程での半導体基板の断面図である。
【図8】CVD膜のマスクパターンである。
【図9】CVD膜のマスクパターンである。
【図10】CVD膜のマスクパターンである。
【図11】従来のIGBTの製造工程を示すフローチャートである。
【図12】従来のIGBTの製造工程の各工程における半導体基板の断面図である。
【図13】従来のIGBTの製造工程の各工程における半導体基板の断面図である。
【図14】
IGBTの断面図である。
【図15】
コレクタ電圧VCEとコレクタ電流ICEの時間変化を表すグラフである。
【符号の説明】
10 N型単結晶シリコン基板
11 単結晶シリコン基板
12 N型シリコン層
13 P型シリコン層
14 酸化膜
15 貼り合わせ基板
17 酸化膜
18 ゲート電極
19 ベース領域
20 エミッタ領域
21 層間絶縁膜
22 エミッタ電極
23 CVD膜
27 保護膜
ST10 IGBT基板形成工程
ST11 第1半導体基板および第2半導体基板を準備し
第1半導体基板に第1導電型の層および第2導電型の層を形成する工程
ST12 半導体基板の表面に酸化膜を形成し、接合する工程
ST13 第1半導体基板を研磨する工程
ST20 エミッタ・ゲート電極面側形成工程
ST21 ゲート電極を形成する工程
ST22 ベース領域を形成する工程
ST23 エミッタ領域を形成する工程
ST24 エミッタ電極を形成する工程
ST30 コレクタ電極面側形成工程
ST31 マスクを形成する工程
ST32 ゲート電極とエミッタ電極側の面を封止し、第2半導体基板を部分的に除去する工程
ST33 マスクおよび酸化膜を除去する工程
ST34 封止を取り除く工程
ST35 第2導電型の層の表面に電極を形成する工程

Claims (3)

  1. 第1の半導体基板に第1の半導体基板の不純物濃度よりも高濃度の不純物を含む第1導電型の層および第2導電型の層を形成する工程と、
    前記第1の半導体基板の第2導電型の層若しくは第2の半導体基板の少なくとも一方に酸化膜を形成し、前記第1の半導体基板と前記第2の半導体基板を前記酸化膜を介して接合する工程と、
    前記第1の半導体基板を所定の厚さに研磨する工程と、
    前記第1の半導体基板に第2導電型のベース領域と、第1導電型のエミッタ領域と、エミッタ電極と、絶縁膜を介したゲート電極を形成する工程と、
    前記第2の半導体基板の表面に選択的にマスクを形成する工程と、
    前記第1の半導体基板のゲート電極およびエミッタ電極側の面に保護膜を塗布する工程と、
    前記酸化膜をストップ層として、前記第2の半導体基板の一部を除去する工程と、
    前記封止並びに保護膜を除去する工程と、
    前記第2導電型の層の表面に電極を形成する工程とを備えたことを特徴とする半導体装置の製造方法。
  2. 前記保護膜は樹脂膜であることを特徴とする請求項1記載の半導体装置の製造方法。
  3. 前記第2の半導体基板の表面に選択的にマスクを形成する工程の前工程として、前記第2の半導体基板を所定の厚さに研磨する工程を有することを特徴とする請求項1または2記載の半導体装置の製造方法。
JP2003206328A 2003-08-06 2003-08-06 半導体装置の製造方法 Expired - Fee Related JP4554898B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206328A JP4554898B2 (ja) 2003-08-06 2003-08-06 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206328A JP4554898B2 (ja) 2003-08-06 2003-08-06 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2005056930A true JP2005056930A (ja) 2005-03-03
JP4554898B2 JP4554898B2 (ja) 2010-09-29

Family

ID=34363228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206328A Expired - Fee Related JP4554898B2 (ja) 2003-08-06 2003-08-06 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP4554898B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147028A1 (ja) * 2009-06-16 2010-12-23 ミツミ電機株式会社 複数の半導体チップを製造する方法
WO2016194116A1 (ja) * 2015-06-01 2016-12-08 株式会社日立製作所 半導体装置、基板および電力変換装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102604A (ja) * 1995-10-06 1997-04-15 Oki Electric Ind Co Ltd 半導体装置
JP2002076326A (ja) * 2000-09-04 2002-03-15 Shindengen Electric Mfg Co Ltd 半導体装置
JP2002261281A (ja) * 2001-03-01 2002-09-13 Hitachi Ltd 絶縁ゲートバイポーラトランジスタの製造方法
JP2004241534A (ja) * 2003-02-05 2004-08-26 Shindengen Electric Mfg Co Ltd 半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102604A (ja) * 1995-10-06 1997-04-15 Oki Electric Ind Co Ltd 半導体装置
JP2002076326A (ja) * 2000-09-04 2002-03-15 Shindengen Electric Mfg Co Ltd 半導体装置
JP2002261281A (ja) * 2001-03-01 2002-09-13 Hitachi Ltd 絶縁ゲートバイポーラトランジスタの製造方法
JP2004241534A (ja) * 2003-02-05 2004-08-26 Shindengen Electric Mfg Co Ltd 半導体装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147028A1 (ja) * 2009-06-16 2010-12-23 ミツミ電機株式会社 複数の半導体チップを製造する方法
WO2016194116A1 (ja) * 2015-06-01 2016-12-08 株式会社日立製作所 半導体装置、基板および電力変換装置
JPWO2016194116A1 (ja) * 2015-06-01 2018-03-29 株式会社日立製作所 半導体装置、基板および電力変換装置

Also Published As

Publication number Publication date
JP4554898B2 (ja) 2010-09-29

Similar Documents

Publication Publication Date Title
US5476813A (en) Method of manufacturing a bonded semiconductor substrate and a dielectric isolated bipolar transistor
JP5655931B2 (ja) 半導体装置の製造方法
JP2717979B2 (ja) 絶縁体上に薄い単結晶シリコン島状部を製造する方法
JP5807724B2 (ja) 半導体装置および半導体装置の製造方法
WO2013073042A1 (ja) 半導体装置および半導体装置の製造方法
CN1836323A (zh) 混合晶向衬底上的高性能cmos soi器件
KR20100084525A (ko) (110)-배향 실리콘을 포함하는 반도체 소자
JPH05251292A (ja) 半導体装置の製造方法
US10134886B2 (en) Insulated gate bipolar device and manufacturing method thereof
JP4231387B2 (ja) 半導体装置とその製造方法
JPH03129765A (ja) 半導体装置およびその製造方法
JP7302953B2 (ja) シリコンカーバイド部品とシリコンカーバイド部品を製造する方法
JP4554898B2 (ja) 半導体装置の製造方法
JP2004014748A (ja) 半導体装置の製造方法
JP4834309B2 (ja) 半導体装置の製造方法
JP2004014738A (ja) 半導体装置の製造方法
JP3921764B2 (ja) 半導体装置の製造方法
JP2012004174A (ja) 逆阻止型絶縁ゲート形バイポーラトランジスタおよびその製造方法
JP5621271B2 (ja) 逆阻止形絶縁ゲート型バイポーラトランジスタの製造方法
JP2004014741A (ja) 半導体装置の製造方法
JP2004014743A (ja) 半導体装置の製造方法
JP2008251579A (ja) 静電チャックおよび半導体装置の製造方法
JPH1197654A (ja) 半導体基板の製造方法
JPH1051010A (ja) 半導体装置の製造方法
JPS58155739A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees