JP2005043153A - 分光輝度計の校正システム - Google Patents

分光輝度計の校正システム Download PDF

Info

Publication number
JP2005043153A
JP2005043153A JP2003201726A JP2003201726A JP2005043153A JP 2005043153 A JP2005043153 A JP 2005043153A JP 2003201726 A JP2003201726 A JP 2003201726A JP 2003201726 A JP2003201726 A JP 2003201726A JP 2005043153 A JP2005043153 A JP 2005043153A
Authority
JP
Japan
Prior art keywords
output
wavelength
spectral
calibration
luminance meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003201726A
Other languages
English (en)
Inventor
Kenji Imura
健二 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2003201726A priority Critical patent/JP2005043153A/ja
Priority to US10/733,370 priority patent/US7151600B2/en
Publication of JP2005043153A publication Critical patent/JP2005043153A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan

Abstract

【課題】分光輝度計の波長及び感度の校正をユーザ側で行うことができる分光輝度計の校正システムを提供する。
【解決手段】校正用光源100は既知の輝線波長の輝線を出力し、被校正分光輝度計は、校正用光源の輝線出力を測定し、システム制御部300は、被校正分光輝度計200が校正用光源100の輝線出力を測定した場合に、輝線波長に隣接する複数の測定波長における受光部205からの出力比から輝線出力の波長を推定し、推定した輝線出力の波長と既知の輝線波長との差から波長変化量を推定して被校正分光輝度計200を波長校正する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、各種光源や表示装置の輝度や色彩を測定、評価するための分光輝度計の校正システムに関し、特に、波長校正及び分光感度校正を行う分光輝度計の校正システムに関するものである。
【0002】
【従来の技術】
従来、各種光源や表示装置の分光輝度や輝度、色彩を測定、評価する分光輝度計が広く用いられている(例えば、特許文献1参照)。図18は、従来の分光輝度計における分光部の構成を示す図である。図18に示すように、従来の分光輝度計に内蔵される分光部310は、入射スリット311からの入射光束を回折格子313で分散させ、結像光学系312で入射スリット311の分散像を受光センサアレイ314上に作る、いわゆるポリクロメータであり、測定域の全波長の強度分布を同時に測定する。図19は、ポリクロメータの受光センサアレイ314の各受光センサS(n=0〜60)の分光感度を示す図である。なお、図19に示すポリクロメータは、半値幅が10nmであり、センサピッチが5nmであり、波長域が400〜700nmである。また、図19において、横軸は波長を表し、縦軸は相対感度を表している。図19では、受光センサS,S,S,S30,S58,S59,S60における相対感度のみを示している。
【0003】
図19に示すように、各受光センサSで受光する光の中心波長は、必ずしも400〜700nmを60分割した波長に一致しない。したがって、分光部310の波長校正は、波長が既知で安定した単色光源を用い、受光センサアレイ314の各受光センサの分光感度を与えることによって行われる。
【0004】
また、分光部310の感度校正は、分光強度分布が既知で安定した標準光源の出力光を測定し、受光センサアレイ314の各受光センサの出力と、波長校正で求められた分光感度から各受光センサがもつべき出力との比として求められた各受光センサの感度補正係数を制御部401にあらかじめ記憶することで行われる。
【0005】
図18に示すように、ポリクロメータの光学的要素の相対的な位置変化は、直接且つ鋭敏に波長誤差に結びつく。また、感度誤差は、回折格子313の反射効率など光学的要素や回路構成による特性変化により引き起こされ、さらに、前述の波長誤差もその要因となる。したがって、経時あるいは熱的変化に起因する波長誤差及び感度誤差の発生は避けられず、精度維持のためには再校正が不可欠である。
【0006】
【特許文献1】
特開平6−74823号公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来、分光輝度計の精度を維持するための再校正には、製造時の校正と同じ設備と作業を必要とし、ユーザ側で行うことは困難であった。そのため、ユーザは、分光輝度計の再校正を行う際に分光輝度計を製造工場等に返送する必要があった。このように、分光輝度計を返送して行う再校正は、製造者側にもユーザ側にもコストと時間がかかり、十分な頻度で行うことは困難である。さらに、返送している期間に代替のための予備の分光輝度計を必要とする場合は、そのためのコストも必要となる。
【0008】
本発明は、上記の問題を解決するためになされたもので、分光輝度計の波長及び感度の校正をユーザ側で行うことができる分光輝度計の校正システムを提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明に係る分光輝度計の校正システムは、既知の輝線波長の輝線を出力する校正用光源と、入射される光を波長に応じて分散した光を受光し、受光した各波長成分の光強度に応じた電気信号を出力する光電変換素子が配列されてなる受光部を備え、前記校正用光源の輝線出力を測定する被校正分光輝度計と、前記被校正分光輝度計が前記校正用光源の輝線出力を測定した場合に、前記輝線波長に隣接する複数の測定波長における前記受光部の相対出力から前記輝線出力の波長を推定し、推定した前記輝線出力の波長と前記既知の輝線波長との差から波長変化量を推定して前記被校正分光輝度計を波長校正する波長校正部とを備える。
【0010】
この構成によれば、校正用光源によって、既知の輝線波長の輝線が出力され、被校正分光輝度計によって、校正用光源の輝線出力が測定され、波長校正部によって、被校正分光輝度計が校正用光源の輝線出力を測定した場合に、輝線波長に隣接する複数の測定波長における受光部の相対出力から輝線出力の波長が推定され、推定された輝線出力の波長と既知の輝線波長との差から波長変化量が推定され、この波長変化量が受光部の全測定波長域に一様な波長シフト量として校正される。
【0011】
したがって、校正用光源を用いて受光部が受光する光の波長変化量を推定することによって、分光輝度計の波長の再校正をユーザ側で行うことができ、ユーザは、十分な頻度で分光輝度計の波長校正を行うことで常に高い精度で分光輝度計を使用することができる。
【0012】
また、上記の分光輝度計の校正システムにおいて、前記被校正分光輝度計は、前記輝線波長に隣接する複数の測定波長における前記受光部からの出力比と、前記輝線出力の波長との対応表を予め記憶しており、前記波長校正部は、前記被校正分光輝度計によって測定された前記出力比と前記対応表とから前記輝線出力の波長を推定し、推定した前記輝線出力の波長と前記既知の輝線波長との差から波長変化量を推定して前記被校正分光輝度計を波長校正することが好ましい。
【0013】
この構成によれば、被校正分光輝度計には、輝線波長に隣接する複数の測定波長における受光部からの出力比と、輝線出力の波長との対応表が予め記憶されており、波長校正部によって、被校正分光輝度計によって測定された出力比と対応表とから輝線出力の波長が推定され、推定された輝線出力の波長と既知の輝線波長との差から波長変化量が推定され、この波長変化量が受光部の全測定波長域に一様な波長シフト量として校正される。
【0014】
したがって、輝線波長に隣接する複数の測定波長における受光部からの出力比から簡単なアルゴリズムで輝線出力の波長を推定することができる。
【0015】
また、上記の分光輝度計の校正システムにおいて、前記校正用光源は、レーザ光を発光する半導体レーザと、前記半導体レーザの出力波長近傍で、互いに異なる分光感度を有する複数のモニタ用センサと、前記複数のモニタ用センサの出力比から前記半導体レーザの出力波長を推定する出力波長推定部とを備えることが好ましい。
【0016】
この構成によれば、レーザ光を発光する半導体レーザの出力波長近傍で、互いに異なる分光感度を有する複数のモニタ用センサの出力比から半導体レーザの出力波長が推定され、推定された半導体レーザの出力波長が被校正分光輝度計に出力されるので、低価格で十分な輝線出力を有する半導体レーザを輝線光源として用いて精度の高い分光輝度計の再校正ができる。
【0017】
また、上記の分光輝度計の校正システムにおいて、前記校正用光源は、前記複数のモニタ用センサの出力比と、前記半導体レーザの出力波長との対応表を予め記憶しており、前記出力波長推定部は、前記複数のモニタ用センサからの出力比と前記対応表とから前記半導体レーザの出力波長を推定することが好ましい。
【0018】
この構成によれば、校正用光源には、複数のモニタ用センサの出力比と、半導体レーザの出力波長との対応表が予め記憶されており、出力波長推定部によって、複数のモニタ用センサからの出力比と対応表とから半導体レーザの出力波長が推定されるので、複数のモニタ用センサからの出力比から簡単なアルゴリズムで半導体レーザの出力波長を推定することができる。
【0019】
また、本発明に係る分光輝度計の校正システムは、白熱光源と、互いに異なる分光感度を有する複数のモニタ用センサと、前記複数のモニタ用センサの出力から前記白熱光源の分光強度分布を推定する分光強度分布推定部とを備える校正用光源と、入射される光を波長に応じて分散した光を受光し、受光した各波長成分の光強度に応じた電気信号を出力する光電変換素子が配列されてなる受光部を備え、前記校正用光源の出力光を測定する被校正分光輝度計と、前記被校正分光輝度計が前記校正用光源の出力光を測定した場合に、前記分光強度分布推定部によって推定された前記分光強度分布と、前記受光部の光電変換素子毎の分光感度とから前記受光部の出力を推定し、推定された前記受光部の出力と、実際の前記受光部の出力との比を光電変換素子毎に算出し、算出された光電変換素子毎の比を前記被校正分光輝度計に記憶させることで前記被校正分光輝度計を感度校正する感度校正部とを備える。
【0020】
この構成によれば、校正用光源が備える分光強度分布推定部によって、互いに異なる分光感度を有する複数のモニタ用センサの出力から白熱光源の分光強度分布が推定され、被校正分光輝度計によって、校正用光源の出力光が測定され、感度校正部によって、被校正分光輝度計が校正用光源の出力光を測定した場合に、分光強度分布推定部によって推定された分光強度分布と、受光部の光電変換素子毎の分光感度とから受光部の出力が推定され、分光強度分布から推定された得られるべき受光部の出力と、実際の受光部の出力との比が光電変換素子毎に算出され、算出された光電変換素子毎の比が被校正分光輝度計に記憶されることで被校正分光輝度計の感度校正が行われる。
【0021】
したがって、被校正分光輝度計が校正用光源の出力光を測定した場合の分光強度分布から推定された受光部の出力と、実際の受光部の出力との比を、分光輝度計の感度を校正するための係数として記憶しておくことによって、分光輝度計の感度の再校正をユーザ側で行うことができ、ユーザは、十分な頻度で分光輝度計の感度校正を行うことで常に高い精度で分光輝度計を使用することができる。
【0022】
【発明の実施の形態】
以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の構成については、同一の符号を付し、その説明を省略する。
【0023】
(第1の実施形態)
図1は、第1の実施形態における分光輝度計の校正システムの構成を示す図である。図1に示す分光輝度計の校正システム1は、校正用光源100、被校正分光輝度計200及び両者と接続されたシステム制御部300を備えて構成される。
【0024】
校正用光源100は、制御部101、輝線光源102、白熱光源103、拡散板104、コリメータ光学系105、第1モニタセンサ106(106a,106b)、第2モニタセンサ107(107a,107b)、第3モニタセンサ108(108a,108b)、温度センサ109及び記憶部120を備えて構成される。
【0025】
記憶部120は、例えば、EEPROM(Electrically Erasable Programmable Read−Only Memory)で構成され、第1の対応表記憶部120a及び第2の対応表記憶部120bとして機能する。
【0026】
第1の対応表記憶部120aは、温度毎に出力波長λと、第1モニタセンサ106の出力I10と第2モニタセンサ107の出力I20との出力比I10/I20とが対応付けられた第1の対応表を記憶する。なお、第1の対応表については後述する。
【0027】
第2の対応表記憶部120bは、温度毎に相対分光強度分布R(λ)と、第3モニタセンサ108の出力I30と第1モニタセンサ106の出力I10との出力比I30/I10、第2モニタセンサ107の出力I20及び第2モニタセンサ107の出力I20と第1モニタセンサ106の出力I10との出力比I20/I10とが対応付けられた第2の対応表を記憶する。なお、第2の対応表については後述する。
【0028】
制御部101は、例えば、CPU(中央演算処理装置)で構成され、出力波長推定部101a及び分光強度分布推定部101bとして機能する。
【0029】
出力波長推定部101aは、第1モニタセンサ106の出力Iと第2モニタセンサ107の出力Iとの出力比I/Iから第1の対応表記憶部120aに記憶されている第1の対応表を参照して輝線光源102の出力波長λを推定する。
【0030】
分光強度分布推定部101bは、第3モニタセンサ108の出力Iと第1モニタセンサ106の出力Iとの出力比I/Iから第2の対応表記憶部120bに記憶されている第2の対応表を参照して白熱光源103の相対分光強度分布R(λ)を選択し、選択された相対分光強度分布R(λ)と第2モニタセンサ107の出力I及び第2の対応表における相対分光強度分布R(λ)に対応する出力I20に基づいて分光強度分布P(λ)を推定する。なお、分光強度分布P(λ)の具体的な算出方法については後述する。
【0031】
また、制御部101は、輝線光源102及び白熱光源103の発光タイミング及び発光時間を制御する。
【0032】
輝線光源102は、例えば、可視光のレーザ光を発光する可視LD(半導体レーザ)で構成され、特定の波長(輝線波長)の光である輝線を出力する。白熱光源103は、例えば、白熱電球で構成され、複数の波長からなる白色光を出力する。
【0033】
拡散板104は、輝線光源102より出力された出力光及び白熱光源103より出力された出力光を拡散させる。
【0034】
コリメータ光学系105は、拡散板104によって拡散された輝線光源102より出力された出力光及び白熱光源103より出力された出力光を平行な光にする。
【0035】
第1モニタセンサ106、第2モニタセンサ107及び第3モニタセンサ108は、シリコンフォトダイオード106a,107a,108a及びガラスフィルタ106b,107b,108bをそれぞれ備えて構成される。
【0036】
第1モニタセンサ106は、拡散板104によって拡散された輝線光源102からの出力光の出力波長をモニタするものであり、ガラスフィルタ106bは、輝線光源102の出力波長近辺で立ち上がる分光感度を有する。
【0037】
第2モニタセンサ107は、拡散板104によって拡散された輝線光源102からの出力光の出力波長をモニタするものであり、ガラスフィルタ107bは、輝線光源102の出力波長近辺で立ち下がる分光感度を有する。
【0038】
第3モニタセンサ108は、拡散板104によって拡散された白熱光源103からの出力光の分光強度分布をモニタするものである。
【0039】
図2は、校正用光源の相対分光強度とモニタセンサにおけるフィルタの分光透過率とを示す図である。なお、図2における縦軸は相対分光強度及び分光透過率を示し、横軸は波長を示す。
【0040】
図2に示すように、輝線光源102は、出力波長λLDが略650nmの単色光を出力するが、その出力波長には最大±5nmの個体差があり、温度依存性も大きい。そのため、輝線光源102からの出力波長は、第1モニタセンサ106及び第2モニタセンサ107によってモニタされる。また、同様に、白熱光源103の分光強度分布及び放射強度にも個体差があり、経時変化もある。そのため、白熱光源103からの出力光の相対分光強度分布は、第1モニタセンサ106、第2モニタセンサ107及び第3モニタセンサ108によってモニタされる。
【0041】
第1モニタセンサ106のガラスフィルタ106bには、例えば、図2のR64に示す分光透過率を有するHOYA OPTICS製のR−64フィルタが用いられ、このガラスフィルタ106bは、輝線光源102の出力波長である650nm近傍で立ち上がる分光透過率を有している。また、第2モニタセンサ107のガラスフィルタ107bには、例えば、図2のHA30に示す分光透過率を有するHOYA OPTICS製のHA−30フィルタが用いられ、このガラスフィルタ107bは、輝線光源102の出力波長である650nm近傍で立ち下がる分光透過率を有している。したがって、第1モニタセンサ106の出力Iと第2モニタセンサ107の出力Iとの比I/Iは、輝線光源102の出力波長λLDが短波長にシフトすると減少し、長波長にシフトすると増加する。特に、本実施形態では、図2に示すようにガラスフィルタ106bの分光透過率の特性を表す曲線R64の立ち上がりが急峻であるので、波長シフトに対して高い感度を有する。記憶部120には、あらかじめ第1モニタセンサ106の出力I10と第2モニタセンサ107の出力I20との比I10/I20と輝線光源102の出力波長λとが対応付けられた第1の対応表が記憶されている。制御部101は、第1モニタセンサ106の出力Iと第2モニタセンサ107の出力Iとの比I/Iを算出し、算出した比I/Iに基づいて第1の対応表を参照して輝線光源102の出力波長の推定値ΛLDを算出する。
【0042】
また、白熱光源103の出力光の分光強度分布の変化には、相対分光強度分布の変化と放射強度の変化とがある。相対分光強度分布をモニタするために、第3モニタセンサ108のガラスフィルタ108bには、例えば、図2のBG39に示す分光透過率を有するHOYA OPTICS製のBG−39フィルタが用いられ、このガラスフィルタ108bは、390nm近傍にピークを有する分光透過率を有している。
【0043】
白熱光源103の出力光の相対分光強度分布R(λ)は、白熱電球のフィラメントの色温度に依存する。すなわち、色温度が2700K(ケルビン)の場合、相対分光強度分布R(λ)は、図2に示す特性曲線R1で表され、色温度が2800K(ケルビン)の場合、相対分光強度分布R(λ)は、図2に示す特性曲線R2で表され、色温度が2900K(ケルビン)の場合、相対分光強度分布R(λ)は、図2に示す特性曲線R3で表される。第3モニタセンサ108の出力Iと第1モニタセンサ106の出力Iとの比I/Iは、相対分光強度分布R(λ)に対応して変化するので、この比I/Iから校正時の白熱光源103の放射光分光強度分布を推定することができる。記憶部120には、あらかじめ校正用光源100の白熱光源103を複数の異なる色温度で点灯した時の相対分光強度分布R(λ)と、その時の第3モニタセンサ108の出力I30と第1モニタセンサ106の出力I10との比I30/I10及び第2モニタセンサ107の出力I20とが対応付けられた第2の対応表が記憶されている。制御部101は、第3モニタセンサ108の出力Iと第1モニタセンサ106の出力Iとの比I/Iを算出し、算出した比I/Iに基づいて第2の対応表を参照して白熱光源103の出力光の校正時の相対分光強度分布R(λ)を推定する。そして、制御部101は、下記の(1)式に基づいて、推定された相対分光強度分布R(λ)と、白熱光源103の出力光の校正時の第2モニタセンサ107の出力Iと、記憶部120にあらかじめ記憶されている第2モニタセンサ107の出力I20とから分光強度分布P(λ)を算出する。
P(λ)=R(λ)・I/I20・・・・(1)
【0044】
図2に示すように、第2モニタセンサ107は、分光輝度計が測定する可視領域(380〜780nm)全体にわたって感度を有しており、放射強度をモニタするのに適している。
【0045】
なお、上述の白熱光源103の分光強度分布をモニタする方法は、白熱光源103の相対分光強度分布R(λ)の変化がフィラメントの色温度にのみ依存することを前提にしている。すなわち、白熱光源103のフィラメントの痩せや、印加電圧の変化によって生じる相対分光強度分布R(λ)の変化については、この前提が維持されるが、管球へのフィラメントの蒸着や拡散板104の黄変化などによる相対分光強度分布R(λ)の変化には、この前提が成り立たない。すなわち、上述の前提が維持されている限り、3つのモニタセンサ106,107,108の出力I,I,Iの相対比は変化しないので、記憶部120は、設定時の第2モニタセンサ107の出力I20と第1モニタセンサ106の出力I10との比I20/I10を上述の第2の対応表の相対分光強度分布R(λ)にさらに対応付けて記憶する。制御部101は、第2モニタセンサ107の出力Iと第1モニタセンサ106の出力Iとの比I/Iを算出し、算出された比I/Iが、記憶部120にあらかじめ記憶されている設定時の比I20/I10から変化していないことを確認することで、白熱光源103の異常を監視することができる。
【0046】
図1に戻って、温度センサ109は、例えば、サーミスタで構成され、第1モニタセンサ106、第2モニタセンサ107及び第3モニタセンサ108の温度補償をするためのものである。温度センサ109は、第1モニタセンサ106、第2モニタセンサ107及び第3モニタセンサ108の温度を測定する。各モニタセンサ106,107,108のガラスフィルタ106b,107b,108bの分光透過率は、温度依存性を有しており、例えば、ガラスフィルタ106bの立ち上がり部分は、0.1nm/℃強で長波長に移動する。このようなガラスフィルタ106b,107b,108bの温度変化による誤差を補償するために、上述の第1の対応表及び第2の対応表はモニタセンサ106,107,108の異なる温度に対して複数用意される。したがって、制御部101は、温度センサ109によって測定されたモニタセンサ106,107,108の温度に対応する第1の対応表及び第2の対応表を参照する。
【0047】
なお、第1モニタセンサ106、第2モニタセンサ107、第3モニタセンサ108及び温度センサ109は、アルミブロック110内に配置されている。
【0048】
図3は、校正用光源のコリメータ光学系とモニタセンサとを拡散板の方向から見た図である。図3に示すように、拡散板104の方向からコリメータ光学系105とモニタセンサ106,107,108とを見た場合、コリメータ光学系105の下方にアルミブロック110が配置される。アルミブロック110内において、コリメータ光学系105の下方に第2モニタセンサ107が配置され、第2モニタセンサ107の左方に第1モニタセンサ106が配置され、第2モニタセンサの右方に第3モニタセンサ108が配置される。第2モニタセンサ107の下方に温度センサ109が配置される。
【0049】
図1に戻って、被校正分光輝度計200は、校正する対象となる分光輝度計であり、制御部201、収束光学系202、絞り203、コンデンサレンズ204受光部205及び記憶部220を備えて構成される。
【0050】
記憶部220は、例えば、EEPROMで構成され、第3の対応表記憶部220a、波長変化量記憶部220b及び感度補正係数記憶部220cとして機能する。
【0051】
第3の対応表記憶部220aは、出力波長λと、各輝線波長に対応する出力比Q/Qn+2とが対応付けられた第3の対応表を記憶する。なお、第3の対応表については後述する。
【0052】
波長変化量記憶部220bは、輝線出力の波長と、出力波長推定部101aによって推定された輝線波長との差を波長変化量として記憶する。この波長変化量は、分光輝度計200の測定時において、波長校正に用いられる。
【0053】
感度補正係数記憶部220cは、分光強度分布推定部101bによって推定された分光強度分布P(λ)と被校正分光輝度計200から取得した各受光センサSの分光感度とに基づいて求められた各受光センサSから得られるべき推定出力qと、実際に受光センサSから得られた出力Qとの比q/Qを感度補正係数として記憶する。この感度補正係数は、分光輝度計200の測定時において、感度校正に用いられる。
【0054】
制御部201は、例えば、CPUで構成され、出力波長算出部201a及び三刺激値算出部201bとして機能する。
【0055】
出力波長算出部201aは、校正用光源100の輝線波長を測定した場合に3つの出力比Q/Qn+2の中で最も1に近い比Q/Qn+2を選択して、第3の対応表記憶部220aに記憶されている第3の対応表を参照して、選択された比Q/Qn+2に対応する波長λを算出する。
【0056】
三刺激値算出部201bは、受光センサSの各測定波長での出力と、測定波長ごとの重み係数との積和で三刺激値を算出する場合、重み係数を波長変化量に応じて修正し、修正した重み係数を用いて三刺激値を算出する。
【0057】
収束光学系202は、校正用光源100のコリメータ光学系105によってコリメートされた光を絞り203の開口部分に収束させる。
【0058】
絞り203は、収束光学系202と共に測定光束の受光角を規定する。
【0059】
コンデンサレンズ204は絞り203を通過した光を受光部205の入射スリットに集めるものである。
【0060】
受光部205は、入射される光を波長に応じて分散する回折格子と、回折格子によって波長毎に異なる方向に分散された光を受光し、受光した各波長成分の光強度に応じた電気信号を出力する複数の光電変換素子(受光センサS)が配列されてなる受光センサアレイとを備えて構成される。
【0061】
なお、校正時において、校正用光源100のハウジング111と被校正分光輝度計200のハウジング206とは、外部光が入らないようにするため、ハウジング111に形成された開口部111aと、ハウジング206に形成された206aとで結合される。
【0062】
システム制御部300は、例えば、CPUで構成され、波長校正部300a、感度校正部300b、迷光レベル推定部300c及び半値幅推定部300dとして機能する。
【0063】
波長校正部300aは、被校正分光輝度計200が校正用光源100の輝線出力を測定した場合に、輝線波長に隣接する複数の測定波長における受光センサSからの出力比から輝線出力の波長を推定し、推定した輝線出力の波長と既知の輝線波長との差から波長変化量を算出し、算出された波長変化量を被校正分光輝度計200の記憶部220に記憶させることで波長校正する。
【0064】
感度校正部300bは、被校正分光輝度計200が校正用光源100の出力光を測定した場合に、分光強度分布推定部101bによって推定された分光強度分布P(λ)と被校正分光輝度計200から取得した各受光センサSの分光感度とに基づいて各受光センサSから得られるべき推定出力qを求め、求めた推定出力qと、実際に受光センサSから得られた出力Qとの比q/Qを各受光センサS毎に算出し、算出された比q/Qを被校正分光輝度計200の記憶部220に記憶させることで被校正分光輝度計200を感度校正する。
【0065】
迷光レベル推定部300cは、輝線波長に隣接する複数の測定波長における受光センサSからの出力により求めた輝線の強度と、輝線波長に感度を有しない波長における出力(輝線波長における分光感度が0である受光センサSの出力)との比を求め、求めた比と予め記憶されている比の初期値とを比較することで被校正分光輝度計200の迷光レベルの変化を推定する。
【0066】
半値幅推定部300dは、輝線波長に隣接する複数の測定波長における受光センサSからの出力より受光センサSにおける輝線波長近傍での半値幅を求め、求めた半値幅と予め記憶されている半値幅の初期値とを比較することで被校正分光輝度計200の半値幅の変化を推定する。
【0067】
ここで、被校正分光輝度計200の波長再校正について説明する。被校正分光輝度計200は、システム制御部300からの指示によって校正用光源100の輝線光源102の出力光を測定する。
【0068】
図4は、輝線光源の輝線波長と、輝線波長近傍の5つの受光センサS(n=48〜52)の相対分光感度を示す図である。前述のように、輝線光源102の出力波長は650±5nmでばらつきが生じるが、図4では、λLD1,λLD2,λLD3の3つの輝線波長を示している。例えば、校正用光源100の輝線光源102の出力波長λLD=λLD1の場合、その短波長側に隣接する受光センサS48の分光感度はλLD1近傍で立ち下がり、長波長側に隣接する受光センサS50の分光感度はλLD1近傍で立ち上がるので、受光センサS48の出力(Q48と受光センサS50の出力(Q50の比Q48/Q50は、出力波長λLDが短波長側にシフトすれば高い感度で増加し、長波長側にシフトすれば高い感度で減少する。したがって、被校正分光輝度計200の制御部201は、受光センサS48の出力(Q48と受光センサS50の出力(Q50の比Q48/Q50を算出し、記憶部220にあらかじめ記憶されている比Q48/Q50と波長λLDとの第3の対応表を参照して、輝線光源102の出力波長λLDを推定してシステム制御部300に出力する。システム制御部300は、被校正分光輝度計200の制御部201から入力される推定値λLDと、校正用光源100の制御部101から入力される輝線波長の推定値ΛLDとの差から被校正分光輝度計200の受光部205の波長変化量dλ=λLD−ΛLDを算出し、被校正分光輝度計200の受光部205の各受光センサSの分光感度の共通の修正量として記憶部220に記憶させることで出力波長の補正を行う。
【0069】
複数の受光センサS(n=48〜52)のうちの比を算出する2つの受光センサの分光感度は、輝線光源102の出力波長λLDで急峻かつ互いに逆に変化していることが好ましく、出力波長λLDの位置によって組み合わせが異なる。すなわち、図4で、校正用光源100の輝線光源102の出力波長λLD=λLD2の場合、受光センサS49の出力と受光センサS51の出力との比Q49/Q51を算出することが好ましく、校正用光源100の輝線光源102の出力波長λLD=λLD3の場合、受光センサS50の出力と受光センサS52の出力との比Q50/Q52を算出することが好ましい。したがって、記憶部220が記憶する第3の対応表には、各輝線波長に対応する3つの比Q48/Q50,Q49/Q51,Q50/Q52が用意されており、校正時に算出された比Q48/Q50,Q49/Q51,Q50/Q52の中から最も適切な比を用いて輝線光源102の出力波長λLDを推定する。具体的には、制御部201は、3つの比Q48/Q50,Q49/Q51,Q50/Q52の中で最も1に近い値をもつ比を用いて輝線光源102の出力波長λLDを推定する。
【0070】
次に、被校正分光輝度計200の分光感度の再校正について説明する。前述の出力波長の再校正を行った後、被校正分光輝度計200は、システム制御部300からの指示によって校正用光源100の白熱光源103の出力光を測定する。被校正分光輝度計200は、受光部205の各波長での出力(分光感度)Q(λ)をシステム制御部300に出力する。システム制御部300は、校正用光源100の制御部101から入力される分光強度分布P(λ)と、被校正分光輝度計200の制御部201から入力される受光部205の各受光センサSの分光感度Q(λ)、及び前述の波長変化量dλとに基づいて、各受光センサSから得られるべき推定出力qを算出し、算出された推定出力qと実測値Qとの受光センサS毎の比q/Qを算出し、被校正分光輝度計200の制御部201に記憶させることで被校正分光輝度計200の分光感度を補正する。
【0071】
被校正分光輝度計200の出力波長及び分光感度の校正のためには、校正用光源100には、輝線光源102の出力波長モニタ用対応表(第1の対応表)と、白熱光源103の放射光モニタ用対応表(第2の対応表)があらかじめ設定されている必要があり、被校正分光輝度計200には、波長校正用対応表(第3の対応表)があらかじめ設定されている必要がある。そこで、これらの対応表の設定手順について以下に説明する。
【0072】
まず、校正用光源100の第1の対応表の設定手順について説明する。図5は、校正用光源100の第1の対応表の設定における分光輝度計の校正システムを示す図である。図5に示す分光輝度計の校正システムは、校正用光源100、基準モノクロメータ303及びシステム制御部300を備えて構成される。
【0073】
基準モノクロメータ303は、水銀の輝線などで波長校正された分光部と光源部とを備えて構成され、任意の波長の単色光を校正用光源100に向けて出力する。
【0074】
システム制御部300は、基準モノクロメータ303に輝線光源102の出力波長近傍の波長を有する複数の単色光を所定波長間隔で出力させ、校正用光源100のハウジング111に形成された開口部111aに当該単色光を入射させる。なお、本実施形態におけるシステム制御部300は、基準モノクロメータ303に輝線光源102の出力波長650nm近傍の644nmから656nmの単色光を2nmピッチで出力させる。校正用光源100に入射した単色光は、コリメータ光学系105を透過して拡散板104に入射する。拡散板104によって拡散反射した光は、第1モニタセンサ106及び第2モニタセンサ107によって検知される。システム制御部300は、校正用光源100の制御部101から入力される各単色光に対する第1モニタセンサ106及び第2モニタセンサ107の出力I,Iを取得し、出力Iと出力Iとの比I/Iを算出する。システム制御部300は、算出された比I/Iを単色光の波長λと対応付けて第1の対応表を作成する。
【0075】
また、校正用光源100は、ハウジング111の底部の蓋111b(図3参照)を取り外すことで、第1〜第3モニタセンサ106,107,108及び温度センサ109が格納されたアルミブロック110を露出させることができる。この露出させたアルミブロック110には、システム制御部300によって制御される恒温ユニット301が密着して配置され、第1〜第3モニタセンサ106,107,108の温度を制御する。第1〜第3モニタセンサ106,107,108の温度は、温度センサ109によって検出される。システム制御部300は、恒温ユニット301を制御することでアルミブロック110内を複数の温度T1,T2,T3に設定してそれぞれの温度における出力I,Iを取得する。なお、本実施形態においてシステム制御部300は、アルミブロック110内の温度をT1=13℃、T2=23℃及びT3=33℃近傍に設定して出力I,Iを取得する。同時に、温度センサ109は、第1〜第2モニタセンサ106,107の温度T1,T2,T3を検出し、検出された温度T1,T2,T3を制御部101に出力する。システム制御部300は、検出された温度T1,T2,T3を制御部101より取得し、各温度毎に比I/Iと単色光の波長λとの第1の対応表を作成し、作成した第1の対応表を校正用光源100の記憶部120に記憶させる。下記の表1は、上述のようにして作成された第1の対応表の一例を示すものである。
【0076】
【表1】
Figure 2005043153
【0077】
表1に示すように、例えば、単色光の波長λが644nmであり、温度センサ109によって検出された温度がT1である場合、出力I10と出力I20との比I10/I20は、(I10/I2011となり、温度がT2である場合、比I10/I20は、(I10/I2021となり、温度がT3である場合、比I10/I20は、(I10/I2031となる。このように、システム制御部300は、温度毎に単色光の波長λと比I10/I20とが対応付けられた第1の対応表を作成し、作成した第1の対応表を制御部101に記憶する。
【0078】
そして、校正時において、制御部101は、表1に示す第1の対応表に基づいて、出力Iと出力Iとの比I/Iを温度センサ109によって検出された温度Tについて補間して、検出された温度TでのΛLDとI/Iとの対応表を新たに作成し、新たに作成された対応表に基づいて、ΛLDをI/Iについて補間して、モニタされたI/Iに対応する出力波長の推定値ΛLDを算出する。
【0079】
次に、校正用光源100の第2の対応表の設定手順について説明する。図6は、校正用光源100の第2の対応表の設定における分光輝度計の校正システムを示す図である。図6に示す分光輝度計の校正システムは、校正用光源100、基準分光輝度計302及びシステム制御部300を備えて構成される。
【0080】
基準分光輝度計302は、基準モノクロメータによって出力波長が校正され、標準電球によって分光感度が校正されている。
【0081】
システム制御部300は、校正用光源100の白熱光源103を3種類の駆動電圧V,V,Vで点灯させ、拡散板104からの放射光束を第1〜第3モニタセンサ106,107,108によって検知させるとともに、基準分光輝度計302にコリメータ光学系105から射出される光束の相対分光強度分布R(λ),R(λ),R(λ)を測定させる。システム制御部300は、校正用光源100の制御部101から第1〜第3モニタセンサ106,107,108の出力I10,I20,I30を取得し、出力I30と出力I10との比I30/I10を算出するとともに、出力I20と出力I10との比I20/I10を算出する。システム制御部300は、算出された比I30/I10、第2モニタセンサ107の出力I20、及び算出された比I20/I10を相対分光強度分布R(λ),R(λ),R(λ)と対応付けて第2の対応表を作成する。
【0082】
また、校正用光源100は、ハウジング111の底部の蓋111b(図3参照)を取り外すことで、第1〜第3モニタセンサ106,107,108及び温度センサ109が格納されたアルミブロック110を露出させることができる。この露出させたアルミブロック110には、システム制御部300によって制御される恒温ユニット301が密着して配置され、第1〜第3モニタセンサ106,107,108の温度を制御する。第1〜第3モニタセンサ106,107,108の温度は、温度センサ109によって検出される。システム制御部300は、恒温ユニット301を制御することでアルミブロック110内を複数の温度T1,T2,T3に設定してそれぞれの温度における出力I10,I20,I30を取得する。なお、本実施形態においてシステム制御部300は、アルミブロック110内の温度をT1=13℃、T2=23℃及びT3=33℃近傍に設定して出力I10,I20,I30を取得する。同時に、温度センサ109は、第1〜第3モニタセンサ106,107、108の温度T1,T2,T3を検出し、検出された温度T1,T2,T3を制御部101に出力する。システム制御部300は、検出された温度T1,T2,T3を制御部101より取得し、各温度毎に比I30/I10と相対分光強度分布R(λ)との第2の対応表を作成し、作成した第2の対応表を校正用光源100の記憶部120に記憶する。下記の表2は、上述のようにして作成された第2の対応表の一例を示すものである。
【0083】
【表2】
Figure 2005043153
【0084】
表2に示すように、例えば、駆動電圧Vで白熱光源103を駆動した場合の分光強度分布がR(λ)であり、温度センサ109によって検出された温度がT1である場合、出力I30と出力I10との比I30/I10は(I30/I1011となり、出力I20は(I2011となり、出力I20と出力I10との比I20/I10は(I20/I1011となる。温度がT2である場合、比I30/I10は(I30/I1021となり、出力I20は(I2021となり、出力I20と出力I10との比I20/I10は(I20/I1021となる。温度がT3である場合、比I30/I10は(I30/I1031となり、出力I20は(I2031となり、出力I20と出力I10との比I20/I10は(I20/I1031となる。このように、システム制御部300は、温度毎に相対分光強度分布R(λ)と比I30/I10、出力I20及び比I20/I10とが対応付けられた第2の対応表を作成し、作成した第2の対応表を校正用光源100の記憶部120に記憶する。
【0085】
そして、校正時において、制御部101は、出力Iと出力Iとの比I/I、出力I、及び出力Iと出力Iとの比I/Iを温度について補間して、モニタされた温度Tでの相対分光強度分布R(λ)と比I/I、出力I、及び比I/Iとの対応表を作成し、作成された対応表に基づいて、R(λ)を比I/Iについて補間して、モニタされた比I/Iに対応する相対分光強度分布R(λ)と出力I及び比I/Iとを算出する。
【0086】
次に、被校正分光輝度計200の第3の対応表の設定手順について説明する。図7は、被校正分光輝度計200の第3の対応表の設定における分光輝度計の校正システムを示す図である。図7に示す分光輝度計の校正システムは、被校正分光輝度計200、基準モノクロメータ303及びシステム制御部300を備えて構成される。
【0087】
システム制御部300は、基準モノクロメータ303に輝線光源102の出力波長近傍の波長を有する複数の単色光を所定波長間隔で出力させ、被校正分光輝度計200のハウジング206に形成された開口部206aに当該単色光を入射させる。なお、本実施形態におけるシステム制御部300は、基準モノクロメータ303に輝線光源102の出力波長650nm近傍の644nmから656nmの単色光を2nmピッチで出力させる。被校正分光輝度計200に入射した単色光は、収束光学系202を透過して絞り203に入射する。絞り203を通過した単色光は、コンデンサレンズ204により集められて受光部205に入射し、波長毎に分散されて受光部205の各受光センサSによって受光される。
【0088】
システム制御部300は、各受光センサSからの出力Qを取得し、各単色光に対する輝線光源102の出力波長近傍の受光センサの出力Q(n=48〜52)と、各輝線波長に対応する3つの比Q48/Q50,Q49/Q51,Q50/Q52とを算出する。システム制御部300は、算出された比Q48/Q50,Q49/Q51,Q50/Q52を単色光の波長λと対応付けた第3の対応表を作成し、作成した第3の対応表を被校正分光輝度計200の記憶部220に記憶させる。下記の表3は、上述のようにして作成された第3の対応表の一例を示すものである。
【0089】
【表3】
Figure 2005043153
【0090】
表3に示すように、例えば、単色光の波長λが644nmである場合、出力Q48と出力Q50との比Q48/Q50は、(Q48/Q50となり、出力Q49と出力Q51との比Q49/Q51は、(Q49/Q51となり、出力Q50と出力Q52との比Q50/Q52は、(Q50/Q52となる。このように、システム制御部300は、単色光の波長λと各輝線波長に対応する3つの比Q48/Q50,Q49/Q51,Q50/Q52とが対応付けられた第3の対応表を作成し、作成した第3の対応表を被校正分光輝度計200の記憶部220に記憶する。
【0091】
そして、校正時において、制御部201は、校正用光源100の輝線波長ΛLDを測定した場合に3つの出力比Q/Qn+2の中で最も1に近い比Q/Qn+2を選択して、表3に示す第3の対応表のλを比Q/Qn+2について補間して、測定された比Q/Qn+2に対応する波長λを算出する。
【0092】
ここまでは、分光輝度計の波長及び分光感度についてユーザ側で再校正するための分光輝度計の校正システムについて説明してきたが、分光輝度計の受光部205は、迷光レベルや半値幅も経時的に変化する可能性がある。そこで、この分光輝度計の迷光レベルや半値幅を確認することが可能な分光輝度計の校正システムについて以下に説明する。
【0093】
図8は、被校正分光輝度計の半値幅の推定について説明するための図である。なお、図8において、縦軸は相対分光感度を示し、横軸は波長を示している。図8に示すように、輝線波長λLD近傍の複数の受光センサS(n=48〜52)の分光感度が、ガウス関数などの数学関数で近似でき、ほぼ相似であれば、複数の受光センサSの中心波長λcnと出力Qによって与えられる座標(λcn,Q)にフィットする前記数学関数GLD(λ)は複数の受光センサSの分光感度を近似し、半値幅の近似値を与える。なお、ここでは、前記数学関数をガウス関数とする。
【0094】
ガウス関数は、下記の(2)式で定義され、その形状を決めるには、3つの定数である中心波長λc、半値幅Δλ及び振幅Aの最適値を最小自乗法で求めればよい。なお、下記の(2)式において、C=2・In(2)である。
G(λ)=A・exp[−{(λ−λc)/(Δλ/C)}]・・・(2)
【0095】
システム制御部300は、最小自乗法で推定されたG(λ)の半値幅Δλを、あらかじめ記憶されている工場での校正時に推定したG(λ)の半値幅Δλと比較することで半値幅の変化を検知することができる。
【0096】
また、被校正分光輝度計200で校正用光源100の輝線出力を測定したとき、波長λLDで分光感度が0である輝線波長λLDから十分離れた受光センサ(例えば、受光センサS30)の出力Q30は、迷光レベルの指標となる。輝線光源102の出力変化をキャンセルするために、輝線強度Q(λLD)と相対比較する必要があるが、出力波長が645nmから655nmの間に分布する輝線光源102の場合、輝線強度Q(λLD)を直接求めることができない。しかしながら、前述の半値幅を推定するために求めたガウス関数G(λ)の振幅Aは、輝線強度Q(λLD)を近似した値となる。したがって、システム制御部300は、受光センサS30の出力Q30と振幅Aとの比Q30/Aを求め、予め記憶されている工場での校正時の比(Q30/A)と比較することによって、迷光レベルの変化を検知することができる。
【0097】
なお、迷光レベル及び半値幅の変化はユーザ側では補正することができないが、波長校正時に確認し、迷光レベル及び半値幅の変化量が許容範囲を超えた場合、ユーザに報知することによって、例えば、分光輝度計の工場への返送を促すことができる。
【0098】
次に、分光輝度計の校正システムの動作について説明する。図9は、分光輝度計の校正システムの動作を示すフローチャートである。
【0099】
ステップS1において、システム制御部300は、被校正分光輝度計200の受光部205の半値幅Δλを算出する。
【0100】
ステップS2において、システム制御部300は、算出された半値幅Δλから、工場での校正時に算出された初期半値幅Δλを減算した半値幅の変化量(Δλ−Δλ)と、あらかじめ設定されている所定の限度値とを比較する。なお、半値幅の変化は輝線波長に対する隣接センサの出力比に変化をもたらし、輝線波長推定値に誤差を生じさせる。したがって、所定の限度値は、輝線波長推定値の誤差が要求仕様を満たす限度の半値幅の変化量として与えられる。ここで、変化量(Δλ−Δλ)が限度値より小さい場合(ステップS2でYES)、ステップS4に移行し、変化量(Δλ−Δλ)が限度値以上である場合(ステップS2でNO)、ステップS3に移行する。
【0101】
ステップS3において、システム制御部300は、半値幅Δλが異常であることをユーザに対して警告し、分光輝度計を校正するための動作を終了する。具体的には、分光輝度計の校正システムは、半値幅が異常であることをユーザに対して報知するための半値幅警告報知部(例えば、LEDやLCD等で構成される)をさらに備えており、ユーザは、この半値幅警告報知部によって半値幅が異常であることを確認することができる。なお、半値幅警告報知部としては、半値幅が異常である旨を表示する半値幅警告表示部を含む。
【0102】
ステップS4において、システム制御部300は、被校正分光輝度計200の受光部205の迷光レベルをチェックする。具体的には、システム制御部300は、輝線波長λLDで分光感度が0となるような、輝線波長λLDから十分離れた波長の光を検出する受光センサS30の出力Q30と、ガウス関数G(λ)によって得られる振幅Aとの比Q30/Aを算出する。
【0103】
ステップS5において、システム制御部300は、算出された比Q30/Aから、工場での校正時に算出された初期比(Q30/A)を減算した迷光レベルの変化量{(Q30/A)−(Q30/A)}と、あらかじめ設定されている所定の限度値とを比較する。なお、所定の限度値は、例えばJIS28724が規定する迷光レベル(500nmカットオフフィルタ挿入時の450nmのレベルが、フィルタ挿入前の1%以下となるレベル)に対応する値として与えられる。ここで、変化量{(Q30/A)−(Q30/A)}が限度値より小さい場合(ステップS5でYES)、ステップS7に移行し、変化量{(Q30/A)−(Q30/A)}が限度値以上である場合(ステップS5でNO)、ステップS6に移行する。
【0104】
ステップS6において、システム制御部300は、迷光レベルが異常であることをユーザに対して警告し、分光輝度計を校正するための動作を終了する。具体的には、分光輝度計の校正システムは、迷光レベルが異常であることをユーザに対して報知するための迷光警告報知部(例えば、LEDやLCD等で構成される)をさらに備えており、ユーザは、この迷光警告報知部によって迷光レベルが異常であることを確認することができる。なお、迷光警告報知部としては、迷光レベルが異常である旨を表示する迷光警告表示部を含む。
【0105】
ステップS7において、システム制御部300は波長校正処理を行う。なお、この波長校正処理については、図10を用いて後述する。
【0106】
ステップS8において、システム制御部300は、分光感度を校正する分光感度校正処理を行う。なお、この分光感度校正処理については、図11を用いて後述する。
【0107】
このように、分光輝度計の校正システムでは、半値幅及び迷光レベルのチェックが行われ、当該半値幅及び迷光レベルに問題がなければ、波長の校正及び分光感度の校正が行われる。
【0108】
図10は、図9のステップS7における波長校正処理の動作を示すフローチャートである。
【0109】
ステップS11において、制御部101は、輝線光源102を点灯するよう制御し、輝線光源102は、輝線波長の輝線を出力する。
【0110】
ステップS12において、制御部101は、第1〜第3モニタセンサ106,107,108の温度Tを測定するように温度センサ109を制御し、温度センサ109は、第1〜第3モニタセンサ106,107,108の温度Tを測定する。温度センサ109によって測定された温度Tは、制御部101に出力される。
【0111】
ステップS13において、制御部101は、温度センサ109によって測定された第1〜第3モニタセンサ106,107,108の温度Tが安定状態にあるか否かを判断する。なお、制御部101は、温度Tの前回測定時からの変化量が基準値以下である場合、安定状態にあると判断する。ここで、第1〜第3モニタセンサ106,107,108の温度Tが安定状態にあると判断されると(ステップS13でYES)、ステップS14に移行する。第1〜第3モニタセンサ106,107,108の温度Tが安定状態にないと判断されると(ステップS13でNO)、ステップS12に戻ることとなり、温度センサ109によって測定される第1〜第3モニタセンサ106,107,108の温度Tが安定するまで測定が繰り返し行われる。
【0112】
ステップS14において、制御部101は、温度Tが補間可能なT<T<Tの範囲にあるか否かを判定する。ここで、補間可能な範囲外であると判定されると(ステップS14でNO)、ステップS15に移行し、補間可能な範囲内であると判定されると(ステップS14でYES)、ステップS16に移行する。
【0113】
ステップS15において、制御部101は、温度センサ109によって測定される第1〜第3モニタセンサ106,107,108の温度Tが補間可能な範囲外であることを示す警告を行い、ステップS12に戻ることとなる。
【0114】
ステップS16において、制御部101は、第1モニタセンサ106、第2モニタセンサ107及び温度センサ109を制御し、第1モニタセンサ106の出力I、第2モニタセンサ107の出力I及び温度センサ109の出力温度Tを測定する。
【0115】
ステップS17において、制御部101は、第1モニタセンサ106の出力Iと第2モニタセンサ107の出力Iとの比I/Iを算出する。
【0116】
ステップS18において、制御部101は、算出された第1モニタセンサ106の出力Iと第2モニタセンサ107の出力Iとの比I/Iが安定状態にあるか否かを判断する。なお、制御部101は、比I/Iの前回測定時からの変化量が基準値以下である場合、安定状態にあると判断する。ここで、第1モニタセンサ106の出力Iと第2モニタセンサ107の出力Iとの比I/Iが安定状態にあると判断されると(ステップS18でYES)、ステップS19及びステップS21に移行する。第1モニタセンサ106の出力Iと第2モニタセンサ107の出力Iとの比I/Iが安定状態にないと判断されると(ステップS18でNO)、ステップS16に戻ることとなり、第1モニタセンサ106の出力Iと第2モニタセンサ107の出力Iとの比I/Iが安定するまで測定が繰り返し行われる。
【0117】
ステップS19において、制御部101は、記憶部120にあらかじめ記憶されている第1の対応表(表1参照)の各温度T,T,Tでの第1モニタセンサ106の出力I10と第2モニタセンサ107の出力I20との比I10/I20を、温度Tについて補間し、温度センサ109によって測定された温度Tに対応する比I10/I20と、輝線波長の推定値ΛLDとを対応付ける対応表を新たに作成する。
【0118】
ステップS20において、制御部101は、第1モニタセンサ106の出力Iと第2モニタセンサ107の出力Iとの比I/Iに対応する輝線波長の推定値ΛLDを、新たに作成された対応表を比I10/I20について補間することによって算出する。制御部101は、算出された推定値ΛLDをシステム制御部300に出力する。
【0119】
一方、第1モニタセンサ106の出力Iと第2モニタセンサ107の出力Iとの比I/Iが安定状態にあると判断されると、校正用光源100の輝線光源102の出力光を被校正分光輝度計200により測定する。
【0120】
ステップS21において、制御部201は、各受光センサS(n=48〜52)からの出力Q(n=48〜52)を取得する。
【0121】
ステップS22において、制御部201は、受光センサSの出力Qと受光センサSn+2の出力Qn+2との比Q/Qn+2の中で、1に最も近い比Q/Qn+2を選択し、選択された比Q/Qn+2に対応する輝線波長λを、記憶部220にあらかじめ記憶されている第3の対応表(表3参照)を比Q/Qn+2について補間することによって算出する。制御部201は、算出された輝線波長λをシステム制御部300に出力する。
【0122】
ステップS23において、システム制御部300は、制御部201より入力される輝線波長λから制御部101より入力される推定値ΛLDを減算し、減算値dλ(=λ−ΛLD)を波長変化量として被校正分光輝度計200の制御部201に記憶する。
【0123】
ステップS24において、システム制御部300は、各受光センサの分光感度をdλ分シフトして校正する。
【0124】
ステップS25において、制御部101は、輝線光源102を消灯するよう制御し、出力波長校正処理を終了する。
【0125】
このように、校正用光源100が備える輝線光源102によって、既知の輝線波長の輝線が出力され、被校正分光輝度計200によって、校正用光源100の輝線出力が測定され、システム制御部300によって、被校正分光輝度計200が校正用光源100の輝線出力を測定した場合に、輝線波長に隣接する複数の測定波長における受光センサSからの出力Qの相対比Q/Qn+2から輝線出力の波長λが推定され、推定された輝線出力の波長λと既知の輝線波長Λとの差から波長変化量dλが推定され、この波長変化量dλが受光センサSの全測定波長域に一様な波長シフト量として校正される。
【0126】
したがって、校正用光源100を用いて受光センサSの分光感度の波長変化量を推定することによって、分光輝度計200の波長の再校正をユーザ側で行うことができ、ユーザは、十分な頻度で分光輝度計の波長校正を行うことで常に高い精度で分光輝度計200を使用することができる。また、校正用光源100は分光輝度計200に比べて構造も簡単で使用頻度も低いので経時変化しにくく、年に一回程度、工場あるいはサービス拠点に返送して再校正することで精度を維持することができる。
【0127】
また、被校正分光輝度計200には、輝線波長に隣接する複数の測定波長における受光センサSからの出力比と、輝線出力の波長との第3の対応表が予め記憶されており、システム制御部300によって、被校正分光輝度計200によって測定された各出力の相対比と第3の対応表とから輝線出力の波長が推定され、推定された輝線出力の波長と既知の輝線波長との差から波長変化量が推定され、この波長変化量が受光センサSの全測定波長域に一様な波長シフト量として校正される。したがって、輝線波長に隣接する複数の測定波長における受光センサSからの出力比から簡単なアルゴリズムで輝線出力の波長を推定することができる。
【0128】
また、可視LD102の出力波長近傍で、互いに異なる分光感度を有する第1及び第2モニタセンサ106,107の出力比から可視LD102の出力波長が推定され、推定された可視LD102の出力波長が被校正分光輝度計200に出力されるので、低価格で十分な輝線出力を有し、耐衝撃性、寿命に優れる可視LDを輝線光源として用いて精度の高い分光輝度計200の再校正ができる。
【0129】
また、校正用光源100には、第1及び第2モニタセンサ106,107の出力比と、可視LD102の出力波長との第1の対応表が予め記憶されており、制御部101によって、第1及び第2モニタセンサ106,107の出力比と第1の対応表とから可視LD102の出力波長が推定されるので、第1及び第2モニタセンサ106,107の出力比から簡単なアルゴリズムで可視LDの出力波長を推定することができる。
【0130】
図11は、図9のステップS8における分光感度校正処理の動作を示すフローチャートである。
【0131】
ステップS31において、制御部101は、白熱光源103を点灯するよう制御し、白熱光源103は、複数の波長からなる白色光を出力する。
【0132】
ステップS32において、制御部101は、第1〜第3モニタセンサ106,107,108の温度Tを測定するように温度センサ109を制御し、温度センサ109は、第1〜第3モニタセンサ106,107,108の温度Tを測定する。温度センサ109によって測定された温度Tは、制御部101に出力される。
【0133】
ステップS33において、制御部101は、温度センサ109によって測定された第1〜第3モニタセンサ106,107,108の温度Tが安定状態にあるか否かを判断する。なお、制御部101は、温度Tの前回測定時からの変化量が基準値以下である場合、安定状態にあると判断する。ここで、第1〜第3モニタセンサ106,107,108の温度Tが安定状態にあると判断されると(ステップS33でYES)、ステップS34に移行する。第1〜第3モニタセンサ106,107,108の温度Tが安定状態にないと判断されると(ステップS33でNO)、ステップS32に戻ることとなり、温度センサ109によって測定される第1〜第3モニタセンサ106,107,108の温度Tが安定するまで測定が繰り返し行われる。
【0134】
ステップ34において、制御部101は、温度Tが補間可能なT<T<Tの範囲にあるか否かを判定する。ここで、補間可能な範囲外であると判定されると(ステップS34でNO)、ステップS35に移行し、補間可能な範囲内であると判定されると(ステップS34でYES)、ステップS36に移行する。
【0135】
ステップS35において、制御部101は、温度センサ109によって測定される第1〜第3モニタセンサ106,107,108の温度Tが補間可能な範囲外であることを示す警告を行い、ステップS32に戻ることとなる。
【0136】
ステップS36において、制御部101は、第1モニタセンサ106、第2モニタセンサ107、第3モニタセンサ108及び温度センサ109を制御し、第1モニタセンサ106の出力I、第2モニタセンサ107の出力I、第3モニタセンサ108の出力I及び温度センサ109の出力温度Tを測定する。
【0137】
ステップS37において、制御部101は、第3モニタセンサ108の出力Iと第1モニタセンサ106の出力Iとの比I/Iを算出する。
【0138】
ステップS38において、制御部101は、算出された第3モニタセンサ108の出力Iと第1モニタセンサ106の出力Iとの比I/Iが安定状態にあるか否かを判断する。なお、制御部101は、比I/Iの前回測定時からの変化量が基準値以下である場合、安定状態にあると判断する。ここで、第3モニタセンサ108の出力Iと第1モニタセンサ106の出力Iとの比I/Iが安定状態にあると判断されると(ステップS38でYES)、ステップS39及びステップS42に移行する。第3モニタセンサ108の出力Iと第1モニタセンサ106の出力Iとの比I/Iが安定状態にないと判断されると(ステップS38でNO)、ステップS36に戻ることとなり、第3モニタセンサ108の出力Iと第1モニタセンサ106の出力Iとの比I/Iが安定するまで測定が繰り返し行われる。なお、温度T及び比I/Iの安定性判断のための基準値は、各々が与える分光強度分布推定誤差と要求される分光感度校正精度を勘案して設定される。
【0139】
ステップS39において、制御部101は、記憶部120にあらかじめ記憶されている第2の対応表(表2参照)の各温度T,T,Tでの第3モニタセンサ108の出力I30と第1モニタセンサ106の出力I10との比I30/I10、第2モニタセンサ107の出力I20及び第2モニタセンサ107の出力I20と第1モニタセンサ106の出力I10との比I20/I10を温度Tについて補間し、温度センサ109によって測定された温度Tに対応する比I30/I10、出力I20及び比I20/I10と、相対分光強度分布R(λ)とを対応付ける対応表を新たに作成する。
【0140】
ステップS40において、制御部101は、第3モニタセンサ108の出力Iと第1モニタセンサ106の出力Iとの比I/Iに対応する相対分光強度分布R(λ)を、新たに作成された対応表を比I/Iについて補間することによって算出する。
【0141】
ステップS41において、制御部101は、算出された相対分光強度分布R(λ)と第2モニタセンサ107の出力I及び第2の対応表における相対分光強度分布R(λ)に対応する出力I20に基づいて分光強度分布P(λ)を推定し、推定された分光強度分布P(λ)をシステム制御部300に出力する。
【0142】
一方、第3モニタセンサ108の出力Iと第1モニタセンサ106の出力Iとの比I/Iが安定状態にあると判断されると、校正用光源100の白熱光源103の出力光を被校正分光輝度計200により測定する。
【0143】
ステップS42において、制御部201は、各受光センサS(n=0〜60)を制御し、各受光センサSの出力Q(n=0〜60)を取得する。制御部201は、取得した各受光センサSの出力Qをシステム制御部300に出力する。
【0144】
ステップS43において、システム制御部300は、校正用光源100の制御部101より入力される分光強度分布P(λ)と、被校正分光輝度計200の制御部201より入力される波長再校正済みの受光センサS(n=0〜60)の分光感度とから得られるべき出力qを算出する。
【0145】
ステップS44において、システム制御部300は、算出されたqと実測値Qとの受光センサS毎の比q/Qを算出し、算出した比q/Qを感度補正係数として被校正分光輝度計200の制御部201に記憶する。
【0146】
ステップS45において、制御部101は、白熱光源103を消灯するよう制御し、分光感度校正処理を終了する。
【0147】
このように、校正用光源100が備える制御部101によって、互いに異なる分光感度を有する第1〜第3モニタセンサ106,107,108の出力から白熱光源103の分光強度分布が推定され、被校正分光輝度計200によって、校正用光源100の出力光が測定される。そして、システム制御部300によって、分光強度分布推定部101bによって推定された分光強度分布P(λ)と被校正分光輝度計200から取得した波長再校正済みの各受光センサSの分光感度とに基づいて、被校正分光輝度計200が校正用光源100の出力光を測定した場合に各受光センサSから得られるべき推定出力qが求められ、求められた推定出力qと、実際に受光センサSから得られた出力Qとの比q/Qが各受光センサS毎に算出され、算出された比q/Qが被校正分光輝度計200に記憶されることで感度校正が行われる。
【0148】
したがって、被校正分光輝度計200が校正用光源100の出力光を測定した場合の、分光強度分布P(λ)と各受光センサSの分光感度とに基づいて算出される各受光センサSの推定出力qと、受光センサSの出力Qとの比q/Qを、分光輝度計の感度を校正するための感度補正係数として記憶しておくことによって、分光輝度計200の感度の再校正をユーザ側で行うことができ、ユーザは、十分な頻度で分光輝度計200の感度校正を行うことで常に高い精度で分光輝度計200を使用することができる。
【0149】
なお、本実施形態では、校正用光源100及び被校正分光輝度計200の外部にシステム制御部300を設けているが、本発明は特にこれに限定されず、校正用光源100の制御部101及び被校正分光輝度計200の制御部201のうちのいずれか一方にシステム制御部300の機能を持たせてもよい。この場合、システム制御部300の機能を有するPC(パーソナルコンピュータ)を介さずに校正用光源100と被校正分光輝度計200とを直接接続することができるので、構成を簡略化することができる。
【0150】
また、第1〜第3モニタセンサ106,107,108が内蔵されるアルミブロック110内の温度をペルチェ素子などの冷却効果のある素子を用いて一定温度に維持してもよい。この場合、アルミブロック110内の温度がペルチェ素子によって一定温度に維持されるので、第1〜第3モニタセンサ106,107,108の温度補償が不要となり、第1〜第3モニタセンサ106,107,108の温度補償のための構成を省略し、校正用光源100に対応表を設定する作業時間を短縮することができる。
【0151】
さらに、本発明に係る分光輝度計の校正システムは、受光部205の有する各受光センサSが波長間隔20nm程度で、30nm程度の広い半値幅の分光感度を有し、制御部が各受光センサSの分光感度s(λ)とあらかじめ求められて記憶されている重み係数Cxn,Cyn,Cznを用いて、下記の(3)〜(5)式により標準観察者の等色関数x(λ),y(λ),z(λ)を近似する分光輝度計に適用してもよい。この場合、制御部は、想定される波長変化量に対応して、複数の重み係数をあらかじめ求めて記憶しておき、上述の校正システムによって推定された波長変化量に応じて、複数の重み係数の中から適切な重み係数を選択して入射光の三刺激値x,y,zを求める。
x(λ)=ΣCxn・s(λ)・・・・(3)
y(λ)=ΣCyn・s(λ)・・・・(4)
z(λ)=ΣCzn・s(λ)・・・・(5)
【0152】
例えば、受光部205が20nmピッチで400〜700nmまでの16の受光センサを有し、制御部201は、0.1nmピッチで−1nmから+1nmまでの21の波長変化量と対応する21組の係数(Cxn,(Cyn,(Czn(k=0〜20)を記憶する。制御部201は、記憶された波長変化量の中で、波長校正で求めた波長変化量に最も近似する誤差(k=M)と対応する係数(Cxn,(Cyn,(Cznを選択する。そして、制御部201は、測定された各受光センサS(n=0〜15)の出力Q(n=0〜15)を用いて、下記の(6)〜(8)式により入射光の三刺激値x,y,zを求める。
x=Σ(Cxn・Q(λ)・・・・(6)
y=Σ(Cyn・Q(λ)・・・・(7)
z=Σ(Czn・Q(λ)・・・・(8)
【0153】
このように、波長間隔が大きい分光輝度計において、波長変化量がもたらす三刺激値の誤差を最小にすることができる。
【0154】
以上の説明では、被校正分光輝度計200は、輝線波長に隣接する測定波長の複数の受光センサの出力比から、校正用光源100の輝線出力の波長を推定しているが、前述の半値幅推定に用いた数学関数を用いて波長を推定することもできる。前述同様、数学関数をガウス関数とすれば、輝線波長近傍の複数の受光センサSの出力Q(n=48〜52)に最もフィットするガウス関数(上記(2)式で示す)を求め、その中心波長λcを輝線出力の波長λとする。この場合、工場では被校正分光輝度計200で校正用光源100と同じ構成の基準校正用光源の輝線出力を測定して、受光センサSの出力Q(n=48〜52)に最もフィットするガウス関数のλcから(λを求め、既知の輝線波長(Λとの差(δλ)=(λ−(Λを求めて記憶する。波長再校正時は、ユーザの基準分光輝度計302からの輝線出力を測定し、工場と同様のプロセスでλを求め、既知の輝線波長Λとの差δλ=λ−Λを求め、波長変化量dλ=δλ−(δλ)を求めて記憶する。この方法では、基準分光輝度計302から複数の単色光を出力して対応表を作成する必要がない。
【0155】
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。第1の実施形態では、輝線光源として可視LDを用い、輝線光源の出力光をモニタセンサによってモニタしているが、第2の実施形態では、輝線光源としてバンドパスフィルタと組み合わせた3波長型の蛍光ランプを用い、輝線光源の出力光をモニタするモニタセンサを省略する。
【0156】
図12は、第2の実施形態における校正用光源の輝線光源及び白熱光源付近の構成を示す図である。図12に示すように、本実施形態における校正用光源100は、輝線光源102’、白熱光源103及び拡散板104を備えて構成される。輝線光源102’は、3波長型の蛍光ランプ112及びバンドパスフィルタ113を備えて構成される。
【0157】
図13は、輝線光源に3波長型の蛍光ランプを用いた場合のスペクトルを示す図である。なお、図13に示す縦軸は相対分光強度及び透過率を示し、横軸は波長を示している。
【0158】
図13に示すように、3波長型の蛍光ランプは、546nm近傍に強い輝線GLを放射する。また、他の波長域でも輝線あるいは蛍光発光があるので、546nmに中心波長を有するバンドパスフィルタBPFを3波長型の蛍光ランプに組み合わせることによって、他の波長域での発光を無視できるレベルに抑えることができる。
【0159】
輝線GLの波長は、蛍光ランプの発光物質である水銀原子のエネルギーレベルに由来するので、個体差、温度依存性及び経時変化がなく常に安定している。したがって、輝線光源に可視LDを用いる第1の実施形態のように、輝線波長をモニタする必要がなく、さらに、被校正分光輝度計200に記憶させる輝線波長と受光部の輝線波長に隣接する受光センサの出力比との各対応表も出力波長の個体差を考慮する必要がなく、545nm、546nm及び547nmの3点程度の輝線波長と受光センサの出力比との対応表のみを記憶すればよく、分光輝度計に対応表を設定する作業時間を短縮することができる。
【0160】
また、波長校正に用いられるのは、輝線出力に対する輝線波長に隣接する受光センサの出力だけなので、前述のバンドパスフィルタ113は、図4に示す隣接する受光センサの分光感度が0でない波長範囲で発光を抑えればよく、サイドバンド除去フィルタを組み合わせる必要はない。
【0161】
バンドパスフィルタ113の中心波長の精度については、輝線波長で必要な透過率が確保できる範囲の誤差は許容されるが、中心波長の誤差が大きい場合は、蛍光ランプ112から拡散板104に向かう光束のバンドパスフィルタ113への入射角を調整可能に配置することで、中心波長の誤差を抑えることができる。図14は、バンドパスフィルタの透過波長の調整を説明するための図であり、校正用光源の輝線光源及び白熱光源付近の構成を示す図である。図14に示すように、バンドパスフィルタ113が斜めに取り付けられた保持筒113aを、蛍光ランプ112の光軸112a周りの適切な方位で取り付けることで、蛍光ランプ112から拡散板104に向かう光束のバンドパスフィルタ113への入射角を調整する。干渉膜によるバンドパスフィルタ113の中心波長は、入射角が大きくなるに従って短波長にシフトするので、光束のバンドパスフィルタ113への入射角を調整可能に構成することによって中心波長の誤差を抑えることができる。図14の113及び113’の2方向を8分割するよう方位を8分割し、垂直入射での中心波長の目標値を想定誤差の上限に設定したバンドパスフィルタ113の個々の中心波長を測定して必要なシフト量が得られる方位を選択する。
【0162】
なお、本実施形態では、輝線光源102’を蛍光ランプ112及びバンドパスフィルタ113で構成しているが、本発明は特にこれに限定されず、輝線光源102’を低圧水銀ランプで構成してもよい。図15は、低圧水銀ランプの輝線スペクトルを示す図である。なお、図15における縦軸は253.7nmを100%とした場合の相対出力強度を示し、横軸は波長を示している。図15に示すように、低圧水銀ランプは、546nm近傍に輝線を出力し、さらに輝線が独立しているので、蛍光ランプのようにバンドパスフィルタと組み合わせる必要がなく、輝線光源の構成を簡略化することができる。
【0163】
本実施形態における輝線光源は、出力波長をモニタする必要がないため、分光輝度計に内蔵することができる。図16は、第2の実施形態における輝線光源を組み込んだ分光輝度計を示す図である。
【0164】
図16において、分光輝度計200’は、制御部201、収束光学系202、絞り203、コンデンサレンズ204、分光部210及び輝線光源232を備えて構成される。分光部210は、入射スリット211、結像光学系212、回折格子213及び受光センサアレイ214を備えて構成される。
【0165】
測定光Lは、収束光学系202によって収束され、絞り203に入射する。絞り203を通過した光束は、コンデンサレンズ204によって集められて分光部210の入射スリット211に入射する。入射スリット211を通過した光束211aは、結像光学系212によって平行光束となって、回折格子213に入射する。回折格子213に入射した平行光束は、波長毎に波長に応じて異なる方向に分散反射し、再び結像光学系212に入射する。そして、結像光学系212は、受光センサアレイ214上に入射スリット211の波長分散像211bを結像する。受光センサアレイ214は、光電変換素子が等間隔に配列されており、各光電変換素子は、受光した光強度に応じた電流を生成する。
【0166】
一方、輝線光源232は、分光部210の入射スリット211の上方の収束光学系202側に配置される。輝線光源232は、3波長型の蛍光ランプ232a及びバンドパスフィルタ232bを備えて構成される。3波長型の蛍光ランプ232aは、制御部201によって、その発光タイミング及び発光時間が制御される。
【0167】
そして、輝線光源232からの光束以外の光束(測定光L)を遮光する場合には、収束光学系202の入射側に着脱可能な遮光キャップ202aを装着する。遮光キャップ202aは、例えば、輝線光源232より校正用の光が点灯されている間に測定光Lを遮光するために使用される。蛍光ランプ232aを点灯すると、コンデンサレンズ204によって反射した光が迷光として分光部210の入射スリット211に入射し、入射した輝線光束を測定することで、外部に校正用光源を設けることなしに分光部210の波長校正を行うことができる。
【0168】
さらに、本実施形態における輝線光源は、分光測色計に内蔵することができる。図17は、第2の実施形態における輝線光源を組み込んだ分光測色計を示す図である。
【0169】
図17において、分光測色計400は、制御部201、受光部205、収束光学系202及び積分球230を備えて構成される。
【0170】
積分球230は、その内壁に高拡散性、高反射率の例えば酸化マグネシウムや硫酸バリウム等の白色拡散反射塗料が塗布された中空の球で、内部に輝線光源232及び試料照明用光源としてキセノンフラッシュランプ(以下、単にランプともいう)222を備え、ランプ222からの光線を内壁で多重反射して拡散光を生成するものである。
【0171】
制御部201は、白色校正終了後、積分球230の試料用開口220aに白色板221を置いた状態で、輝線光源232を点灯させて白色板221を照明し、白色板221からの反射光を受光部205で測定することによって、外部に校正用光源を設けることなしに受光部205の波長校正を行うことができる。
【0172】
なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
【0173】
(1)既知の輝線波長の輝線を出力する校正用光源と、
入射される光を波長に応じて分散した光を受光し、受光した各波長成分の光強度に応じた電気信号を出力する光電変換素子が配列されてなる受光部を備え、前記校正用光源の輝線出力を測定する被校正分光輝度計と、
前記被校正分光輝度計が前記校正用光源の輝線出力を測定した場合に、前記輝線波長に隣接する複数の測定波長における前記受光部の相対出力から前記輝線出力の波長を推定し、推定した前記輝線出力の波長と前記既知の輝線波長との差から波長変化量を推定して前記被校正分光輝度計を波長校正する波長校正部とを備えることを特徴とする分光輝度計の校正システム。
【0174】
(2)前記被校正分光輝度計は、前記輝線波長に隣接する複数の測定波長における前記受光部からの出力比と、前記輝線出力の波長との対応表を予め記憶しており、
前記波長校正部は、前記被校正分光輝度計によって測定された前記出力比と前記対応表とから前記輝線出力の波長を推定し、推定した前記輝線出力の波長と前記既知の輝線波長との差から波長変化量を推定して前記被校正分光輝度計を波長校正することを特徴とする上記(1)記載の分光輝度計の校正システム。
【0175】
(3)前記校正用光源は、レーザ光を発光する半導体レーザと、前記半導体レーザの出力波長近傍で、互いに異なる分光感度を有する複数のモニタ用センサと、前記複数のモニタ用センサの出力比から前記半導体レーザの出力波長を推定する出力波長推定部とを備えることを特徴とする上記(1)又は(2)記載の分光輝度計の校正システム。
【0176】
(4)前記校正用光源は、前記複数のモニタ用センサの出力比と、前記半導体レーザの出力波長との対応表を予め記憶しており、
前記出力波長推定部は、前記複数のモニタ用センサからの出力比と前記対応表とから前記半導体レーザの出力波長を推定することを特徴とする上記(3)記載の分光輝度計の校正システム。
【0177】
(5)前記校正用光源は、白熱光源と、互いに異なる分光感度を有する複数のモニタ用センサと、前記複数のモニタ用センサの出力から前記白熱光源の分光強度分布を推定する分光強度分布推定部とをさらに備え、
前記被校正分光輝度計が前記校正用光源の出力光を測定した場合に、前記分光強度分布推定部によって推定された前記分光強度分布と、前記受光部の光電変換素子毎の分光感度とから前記受光部の出力を推定し、推定された前記受光部の出力と、実際の前記受光部の出力との比を光電変換素子毎に算出し、算出された光電変換素子毎の比を前記被校正分光輝度計に記憶させることで前記被校正分光輝度計を感度校正する感度校正部をさらに備えることを特徴とする上記(1)〜(4)のいずれかに記載の分光輝度計の校正システム。
【0178】
この構成によれば、校正用光源が備える分光強度分布推定部によって、互いに異なる分光感度を有する複数のモニタ用センサの出力から白熱光源の分光強度分布が推定され、被校正分光輝度計によって、校正用光源の出力光が測定され、感度校正部によって、被校正分光輝度計が校正用光源の出力光を測定した場合に、分光強度分布推定部によって推定された分光強度分布と、受光部の光電変換素子毎の分光感度とから受光部の出力が推定され、分光強度分布から推定された得られるべき受光部の出力と、実際の受光部の出力との比が光電変換素子毎に算出され、算出された光電変換素子毎の比が被校正分光輝度計に記憶されることで被校正分光輝度計の感度校正が行われる。
【0179】
したがって、被校正分光輝度計が校正用光源の出力光を測定した場合の分光強度分布から推定された受光部の出力と、実際の受光部の出力との比を、分光輝度計の感度を校正するための係数として記憶しておくことによって、分光輝度計の感度の再校正をユーザ側で行うことができ、ユーザは、十分な頻度で分光輝度計の感度校正を行うことで常に高い精度で分光輝度計を使用することができる。
【0180】
(6)前記校正用光源は、前記複数のモニタ用センサの出力比と、前記白熱光源の相対分光強度分布との対応表を予め記憶しており、
前記分光強度分布推定部は、前記複数のモニタ用センサによってモニタされた出力比と前記対応表とから前記出力光の相対分光強度分布を推定することを特徴とする上記(5)記載の分光輝度計の校正システム。
【0181】
この構成によれば、校正用光源には、複数のモニタ用センサの出力比と、白熱光源の相対分光強度分布との対応表が予め記憶されており、分光強度分布推定部によって、複数のモニタ用センサによってモニタされた出力比と、予め記憶されている対応表とから出力光の相対分光強度分布が推定される。したがって、複数のモニタ用センサによってモニタされた出力比から簡単なアルゴリズムで分光強度分布を推定することができる。
【0182】
(7)前記校正用光源は、前記複数のモニタ用センサの温度を検出する温度センサをさらに備え、
前記校正用光源は、前記複数のモニタ用センサの複数の温度に対応して前記対応表を複数記憶しており、
前記出力波長推定部及び前記分光強度分布推定部の少なくとも一方は、前記複数のモニタ用センサによって測定された出力比と、前記温度センサによって検出された温度に対応する対応表とを用いて、前記半導体レーザの輝線波長及び前記白熱光源の分光強度分布の少なくとも一方を推定することを特徴とする上記(3)〜(6)のいずれかに記載の分光輝度計の校正システム。
【0183】
この構成によれば、校正用光源には、複数のモニタ用センサの複数の温度に対応した対応表が複数記憶されており、出力波長推定部及び分光強度分布推定部の少なくとも一方によって、複数のモニタ用センサによって測定された出力比と、複数のモニタ用センサの温度を検出する温度センサによって検出された温度に対応する対応表とが用いられて、半導体レーザの輝線波長及び白熱光源の分光強度分布の少なくとも一方が推定される。
【0184】
したがって、複数のモニタ用センサの温度による変化の影響を受けずに半導体レーザの輝線波長及び白熱光源の分光強度分布を推定することができる。
【0185】
(8)前記輝線波長に隣接する複数の測定波長における前記受光部からの出力により求めた輝線の強度と、前記輝線波長に感度を有しない波長での出力との比を求め、求めた比と予め記憶されている前記比の初期値とを比較することで前記被校正分光輝度計の迷光レベルの変化を推定する迷光レベル推定部をさらに備えることを特徴とする上記(1)記載の分光輝度計の校正システム。
【0186】
この構成によれば、被校正分光輝度計によって校正用光源の輝線出力が測定され、迷光レベル推定部によって、輝線波長に隣接する複数の測定波長における受光部からの出力により求めた輝線の強度と、輝線波長に感度を有しない波長での出力との比が求められ、求められた比と予め記憶されている前記比の初期値とが比較されることで被校正分光輝度計の迷光レベルの変化が推定される。したがって、被校正分光輝度計の迷光レベルの変化が推定されることによって、ユーザは、分光輝度計の状況をより詳細に把握することができる。
【0187】
(9)前記輝線波長に隣接する複数の測定波長における前記受光部からの出力より前記受光部における前記輝線波長近傍での半値幅を求め、求めた半値幅と予め記憶されている前記半値幅の初期値とを比較することで前記被校正分光輝度計の半値幅の変化を推定する半値幅推定部をさらに備えることを特徴とする上記(1)記載の分光輝度計の校正システム。
【0188】
この構成によれば、被校正分光輝度計によって校正用光源の輝線出力が測定され、半値幅推定部によって、輝線波長に隣接する複数の測定波長における受光部からの出力より受光部における輝線波長近傍での半値幅が求められ、求められた半値幅と予め記憶されている半値幅の初期値とが比較されることで被校正分光輝度計の半値幅の変化が推定される。したがって、被校正分光輝度計の半値幅の変化が推定されることによって、ユーザは、分光輝度計の状況をより詳細に把握することができる。
【0189】
(10)白熱光源と、互いに異なる分光感度を有する複数のモニタ用センサと、前記複数のモニタ用センサの出力から前記白熱光源の分光強度分布を推定する分光強度分布推定部とを備える校正用光源と、
入射される光を波長に応じて分散した光を受光し、受光した各波長成分の光強度に応じた電気信号を出力する光電変換素子が配列されてなる受光部を備え、前記校正用光源の出力光を測定する被校正分光輝度計と、
前記被校正分光輝度計が前記校正用光源の出力光を測定した場合に、前記分光強度分布推定部によって推定された前記分光強度分布と、前記受光部の光電変換素子毎の分光感度とから前記受光部の出力を推定し、推定された前記受光部の出力と、実際の前記受光部の出力との比を光電変換素子毎に算出し、算出された光電変換素子毎の比を前記被校正分光輝度計に記憶させることで前記被校正分光輝度計を感度校正する感度校正部とを備えることを特徴とする分光輝度計の校正システム。
【0190】
(11)前記被校正分光輝度計は、前記受光部の各測定波長での出力と、測定波長ごとの重み係数との積和で三刺激値を算出する場合、前記重み係数を前記波長変化量に応じて修正し、修正した重み係数を用いて三刺激値を算出する三刺激値算出部をさらに備えることを特徴とする上記(1)記載の分光輝度計の校正システム。
【0191】
この構成によれば、被校正分光輝度計が備える三刺激値算出部によって、受光部の各測定波長での出力と、測定波長ごとの重み係数との積和で三刺激値が算出される場合、重み係数を波長変化量に応じて修正し、修正した重み係数を用いて三刺激値が算出される。したがって、ユーザは、より正確な三刺激値を得ることができる。
【0192】
(12)前記被校正分光輝度計は、波長誤差毎の重み係数を予め算出して記憶しており、
前記三刺激値算出部は、予め記憶されている重み係数の中から前記波長変化量に対応する重み係数を選択して三刺激値を算出することを特徴とする上記(11)記載の分光輝度計の校正システム。
【0193】
この構成によれば、被校正分光輝度計には、波長誤差毎の重み係数が予め算出して記憶されており、三刺激値算出部によって、予め記憶されている重み係数の中から波長変化量に対応する重み係数が選択されて三刺激値が算出される。したがって、推定される波長変化量から簡単なアルゴリズムで測定対象の三刺激値を算出することができることができる。
【0194】
【発明の効果】
請求項1に記載の発明によれば、校正用光源を用いて受光部が受光する光の波長変化量を推定することによって、分光輝度計の波長の再校正をユーザ側で行うことができ、十分な頻度で分光輝度計の波長校正を行うことで常に高い精度で分光輝度計を使用することができる。
【0195】
請求項2に記載の発明によれば、輝線波長に隣接する複数の測定波長における受光部からの出力比から簡単なアルゴリズムで輝線出力の波長を推定することができる。
【0196】
請求項3に記載の発明によれば、低価格で十分な輝線出力を有し、耐衝撃性、寿命に優れる半導体レーザを輝線光源として用いて精度の高い分光輝度計の再校正ができる。
【0197】
請求項4に記載の発明によれば、複数のモニタ用センサからの出力比から簡単なアルゴリズムで半導体レーザの出力波長を推定することができる。
【0198】
請求項5に記載の発明によれば、被校正分光輝度計が校正用光源の出力光を測定した場合の受光部の出力と得られるべき受光部の出力との比を、分光輝度計の感度を校正するための係数として記憶しておくことによって、分光輝度計の感度の再校正をユーザ側で行うことができ、十分な頻度で分光輝度計の感度校正を行うことで常に高い精度で分光輝度計を使用することができる。
【図面の簡単な説明】
【図1】第1の実施形態における分光輝度計の校正システムの構成を示す図である。
【図2】校正用光源の相対分光強度とモニタセンサにおけるフィルタの分光透過率とを示す図である。
【図3】校正用光源のコリメータ光学系とモニタセンサとを拡散板の方向から見た図である。
【図4】輝線光源の輝線波長と、輝線波長近傍の5つの受光センサの相対分光感度を示す図である。
【図5】校正用光源の第1の対応表の設定における分光輝度計の校正システムを示す図である。
【図6】校正用光源の第2の対応表の設定における分光輝度計の校正システムを示す図である。
【図7】被校正分光輝度計の第3の対応表の設定における分光輝度計の校正システムを示す図である。
【図8】被校正分光輝度計の半値幅の推定について説明するための図である。
【図9】分光輝度計の校正システムの動作を示すフローチャートである。
【図10】図9のステップS7における出力波長校正処理の動作を示すフローチャートである。
【図11】図9のステップS8における分光感度校正処理の動作を示すフローチャートである。
【図12】第2の実施形態における校正用光源の輝線光源及び白熱光源付近の構成を示す図である。
【図13】輝線光源に3波長型の蛍光ランプを用いた場合のスペクトルを示す図である。
【図14】バンドパスフィルタの透過波長の調整を説明するための図である。
【図15】低圧水銀ランプの輝線スペクトルを示す図である。
【図16】第2の実施形態における輝線光源を組み込んだ分光輝度計を示す図である。
【図17】第2の実施形態における輝線光源を組み込んだ分光測色計を示す図である。
【図18】従来の分光輝度計における分光部の構成を示す図である。
【図19】ポリクロメータの受光センサアレイの各受光センサの分光感度を示す図である。
【符号の説明】
1 分光輝度計の校正システム
100 校正用光源
101 制御部
102 輝線光源
103 白熱光源
104 拡散板
105 コリメータ光学系
106 第1モニタセンサ
107 第2モニタセンサ
108 第3モニタセンサ
109 温度センサ
110 アルミブロック
200 被校正分光輝度計
201 制御部
202 収束光学系
203 絞り
204 コンデンサレンズ
205 受光部
300 システム制御部

Claims (5)

  1. 既知の輝線波長の輝線を出力する校正用光源と、
    入射される光を波長に応じて分散した光を受光し、受光した各波長成分の光強度に応じた電気信号を出力する光電変換素子が配列されてなる受光部を備え、前記校正用光源の輝線出力を測定する被校正分光輝度計と、
    前記被校正分光輝度計が前記校正用光源の輝線出力を測定した場合に、前記輝線波長に隣接する複数の測定波長における前記受光部の相対出力から前記輝線出力の波長を推定し、推定した前記輝線出力の波長と前記既知の輝線波長との差から波長変化量を推定して前記被校正分光輝度計を波長校正する波長校正部とを備えることを特徴とする分光輝度計の校正システム。
  2. 前記被校正分光輝度計は、前記輝線波長に隣接する複数の測定波長における前記受光部からの出力比と、前記輝線出力の波長との対応表を予め記憶しており、
    前記波長校正部は、前記被校正分光輝度計によって測定された前記出力比と前記対応表とから前記輝線出力の波長を推定し、推定した前記輝線出力の波長と前記既知の輝線波長との差から波長変化量を推定して前記被校正分光輝度計を波長校正することを特徴とする請求項1記載の分光輝度計の校正システム。
  3. 前記校正用光源は、レーザ光を発光する半導体レーザと、前記半導体レーザの出力波長近傍で、互いに異なる分光感度を有する複数のモニタ用センサと、前記複数のモニタ用センサの出力比から前記半導体レーザの出力波長を推定する出力波長推定部とを備えることを特徴とする請求項1又は2記載の分光輝度計の校正システム。
  4. 前記校正用光源は、前記複数のモニタ用センサの出力比と、前記半導体レーザの出力波長との対応表を予め記憶しており、
    前記出力波長推定部は、前記複数のモニタ用センサからの出力比と前記対応表とから前記半導体レーザの出力波長を推定することを特徴とする請求項3記載の分光輝度計の校正システム。
  5. 白熱光源と、互いに異なる分光感度を有する複数のモニタ用センサと、前記複数のモニタ用センサの出力から前記白熱光源の分光強度分布を推定する分光強度分布推定部とを備える校正用光源と、
    入射される光を波長に応じて分散した光を受光し、受光した各波長成分の光強度に応じた電気信号を出力する光電変換素子が配列されてなる受光部を備え、前記校正用光源の出力光を測定する被校正分光輝度計と、
    前記被校正分光輝度計が前記校正用光源の出力光を測定した場合に、前記分光強度分布推定部によって推定された前記分光強度分布と、前記受光部の光電変換素子毎の分光感度とから前記受光部の出力を推定し、推定された前記受光部の出力と、実際の前記受光部の出力との比を光電変換素子毎に算出し、算出された光電変換素子毎の比を前記被校正分光輝度計に記憶させることで前記被校正分光輝度計を感度校正する感度校正部とを備えることを特徴とする分光輝度計の校正システム。
JP2003201726A 2003-07-25 2003-07-25 分光輝度計の校正システム Pending JP2005043153A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003201726A JP2005043153A (ja) 2003-07-25 2003-07-25 分光輝度計の校正システム
US10/733,370 US7151600B2 (en) 2003-07-25 2003-12-12 Calibration system for a spectral luminometer and a method for calibrating a spectral luminometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003201726A JP2005043153A (ja) 2003-07-25 2003-07-25 分光輝度計の校正システム

Publications (1)

Publication Number Publication Date
JP2005043153A true JP2005043153A (ja) 2005-02-17

Family

ID=34074510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003201726A Pending JP2005043153A (ja) 2003-07-25 2003-07-25 分光輝度計の校正システム

Country Status (2)

Country Link
US (1) US7151600B2 (ja)
JP (1) JP2005043153A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192749A (ja) * 2006-01-20 2007-08-02 Konica Minolta Sensing Inc 分光特性測定装置
JP2008298579A (ja) * 2007-05-31 2008-12-11 Konica Minolta Sensing Inc 反射特性測定装置及び反射特性測定装置の校正方法
JP2011107114A (ja) * 2009-10-20 2011-06-02 Hioki Ee Corp 測光装置
JP2011169718A (ja) * 2010-02-18 2011-09-01 Hitachi High-Technologies Corp 分光光度計、及びその性能測定方法
JP2012526276A (ja) * 2009-05-08 2012-10-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光の特性を検知するための回路及び方法
JP2013024600A (ja) * 2011-07-15 2013-02-04 Canon Inc 分光カラーセンサ、および画像形成装置
JP2014132256A (ja) * 2012-12-03 2014-07-17 Ricoh Co Ltd 撮像システム及び色検査システム
JP2014137328A (ja) * 2013-01-18 2014-07-28 Konica Minolta Inc フーリエ変換型分光計およびフーリエ変換型分光計の波長校正方法
US9933358B2 (en) 2010-12-03 2018-04-03 Toshiba Medical Systems Corporation Automatic analyzer
WO2019039024A1 (ja) * 2017-08-22 2019-02-28 コニカミノルタ株式会社 波長シフト補正システムおよび波長シフト補正方法
WO2019039025A1 (ja) * 2017-08-22 2019-02-28 コニカミノルタ株式会社 波長シフト補正システムおよび波長シフト補正方法
US11467106B2 (en) * 2019-05-31 2022-10-11 Jeol Ltd. X-ray analyzer

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3892422B2 (ja) * 2003-08-11 2007-03-14 ユーディナデバイス株式会社 波長測定装置、受光ユニット及び波長測定方法
JP2006017585A (ja) * 2004-07-01 2006-01-19 Konica Minolta Sensing Inc マルチチャンネル色彩計及び強度特性測定方法
US8456626B2 (en) * 2006-08-02 2013-06-04 Awareness Technology, Inc. Luminometer and methods of operation
JP5189010B2 (ja) * 2009-02-25 2013-04-24 富士フイルム株式会社 撮像装置
JP5630183B2 (ja) * 2009-11-27 2014-11-26 コニカミノルタ株式会社 白色校正部材およびそれを用いた光学特性測定システム
EP2702391B1 (en) * 2011-04-26 2020-08-05 Koninklijke Philips N.V. Apparatus and method for controlling radiation source variability for optical gas measurement systems
WO2013065035A1 (en) 2011-11-03 2013-05-10 Verifood Ltd. Low-cost spectrometry system for end-user food analysis
US10247605B2 (en) * 2012-01-16 2019-04-02 Filmetrics, Inc. Automatic real-time wavelength calibration of fiber-optic-based spectrometers
DE102012107743A1 (de) * 2012-08-22 2014-02-27 Osram Opto Semiconductors Gmbh Optoelektronischer Sensor, optoelektronisches Bauelement mit einem optoelektronischen Sensor und Verfahren zum Betrieb eines optoelektronischen Sensors
GB2543655B (en) 2013-08-02 2017-11-01 Verifood Ltd Compact spectrometer comprising a diffuser, filter matrix, lens array and multiple sensor detector
EP3090239A4 (en) 2014-01-03 2018-01-10 Verifood Ltd. Spectrometry systems, methods, and applications
US9335210B2 (en) * 2014-07-01 2016-05-10 Osram Sylvania Inc. Techniques for lumen maintenance and color shift compensation
EP3209983A4 (en) 2014-10-23 2018-06-27 Verifood Ltd. Accessories for handheld spectrometer
WO2016125165A2 (en) 2015-02-05 2016-08-11 Verifood, Ltd. Spectrometry system with visible aiming beam
WO2016125164A2 (en) 2015-02-05 2016-08-11 Verifood, Ltd. Spectrometry system applications
WO2016162865A1 (en) 2015-04-07 2016-10-13 Verifood, Ltd. Detector for spectrometry system
US10066990B2 (en) 2015-07-09 2018-09-04 Verifood, Ltd. Spatially variable filter systems and methods
US10203246B2 (en) 2015-11-20 2019-02-12 Verifood, Ltd. Systems and methods for calibration of a handheld spectrometer
US10088468B2 (en) * 2016-02-04 2018-10-02 Nova Biomedical Corporation Analyte system and method for determining hemoglobin parameters in whole blood
US10177841B2 (en) * 2016-03-31 2019-01-08 Mellanox Technologies, Ltd. Electro-optic transceiver module with wavelength compensation
US10254215B2 (en) 2016-04-07 2019-04-09 Verifood, Ltd. Spectrometry system applications
EP3488204A4 (en) 2016-07-20 2020-07-22 Verifood Ltd. ACCESSORIES FOR HANDLABLE SPECTROMETERS
US10791933B2 (en) 2016-07-27 2020-10-06 Verifood, Ltd. Spectrometry systems, methods, and applications
US11092495B2 (en) * 2018-08-07 2021-08-17 Samsung Electronics Co., Ltd. Optical emission spectroscopy system, method of calibrating the same, and method of fabricating semiconductor device
DE102018120006A1 (de) * 2018-08-16 2020-02-20 Instrument Systems Optische Messtechnik Gmbh Verfahren und Vorrichtung zur Überwachung eines Spektralradiometers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812108B2 (ja) 1986-06-27 1996-02-07 浜松ホトニクス株式会社 分光測光装置
JP2689707B2 (ja) 1990-08-28 1997-12-10 松下電器産業株式会社 波長校正機能付分光測定装置
JPH0658817A (ja) 1992-08-12 1994-03-04 Yokogawa Electric Corp 光波長計
JPH0674823A (ja) 1992-08-27 1994-03-18 Kubota Corp 分光分析計の波長校正方法
JP2002116087A (ja) 2000-10-10 2002-04-19 Fuji Electric Co Ltd 波長計測装置
JP3925301B2 (ja) 2001-07-12 2007-06-06 コニカミノルタセンシング株式会社 分光特性測定装置および同装置の分光感度の波長シフト補正方法
JP2003060291A (ja) 2001-08-13 2003-02-28 Sumitomo Osaka Cement Co Ltd 波長管理装置
JP4336091B2 (ja) 2001-10-09 2009-09-30 古河電気工業株式会社 光モジュール、光送信器及びwdm光送信装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617438B2 (ja) * 2006-01-20 2011-01-26 コニカミノルタセンシング株式会社 分光特性測定装置
JP2007192749A (ja) * 2006-01-20 2007-08-02 Konica Minolta Sensing Inc 分光特性測定装置
JP2008298579A (ja) * 2007-05-31 2008-12-11 Konica Minolta Sensing Inc 反射特性測定装置及び反射特性測定装置の校正方法
JP2012526276A (ja) * 2009-05-08 2012-10-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光の特性を検知するための回路及び方法
JP2011107114A (ja) * 2009-10-20 2011-06-02 Hioki Ee Corp 測光装置
JP2011169718A (ja) * 2010-02-18 2011-09-01 Hitachi High-Technologies Corp 分光光度計、及びその性能測定方法
US8717557B2 (en) 2010-02-18 2014-05-06 Hitachi High-Technologies Corporation Spectrophotometer and method for determining performance thereof
US9933358B2 (en) 2010-12-03 2018-04-03 Toshiba Medical Systems Corporation Automatic analyzer
JP2013024600A (ja) * 2011-07-15 2013-02-04 Canon Inc 分光カラーセンサ、および画像形成装置
JP2014132256A (ja) * 2012-12-03 2014-07-17 Ricoh Co Ltd 撮像システム及び色検査システム
JP2014137328A (ja) * 2013-01-18 2014-07-28 Konica Minolta Inc フーリエ変換型分光計およびフーリエ変換型分光計の波長校正方法
WO2019039024A1 (ja) * 2017-08-22 2019-02-28 コニカミノルタ株式会社 波長シフト補正システムおよび波長シフト補正方法
WO2019039025A1 (ja) * 2017-08-22 2019-02-28 コニカミノルタ株式会社 波長シフト補正システムおよび波長シフト補正方法
JPWO2019039024A1 (ja) * 2017-08-22 2020-07-30 コニカミノルタ株式会社 波長シフト補正システムおよび波長シフト補正方法
JPWO2019039025A1 (ja) * 2017-08-22 2020-07-30 コニカミノルタ株式会社 波長シフト補正システムおよび波長シフト補正方法
US10996108B2 (en) 2017-08-22 2021-05-04 Konica Minolta, Inc. Wavelength shift correction system and wavelength shift correction method
US11231321B2 (en) 2017-08-22 2022-01-25 Konica Minolta, Inc. Wavelength shift correction system and wavelength shift correction method
JP7047846B2 (ja) 2017-08-22 2022-04-05 コニカミノルタ株式会社 波長シフト補正システムおよび波長シフト補正方法
US11467106B2 (en) * 2019-05-31 2022-10-11 Jeol Ltd. X-ray analyzer

Also Published As

Publication number Publication date
US7151600B2 (en) 2006-12-19
US20050018184A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP2005043153A (ja) 分光輝度計の校正システム
JP4924288B2 (ja) 校正用基準光源およびそれを用いる校正システム
US6876448B2 (en) Spectral characteristic measuring apparatus and method for correcting wavelength shift of spectral sensitivity in the apparatus
US8144322B2 (en) Spectral characteristic measuring apparatus, method for calibrating spectral characteristic measuring apparatus, and spectral characteristic measuring system
JP4400448B2 (ja) 分光輝度計の校正方法、及び校正システムの動作プログラム
JP2004191244A (ja) 分光装置及び補正方法
US7116417B2 (en) Spectrometer and method for correcting wavelength displacement of spectrometer
JP2012063321A (ja) 反射率測定装置、反射率測定方法、膜厚測定装置及び膜厚測定方法
JP2006189291A (ja) 測光装置及び単色光の測光方法
JP2010237097A (ja) 二次元分光測定装置および二次元分光測定方法
JP2011107114A (ja) 測光装置
JP2009281929A (ja) 測光装置の補正用基準光源、測光装置の補正システム
US20040263844A1 (en) Method and apparatus for measuring bandwidth of an optical spectrum output of a very small wavelength very narrow bandwidth high power laser
JP2010048640A (ja) 絶対分光放射計
JP5556362B2 (ja) 分光特性測定装置およびその校正方法
JP2010112808A (ja) 光パワーメータ
Schwarzmaier et al. The Radiance Standard RASTA of DLR's calibration facility for airborne imaging spectrometers
Neyezhmakov et al. Increasing the measurement accuracy of wide-aperture photometer based on digital camera
US10996108B2 (en) Wavelength shift correction system and wavelength shift correction method
WO2022153963A1 (ja) 光学特性測定装置、波長ずれ補正装置、波長ずれ補正方法並びにプログラム
JP6992812B2 (ja) 波長シフト補正システムおよび波長シフト補正方法
JP2011196750A (ja) 分光感度特性測定装置、および分光感度特性測定方法
JP2005195365A (ja) 白色校正方法及び2次元測光装置
Molina et al. Relative spectral responsivity determination of photometric detectors
JP2010112807A (ja) 光パワーメータ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108