JP4924288B2 - 校正用基準光源およびそれを用いる校正システム - Google Patents

校正用基準光源およびそれを用いる校正システム Download PDF

Info

Publication number
JP4924288B2
JP4924288B2 JP2007218791A JP2007218791A JP4924288B2 JP 4924288 B2 JP4924288 B2 JP 4924288B2 JP 2007218791 A JP2007218791 A JP 2007218791A JP 2007218791 A JP2007218791 A JP 2007218791A JP 4924288 B2 JP4924288 B2 JP 4924288B2
Authority
JP
Japan
Prior art keywords
wavelength
calibration
light
spectral
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007218791A
Other languages
English (en)
Other versions
JP2009052978A (ja
Inventor
健二 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007218791A priority Critical patent/JP4924288B2/ja
Priority to US12/229,171 priority patent/US7710559B2/en
Publication of JP2009052978A publication Critical patent/JP2009052978A/ja
Application granted granted Critical
Publication of JP4924288B2 publication Critical patent/JP4924288B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0254Spectrometers, other than colorimeters, making use of an integrating sphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J2003/102Plural sources
    • G01J2003/104Monochromatic plural sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan

Description

本発明は、分光輝度計および分光照度計の波長および感度の再校正をユーザサイドで行うことを可能にする校正用基準光源、およびそれを用いる校正システムに関する。
前記分光輝度計および分光照度計は、各種光源や表示装置における輝度や色彩を測定、評価するために広く用いられており、通常、図8に示すような構成をもつ。この分光輝度計では、被測定光201は、対物光学系202によってポリクロメータ210の入射スリット211に収束して入射する。スリットに入射した光束は、回折格子212と結像光学系213とによって入射スリット211の波長分散像をセンサアレイ214上につくる。その入射光の分光強度に応じたセンサアレイ214の画素強度分布En(nは画素番号で、1,2,・・・)が、処理回路203を経て制御処理手段204に送られ、分光放射輝度L(λ)に変換される。
このような分光輝度計の校正には、波長校正と感度校正とがある。前記波長校正は、センサアレイ214の各画素の画素番号nと重心波長λnとの対応表(n−λn対応表)を保存することで行われる。そして、実際の被測定光における前記画素強度分布Enは、保存されている前記n−λn対応表に基づいて、分光強度分布E(λ)に変換される。また、前記感度校正は、A光源(2856K)などの分光放射輝度基準値L0(λ)が既知の黒体放射光源から成る基準光源を測定したときの分光強度分布E0(λ)と前記分光放射輝度基準値L0(λ)との比を校正係数C0(λ)として保存することで行われる。すなわち、
C0(λ)=L0(λ)/E0(λ) …(1)
である。
こうして校正された分光輝度計の測光時は、画素強度分布Enから前記n−λn対応表で求められた分光強度分布E(λ)を、前記校正係数C0(λ)を用いて、下記のように分光放射輝度L(λ)に変換する。
L(λ)=C0(λ)・E(λ) …(2)
ところが、分光輝度計は、製造時に上記に準じて校正されても、内蔵するポリクロメータ210の光学配置の変化などによる波長変化、対物光学系202や回折格子212などの光学要素および回路要素の特性変化による感度変化が避けられず、長期に亘って精度を維持するためには、充分な頻度での再校正(補正)が必要になる。しかしながら、従来から分光輝度計の感度校正に用いられてきた前記A光源の分光放射発散度M(λ,T)は、C1,C2を定数とするプランク放射則
M(λ,T)=C1・λ−5・exp[1−C2/(λ・T)] …(3)
で与えられ、相対的にも絶対的にも、色温度Tに大きく依存する。
したがって、このA光源を校正基準とするには、色温度を制御するか、色温度をモニタする必要がある。色温度2856KのA光源の400nmでの放射強度を±1%で維持するには、前記色温度を±2Kの精度で制御する必要がある。このため、電源電圧を安定させる等、A光源の駆動に充分な注意を払う必要がある。一方、色温度のモニタには、少なくとも2つの分光感度の異なるモニタセンサが必要になる。そして、そのセンサには、通常、温度依存が避けられないフィルタが介在されており、その波長誤差を0.5nm以下とする必要がある。さらに、前記A光源やフィルタの経時変化(たとえばA光源ではフィラメントの損耗等)にも注意が必要である。
こうした取り扱いの難しさから、分光輝度計の感度再校正(感度補正)は、該分光輝度計をメーカの工場やサービス拠点に返送して行われることが多いが、返送および再校正にコストおよび時間が掛かり、精度維持に必要な頻度で行うことは難しい。そこで、本件発明者は、先に、特許文献1において、波長が安定した複数の単波長光源と特性が安定した半導体モニタセンサとで構成される校正用基準光源を提案している。これによって、前記A光源を用いないこの校正用基準光源は、取り扱いが容易で、ユーザサイドでの校正を可能にしている。
特開2006−177785号公報
上述の従来技術でも、単波長光源の波長安定性が必須であり、該単波長光源には、ガスレーザや温度制御された半導体レーザなどの高コストな波長安定化レーザを用いる必要がある。また、レーザは利用できる波長に制限があり、分光輝度計の一般的な測定波長域である可視域(380−780nm)内で、3波長(408nm、532nm、635nm)程度の単波長基準光しか得られず、これらの少ない波長での補正係数のデータに基づいて、補間などで推定した全測定波長での補正係数の精度が低いという問題がある。
本発明の目的は、ユーザサイドで、分光輝度計や分光照度計の感度補正を高い精度および信頼性で行うことができる低コストな校正用基準光源およびそれを用いる校正システムを提供することである。
本発明の校正用基準光源は、予め校正された校正用基準光源であって、分光輝度計または分光照度計の波長および感度を校正するために使用される校正用基準光源において、相互に異なる単波長の基準光を放射する複数の発光ダイオードと、単波長基準光を放射する輝度基準面と、前記単波長基準光の波長を参照波長として測定する波長測定手段と、前記単波長基準光の強度を参照強度として測定する強度測定手段と、前記分光輝度計または分光照度計の校正時に、前記複数の発光ダイオードを順次点灯させて前記単波長基準光を放射させるとともに、前記波長測定手段および強度測定手段によって測定された前記単波長基準光の参照波長および参照強度ならびに基準光源校正時からの前記参照波長の変化量から、該参照波長での前記輝度基準面の参照輝度を求める制御処理手段とを含むことを特徴とする。
また、本発明の感度校正システムは、前記の校正用基準光源と、被校正分光輝度計とで構成される分光輝度計の感度校正システムであって、前記複数の単波長基準光の各々について求めた前記被校正分光輝度計による輝度測定値と、該単波長基準光の参照波長での参照輝度との差異に基づいて、前記被校正分光輝度計の分光感度変化を補正することを特徴とする。
上記の構成によれば、白色の光を放射する黒体放射光源を使用するのではなく、単波長光源としての複数の発光ダイオードを光源とする輝度基準面からの単波長放射を放射輝度基準として、測定波長域に分散する各参照波長での強度を強度測定手段で測定する点は前述の特許文献1と同様であるが、波長を波長測定手段(分光器)で測定して、制御処理手段がそれらの測定結果から、予め与えられている強度−輝度変換用データを用いて、測定された参照強度を参照輝度に変換し、各参照波長での感度補正係数を求め、さらに数学的補間によって全測定波長での感度補正係数を求める点が前記特許文献1と異なる。
したがって、単波長基準光は相対分光強度の影響を無視できるので、強度モニタ用センサとして、温度、経時に対して高安定な分光感度を有する裸のシリコンフォトダイオードなどを用いることができ、得られた参照輝度の信頼性が高いという特許文献1と同じ特徴を有する。こうして、ユーザサイドで、分光輝度計や分光照度計の感度補正を高い精度および信頼性で行うことができる。
その上、前記単波長光源に、特許文献1のような高価で波長の種類が少ない半導体レーザではなく、半値幅がやや大きく、波長の安定性で劣るものの、安価で多くの波長があり、補間による補正係数の精度確保に必要な密度で参照波長を測定波長域内に配置することができる発光ダイオードを使用することができ、測定波長域全体の校正(補正)精度を上げることができる。また、前記強度測定手段が単波長基準光の強度のみをモニタし、前記波長測定手段は前記単波長基準光の波長のみをモニタするので、本質的に安定性が高く、精度が維持し易い。
すなわち、校正基準を光源から波長モニタ用分光器と強度モニタ用センサとに置き換えたこの校正用基準光源は、温度、経時に対する安定性が高く、ユーザサイドでの波長および感度の再校正(補正)を高い精度と信頼性で行うことができる。これによって、ユーザはメーカでの再校正のためのコストや時間を節約できるとともに、充分な頻度で分光輝度計を再校正(補正)して、常に高い精度で分光輝度計を使用できる。
好ましくは、本発明の校正用基準光源では、前記制御処理手段は、測定された前記単波長基準光の参照波長および参照強度から求められた各単波長基準光の参照輝度が、その参照波長における所定の参照輝度基準値に一致するように、前記発光ダイオードを制御することを特徴とする。
さらにまた、本発明の校正用基準光源では、前記強度測定手段は、前記複数の発光ダイオードによる単波長基準光の波長域に感度を有する光検知器のみで構成され、該光検知器の感度に影響を与える光学要素を持たないことを特徴とする。
上記の構成によれば、温度、経時に対して安定性の高い、シリコンフォトダイオードなどの光検知器を、付属光学要素無しの裸の状態で前記強度モニタ用センサとして使用し、高い安定性と信頼性とで参照強度を得ることができる。
また、本発明の校正用基準光源は、前記輝度基準面は、前記複数の発光ダイオードからの光束が入射し、前記波長測定手段と強度測定手段とを具える積分球の射出開口であることを特徴とする。
上記の構成によれば、前記輝度基準面を拡散輝度面とすることができ、積分球内の多重拡散反射光の一部を前記強度測定手段で測定することで、該基準輝度面の放射輝度を安定してモニタすることができる。
さらにまた、本発明の校正用基準光源は、前記参照波長における参照強度と輝度基準面の参照輝度との関係が、前記参照波長近傍の基準波長の単波長基準光による前記輝度基準面の基準輝度と該単波長基準光の参照強度との比である変換係数と、前記単波長基準光の波長変化に対する前記変換係数の変化率とで与えられることを特徴とする。
上記の構成によれば、前記強度−輝度変換用データとして、前記参照波長近傍の基準波長λ0mでの強度−輝度変換係数K(λ0m)と、その変化率dK(λm)/dλmとが用いられる。
したがって、単波長基準光の参照波長λmでの変換係数K(λm)を、基準波長λ0mでの変換係数K(λ0m)を参照波長λmと基準波長λ0mとの差および前記変化率dK(λm)/dλmで補正して求めることができる。
また、本発明の校正用基準光源は、前記複数の発光ダイオードのそれぞれにおいて、発光ダイオードを複数の異なる温度で動作させることで、前記変換係数の変化率を得ることを特徴とする。
上記の構成によれば、発光ダイオードを前記単波長光源として、該発光ダイオードを複数の異なる温度で動作させることで前記変化率dK(λm)/dλmを求めるので、該変化率dK(λm)/dλmを容易に求めることができる。
さらにまた、本発明の校正用基準光源は、既知の分光感度を持つ基準光検知器をさらに備え、前記単波長基準光を受光した前記基準光検知器の出力信号を、該基準光検知器の既知の分光感度から求めた前記単波長基準光の参照波長での感度と、前記基準光検知器の前記輝度基準面からの距離と、前記輝度基準面の面積とに基づいて輝度に変換して、前記輝度基準面の参照輝度とする。
上記の構成によれば、基準シリコン検知器の分光感度D(λ)、単波長基準光P0mの参照波長λ0m、輝度基準面の面積S、前記輝度基準面から基準シリコン検知器までの距離Lの精度が校正精度に影響するが、面積Sと距離Lとは高精度に求めることができるので、実質的に基準シリコン検知器6の分光感度D(λ)と波長モニタ用分光器の波長精度とに依存することになる。また、構造が単純な基準シリコン検知器の分光感度は、温度、経時に対して安定性が高く、波長モニタ用分光器の波長精度は、Hgランプなどの輝線光源によって正確に校正でき、校正後の波長変化も補正できる。
したがって、この方法で得られた基準輝度L0mは本質的に高い精度と信頼性をもつ。
本発明の校正用基準光源およびそれを用いる感度校正システムは、以上のように、分光輝度計および分光照度計の波長および感度を校正するために使用される校正用基準光源において、白色の光を放射する黒体放射光源を使用するのではなく、相互に異なる単波長の基準光を放射する複数の単波長光源を使用し、前記単波長基準光の強度だけではなく、波長も測定して、強度−輝度変換用データにおける感度補正係数を求める。
それゆえ、得られた参照輝度の信頼性が高く、ユーザサイドで、前記分光輝度計や分光照度計の感度補正を高い精度および信頼性で行うことができるとともに、前記単波長光源には、安価で多くの波長があり、補間による補正係数の精度確保に必要な密度で参照波長を測定波長域内に配置することができる発光ダイオードを使用することができ、測定波長域全体の校正(補正)精度を上げることができる。
[実施の形態1]
図1は、本発明の実施の一形態に係る分光輝度計の校正用基準光源100とそれを用いた校正システムの構成を示すブロック図である。本実施の形態の校正用基準光源100は、高反射率かつ高拡散の内壁を有する積分球1と、前記積分球1に形成された7つの入射開口11〜17から該積分球1内に、発光波長の異なる単波長光Im(m=1〜7)をそれぞれ送り込むLED21〜27(以下、LEDm(m=1〜7)という)を有する光源部2と、前記積分球1の波長モニタ用開口18に取り付けられる波長モニタ用分光器3と、前記積分球1の強度モニタ用開口19に取り付けられる強度モニタ用センサ4と、制御処理手段5とを主な構成要素とする。波長モニタ用分光器3には、前述の分光輝度計に用いられているポリクロメータ210と同様のポリクロメータが用いられる。
前記LEDmは、可視域(380〜780nm)に分散する、たとえば375、405、468、518、585、660、720nmをそれぞれ中心(重心)波長とし、図2において破線で示す相対分光分布を有する。これらのLEDmを、前記制御処理手段5が、LED駆動回路28を介して所定の駆動電流で順次点灯すると、各LEDmの放射する単波長光Imが積分球1内で多重拡散反射し、単波長基準光Pmとして射出開口10から拡散放射され、被校正分光輝度計101によって分光放射輝度Ltm(λ)が測定される。同時に、積分球1内で多重拡散反射する単波長光の一部Lmが、積分球1の波長モニタ用開口18を通って、波長モニタ用分光器3に入射して分光分布Im(λ)が測定され、前記制御処理手段5に送られる。制御処理手段5は、前記分光分布Im(λ)の重心波長を求めて参照波長λmとする。同様に、単波長光の一部Rmが、積分球1の強度モニタ用開口19を通って、強度モニタ用センサ4に入射して参照強度Irm(λ)が測定され、モニタ用センサ処理回路41を介して制御処理手段5に送られる。
ここで、前記LEDmによる単波長光Imは、波長が既知の単波長光であるので、その波長で感度があり、安定さえしておれば、分光感度の如何にかかわらずモニタ可能であり、このため本実施の形態では、フィルタなどの変動要因を伴わない、高安定の裸のシリコンフォトダイオードを強度モニタ用センサ4としている。これは、従来の黒体放射光源を用いる校正用基準光源では、前述のように基準値となる分光放射輝度の安定性、ならびに分光放射輝度をモニタする場合はモニタの精度が校正精度に直結するが、前記各単波長光Imによって参照波長λmでの放射輝度基準を与える本実施の形態の校正用基準光源100では、特許文献1と同様に、相対的な分光分布(プロファイル)の影響は基本的に無視できるからである。
すなわち、図2に示すように、各LEDmの分光分布は10−20nmの半値幅をもち、厳密には単波長光とは言えないが、各LEDmの分光分布が重心に対してほぼ対称であり、一方、図2の実線で示すように、シリコンフォトダイオードの分光感度がなだらかで、局部的に直線近似できる場合、半値幅の影響は無視できる。しかしながら、広い半値幅をもつLEDについては、必要な半値幅を得るために、発光波長を中心波長とするバンドパスフィルタを組合わせてもよい。
校正にあたって、制御処理手段5は、後述するようにして予め与えられて保存されている、測定された参照強度を参照輝度に変換するための強度−輝度変換用データに基づいて、参照波長λmの強度−輝度変換係数K(λm)を求める。本実施の形態では、後述するように、基準光源校正時の参照波長λ0mでの強度−輝度変換係数K(λ0m)およびその変化率dK(λm)/dλmが強度−輝度変換用データとして保存されているので、参照波長λmの強度−輝度変換係数K(λm)を以下で求める。
K(λm)=K(λ0m)+(λm−λ0m)・dK(λm)/dλm …(4)
更に、求めた強度−輝度変換係数K(λm)を用いて、上述の強度モニタの参照強度Irmを参照輝度Lrmに変換する。
Lrm=K(λm)・Irm …(5)
これによって、射出開口10は、参照波長λmで参照輝度Lrmの単波長基準光Pmを放射する輝度基準面として機能することになる。
一方、被校正分光輝度計101は、前述のように製造時に波長および各波長での感度が校正されているが、その後の経時変化によって生じる誤差(波長誤差および感度誤差)、特に感度誤差を、本実施の形態の校正用基準光源100およびこれを用いた校正システムで補正するには、図1に示すように、該被校正分光輝度計101を前記射出開口10からの単波長基準光Pmが測定可能な位置に対向させ、更に制御処理手段5に接続する。これによって、該被校正分光輝度計101は制御処理手段5によって制御される。そして、波長誤差が前記感度誤差に影響するので、感度誤差の補正に先立って、波長誤差が以下のように補正される。
すなわち、波長誤差の補正は、前述の画素−重心波長(n−λn)対応表を修正することで行われる。制御処理手段5は、各LEDmを順次点灯させて、それによる単波長基準光Pmの分光放射輝度Ltm(λ)を被校正分光輝度計101に測定させる。そして、得られた分光放射輝度Ltm(λ)の重心波長λtmを求め、以下のように前記波長モニタ用分光器3で得られる参照波長λmとの差(波長誤差)dλmを求める。
dλm=λtm−λm …(6)
さらに、参照波長λmでの波長誤差dλmを補間して、各画素の重心波長λnでの波長誤差dλnを求め、補正重心波長λ´nを求める。
λ´n=λn−dλn …(7)
こうして修正したn−λ´n対応表を被校正分光輝度計101に保存することで波長誤差を補正することができる。
次に、感度誤差の補正は、波長λ毎の感度補正係数C(λ)を求めて被補正分光輝度計101に保存することで実施される。制御処理手段5は、前記式4によって参照波長λmの強度−輝度変換係数K(λm)を求め、式5によって単波長基準光Pmの参照強度Irmを参照輝度Lrmに変換し、更に以下のように被校正分光輝度計101で測定された分光放射輝度Ltm(λ)の輝度積分値Stmを求める。
Stm=∫Ltm(λ)dλ …(8)
続いて、前記参照輝度Lrmと前記輝度積分値Stmとの比によって、参照波長λmでの感度補正係数C(λm)を求める。
C(λm)=Lrm/Stm …(9)
これを補間して全測定波長での感度補正係数C(λ)を求めて保存することで感度誤差を補正することができる。
図3は、上述の波長誤差と感度誤差との補正方法を説明するためのフローチャートである。先ずステップS1〜S7では、7つのLEDmを順次点灯し(ステップS2)、それによる放射光Imに対して、波長モニタ用分光器3から参照波長λmを、強度モニタ用センサ4から参照強度Irmを取得し(ステップS3)、また被補正分光輝度計101からは画素強度分布測定値(En)mおよび分光放射輝度測定値Ltm(λ)を取得(ステップS4)した後、消灯(ステップS5)するプロセスを繰り返す。
続いてステップS8〜S12で波長誤差の補正が行われ、ステップS8では、各単波長基準光Pmについて、分光放射輝度Ltm(λ)の重心波長λtmを求め、ステップS9では、前記式6によって、参照波長λmとの差(波長誤差)dλmを求める。ステップS10では、補間によって、画素の重心波長λnでの波長誤差dλnを求め、ステップS11では、前記式7によって、補正重心波長λ´nを求め、ステップS12では、その補正重心波長λ´nによって修正されたn−λ´n対応表を保存する。
さらにステップS13〜S18で感度誤差の補正が行われ、ステップS13では、前記n−λ´n対応表によって、画素強度分布(En)mを分光放射輝度Ltm(λ)に再変換する。ステップS14では、前記式8によって、分光放射輝度Ltm(λ)の輝度積分値Stmを求め、ステップS15では、前記式4によって、参照波長λmでの変換係数K(λm)を求め、ステップS16では、前記式5によって、参照強度Irmを参照輝度Lrmに変換する。ステップS17では、前記式9によって、参照波長λmでの感度補正係数C(λm)を求め、ステップS18では、補間によって、全測定波長での感度補正係数C(λ)を求めて保存する。
上述の説明では、各単波長基準光Pmの発光毎に、波長モニタ用分光器3から参照波長λmが、強度モニタ用センサ4から参照強度Irmが、異なる値で与えられるが、予め参照波長λの参照輝度基準値Lr0(λ)を定めておき、単波長基準光Pmを発光させる際に、参照波長λmでの参照輝度Lrmが前記所定の参照輝度基準値Lr0(λm)に一致するように、LEDmの駆動電流を制御するようにしてもよい。この場合は、各単波長基準光Pmの発光時に、参照波長λmのみが与えられ、参照輝度Lrmには前記所定の参照輝度基準値Lr0(λm)が用いられる。
上述のようにして再校正された分光輝度計101による実際の被測定光の測定時には、得られた画素分布強度Enは、保存されているn−λ´n対応表を用いて分光放射輝度L(λ)に変換され、同じく保存されている感度補正係数C(λ)を用いて、以下のようにL´(λ)に補正されて出力される。
L´(λ)=C(λ)・L(λ) …(10)
図4は、その測定時における動作を説明するためのフローチャートである。ステップS21では、被測定光を測定して画素強度分布Enを求め、ステップS22では、保存されているn−λ´n対応表によって分光強度分布E(λ)に変換する。ステップS23では、保存されている校正係数C0(λ)を用い、式2によって分光強度分布E(λ)を分光放射輝度L(λ)に変換する。ステップS24では、保存されている補正係数C(λ)を用い、前記式17によって、分光放射輝度L(λ)をL´(λ)に補正して出力する。
一方、校正用基準光源100自身の校正として、前記波長モニタ用分光器3を校正する必要がある。そのために、前記被校正分光輝度計101に代えて、射出開口10にHgランプなどを配置し、それから入射させた輝線スペクトル光を用いて、本件発明者が先に提案した特許文献2(特開2007−10364号公報)の手法を用いて校正することができる。校正後のユーザサイドでの波長変化は、LED1の波長375nmの単波長光を用い、特許文献3(特開2005−69784号公報)の手法によって補正される。その補正方法では、全測定波長が一律の補正量で補正されるが、たとえば1回/年で行われる波長再校正間の精度維持には充分である。
前記波長モニタ用分光器3の校正後には、強度モニタ用センサ4およびモニタ用センサ処理回路41における放射輝度校正が行われ、前述の強度−輝度変換用データが求められて保存される。ここでは、参照波長λ0mでの強度−輝度変換係数K(λ0m)と、その変化率dK(λm)/dλmとが求められる。それには、先ず図5に示すように、射出開口10(輝度基準面)から順次放射されるLEDmによる参照波長λ0mの単波長基準光P0mを、所定の距離L(m)を隔てて配置された既知の分光感度D(λ)(単位エネルギーの単波長入射光に対する光電流(A/W))をもつ基準シリコン検知器6で受光する。その検知結果は、基準センサ処理回路61を介して、制御処理手段5に入力される。
ここで、前記輝度基準面の面積をS(m)とすると、前記基準シリコン検知器6の光電流Q0m(A)は、以下によって輝度基準面の放射輝度L0m(W/m)に変換される。基準シリコン検知器6の分光感度D(λ)は、各国の標準維持施設で値付けすることができる。
L0m=〔Q0m・L〕/〔D(λ0m)・S〕 …(11)
さらに、同時に測定された参照強度をIr0m、参照波長をλ0mとすると、波長λ0mでの強度−輝度変換係数K(λ0m)は以下で与えられる。
K(λ0m)=L0m/Ir0m …(12)
そして、LEDmの発光波長は安定していないので、K(λ0m)とともに、変換係数K(λm)の波長λmの変化に対する変化率dK(λm)/dλmを求めて保存する。この変化率dK(λm)/dλmを求めるためには、LEDmの発光波長を変化させる必要があるが、図6に示すように、LEDの発光波長は動作温度に依存するので、各LEDmを動作温度を変えて発光させることで、発光波長を変化させることができる。LEDmの動作温度を変えるには、駆動電流値を変化させたり、或いは一定の駆動電流であっても、その印加直後と一定時間後、つまり駆動による温度上昇前後の発光を用いる等の方法があるが、ここでは容易に実施できる後者を用いる。
上述のような放射輝度校正においては、基準シリコン検知器6の分光感度D(λ)、単波長基準光P0mの参照波長λ0m、輝度基準面の面積S、前記輝度基準面から基準シリコン検知器6までの距離Lの精度が、校正精度に影響する。ここで、面積Sと距離Lとは高精度で求めることができ、したがって校正精度は、実質的に基準シリコン検知器6の分光感度D(λ)と波長モニタ用分光器3の波長精度とに依存することになる。しかしながら、前述のように構造が単純な基準シリコン検知器6の分光感度は、温度、経時に対して安定性が高く、波長モニタ用分光器3の波長精度は、Hgランプなどの輝線光源によって正確に校正でき、校正後の波長変化も補正できる。したがって、上述の放射輝度校正方法は、本質的に高い精度と信頼性とを有することになる。
図7は、上述のような校正用基準光源100の校正過程を説明するためのフローチャートである。ステップS31〜S38では、LEDmを順次点灯させて、強度−輝度変換係数K(λ0m)を求め、温度上昇前後の波長変化dλmと変換係数の変化dK(λm)とから、変化率dK(λm)/dλmを求める。具体的には、LEDmを点灯し(ステップS32)、放射光Imの点灯直後の参照波長λ0m、参照強度Ir0m、基準シリコン検知器6の光電流Q0mを取得(ステップS33)する。点灯状態のまま、一定時間経過後(ステップS34)、参照波長λ1m、参照強度Ir1m、基準シリコン検知器6の光電流Q1mを取得し(ステップS35)、消灯する(ステップS36)プロセスを繰り返す。
続いて、ステップS39で、与えられた基準シリコン検知器6の分光感度D(λ)から、各単波長基準光Pmの参照波長λ0m、λ1mでの感度D(λ0m)、D(λ1m)を求め、ステップS40で、前記式11によって、光電流Q0m,Q1mを輝度基準面の放射輝度L0m,L1mに変換する。ステップS41では、前記式12によって、強度−輝度変換係数K(λ0m)およびK(λ1m)を求め、ステップS42では、下式から変化率dK(λm)/dλmを求め、ステップS43で前記強度−輝度変換係数K(λ0m)および変化率dK(λm)/dλmを保存する。
dK(λm)/dλm=〔K(λ0m)−K(λ1m)〕/〔λ0m−λ1m〕
…(13)
本実施の形態では、校正用基準光源100を、製造時に初期校正された分光輝度計101の経時変化による誤差(波長誤差と感度誤差)の補正に用いているが、同じ方法を製造時の初期校正に用いることができ、それによって初期校正と経時に対する校正とのトレーサビリティを統一することができる。その場合、被校正分光輝度計101は、先ず、分光放射輝度基準値が与えられたA光源などの黒体放射光源による白色基準光によって分光感度が予備校正され、続いて上述の単波長基準光による波長および感度補正によって最終的に校正される。校正精度は、最終的に前記波長および感度の補正精度に依存し、結局、その基準である校正用基準光源100の波長モニタ用分光器3の波長精度と強度モニタ用センサ4の分光感度の精度とに依存するが、波長モニタ用分光器3および強度モニタ用センサ4共に、黒体放射光源より安定性が高く、精度を維持し易い。また、単波長基準光によって補正されるので、予備校正に用いられる白色基準光の分光放射輝度基準値には高い精度を要求されない。
以上のように、本実施の形態では、黒体放射光源を使用するのではなく、複数の単波長光源を光源部2とする輝度基準面からの単波長放射を放射輝度基準として、測定波長域に分散する各参照波長での強度を強度モニタ用センサ4で測定する点は前述の特許文献1と同様であり、前記単波長基準光は相対分光強度の影響を無視できるので、強度モニタ用センサ4として、温度、経時に対して高安定な分光感度を有する裸のシリコンフォトダイオードなどを用いることができ、得られた参照輝度の信頼性が高いという特許文献1と同じ特徴を有する。こうして、ユーザサイドで、分光輝度計や分光照度計の感度補正を高い精度および信頼性で行うことができる。
その上、前記単波長光源に、特許文献1のような波長が安定しているものの、高価で波長の種類が少ない波長安定化レーザではなく、半値幅がやや大きく、波長の安定性で劣るものの、安価で多くの波長があり、補間による補正係数の精度確保に必要な密度で参照波長を測定波長域内に配置することができるLED21〜27を使用することができ、測定波長域全体の校正(補正)精度を上げることができる。また、前記強度モニタ用センサ4が単波長基準光の強度のみをモニタし、前記波長モニタ用分光器3は前記単波長基準光の波長のみをモニタするので、本質的に安定性が高く、精度が維持し易い。
すなわち、校正基準を光源から波長モニタ用分光器3と強度モニタ用センサ4とに置き換えたこの校正用基準光源100は、温度、経時に対する安定性が高く、ユーザサイドでの波長および感度の再校正(補正)を高い精度と信頼性とで行うことができる。これによって、ユーザはメーカでの再校正のためのコストや時間を節約できるとともに、充分な頻度で分光輝度計101を再校正(補正)して、常に高い精度で分光輝度計を使用できる。
また、前記輝度基準面が前記複数の単波長光源であるLED21〜27からの光束が入射し、前記波長モニタ用分光器3と強度モニタ用センサ4とを具える積分球1の射出開口10であることで、該輝度基準面を拡散輝度面とすることができ、積分球1内の多重拡散反射光の一部を前記強度モニタ用センサ4で測定することで、該基準輝度面の放射輝度を安定してモニタすることができる。
本発明の実施の一形態に係る分光輝度計の校正用基準光源とそれを用いた校正システムの構成を示すブロック図である。 本発明に係る単波長光源であるLEDによる発光の相対分光分布とシリコン検知器の分光感度とを示すグラフである。 被校正分光輝度計の波長誤差と感度誤差との補正方法を説明するためのフローチャートである。 分光輝度計の測定時における動作を説明するためのフローチャートである。 本発明に係る校正用基準光源の校正方法を説明するためのブロック図である。 LEDの発光波長の温度依存性を説明するためのグラフである。 本発明に係る校正用基準光源の校正動作を説明するためのフローチャートである。 分光輝度計の一構成例を示すブロック図である。
符号の説明
1 積分球
2 光源部
3 波長モニタ用分光器
4 強度モニタ用センサ
5 制御処理手段
6 基準シリコン検知器
10 射出開口
11〜17 入射開口
18 波長モニタ用開口
19 強度モニタ用開口
21〜27 LED
28 LED駆動回路
41 モニタ用センサ処理回路
61 基準センサ処理回路
100 校正用基準光源
101 被校正分光輝度計
210 ポリクロメータ

Claims (8)

  1. 予め校正された校正用基準光源であって、分光輝度計または分光照度計の波長および感度を校正するために使用される校正用基準光源において、
    相互に異なる単波長の基準光を放射する複数の発光ダイオードと、
    単波長基準光を放射する輝度基準面と、
    前記単波長基準光の波長を参照波長として測定する波長測定手段と、
    前記単波長基準光の強度を参照強度として測定する強度測定手段と、
    前記分光輝度計または分光照度計の校正時に、前記複数の発光ダイオードを順次点灯させて前記単波長基準光を放射させるとともに、前記波長測定手段および強度測定手段によって測定された前記単波長基準光の参照波長および参照強度ならびに基準光源校正時からの前記参照波長の変化量から、該参照波長での前記輝度基準面の参照輝度を求める制御処理手段とを含むことを特徴とする校正用基準光源。
  2. 前記制御処理手段は、測定された前記単波長基準光の参照波長および参照強度から求められた各単波長基準光の参照輝度が、その参照波長における所定の参照輝度基準値に一致するように、前記発光ダイオードを制御することを特徴とする請求項1記載の校正用基準光源。
  3. 前記強度測定手段は、前記複数の発光ダイオードによる単波長基準光の波長域に感度を有する光検知器のみで構成され、該光検知器の感度に影響を与える光学要素を持たないことを特徴とする請求項1または2記載の校正用基準光源。
  4. 前記輝度基準面が前記複数の発光ダイオードからの光束が入射し、前記波長測定手段と強度測定手段とを具える積分球の射出開口であることを特徴とする請求項1〜3のいずれか1項に記載の校正用基準光源。
  5. 前記参照波長における参照強度と輝度基準面の参照輝度との関係が、前記参照波長近傍の基準波長の単波長基準光による前記輝度基準面の基準輝度と該単波長基準光の参照強度との比である変換係数と、前記単波長基準光の波長変化に対する前記変換係数の変化率とで与えられることを特徴とする請求項1〜4のいずれか1項に記載の校正用基準光源。
  6. 前記複数の発光ダイオードのそれぞれにおいて、発光ダイオードを複数の異なる温度で動作させることで、前記変換係数の変化率を得ることを特徴とする請求項5記載の校正用基準光源。
  7. 既知の分光感度を持つ基準光検知器をさらに備え
    前記単波長基準光を受光した前記基準光検知器の出力信号を、該基準光検知器の既知の分光感度から求めた前記単波長基準光の参照波長での感度と、前記基準光検知器の前記輝度基準面からの距離と、前記輝度基準面の面積とに基づいて輝度に変換して、前記輝度基準面の参照輝度とすることを特徴とする請求項1〜6のいずれか1項に記載の校正用基準光源。
  8. 前記請求項1〜7のいずれか1項に記載の校正用基準光源と、被校正分光輝度計とで構成される分光輝度計の感度校正システムであって、前記複数の単波長基準光の各々について求めた前記被校正分光輝度計による輝度測定値と、該単波長基準光の参照波長での参照輝度との差異に基づいて、前記被校正分光輝度計の分光感度変化を補正することを特徴とする校正システム。
JP2007218791A 2007-08-24 2007-08-24 校正用基準光源およびそれを用いる校正システム Expired - Fee Related JP4924288B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007218791A JP4924288B2 (ja) 2007-08-24 2007-08-24 校正用基準光源およびそれを用いる校正システム
US12/229,171 US7710559B2 (en) 2007-08-24 2008-08-20 Calibration reference light source and calibration system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218791A JP4924288B2 (ja) 2007-08-24 2007-08-24 校正用基準光源およびそれを用いる校正システム

Publications (2)

Publication Number Publication Date
JP2009052978A JP2009052978A (ja) 2009-03-12
JP4924288B2 true JP4924288B2 (ja) 2012-04-25

Family

ID=40381824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218791A Expired - Fee Related JP4924288B2 (ja) 2007-08-24 2007-08-24 校正用基準光源およびそれを用いる校正システム

Country Status (2)

Country Link
US (1) US7710559B2 (ja)
JP (1) JP4924288B2 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281929A (ja) * 2008-05-23 2009-12-03 Konica Minolta Sensing Inc 測光装置の補正用基準光源、測光装置の補正システム
KR100978246B1 (ko) * 2008-10-01 2010-08-26 한국표준과학연구원 발광소자의 전광선속 측정 장치 및 방법
JP5286571B2 (ja) * 2009-05-22 2013-09-11 大塚電子株式会社 全光束測定装置および全光束測定方法
US7999933B2 (en) * 2009-08-14 2011-08-16 Princeton Instruments Method for calibrating imaging spectrographs
JP2011085743A (ja) * 2009-10-15 2011-04-28 Seiko Epson Corp 画像形成装置、画像形成方法
KR101108604B1 (ko) * 2010-03-02 2012-01-31 한국표준과학연구원 적분구 광도계 및 그 측정 방법
KR101144653B1 (ko) * 2010-08-02 2012-05-11 한국표준과학연구원 적분구 광도계 및 그 측정 방법
US8913244B1 (en) * 2010-08-12 2014-12-16 Cooper Technologies Company Methods, systems, and apparatus for end of line testing
US8711335B2 (en) * 2011-06-28 2014-04-29 Nikon Corporation Stroboscopic light source for a transmitter of a large scale metrology system
US8730466B2 (en) * 2011-07-14 2014-05-20 Thermo Electron Scientific Instruments Llc Optical spectrometer with underfilled fiber optic sample interface
CN104040309B (zh) 2011-11-03 2019-06-07 威利食品有限公司 用于最终使用者食品分析的低成本光谱测定系统
JP2014081275A (ja) * 2012-10-16 2014-05-08 Hioki Ee Corp 測光装置の分光感度特性の補正方法及び測光装置
WO2014102629A1 (en) * 2012-12-26 2014-07-03 Koninklijke Philips N.V. Light sensing system, and method for calibrating a light sensing device
JP2014137328A (ja) * 2013-01-18 2014-07-28 Konica Minolta Inc フーリエ変換型分光計およびフーリエ変換型分光計の波長校正方法
EP4006542A1 (en) 2013-08-02 2022-06-01 Verifood Ltd. Spectrometer comprising sample illuminator
CN103630234B (zh) * 2013-12-13 2015-07-01 厦门大学 光照度计自动检测系统
CN106461461A (zh) 2014-01-03 2017-02-22 威利食品有限公司 光谱测定系统、方法和应用
JP6142815B2 (ja) * 2014-02-13 2017-06-07 ブラザー工業株式会社 画像読取装置
JP2015178995A (ja) * 2014-03-19 2015-10-08 株式会社オプトコム 色調校正装置、撮像装置及び色調検査装置
US20150276479A1 (en) * 2014-03-26 2015-10-01 Intellectual Property Transfer, LLC Method accounting for thermal effects of lighting and radiation sources for spectroscopic applications
US9335210B2 (en) * 2014-07-01 2016-05-10 Osram Sylvania Inc. Techniques for lumen maintenance and color shift compensation
WO2016063284A2 (en) 2014-10-23 2016-04-28 Verifood, Ltd. Accessories for handheld spectrometer
WO2016125164A2 (en) 2015-02-05 2016-08-11 Verifood, Ltd. Spectrometry system applications
WO2016125165A2 (en) 2015-02-05 2016-08-11 Verifood, Ltd. Spectrometry system with visible aiming beam
KR102015203B1 (ko) 2015-03-24 2019-08-27 오츠카덴시가부시끼가이샤 분광 휘도계의 교정에 사용하는 기준 광원 장치 및 교정 방법
WO2016162865A1 (en) 2015-04-07 2016-10-13 Verifood, Ltd. Detector for spectrometry system
US10066990B2 (en) 2015-07-09 2018-09-04 Verifood, Ltd. Spatially variable filter systems and methods
US10203246B2 (en) 2015-11-20 2019-02-12 Verifood, Ltd. Systems and methods for calibration of a handheld spectrometer
JP6967835B2 (ja) * 2015-12-28 2021-11-17 国立研究開発法人産業技術総合研究所 分光放射測定装置
US10088468B2 (en) * 2016-02-04 2018-10-02 Nova Biomedical Corporation Analyte system and method for determining hemoglobin parameters in whole blood
US10254215B2 (en) 2016-04-07 2019-04-09 Verifood, Ltd. Spectrometry system applications
EP3488204A4 (en) 2016-07-20 2020-07-22 Verifood Ltd. ACCESSORIES FOR HANDLABLE SPECTROMETERS
US10791933B2 (en) 2016-07-27 2020-10-06 Verifood, Ltd. Spectrometry systems, methods, and applications
US10048121B2 (en) * 2016-08-31 2018-08-14 Raytheon Company Optical calibrator, calibration system, and method
EP3688424A1 (en) 2017-09-26 2020-08-05 Ecole Polytechnique Federale de Lausanne (EPFL) Multichromatic calibration method and device
JP6664367B2 (ja) * 2017-11-27 2020-03-13 シャープ株式会社 検出器、ならびに、検出器の補正方法、校正方法、検出装置
TWI711807B (zh) * 2018-09-18 2020-12-01 廣達電腦股份有限公司 照度校正裝置、照度校正方法以及照度偵測方法
US11297255B1 (en) 2020-09-18 2022-04-05 Raytheon Company On-board light source calibration
CN114383723B (zh) * 2022-01-15 2024-01-12 上海市计量测试技术研究院 一种led紫外辐射标准源及其控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774368B2 (en) * 2001-03-08 2004-08-10 Baylor University Dispersive near-infrared spectrometer with automatic wavelength calibration
JP4400448B2 (ja) * 2004-12-22 2010-01-20 コニカミノルタセンシング株式会社 分光輝度計の校正方法、及び校正システムの動作プログラム

Also Published As

Publication number Publication date
US7710559B2 (en) 2010-05-04
JP2009052978A (ja) 2009-03-12
US20090051910A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP4924288B2 (ja) 校正用基準光源およびそれを用いる校正システム
US7151600B2 (en) Calibration system for a spectral luminometer and a method for calibrating a spectral luminometer
JP4400448B2 (ja) 分光輝度計の校正方法、及び校正システムの動作プログラム
US8144322B2 (en) Spectral characteristic measuring apparatus, method for calibrating spectral characteristic measuring apparatus, and spectral characteristic measuring system
US7697136B2 (en) Reflection characteristic measuring apparatus, and method for calibrating reflection characteristic measuring apparatus
US7628507B2 (en) Radiance output and temperature controlled LED radiance source
US8699023B2 (en) Reflectivity measuring device, reflectivity measuring method, membrane thickness measuring device, and membrane thickness measuring method
JP2004191244A (ja) 分光装置及び補正方法
JPH05264349A (ja) 1つ以上のスペクトル的にフィルタ処理された光検出器電流による多色光源の較正
US7116417B2 (en) Spectrometer and method for correcting wavelength displacement of spectrometer
KR101890944B1 (ko) 분광 특성 측정 방법 및 분광 특성 측정 장치
JP2009281929A (ja) 測光装置の補正用基準光源、測光装置の補正システム
JP2011107114A (ja) 測光装置
JP2010048640A (ja) 絶対分光放射計
JP5556362B2 (ja) 分光特性測定装置およびその校正方法
US20220268635A1 (en) Method and device for monitoring radiation
JP7052729B2 (ja) 反射/透過特性測定装置
US11598668B2 (en) Method and apparatus for monitoring a spectral radiometer
Sametoglu Influence of the spectral power distribution of a LED on the illuminance responsivity of a photometer
JP7438774B2 (ja) 測定装置
JP6543065B2 (ja) ガス濃度測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees