JP2004527066A - 鉛酸蓄電池及び陽極板並びにそれら用の合金 - Google Patents

鉛酸蓄電池及び陽極板並びにそれら用の合金 Download PDF

Info

Publication number
JP2004527066A
JP2004527066A JP2002520325A JP2002520325A JP2004527066A JP 2004527066 A JP2004527066 A JP 2004527066A JP 2002520325 A JP2002520325 A JP 2002520325A JP 2002520325 A JP2002520325 A JP 2002520325A JP 2004527066 A JP2004527066 A JP 2004527066A
Authority
JP
Japan
Prior art keywords
lead
alloy
battery
grid
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002520325A
Other languages
English (en)
Inventor
ラーセン,スティーブン・アール
Original Assignee
エグザイド・テクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エグザイド・テクノロジーズ filed Critical エグザイド・テクノロジーズ
Publication of JP2004527066A publication Critical patent/JP2004527066A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • C22C11/06Alloys based on lead with tin as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

鉛酸電池及び蓄電池並びにかかる電池及び蓄電池用の陽極板が提供される。陽極板はペースト付着された活性材料層を有する格子支持構造体を備えている。格子支持構造体は、基本的に、鉛と、約0.02%から約0.06%のカルシウムと、約0.2%から約3.0%の錫と、0.01%から約0.02%の銀とから成る鉛系合金を備えている。本発明による陽極板は優れた機械的性質を有し、鉛酸電池及び蓄電池にて満足し得るよう使用され、また、かかる陽極板を使用する電池及び蓄電池に対し向上した電気的性能を与える。

Description

【0001】
【発明の技術分野】
本発明は、鉛酸電池及び蓄電池、より具体的には、かかる電池における陽極格子合金用に使用されるカルシウム−錫銀鉛系合金に関する。
【0002】
【発明の背景】
過去20年以上に亙って、一度び使用されたならば、殆どメンテナンスを必要とせずに、より望ましくは、蓄電池の期待寿命の全体に亙って何ら更なるメンテナンスを必要としない、自動車用の鉛酸蓄電池にかなりの関心がもたれてきた。この型式の蓄電池は、通常、「低メンテナンス」又は「メンテナンスフリー蓄電池」と称されている。メンテナンスフリー蓄電池という用語は、本明細書にて低メンテナンス蓄電池を含むものとして使用する。この型式の蓄電池は、最初に、約1972年に商業的に上市され、現在、広く使用されている。
【0003】
過去、鉛酸蓄電池は腐食し易い製品であることが十分に認識されている。最終的に、かかる蓄電池は、使用中、1つ又は2つ以上の故障モードにて故障する。これらの故障モードの内には、陽極格子の腐食及び過度の水損失に起因する故障がある。メンテナンスフリー蓄電池を追求することは、例えば、3年から5年等のような、蓄電池の期待寿命と相補的と考えられる期間に亙る使用中の故障を予防する蓄電池を提供することであった。
【0004】
この目的を実現するため、メンテナンスフリー蓄電池用として最初に使用された陽極格子は、典型的に、厚さが約60から70ミル程度であった。蓄電池は、同様に、蓄電池の定格容量を提供するのに必要な電解質よりも余剰な電解質を提供し得るような形態とされていた。このようにして、蓄電池板の頂部の位置よりも上方位置まで電解質を充填することにより、メンテナンスフリー蓄電池は、効果として、蓄電池の作用寿命の間、水損失を補償すべく利用可能な電解質の貯蔵量を維持するものであった。換言すれば、的確な格子合金を使用することは、蓄電池の作用寿命の間、水損失を軽減するが、使用中常にかなりの水損失が生ずる。
【0005】
始動、照明及び点火用の満足し得る陽極格子(「SLI」自動車用鉛酸蓄電池)を提供する主要な性能基準は、厳格であり、また、色々である。一般に、また1つのまとめとして、適宜な合金は、満足し得る格子となるように鋳造することができ、また、格子に対し十分な機械的性質を持たせるものでなければならない。更に、合金は、所期の用途にて蓄電池に対し満足し得る電気的性能を持たせるものでなければならない。このように、満足し得る合金は、所望の耐食性を持たせ且つ容量の損失となるであろう正活性材料の軟化を回避するものでなければならない。
【0006】
より具体的には、また、上記に概説した性能基準の各々を考察すると、第一の場合の適宜な合金は、望ましい技術により格子となるように鋳造することができなければならない、すなわち、鋳造格子は、既知であるように欠点が少なくなければならない(例えば、空隙、割れ、マイクロクラック等が相対的に存在しないこと)。かかる鋳造技術は、従来の重力鋳造法(「ブック金型」等)から膨張金属技術を使用する連続方法、また、例えば、押抜き等により格子を形成する原材料である合金ストリップを使用する多岐に亙る方法まで及ぶ。
【0007】
形成される鋳造格子は、従来から使用されている装置にて板に加工し且つ蓄電池に組立るのに耐えるのに十分、堅牢でなければならない。更に、適宜な格子は、期待される使用寿命の全体に亙って満足し得る機械的性質を維持しなければならない。使用寿命中、所望の機械的性質が少しでも実質的に失われるならば、以下により詳細に説明するように、蓄電池の性能に悪影響を与える可能性がある。
【0008】
ここで、必要とされる電気化学的性能を考慮するならば、陽極板に対する格子合金は十分な耐食性を有する蓄電池を提供しなければならない。更に、連続的直接鋳造法又は経済性の観点から望ましい、格子合金ストリップを使用するその他の方法は、耐食性を確実に損なう可能性がある。このように、連続方法は、格子内の粒子を配向させ、これにより粒子間の経路をより短くし且つ腐食による攻撃をより受け易くし、また、早期の故障を生じ易くする。厚いストリップを鋳造し且つ次に、所望の格子厚さまで冷間圧延等することは、この問題点を一層、悪化させることになる。
【0009】
このように、陽極格子の腐食は、SLI鉛酸蓄電池の主要な故障モードとなる可能性がある。陽極格子の腐食が生ずると、このことは、蓄電池自体の導電率を低下させる。格子の導電率が腐食に起因して低下し、放電電圧が特定の用途に受容可能な値以下に降下したとき、蓄電池は故障する。
【0010】
同様に、格子の腐食と関係した第二の故障メカニズムは、「格子の成長」に起因する故障を含む。鉛酸蓄電池の使用寿命の間、陽極格子は腐食し、格子の表面に腐食生成物が形成される。殆どの場合、腐食過程が格子の「線」の内部に浸透している鉛酸蓄電池の粒子境界及び格子表面に腐食生成物が形成される。これらの腐食生成物は、一般に、格子を形成する鉛合金よりも遥かに硬く且つ低密度である。これらの状態によって形成された応力のため、格子合金は移動し又は成長し、塊状の腐食生成物を受け入れる。この格子の物理的偏位は、格子の長さ及び(又は)幅を増大させる。この格子の寸法の増大は、不均一となる可能性がある。格子の寸法が腐食に起因して変化することは、一般に、「格子の成長」(又は場合によっては、「クリープ」)と称される。
【0011】
格子が成長すると、格子の動作及び膨張は、正活性材料と格子自体との間の電気的接触を分離させ始める。この動作及び膨張は、いくつかの反応箇所から格子までの電気の流れを防止し、これにより、電池の電気放電容量を減少させる。この格子の成長が続くとき、より多くの正活性材料は格子から電気的に隔離され、電池の放電容量は特定の用途に対して要求される値以下まで低下する。このように、合金の機械的性質は、使用寿命の間の不当なクリープを防止するために重要である。
【0012】
ここで、理解されるように、過去、数年間にて生じたことは、蓄電池が、自動車にて使用されるときに曝露されるフード下方の温度が顕著に上昇することである。勿論、フード下方の温度は、より熱い天候のとき特に高い。ある自動車メーカは、かかる熱い天候のとき、フード下方にてSLI蓄電池が曝露される温度は新品の自動車にて約51.7℃(125°F)から約73.9℃(165°F)から87.8℃(190°F)まで上昇することを認識している。
【0013】
関係する比温度の上昇は特別に重要ではない。かかるフード下方の温度が実際に上昇することが重要である。車の使用中、フード下方の温度上昇が故障モードに与える影響は、蓄電池の過早故障の発生を著しく増大させることである。この陽極格子の過度の腐食に起因する蓄電池の過早故障の発生は重大である。
【0014】
ラオ(Rao)への米国特許第5,298,350号に開示された陽極格子合金を利用することで技術的革新が実現された。かかる陽極格子合金を利用することは、作用寿命を大幅に向上させ且つ主要な故障モードである高温度における過早の陽極格子腐食を効果的に解消する蓄電池を提供することになった。
【0015】
当該ラオの特許は、利用される陽極格子合金、すなわちカルシウム−錫銀鉛系合金の型式の点にて強い関心を集めた。このため、合金を形成する組成の色々な量にて色々な性質を試験することにより、この型式の合金を検討する顕著な努力が為された。
【0016】
しかし、この努力にも拘らず、向上した電気的性能を保ちつつ、鉛酸蓄電池にて優れた高温度耐食性を有するこの型式の陽極格子合金は実現されていない。このため、この型式の陽極格子合金を使用することに起因する電気的性能は確かに受容可能であろうが、改良された電気的性能を実現することが極めて望ましいであろうと考えられる。
【0017】
この合金は、所望の使用寿命の全体に亙って電気的コンダクタンスを得るため、十分な接触状態を維持しなければならない。さもなければ、電池は、「容量の過早損失」(「PCL」)と称される状態を経験することになろう。
【0018】
また、腐食層の亀裂又は腐食層にて発生された非導電性膜に起因して、接触を失うことによりPCLが生ずる可能性もある。このことは、複雑さ及び顕著な潜在的悪影響のため、その他の必要な性能基準と組合せて実現することが難しい性能基準である。
【0019】
このように、この分野にて全ての従来の努力にも拘らず、優れた高温度耐食性を改良された電気的性能と組合せる陽極格子合金を提供することが必要とされている。
【0020】
従って、本発明の一目的は、改良された電気的性能を提供しつつ、優れた高温度耐食性を有する、鉛酸蓄電池に対する陽極板用の鉛系合金を提供することである。
【0021】
本発明の別の目的は、従来から使用されている技術により、また、従来の鉛酸法及び組立にて使用することを許容すべく満足し得る機械的性能を有する格子となるように鋳造した合金を提供することである。
【0022】
本発明の別の目的は、SLI鉛酸陽極格子に対する多岐に亙る性能基準を満足させつつ、所望の耐食性及び電気的性能の特徴を実現する陽極格子合金を提供することである。
【0023】
本発明のその他の目的及び有利な点は、本発明の以下の説明から理解することができる。
【0024】
【発明の簡単な概要】
一般に、本発明は、使用中、鉛系カルシウム−錫銀合金を使用して形成された陽極格子上に形成される腐食層は、性質の極めて望ましい組合せを実現し得るように、所望通りに改変することができるとの知見に基づく。より具体的には、合金を形成する成分のそれぞれの量を共に入念に調節することにより、優れた高温度の耐食性を維持し、しかも向上した電気的性質を与え且つ満足し得る機械的性質を有する合金を提供することができる。このため、約0.02%から約0.06%、好ましくは、0.025%から0.045%のカルシウム、約0.2%から約3.0%、好ましくは、約1.0%から3.0%、より好ましくは、約1.5%から約3.0%の錫、約0.01%から約0.02%の銀を有する(その%は、合金の総重量に基づくものとする)鉛系合金は、これらの望ましい特徴を有することが判明した。選択的に、本発明の合金は、重量比で約0.03%から0.04%のアルミニウムを含むことができる。
【0025】
特に、驚くべきことは、鉛系カルシウム−錫銀合金が広く使用され且つ研究されているにも拘らず、合金を形成する成分の量を調和させれば、これら合金の望ましい特徴を維持し、しかも、向上した電気的性能を実現することが可能であることは理解されていなかった。
【0026】
【好ましい実施の形態の説明】
本発明の合金にて利用される合金を形成する成分の各々は、合金の全体的な性能に寄与するが、これらの成分が本明細書に記載された量にて全体的に使用されるとき、共同作用が実現されるから、合金を形成する成分によって個々に提供される有利な点を抽出することは難しい。このため、合金を形成する成分の適正な量が維持されたときに得られる慎重な均衡状態がある。この均衡を覆すならば、所望の特徴の多くに影響を与える可能性がある。しかし、合金を形成する成分の色々な量を選ぶときに伴う条件を理解するため、これら成分の各々の作用について別個に説明する。
【0027】
1つの合金成分としてのカルシウムに関して、本発明の鋳造格子に対し所望の鋳造特徴及び機械的性質を与えるのに十分な量にてカルシウムが存在しなければならない。かかる特徴を実現するためには、カルシウムの含有率は全合金の重量比で少なくとも0.02%でなければならないことがわかった。
【0028】
しかし、固化後、不当に再結晶化し易く、鋳造直後の構造体を顕著に変化させる合金組成を提供することとなる過剰な量を回避し得るようにカルシウムの量を慎重に制御しなければならない。より具体的には、カルシウムの含有率が過剰であるとき、固化後、再結晶化の傾向が生じ、極めて不規則的な粒子間の腐食に起因する過早故障を不当に生じ易い格子構造体を形成することになる。このように、腐食は粒子間腐食を通じて生じ、再結晶化された合金は、より小さい粒子を有する傾向となる一方、該粒子は、新たに再結晶化された粒子境界内のカルシウム系異種金属介在物が多いため、粒子間腐食を生じさせ易い。
【0029】
従って、再結晶化の傾向を増すカルシウムの量を回避しつつ、十分な機械的性質を与えるため、本発明の合金にて、重量比で総合金の約0.02%から0.06%の範囲のカルシウムが適していることがわかった。より具体的には、カルシウムの含有率は、約0.025%から約0.045%、更に、0.05%もの範囲となる。これらのより好ましいカルシウムの含有率は、本発明に従って利用するその他の合金を形成する成分の相対量を特に考慮するならば、形成される合金の再結晶化の傾向を最小にする点にて特に望ましいものである。
【0030】
銀成分に関して、この銀成分は、その他の合金を形成する成分と協働して、形成される合金に対し必須の鋳造及び機械的性質の特徴を提供する。より具体的には、適正な量にて存在する銀は、さもなければ、その他の合金を形成する成分を使用して提供することのできない極めて望ましい機械的性質を形成される合金に与えることになる。
【0031】
このように、重量比で総合金の少なくとも約0.01%の量の銀を含めることは、望ましい鋳造及び機械的性質を提供することがわかった。銀を含めることの1つの重要な面は、形成される合金を熱処理して、これらの合金を使用して作られた格子の機械的性質を更に向上させることが可能な点である。かかる熱処理による改良は、適正な量の銀を保持しないカルシウム−錫鉛系合金では得られないものである。
【0032】
更に、銀の適正量は、かかる合金をエージングに対して安定化される傾向がある。このため、十分な量の銀が存在しないとき、カルシウム−錫鉛系合金は、エージングしたならば、その望ましい機械的性質を失い易い。かかる機械的性質の顕著な損失は、多くの用途用の陽極格子合金にとって許容し得ないことである。
【0033】
更に、本発明によれば、典型的に、この型式の商業用合金にて採用される量よりも少ない銀の量を選ぶことは、カルシウム及び錫の量が適宜に選んだ量にて得られる限り、本明細書に記載したその他の望ましい陽極格子の特徴を維持しつつ、改良された電気的性能を実現することがわかった。
【0034】
従って、銀の含有率は、重量比で総合金の約0.02%以下でなければならない。好ましい組成は、約0.015%から0.02%の範囲の銀を含む。
銀の量を少なくすることによって得られる追加的な有利な点は、リサイクル上の問題点も同様に軽減し得ることである。このように、最も経済的なことに、鉛酸合金は二次的な鉛を使用して形成される。銀の除去は一般に、経済的ではないため、銀は二次的な鉛の供給元に堆積する傾向となる。従って、銀の含有率を低下させることは、このような銀の堆積という問題点を最小にする。また、いくつかの電池の設計における銀は、いくつかの用途、特に、蓄電池ペーストを形成するため使用される酸化物にてガス抜き及び電池の乾燥化という問題点に起因して、汚染物とみなされる。
【0035】
錫組成に関して、問題は更により複雑となる。このため、錫の量は、格子が鋳造されるときの特徴及び鋳造された格子の機械的性質に確実に影響を与える一方、錫の量は、また、腐食、リサイクル、及び容量損失特徴という問題に影響を与えよう。これらの多岐に亙る性能基準は、完全に理解されておらず、この分野における従来の研究にも拘らず、鉛酸蓄電池の特徴に対する錫の量の影響は、有意義な程度まで解明されていないと考えられる。
【0036】
しかし、本発明によれば、重量比で総合金の約0.2%から約3.0%の範囲の錫を含めることは、合金及びこの合金を使用して形成された格子に対し、また、かかる合金が適正なカルシウム及び銀の量を保持するとき、陽極格子に対しかかる合金を使用する蓄電池に対し望ましい特徴を与えるであろうことが判明した。より具体的には、重量比で合金の約1.0%から約3.0%、より好ましくは、1.5%から3.0%の範囲の錫を維持することが好ましい。
【0037】
採用される錫の量は経済的な考慮によって決定され、0.5%から1.0%の錫の量がより望ましい。このことは、受容可能な作用寿命が2から5年の範囲にある場合、特にそうである。より多量の錫を使用することは作用寿命を長くし、より長い作用寿命が所望である用途にて望まれる。しかし、錫の量が2.5%から3.0%の量まで増大するならば、格子を鋳造することはより困難となろう。
【0038】
このように、好ましい実施の形態において、合金は、基本的に、鉛、カルシウム、錫、及び銀から成っている。しかし、所望であるならば、合金は合金からのカルシウムの浮きかすを防止する効果のある量のアルミニウムを含むことができる。アルミニウムは、約0.003%から0.04%の範囲の量にて存在するようにすることができる。
【0039】
好ましくは、上述した以外の成分は、合金から排除するか、又は典型的に、商業的に入手可能な金属にて存在する量のような微量にのみ存在するようにする。勿論、合金の有益な性質がその成分の添加によって妨害されないことを条件として、所望であるならば、合金にその他の成分を追加してもよい。
【0040】
合金は、均質な混合体が実現される迄、約800°Fから950°F(426℃から約510℃)の温度にて成分を混合させ且つ成分が冷却するのを許容することにより、製作されることが好ましい。本発明の合金が製作される特定の方法は、本発明の一部を構成するものではない。任意の所望の技術を使用することができ、適宜な技術は既知である。
【0041】
本明細書に記載された合金は、鉛酸格子用として使用される任意の既知の技術によって鋳造し格子にすることができる。このように、従来の重力鋳造技術が当該技術分野にて既知であり且つ使用可能である。鉛酸格子を鋳造するその他の既知の技術は、錬鉄膨張金属技術を採用し、又は押抜き等によって格子が形成されるストリップを利用することを含む。かかる技術は、同様に、特定の用途に望まれるように使用することができる。
【0042】
格子の鋳造パラメータに関して、温度勾配の発生を解消しないまでも、少なくとも最小限にすることが好ましい。この目的のため、その他のカルシウム鉛系合金の鋳造と相違して、固化する間の鉛の過早冷却及び関係した温度勾配の発生を防止すべく、上方フレーム及び湯口領域にてより多くの絶縁効果(例えば、従来のコーキングによって得られるもの)を提供しつつ、より低温の鉛温度及びより高温の金型温度を採用することが好ましい。好ましい鉛/とりべ温度は、約410℃から約426.7℃(約770°Fから800°F)であり、金型温度は約176.7℃から約301.7℃(約350°Fから575°F)、より好ましくは、約246.1℃から約301.7℃(約475°Fから約575°F)である。更に、格子の製造工程中、選ばれたカルシウムの含有率が維持されるように工程が安定していることが重要である。このように、特に、アルミニウムが利用されるとき、汚染物を防止することが重要である。
【0043】
本発明は、冷間圧延合金ストリップに対し、又は連続鋳造法又は任意のその他の格子製造法用のストリップを提供する任意のその他の方法に対し等しく効果的である。このように、本発明の最も好ましい方法は、最初に、所望の厚さに直接鋳造された合金ストリップを提供することを含む。合金ストリップの厚さは、特定用途の使用寿命及びその他の条件を満足させ得るように変更することができる。一般に、当該SLI鉛酸蓄電池の用途において、ストリップの厚さは、約0.508mm(約0.020インチ)から約1.524mm(約0.060インチ)の範囲で変更することができる。何れの場合でも、重量比鋳造格子の場合と比較して、格子当たりの合金重量は、使用中の満足し得る性能を実現しつつ、本発明の方法にて著しく少なくすることができる。このように、原材料を顕著に節約することができる。
【0044】
本明細書で使用するように、「直接鋳造する」という用語は、溶融鉛合金から陽極格子を製造するのに望まれる厚さとなるように、直接鋳造された連続ストリップを意味するものとする。このように、この鋳造方法は、鋳造厚さから陽極格子を製造するのに望まれる厚さまで冷間圧延し又はその他の薄厚化を行うことを含まない。溶融した鉛系合金から適宜に直接鋳造した合金の連続ストリップを製造する装置は、商業的に入手可能である(カナダ、トロントのコミンコ(Cominco)リミテッド)。ヴィンチュ(Vincze)らへの米国特許第5,462,109号には、直接鋳造ストリップを製造する方法が開示されている。
【0045】
次に、この直接鋳造したストリップは、既知の膨張金属製造技術によって変換し、陽極鉛酸蓄電池板に変換するのに適した膨張鉛系合金格子の連続的な供給源を実現することができる。一般に、既知であるように、これらの工程は、最初に移動する合金ストリップを切断し、次に、剪断することを含む。
【0046】
陰極格子の製造に関して既知であるように、剪断は長手方向の移動方向に行われ、スリットが存在しない横端縁が残るようにする。SLI陽極板の場合、連続鋳造されたストリップは、例えば、幅が約76.2mm(約3インチ)から約10.2−12.7cm(約4−5インチ)、好ましくは、約10.2cm(約4インチ)とすることができる。このようにして、ストリップは、分当たり約12.2から36.6m(約40から120フィート)の速度にて剪断し且つ膨張させて、耳状突起が膨張したストリップの中心を向いた状態にて横方向に並んで配置された格子を形成することができる。
【0047】
上述したように、本発明にて使用されるカルシウム−錫銀鉛系合金は、改良された機械的性質を提供し得るように熱処理することができる。任意の熱処理技術を使用することができる。一例として、形成される格子を100℃(212°F)の温度にて約3時間、熱処理することが適当であることがわかった。かかる熱処理は、約24.1から27.6MPa(約3500から4000psi)のレベルの降伏強度を約41.4MPa(約6000psi)程度以上の降伏強度にまで増大させることができる。
【0048】
特定の格子の形態及びかかる陽極格子が使用される鉛酸電池及び蓄電池の形態は、所望に応じて変更することができる。多くの形態が既知であり且つ使用可能である。
【0049】
一例として、図1及び図2には、本発明を具体化する陽極格子を利用するメンテナンスフリー蓄電池が図示されている。このように、容器12と、1対の側部端子ポスト14と、従来の手段によって容器に密封されたカバー16とを備えるメンテナンスフリー蓄電池10が図示されている。容器は、複数の電池に仕切られており、1つの電池の一部分は図2に図示されている。1つの蓄電池要素がこれら電池の各々内に配置されている。蓄電池要素は、複数の電極と、隔離板とを備えており、陽極格子の1つは、全体として参照番号18で示してある。陰極格子は、同一又は同様の構造であるが、任意の所望アンチモン無し合金にて形成される。図示した電極は、一体形の耳状突起22を有し且つ活性材料層がペースト付着された支持格子構造体20と、それぞれの陽極格子及び陰極格子の耳状突起22を共に接続するストラップ24とを備えている。
【0050】
電池間コネクタが全体として参照番号26で示されており、また、ストラップ24の一部を形成する「トゥームストーン」28を有している。ストラップ24は、既知であるように、構成要素を1つの要素に組立るとき、格子の耳状突起22に融着させることができる。端子14は、同様に、組立中、別個のストラップ24を通じて支持格子構造体20に電気的に接続され、また、端子の基部は、ストラップ24の一部を形成する。発生したガスが溢れた電解質SLI蓄電池内にて逃げるのを許容するため適宜なマニホルド排気システムが参照番号34で示してある。多くの満足し得る排気システムが周知である。更に、米国で製造された現在のメンテナンスフリー蓄電池の全ては、典型的に、難燃防爆型の排気口の設計を利用する。
【0051】
蓄電池の特別な設計の形態は、所期の目的に合うように所望に応じて変更することができる。本明細書に記載された陽極格子は、任意の型式及び寸法の自動車用鉛酸蓄電池にて好ましく利用することができる。例えば、本発明の蓄電池格子は、米国特許第4,645,725号に示されたもののような二重端子蓄電池にて好ましく使用することができる。同様に、側部端子を有する蓄電池を一例として説明したが、本発明の蓄電池は頂部端子蓄電池を備えることもできる。
【0052】
陽極格子の厚さは、特定作用寿命及び特定所望定格容量にとって望まれるように変更することができる。しかし、任意の所望厚さの陽極格子の場合、本発明の格子を利用する蓄電池は、従来から使用されている連続鋳造方法にて形成された陽極格子を有する従来のメンテナンスフリー蓄電池と比べて改良された電気的性能の特徴を蓄電池に与える。一般に、本発明の蓄電池における格子の厚さは、殆どの用途に対し約30から約75ミルの範囲にて変化可能であることが望ましい。これらの格子の厚さは、単に一例であるとみなすべきである。
【0053】
既知であるように、格子に対し多数の異なる形態が存在する。いくつかの用途に対し且つ工程管理を補足し、また、亀裂、割れ、空隙等を最小にするため、本発明の譲受人に譲渡された、1997年9月8日付けで出願されたラオによる同時出願の特許出願第08/925,543号に開示されたような最適化した内部陽極格子線の幾何学的形態を利用することが望ましい。このように、上記出願明細書の7頁、14−15行に記載され且つ図6及び図7に図示されているように(その開示内容は参考として引用し本明細書に含めてある)、全体として円筒状又は楕円形断面の陽極格子内部形態は、格子を鋳造する間、均一な固化を容易にし、また、鋳造欠点を解消しないまでも、最小にするのに役立つ。
【0054】
上述したように、本発明は、改良された電気的性能を実現すべく調整された腐食層を提供する。一般に、このことは、より高度又はより最適な製造効率を特徴とする電池及び蓄電池を提供することになる。このことは、使用される前、待機する間及び使用中、より厳格でなく且つ迅速な製造工程を許容し、初期電気的性能を向上させ且つ改良された特徴を実現することにつながる。改良の程度は、勿論、相違するが、改良された製造効率は、蓄電池の寿命の全体に亙って多くのシステムにて極めて有益である。
【0055】
このように、SLI蓄電池の期待された性能の1つの表示として、製造中に形成された改良した腐食層の結果、より大きい銀含有率(例えば、250又は350ppm)の陽極格子を使用する同一の蓄電池よりも5%、更に8%又は10%、多分15%ほど上回る増大した残留予備容量を得ることができる。
【0056】
VRLA電池及び蓄電池の改良の程度は、同様に、初期放電容量の点にて少なくとも5%向上させることができる。10%、又は更に15%までの更なる改良が実現可能である。
【0057】
この改良された初期電気的性能の重要性は有意義である。これは、蓄電池が所望の性能を実現することを保証するためにしばしば試験が行われる段階である。従って、必要な性能レベル以下の場合、かかる蓄電池は満足し得ないと不正確に判断される一方、相当な使用後の試験は満足し得る性能を備えることを示す。
【0058】
本発明により実現される改良された製造効率は、同様に、待機時(又は貯蔵時)の問題点を考慮したとき有益である。製造効率の低い蓄電池はより早く腐食し易く、最終的に使用したとき、又はその後に問題点を生じさせ易いから、使用前、蓄電池を長期間貯蔵することは製造効率の点にて利益をもたらす。
【0059】
同様に、改良された製造効率は、使用中の性能が一層均一となることにつながる。換言すれば、その他の全てのパラメータが等しいならば、本発明よる蓄電池は、蓄電池間の性能の変動が少ない。
【0060】
以下の実施例は本発明を更に示すものであるが、勿論、いかなる意味でもその範囲を限定するものであると解釈すべきではない。これらの実施例に掲げた数学的性質は以下の方法を使用して決定したものである。
【0061】
極限引張り強度(UTS)
降伏強度(降伏圧)(0.2%の外れ)
歪み(伸び)
靭性
これらの性質はASTM試験第D638号に従って試験したものである。
【0062】
これらの一例に記載した合金の組成は、鋳造合金に基づいて決定したものである。
実施例1
この実施例は、一定のカルシウム含有率を維持しつつ、銀及び錫の含有率を変化させて、鉛系合金を鋳造する場合を示す。
【0063】
金型を約350°F(176℃)に保ちつつ、合金混合体を850°F(454.44℃)にて使用して、棒材(12.5mm×6.35mm×101.6mm(0.5インチ×0.25インチ×4.0インチ))を重力鋳造した。
【0064】
表1には、鋳造したそれぞれの合金組成が掲げてある。
【0065】
表 1
Figure 2004527066
【0066】
実施例2
この実施例は、実施例1の合金AからDを使用して得られた鋳造棒材の機械的性質を示す。
【0067】
かかる合金の機械的性質を試験し、その結果が表2に掲げてある。
【0068】
【表1】
Figure 2004527066
【0069】
0.04%Ca、0.0165%Ag、3.0%Sn
0.039%Ca、0.0366%Ag、3.0%Sn
0.038%Ca、0.045%Ag、3.0%Sn
0.040%Ca、0.045%Ag、2.0%Sn
実施例3
この実施例は、実施例1にて説明した合金のエージング及び熱処理の効果を示すものである。
【0070】
実施例1の合金は、3日間、周囲温度に保たれるようにした。実施例2にて評価した機械的性質を、再度、合金のエージングについて評価した。熱処理の効果を評価するため、合金は、93℃(200°F)にて1時間及び93.33℃(200°F)にて3時間、加熱炉内で熱処理した。
【0071】
表 3
Figure 2004527066
【0072】
上記に示すように、熱処理は、これらの合金の機械的性質を顕著に向上させる働きをする。
【0073】
実施例4
次の実施例には、銀の量が合金の性質に与える影響が示してある。
次の組成を有する1つの合金、すなわち合金Eを製作した。
【0074】
表 4
Figure 2004527066
【0075】
このように、銀の濃度を0.006%に減少させた点を除いて、合金Eは合金(D(すなわち、0.049%Ca、0.045%Ag、2。0%Sn)と比較可能であった。
【0076】
合金Eに対し上述した試験を行い、次の結果が得られた。
【0077】
表 5
Figure 2004527066
【0078】
理解し得るように、合金Eの機械的性質は、合金Dの機械的性質よりも著しく劣るものであった。
【0079】
実施例5
この実施例は、種々組成の機械的性質評価を示す。
ASTM試験棒材(実施例1にて説明)は100℃にて3時間、熱処理した。降伏強度は、錫の含有率にて決定し、図3に示すように、立体的な図にてグラフで示してある(5つの試料の平均値として)。
【0080】
これらの結果は、不当に少量のカルシウムを有する合金は、錫含有率に関係なく満足し得ない機械的性質を生じさせることを示す。しかし、一度び適宜な銀の量、すなわち0.015重量%が導入されたならば、許容可能な降伏強度を有する格子が得られ、錫の含有率が0.5重量%から3.0重量%まで増大すると、強度レベルは増す。使用した合金の銀の量を0.015重量%から0.030重量%に、更に、0.045重量%まで増大させても、機械的性質は何ら有意義に向上しない。実施例4を参照することにより、満足し得る機械的性質を得るためには、重量比で0.006%の銀の含有率では不十分であることが分かる。
【0081】
実施例6
この実施例には、種々の合金組成の陽極格子を使用することが弁調節式鉛酸(すなわち、封止型)電池の初期放電容量に与える効果が示してある。
【0082】
各々、160アンペア時の定格容量を有する6つの電池ストリング(すなわち、12ボルト)を組立た。電池の各々は、5つの正(格子の重量−404g及び正活性材料580g)及び6つの負(格子の重量−254g及び活性材料530g)を含むものとした。
【0083】
次に、C/5率(すなわち、1つの電池当たり32Amp放電から1.0ボルト)にて放電容量を測定した。その結果は図4に示してある。
そのグラフから理解し得るように、銀を含まない合金から製造された陽極格子を有する電池の初期容量を10%増大させることができた。同様に、利用される銀の量のとき、錫の含有率を0.5重量%から3.0重量%まで増大させても電気的性能は改良されなかった。
【0084】
このように、このデータは、改良された電気的性能を実現しつつ、満足し得る機械的性質を得ることができる銀の量(250ppm以下)が存在することを示す。
【0085】
実施例7
この実施例7は、種々の合金形態の陽極格子を使用して製造された蓄電池の残留予備容量に与える効果を示す。
【0086】
11の板(正6、負5)を有するBCI群25の蓄電池を使用した。次の放電方法を使用して製作した。すなわち、22アンペア×4.5時間、その後、8アンペア×16時間。総アンペア時入力は227とした。
【0087】
次に、蓄電池の各々に対し分単位で残留容量RCを測定した。試験手順は、蓄電池の電圧が7.2ボルトに低下する迄、25アンペアにて放電することを含むものとした。その結果のグラフは、図5に示してある(それらの結果は、15個の蓄電池の平均値である)。理解し得るように、銀を全く含有せず又は銀の含有率が0.015重量%の何れかの合金にて製造された格子を利用する蓄電池は、ほぼ同一の容量となる。更に且つ重要なことは、かかる蓄電池は0.035重量%の銀を有する合金にて製造した陽極格子を有する蓄電池と比べて約11%の改良を示すことである。
【0088】
更に、これらの結果は、実施例6の結果を補足するものである。このように、残留容量が改良されることは、実際に、電気的性能を向上させることができる(より高銀含有率の合金に比して)銀の量があること及び減少した量は合金に対し必要な機械的性質を提供することを確認するものである。
【0089】
実施例8
この実施例は、色々な段階にて、すなわち、乾燥製作前(「DUF」)、製作後(「製作された」)、BCI手順後(残留RCI、すなわち製作後の第一のRC、その後のCCAI(すなわち冷間クランキング)、RC2、CCA−2、RC−3、次に、20時間の容量)(「BCI」)、銀を追加し且つ銀を追加しない場合の色々なCa−錫鉛系合金の腐食層の蓄積を検査するものである。
【0090】
使用した蓄電池は、実施例にて説明したものとした。3つ又は4つの蓄電池腐食層の厚さは、SEM(走査電子顕微鏡)を介して測定し、実際の測定範囲は図6に4つの合金組成の各々に対する平均値として棒グラフの形態で示してある。
【0091】
DUF及びBCI結果は、特に有用であると考えられる。このため、銀の量を減少させれば、腐食層の形成が向上すると考えられる。銀の含有率の減少に起因して腐食層の形成が速くなれば速い程、かかる銀の含有率が減少したこの型式の合金により実現される電気的性能は向上することになる。
【0092】
実施例9
この実施例9は、正電極にて酸素過電圧に対して合金組成の効果を測定するためカルシウム−錫銀系合金の試験を示す。
【0093】
試験装置は図7に示してある。使用した合金の各々は線となるように鋳込み且つエポキシー樹脂内でポット成形し、0.3μmの程度に研磨した。研磨表面は、0.164平方センチとした。図7に示した概略図において、全体として参照番号50で示す試験した合金線は、全体として、小型の反応容器54内に配置された、参照番号52で示す、1.310比重の硫酸内に浸漬させた。図示するように、参照電極(水銀−硫酸第一水銀)56を相手方電極50に隣接する硫酸溶液中に浸漬させた。
【0094】
線を5mA/平方cmにて、45分間、陽極処理した。次に、参照規模の電圧を1.6Vから1.2Vにて印加し、印加する間の酸素のガス抜き電流を記録した。
【0095】
結果は、25℃(78°F)にて行った試験に関して図8に示してある。理解し得るように、錫の含有率が合金重量の1.5%から2.5%錫まで増大したとき、錫の含有量の増加に伴いガス抜きの程度が低下した。錫の量を更に増大させると、ガス抜きの程度は増大し始める。
【0096】
錫量が適正であるかかる合金の性能は、正極におけるガス抜きの程度が不当に過度にならないことを実証する。従って、かかる合金は、実質的に全てのアンチモンを含有する合金の場合にそうであるように、負の電極に害を与えることはないから、本発明の合金は、ガス抜き及び熱の放散の傾向を伴うことなく使用することができるはずである。
【0097】
このように、理解し得るように、本発明の合金は、VRLA移動用電力及び静止型の用途に対して必要とされる多岐に亙る性能基準を満足させる。鋳造の特徴は満足し得る。機械的性質は優れ、重要なことは、エージングしたとき、かかる望ましい性質が不当に失われ易くないことである。同様に、かかる合金で出来た正電極は、所望用途にて使用されるVRLA電池に十分な電気的性能を与える。
【0098】
更に、理解し得るように、これらの結果は同様に、SLI蓄電池に適用可能である。このため、ガス抜きの特徴の観点から見て、錫の含有率が重量比で2.0%から2.5%の範囲のとき、改良された性能が実現される。
【0099】
実施例10
この実施例は、本発明の陽極格子電池を使用する電池の性能をその他の陽極格子合金の性能と比較し、また、格子の成長特徴を格子のミクロ組織と比較した結果を示す。
【0100】
試験した電池は、以下に説明する種々の合金で出来た陽極格子を使用して組立た。一般に、試験した電池は次のような特徴を持つものとして説明することができる。すなわち、ガラス隔離板を有する5つの陽極板及び6つの負板(カルシウム−鉛合金)と、難燃性ポリプロピン容器とを備える200アンペア時VRLA電池を97から98%飽和レベルにて作動するように設定したものである。
【0101】
電池の浮動挙動は、約115日後、60℃及び65℃の空気加熱炉内で1つの電池当たり2.23ボルトにて6つの電池(12ボルト)ストリングを浮動させることにより測定した。図9は電流対日数のグラフであり、陽極格子合金1を使用する電池ストリングの浮動挙動と商業的に使用されるカドミウム−アンチモン−鉛陽極格子合金(「従来技術」)を使用する電池ストリングとを比較するものである。各々の浮動挙動は許容可能であると考えられる。
【0102】
色々な陽極格子合金を使用する追加的な電池ストリングを格子の成長及び腐食について評価した。使用した色々な合金は以下の表6に説明する。
【0103】
表 6
Figure 2004527066
【0104】
図10及び図11には、12週間、60℃に保った空気加熱炉内で1つの電池当たり約2.23ボルトにて浮動させた後の格子成長グラフが示してある(図10は格子の幅の成長を示し、図11は高さの成長を示す)。理解し得るように、銀を含有する陽極格子を有する電池中の陽極格子の格子成長特徴は、陽極格子が同一の錫の含有率を有するが、銀を含まないものよりも優れたものであった。すなわち、G対F、I対H、K対Jの比較である。更に、銀及び錫の含有率が2から3%の範囲の陽極格子合金が好ましいと考えられる。
【0105】
図12には、作製後、識別した色々な合金から製造されて、格子の成長試験に関して以前に識別した条件下にて、12週間浮動させた後の陽極格子の格子腐食特徴が示してある。この場合にも、陽極格子合金中に銀を含む有益な効果を理解することができる。
【0106】
また、色々な合金を使用する陽極格子のミクロ組織も検査した。従来技術の合金にて製造した陽極格子における試験条件下で顕著な粒子間腐食が生じた。これに反して、合金I及び合金Kにて製造された陽極格子にて生じた一次腐食は均一であり、粒子間腐食は何ら観察されなかった。
【0107】
全ての格子における一次的効果は、合金I、Kを使用したときに生じる多少の空隙及び割れを伴う亀裂であった。かかる欠点は、本明細書に上記に説明したように、工程の設計によって満足し得るように制御可能であると考えられる。
【0108】
このように理解し得るように、比較的低レベルのカルシウム及び高錫含有率と組み合わさった極めて特定的な範囲の比較的低銀含有率を有する合金で出来た陽極格子を利用する結果、高及び低放電率にて全体として増大した電気的性能を有する鉛酸電池及び蓄電池が得られる。有意義であると考えられるこのような向上した電気的性能の結果、同時に、この型式の合金の顕著な利点を維持しつつ、高及び低放電率にて増大した電力、比エネルギ、体積エネルギ密度及び重力エネルギ密度を有する蓄電池が得られる。何らかの理論に縛られることを望むものではないが、向上した電気的性能は、使用中、改良された導電率を有する腐食層が形成されることに起因すると考えられる。従って、格子部材と正電極の活性材料との境界面に存在する腐食層を調節すれば、かかる層の導電率が向上し、これにより増大した容量となると考えられる。
【0109】
本発明の特定の実施の形態を示したが、勿論、特に上記の教示内容に鑑みて、当該技術分野の当業者により改変例が具体化可能であるから、本発明は、これらの実施の形態にのみ限定されるものではないことが理解されよう。このように、SLI蓄電池に関して本発明を説明したが、本明細書に開示された合金は、例えば、双極型等を含む任意のその他の鉛酸電池又は蓄電池にて使用可能であることを理解されたい。
【図面の簡単な説明】
【図1】本発明のメンテナンスフリー蓄電池の斜視図である。
【図2】本発明に従って、合金組成を利用して形成された蓄電池陽極格子を示す、図1のほぼ線2−2に沿った断面図である。
【図3】色々な合金組成の降伏強度を示す立体棒グラフである。
【図4】色々な合金組成を有する陽極格子を使用して実現された初期放電能力を示す棒グラフである。
【図5】陽極格子の合金組成が変化するときに実現される残留予備容量を示す棒グラフである。
【図6】合金含有率が異なる各種格子の公称腐食層を示す棒グラフである。
【図7】正電極のガス抜きに対する合金組成の影響を評価するために使用される装置を示す概略図である。
【図8】合金組成が酸素過電圧に与える影響を示す棒グラフである。
【図9】2つの合金に対する高温時における浮動挙動を示す電流対時間のグラフである。
【図10】格子の合金組成が変化するとき、高温浮動状態下における正電極の幅の成長を示す棒グラフである。
【図11】格子の合金組成が変化するとき、正電極の格子の長さの成長を示す点を除いて、図10と同様の棒グラフである。
【図12】格子の合金組成が変化する場合、高温度にて形成し且つ浮動するとき、陽極格子の腐食状態の変化を示す棒グラフである。

Claims (10)

  1. 容器と、該容器内に配置された少なくとも1つの陽極板及び負板と、該容器内に配置されて該陽極板及び負板を分離させる隔離板と、電解質とを備える鉛酸蓄電池において、前記陽極板がペースト付着された活性材料層を有する格子支持構造体を備え、該格子支持構造体が、実質的に、鉛と、前記鉛酸合金の総重量に基づく%としたとき、約0.02%から約0.06%のカルシウムと、約0.2%から約3.0%の錫と、約0.01%から約0.02%の銀とから成る鉛系合金を備える、鉛酸蓄電池。
  2. 請求項1の蓄電池において、前記鉛系合金のカルシウム含有率が約0.25%から約0.045%の範囲にある、蓄電池。
  3. 請求項1の蓄電池において、前記鉛系合金の錫含有率が約0.5%から約2.0%の範囲にある、蓄電池。
  4. 請求項1の蓄電池において、前記鉛系合金の銀含有率が約0.015%から約0.02%の範囲にある、蓄電池。
  5. 請求項1の蓄電池において、前記蓄電池の残留容量が、陽極格子合金の重量に基づく銀の含有率が約0.035%であるカルシウム−錫銀鉛系合金の陽極格子を有する蓄電池における値よりも少なくとも5%大きい、蓄電池。
  6. 請求項1の蓄電池において、前記蓄電池の残留容量が、陽極格子合金の重量に基づく銀の含有率が約0.035%であるカルシウム−錫銀鉛系合金の陽極格子を有する蓄電池における値よりも少なくとも8%大きい、蓄電池。
  7. 請求項1の蓄電池において、前記蓄電池の残留容量が、陽極格子合金の重量に基づく銀の含有率が約0.035%であるカルシウム−錫銀鉛系合金の陽極格子を有する蓄電池における値よりも少なくとも10%大きい、蓄電池。
  8. 格子支持構造体と、ペースト付着された活性材料層とを備える鉛酸電池又は蓄電池用の陽極板において、該格子支持構造体が、実質的に、鉛と、前記鉛酸合金の総重量に基づく%としたとき、約0.02%から約0.06%のカルシウムと、約0.2%から約3.0%の錫と、約0.01%から約0.02%の銀とから成る鉛系合金を備える、陽極板。
  9. 請求項8の陽極板において、前記鉛系合金のカルシウム含有率が約0.025%から0.045%の範囲にあり、前記鉛系合金の錫の含有率が約1.0%から約3.0%の範囲にあり、前記鉛系合金の銀含有率が約0.015%から約0.02%の範囲にある、陽極板。
  10. 基本的に、鉛と、前記鉛系合金の総重量に基づく%としたとき、約0.02%から約0.06%のカルシウムと、約0.2%から約3.0%の錫と、約0.01%から約0.02%の銀とから成る鉛系合金を備える、格子支持構造体を有する陽極板を製作することと、該陽極板を組立て鉛酸蓄電池とすることとを備える、SLI鉛酸蓄電池の電気的性能を向上させる方法。
JP2002520325A 2000-08-11 2001-08-09 鉛酸蓄電池及び陽極板並びにそれら用の合金 Pending JP2004527066A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63814100A 2000-08-11 2000-08-11
PCT/US2001/024881 WO2002015296A2 (en) 2000-08-11 2001-08-09 Lead-acid batteries and positive plate and alloys therefor

Publications (1)

Publication Number Publication Date
JP2004527066A true JP2004527066A (ja) 2004-09-02

Family

ID=24558810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002520325A Pending JP2004527066A (ja) 2000-08-11 2001-08-09 鉛酸蓄電池及び陽極板並びにそれら用の合金

Country Status (10)

Country Link
EP (1) EP1325523A2 (ja)
JP (1) JP2004527066A (ja)
KR (1) KR20030020981A (ja)
CN (1) CN1468454A (ja)
AU (1) AU2001281193A1 (ja)
BR (1) BR0113186A (ja)
CA (1) CA2419248C (ja)
MX (1) MXPA03001297A (ja)
NZ (1) NZ524659A (ja)
WO (1) WO2002015296A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060926A1 (en) 2007-11-05 2009-05-14 The Furukawa Battery Co., Ltd. Method for producing lead-base alloy grid for lead-acid battery
JP2009117103A (ja) * 2007-11-05 2009-05-28 Furukawa Battery Co Ltd:The 鉛電池用鉛基合金基板の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033157A1 (en) * 2002-08-13 2004-02-19 Johnson Controls Technology Company Alloy for battery grids
CN100401935C (zh) * 2002-10-10 2008-07-16 陈有孝 高寒地区太阳能保温靴
EP2287948B1 (en) 2005-05-23 2016-01-06 Johnson Controls Techonology Company Battery grid
US7704452B2 (en) * 2006-02-23 2010-04-27 Rsr Technologies, Inc. Alloy and anode for use in the electrowinning of metals
MX2009009385A (es) 2007-03-02 2009-10-12 Johnson Controls Tech Co Rejilla negativa para bateria.
BR112012022067B1 (pt) 2010-03-03 2022-01-04 Cps Technology Holdings Llc Grade para uma bateria e métodos para fabricação da mesma
US9748578B2 (en) 2010-04-14 2017-08-29 Johnson Controls Technology Company Battery and battery plate assembly
US9761883B2 (en) 2011-11-03 2017-09-12 Johnson Controls Technology Company Battery grid with varied corrosion resistance
CN102427136A (zh) * 2011-12-09 2012-04-25 江苏双登集团有限公司 高温环境下通信用铅酸蓄电池
DE202013012569U1 (de) 2013-10-08 2017-07-17 Johnson Controls Autobatterie Gmbh & Co. Kgaa Gitteranordnung für eine plattenförmige Batterieelektrode eines elektrochemischen Akkumulators sowie Akkumulator
DE102013111667A1 (de) 2013-10-23 2015-04-23 Johnson Controls Autobatterie Gmbh & Co. Kgaa Gitteranordnung für eine plattenförmige Batterieelektrode und Akkumulator
KR101583880B1 (ko) * 2013-12-06 2016-01-08 현대자동차주식회사 배터리기판용 합금
US11936032B2 (en) 2017-06-09 2024-03-19 Cps Technology Holdings Llc Absorbent glass mat battery
CN110970624A (zh) * 2019-06-24 2020-04-07 天能电池(芜湖)有限公司 一种耐高温工况长寿命型铅酸电池板栅合金

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2758940A1 (de) * 1977-12-30 1979-07-05 Varta Batterie Aushaertbare pbcasn-legierung
JPS5774973A (en) * 1979-11-28 1982-05-11 Japan Storage Battery Co Ltd Lead battery with expanded grid
US5298350A (en) * 1991-03-26 1994-03-29 Gnb Incorporated Calcium-tin-silver lead-based alloys, and battery grids and lead-acid batteries made using such alloys
US5434025A (en) * 1991-03-26 1995-07-18 Gnb Battery Technologies Inc. Battery grids and plates and lead-acid batteries made using such grids and plates
US5948566A (en) * 1997-09-04 1999-09-07 Gnb Technologies, Inc. Method for making lead-acid grids and cells and batteries using such grids
DE19823147A1 (de) * 1998-05-23 1999-11-25 Vb Autobatterie Gmbh Elektrodengitter für Bleiakkumulatoren
DK0969108T3 (da) * 1998-06-26 2002-12-02 Johnson Controls Tech Co Legering til gitre til batterier
EP1041164A1 (de) * 1999-03-27 2000-10-04 Accumulatorenwerke Hoppecke Carl Zoellner & Sohn GmbH & Co. KG Bleilegierung für die Herstellung von Bleigittern für Akkumulatoren
US6649306B2 (en) * 2000-01-19 2003-11-18 Rsr Technologies, Inc. Alloy for thin positive grid for lead acid batteries and method for manufacture of grid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060926A1 (en) 2007-11-05 2009-05-14 The Furukawa Battery Co., Ltd. Method for producing lead-base alloy grid for lead-acid battery
JP2009117102A (ja) * 2007-11-05 2009-05-28 Furukawa Battery Co Ltd:The 鉛電池用鉛基合金基板の製造方法
JP2009117103A (ja) * 2007-11-05 2009-05-28 Furukawa Battery Co Ltd:The 鉛電池用鉛基合金基板の製造方法
US9093713B2 (en) 2007-11-05 2015-07-28 The Furukawa Battery Co., Ltd. Method for producing lead-base alloy grid for lead-acid battery

Also Published As

Publication number Publication date
EP1325523A2 (en) 2003-07-09
CN1468454A (zh) 2004-01-14
CA2419248A1 (en) 2002-02-21
WO2002015296A3 (en) 2003-01-03
MXPA03001297A (es) 2003-12-04
KR20030020981A (ko) 2003-03-10
AU2001281193A1 (en) 2002-02-25
WO2002015296A2 (en) 2002-02-21
CA2419248C (en) 2011-02-08
BR0113186A (pt) 2006-05-09
NZ524659A (en) 2006-03-31

Similar Documents

Publication Publication Date Title
JP3555877B2 (ja) 電池グリッド用合金
JP2004527066A (ja) 鉛酸蓄電池及び陽極板並びにそれら用の合金
KR100265137B1 (ko) 칼슘-주석-은 납계합금 이를 사용한 축전지 전극 및 축전지
US6351878B1 (en) Method for making positive grids and lead-acid cells and batteries using such grids
AU2018202919B2 (en) Lead-acid battery positive plate and alloy therefore
KR100503863B1 (ko) 납단전지, 납단전지용 양극판 및 합금
US4166155A (en) Maintenance-free battery
JP6601654B2 (ja) 制御弁式鉛蓄電池
US5650242A (en) Antimony-arsenic-tin-selenium lead-based strap alloys for lead-acid batteries
JP2005044760A (ja) 鉛蓄電池極板格子の製造方法
JPH0629021A (ja) カルシウム、すず、銀を含む鉛基合金、この合金から製造した電極格子および鉛−酸電池
JP2004200028A (ja) 鉛蓄電池極板格子の製造方法
JP2006196283A (ja) 鉛蓄電池
MXPA99010173A (en) Lead-acid cell and positive plate and alloy therefor
UA66069C2 (en) Lead-acid accumulator battery designed for operation at high temperatures