JP2004514785A - コンフィギュラブル真空システムおよび方法 - Google Patents

コンフィギュラブル真空システムおよび方法 Download PDF

Info

Publication number
JP2004514785A
JP2004514785A JP2001586630A JP2001586630A JP2004514785A JP 2004514785 A JP2004514785 A JP 2004514785A JP 2001586630 A JP2001586630 A JP 2001586630A JP 2001586630 A JP2001586630 A JP 2001586630A JP 2004514785 A JP2004514785 A JP 2004514785A
Authority
JP
Japan
Prior art keywords
table assembly
vacuum table
vacuum
filament
platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001586630A
Other languages
English (en)
Inventor
ジェリー・ディ・キッド
クレイグ・ディ・ハリントン
ダニエル・エヌ・ホプキンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Basic Resources Inc
Original Assignee
Basic Resources Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basic Resources Inc filed Critical Basic Resources Inc
Publication of JP2004514785A publication Critical patent/JP2004514785A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Materials For Medical Uses (AREA)
  • External Artificial Organs (AREA)

Abstract

コーティングまたはメッキに使用され、形状寸法が異なる基板を扱えるコンフィギュラブル真空システム。真空システムは、真空テーブルアセンブリと真空チャンバとを有する。真空テーブルアセンブリは、支持フレームと、絶縁面と、支持フレームに取付けられた機械式駆動装置および電気フィードスルーと、第1と第2のフィラメント導電体の間で絶縁面上方に配置されたフィラメントと、第1と第2のフィラメント電力接点パッドを介して夫々第1と第2のフィラメント導電体に電気的に結合されたフィラメント電力コネクタと、基板を支持するプラットフォームとを備える。真空チャンバは、ドア部の主開口と、容器を画定する壁部と、フィラメント電力コネクタと、電気フィードスルーコネクタと、機械式駆動装置コネクタと、容器内に真空テーブルアセンブリを収容支持するレールとを有する。真空テーブルアセンブリと真空チャンバのコネクタは相互に自動的に結合する。

Description

【0001】
関連出願
この出願は、ジェリー・ディー・キッドとクレイグ・ディー・ハリントンとダニエル・エヌ・ホプキンスとを共同発明者として「プラズマメッキのシステムおよび方法」と題して1999年10月26日に出願された米国特許出願番号第09/427,775号と、ジェリー・ディー・キッドとクレイグ・ディー・ハリントンとダニエル・エヌ・ホプキンスとを共同発明者として「モバイルメッキシステムおよび方法」と題して2000年5月22日に出願された米国特許出願第09/576,640号とに関するものである。
【0002】
発明の技術分野
本発明は、一般に材料をメッキおよびコーティングするための真空システムおよび蒸着技術の分野に関し、より詳細にはコンフィギュラブル(構造可変式;configurable)真空システムおよび方法に関する。
【0003】
発明の背景
材料をメッキ(鍍金)およびコーティング(被覆)し、処理された表面を作成するための蒸着技術には、さまざまな蒸着技術が含まれる。これらの蒸着技術には、例えば、真空蒸着、物理蒸着(PVD)、化学蒸着(CVD)、スパッタリング、イオンメッキなどがある。一般的に、これらすべての蒸着技術には、所望のメッキを実施するため真空チャンバ内で基板を適切に支持、位置決めするためのプラットフォームを備えた真空システムが必要となる。このプラットフォームはテーブル、ターンテーブル、台板などと呼称してもよい。メッキ処理中プラットフォーム上またはその近傍において基板を適切に支持、方向づけ、位置決めすることは、望ましく、かつ反復自在で、好結果をもたらすメッキ処理を実施するためにきわめて重要である。多くの場合、このプラットフォームは、より均一かつ望ましいコーティングまたはメッキ処理を実現するため、メッキ処理中、基板に対し回転運動を与える必要がある。
【0004】
残念ながら、基板はあらゆる形状および寸法で提供されるので、多くの場合、メッキ処理中に基板を支持したり回転させるため真空チャンバ内で用いられるプラットフォームは、ある特定の形状ないし種類の基板に関しては良好に機能するが、別の形状ないし種類に対しては不十分にしか機能しない。さらに、多くの真空チャンバは一種類のプラットフォームないしテーブルにしか対応しておらず、形状および寸法が大きく異なる基板を想定しているプラットフォームは、たとえあったとしても少数である。このため、高価な真空チャンバおよびプラットフォームを備えた高価な蒸着・メッキシステムの効果的な利用は大幅に制限されることになる。
【0005】
発明の概要
上記のことから、形状および寸法が大きく異なる基板を扱う能力を備えたコーティングないしメッキ用の構成自在な真空システムおよび方法の必要が生じていることが了解されるであろう。本発明によれば、上記の不利益および問題のうち1つ以上を相当程度解消するコンフィギュラブル真空システムおよび方法が提供される。
【0006】
本発明のある態様によれば、真空テーブルアセンブリと真空チャンバとを有するコンフィギュラブル真空システムが提供される。この真空テーブルアセンブリは、支持フレームと、絶縁面と、支持フレームに取り付けられた機械式駆動装置と、支持フレームに取り付けられた電気フィードスルーと、第1フィラメント導電体と第2フィラメント導電体との間で絶縁面上方に配置されたフィラメントと、フィラメント電力コネクタの第1フィラメント電力接点パッドを介して第1フィラメント導電体に電気的に結合されフィラメント電力コネクタの第2フィラメント電力接点パッドを介して第2フィラメント導電体に電気的に結合されたフィラメント電力コネクタと、基板を支持できるプラットフォームとを備えてもよい。前記真空チャンバは、ドア部における主開口と、容器内を画定する壁部と、フィラメント電力コネクタと、電気フィードスルーコネクタと、機械式駆動装置コネクタと、真空チャンバの容器内で真空テーブルアセンブリを受容および支持できるレールとを有する。前記真空テーブルアセンブリおよび真空チャンバのさまざまなコネクタは、相互に自動的に結合してもよい。
【0007】
本発明は、形状、大きさ、および寸法が大きく異なる基板にプラズマメッキなどのメッキを行なうための真空システムの利用可能性を含む多数の技術的利点を提供する。このため、同一のシステムを用いて多くのさまざまな種類の基板をコーティングする融通性が提供されることにより、そのような真空システムの有用性が大きく向上する。
【0008】
本発明の別の技術的利点には、水平面での回転と垂直面での回転など、異なる平面内で基板を回転させる能力が含まれる。これにより、真空システムおよび真空テーブルアセンブリの融通性および有用性が高まる。
【0009】
本発明の別の技術的利点には、本発明の真空システムを用いて部品の第1の配列に対し効率的にメッキまたは「射出」を行ない、その後、部品の第2の配列に対し、それら部品が類似していようと異なっていようと、または異なるメッキ用プラットフォームを必要としていようと、迅速に移行してメッキまたは「射出」を行なえることが含まれる。
【0010】
他の技術的利点は、以下の図面、説明、および特許請求の範囲から、当業者においては容易に明らかとなる。
【0011】
本発明の詳細な説明
本発明の例示的な具体例を以下に説明するが、本発明は、現在既知のもであれ既存のものであれいかなる数の技術を用いても具体化可能であることがはじめに了解されるべきである。本発明は、本明細書で説明記述する例示的な設計および具体例を含む、以下で説明する例示的な具体例、図面および技術に決して限定されるべきでない。
【0012】
最初に、図1から6に関してプラズマメッキのためのシステムおよび方法を以下詳細に説明し、モバイル(移動式)メッキシステムおよび方法とともに利用可能な蒸着技術の方式を説明する。最後に、一例として、図1から6に関して前に記述されたプラズマメッキシステム方式の蒸着技術を具体化する前記コンフィギュラブル真空システムおよび方法の実施例を図7から16に関して詳細に説明する。しかし、本発明のコンフィギュラブル(構造可変式)真空システムおよび方法はそのような蒸着技術に限定されないことが理解されるべきである。
【0013】
図1は、本発明の一実施例による、さまざまな材料のいずれのメッキ処理にも使用可能なプラズマメッキ用システム10を示す略図である。システム10は、真空チャンバ14内での基板12のプラズマメッキに対応して使用されるさまざまな機器を含んでいる。適切な作動パラメータおよび条件を設定すると、フィラメント16およびフィラメント18に設けたデポジタントを蒸発ないし気化させてプラズマを生成することができる。このプラズマは、一般に、前記デポジタント由来の陽電荷イオンを含むものであり、基板12に引き寄せられてそこで蒸着層を形成する。このプラズマは、基板12を取り巻くかあるいは基板12の近傍に位置する一群のイオンと考えてよい。このプラズマは、フィラメント16およびフィラメント18にもっとも近接した基板12の表面近傍に、基板12に対して前記陽イオンを加速させる暗領域を通常発現する。
【0014】
フィラメント16およびフィラメント18はプラットフォーム20とともに真空チャンバ14内にあり、プラットフォーム20は基板12を支持している。駆動アセンブリ22は、真空チャンバ14内の駆動モータ24とプラットフォーム20のメインシャフトとの間に結合されているものとして示されている。図1に示す本実施例では、プラットフォーム20は、真空チャンバ14内で回転するターンテーブルとして設けられている。駆動アセンブリ22は、駆動モータ24の回転運動をプラットフォーム20のメインシャフトに機械的に伝達し、プラットフォーム20に回転を与える。プラットフォーム20のメインシャフトの回転は、台板軸受28およびプラットフォーム軸受30などのさまざまな支持軸受によって高められる。
【0015】
図示のように、真空チャンバ14は台板32上に存するかまたは密閉されている。真空チャンバ14は事実上、内部の真空および大気圧などの外圧力に耐えるために適切な機械的特性をもつ任意の材料を用いて設けることが可能である。例えば、真空チャンバ14は金属製チャンバまたはベルジャーとして設けてもよい。別の実施例では、台板32はプラットフォーム20として基板12を支持する機能を果たす。台板32は真空チャンバ14の一部として考えてもよい。
【0016】
台板32は、真空チャンバ14内でのさまざまな装置によるその底面から上面への貫通を許容しながらシステム10を機械的に支持している。例えば、フィラメント16およびフィラメント18はフィラメント電力制御モジュール34から電力を受け取る。図1には2つのフィラメント電力制御モジュール34が示されているが、これら2つのモジュールは1つのモジュールとして使用するのが好ましいことに留意すべきである。フィラメント16およびフィラメント18に電力を供給するため、図1に示すように電気リード線は台板32を貫通する必要がある。同様に、駆動モータ24は、駆動アセンブリ22に対し機械的に作用してプラットフォーム20を回転させるため、台板32を貫通する必要がある。以下でより詳細に説明する電気フィードスルー26も台板32を貫通しており、プラットフォーム20とやはり以下でより詳細に説明するさまざまな信号発生器との間の導電経路となっている。プラットフォーム20がターンテーブルとして使用されるある好適な実施例では、電気フィードスルー26は、プラットフォーム20の底面と接触する整流子として設けられる。電気フィードスルー26は、整流子として使用してもよく、またプラットフォーム20の底面と接触し、プラットフォーム20が回転しても電気的接触を保つことが可能な金属ブラシとして使用してもよい。
【0017】
フィラメント電力制御モジュール34はフィラメント16およびフィラメント18に電流を供給する。ある実施例では、フィラメント電力制御モジュール34は特定の期間、フィラメント16に電流を供給し、第2の期間、フィラメント18に電流を供給することができる。フィラメントの構成される態様に応じて、フィラメント電力制御モジュール34はフィラメント16とフィラメント18とに同時に電流を供給することも、または別個の間隔で供給することも可能である。この融通性によって、1種類以上の特定のデポジタント材料を異なる時間に基板12上にプラズマメッキすることができる。フィラメント電力制御モジュール34は交流電流を前記フィラメントに供給することが好ましいが、任意の既知の電流発生方法を用いて電流を供給してもよい。ある好適な実施例では、フィラメント電力制御モジュール34は、供給されたデポジタントを蒸発ないし気化させるのに十分な熱をフィラメント16に発生させるため十分な振幅ないし大きさの電流を供給する。
【0018】
フィラメント16またはフィラメント18またはその内部に供給されるデポジタントの均一な加熱を確実にするためには、フィラメント制御モジュール34によって供給する電流は漸増的段階的に供給し、真空チャンバ14内で溶融しつつあるデポジタントに、より均一な熱分布が生じるようにすることが好ましい。
【0019】
ある好適な実施例では、プラットフォーム20はターンテーブルとして使用され、上記のように機械的リンク機構によって回転する。図1に示すように、速度制御モジュール36を設けてプラットフォーム20の回転速度を制御してもよい。プラットフォーム20は毎分5回転から毎分30回転の速度で回転するのが好ましい。プラズマメッキのためのプラットフォーム20の最適な回転速度は毎分12回転から毎分15回転の間にあると考えられる。プラットフォーム20を回転させる利点は、基板12をより均一にメッキないしコーティングできるということである。これは、複数の基板がプラットフォーム20の表面上に供給される場合に特に当てはまる。これにより、それら複数の基板の各々をプラズマメッキ処理の間、真空チャンバ14内におおむね同様に配置することができる。
【0020】
他の実施例では、プラットフォーム20を事実上任意の所望の角度ないし傾きで設けることができる。例えば、プラットフォーム20は、平坦面、水平面、垂直面、傾斜面、曲面、曲線で囲まれた面、螺旋状面、または真空チャンバ内に設けられた支持構造などの真空チャンバの一部分として設けてもよい。上記のように、プラットフォーム20は固定されていてもよく、または回転してもよい。別の実施例では、プラットフォーム20は、1枚以上の基板を回転させるため使用可能なローラを備えてもよい。
【0021】
プラットフォーム20は、ある好適な実施例では、電気フィードスルー26と基板12との間の経路となるように、導電経路となるかまたは導電経路を備えている。ある実施例では、プラットフォーム20は、電気フィードスルー26と基板12との間でプラットフォーム20上の任意の箇所に導電経路が設けられるような金属または導電材料として設けられる。そのような場合、プラットフォーム20とプラットフォーム20を回転させるシャフトとの間には絶縁体21が配置されて電気的絶縁がなされることになる。別の実施例では、プラットフォーム20は、底面の一定箇所に電気的に結合された上面の一定箇所において導電材料を備えている。このようにすると、電気フィードスルー26をプラットフォーム20の底部側の適切な箇所に配置する一方で、基板12をプラットフォーム20の上部側の適切な箇所に配置することができる。このようにして、基板12は電気フィードスルー26と電気的に結合される。
【0022】
電気フィードスルー26は、プラットフォーム20および基板12に直流信号およびラジオ周波数信号を供給する。これら信号の各々に関する望ましい作動パラメータは以下でより詳細に説明する。好ましくは、直流(DC)信号は直流電源装置66により負電圧で生成され、ラジオ周波数信号はラジオ周波数送信機64により所望の電力レベルで生成される。これら2種類の信号は好ましくは直流/ラジオ周波数(DC/RF)ミクサ68において混合され、ラジオ周波数平衡ネットワーク70を介して電気フィードスルー26に送られ、ラジオ周波数平衡ネットワーク70は定常波反射電力を最小化することによって信号平衡化を行なう。ラジオ周波数平衡ネットワーク70は手動方式によって制御することが好ましい。
【0023】
別の実施例では、プラットフォーム20は、例えば駆動モータ24、駆動アセンブリ22などすべての支持器材、構造、装備を含めて除かれる。そのような場合、基板12が電気フィードスルー26と電気的に結合される。
【0024】
図1のシステム10における残余の装備および構成部品は、真空チャンバ14内で所望の真空状態を創出、維持、制御するために用いられる。これは真空システムを用いることによって実現される。この真空システムは、最初に真空チャンバ14内の圧力を下げるために用いられる荒引ポンプ46および荒引バルブ48を備えている。またこの真空システムは、フォアラインポンプ40と、フォアラインバルブ44と、拡散ポンプ42と、主バルブ50とを備えている。フォアラインバルブ44を開くと、フォアラインポンプ40が作用開始可能となる。拡散ポンプ42を適切なレベルまで暖めるか加熱し、荒引バルブ48を閉じることによって荒引ポンプ46を止めた後、主バルブ50が開かれる。これにより拡散ポンプ42は、真空チャンバ14内の圧力を所望のレベルよりもさらに低下させることができる。
【0025】
その後、アルゴンなどのガス60を真空チャンバ14内に所望の速度で導入し、真空チャンバ14内の圧力を所望の圧力またはある圧力範囲内に上昇させてもよい。ガス制御バルブにより、台板32を通って真空チャンバ14内に導入されるガス60の流量が制御される。
【0026】
本発明の教示に従い図5および6に関連して以下により詳細に説明するように、すべての作動パラメータおよび条件を設定すると、システム10内でプラズマメッキが行なわれる。基板12には、真空チャンバ14内でのプラズマ形成によって、ベース層、移行層、作用層などを一層以上含む蒸着層によるプラズマメッキを行なってもよい。このプラズマは、真空チャンバ14内に導入されたガス60からの陽電荷イオンとともに、蒸発ないし気化したデポジタントからの陽電荷のデポジタントイオンを含むことが好ましい。前記プラズマ内、そして最終的にはデポジタント層の一部分としてアルゴンガスなどのガスイオンが存在しても、デポジタント層の特性は大きくは低下しないものと考えられる。真空チャンバ14内への前記ガスの導入は、本発明の教示にもとづきプラズマが発生するよう真空チャンバ14内を所望の圧力に制御する上でも有用である。別の実施例では、真空チャンバ14内の前記圧力が真空システムによりもたらされ十分に維持されるような、ガスの存在しない環境においてプラズマメッキ処理が行われる。
【0027】
真空チャンバ14内でのプラズマ発生は、フィラメント16およびフィラメント18のようなフィラメント内でのデポジタントの加熱と、それぞれ所望の電圧および電力レベルによる直流信号およびラジオ周波数信号の印加とによる熱電子効果などさまざまな寄与因子の結果であると考えられる。
【0028】
システム10の真空システムは、拡散ポンプ、フォアラインポンプ、荒引ポンプ、クライオポンプ、ターボ形ポンプ、本発明の教示にもとづき動作可能または真空チャンバ14内で圧力達成可能な他のポンプなどさまざまな真空システムのうちいずれを備えてもよい。
【0029】
上記のように、この真空システムは、荒引ポンプ46と、フォアラインポンプ40とともに使用される拡散ポンプ42とを備えている。荒引ポンプ46は、荒引バルブ48を介して真空チャンバ14とつながっている。荒引バルブ48を開くと、荒引ポンプ46を用いて最初に真空チャンバ14内の圧力を低下させることができる。真空チャンバ14内で所望の、より低い圧力が達成されると、荒引バルブ48が閉じられる。荒引ポンプ46は、台板32を貫通する孔ないし開口を介して真空チャンバ14とつながっている。荒引ポンプ46は機械式ポンプとして設けることが好ましい。図1に示すシステム10の真空システムの好適な実施例では、本実施例の真空システムは、フォアラインバルブ44を介して拡散ポンプ42に結合されたフォアラインポンプ40を備えている。フォアラインポンプ40は、拡散ポンプ42と組み合わせて使用する機械式ポンプとして使用してもよく、それにより荒引ポンプ46を用いて実現したよりもさらに低いレベルまで真空チャンバ14内の圧力を低下させるようになっている。
【0030】
荒引ポンプ46が真空チャンバ14内の圧力を下げた後、ヒータを用いるとともに冷却のため冷却用の水または他の物質を必要とする拡散ポンプ42は、主バルブ50と、図1において主バルブ50の上方かつプラットフォーム20の下方の破線で示すように台板32を貫通するさまざまな孔ないし開口とを介して真空チャンバ14と連絡する。拡散ポンプ42が加熱され作動可能になると、主バルブ50が開かれ、フォアラインポンプ44と組み合わせた拡散ポンプ42の作用により真空チャンバ14内の圧力をさらに引き下げることができる。例えば、真空チャンバ14内の圧力を4ミリトル未満にすることが可能である。バックスパッタリング処理中、真空チャンバ14内の圧力は100ミリトル以下20ミリトルまでのレベルに下げることができる。好ましくは、バックスパッタリング処理中の真空チャンバ14内の圧力は50ミリトル以下30ミリトルまでのレベルである。プラズマメッキ処理中のシステム10の正常動作中は、前記真空システムにより真空チャンバ14内の圧力を4ミリトル以下0.1ミリトルまでのレベルに下げることが可能である。プラズマメッキ処理中、前記真空システムを用いて真空チャンバ14内の圧力を1.5ミリトル以下0.5ミリトルまでのレベルに下げることが好ましい。
【0031】
図2は、ターンテーブル20として使用されたプラットフォームの一実施例を示す、プラズマメッキ用システムの真空チャンバの平面図である。ターンテーブル20は、基板12a、12b、12c、および12dをターンテーブル20の表面上に対称的に配置した状態で図示されている。ターンテーブル20は時計回りまたは反時計回りのいずれかに回転することができる。基板12aから12dは事実上、入手可能な任意の材料でよく、図2には、各基板の平面図が円形となるような丸い円筒形の構成部品として示されている。
【0032】
フィラメント電力制御モジュール34は、第1組のフィラメント94および96と第2組のフィラメント90および92とに電気的に接続されている。それらの電気的接続は図2に完全には示されていないが、フィラメント電力制御モジュール34が第1組のフィラメント94および96または第2組のフィラメント90および92に電流を供給可能であることが理解されるべきである。このようにして、前記蒸着層はベース層および作用層など2層の副層を備えることができる。ベース層は第1組のフィラメント94および96に設けたデポジタントによって最初に付与されることが好ましく、一方、作用層は、第2組のフィラメント90および92に設けたデポジタントを用いて基板12aから12dのベース層上に蒸着される。
【0033】
図2における基板の配置は、ターンテーブル20の中央に近いほうの内向きの表面とターンテーブル20の外縁に近いほうの外向きの表面とを備えた基板の配列として説明できる。例えば、基板12aから12dの配列の内向きの表面は、フィラメント92およびフィラメント96の近傍を回転するにつれて当然異なる時間にフィラメント92およびフィラメント96に向けられる。同様に、基板12aから12dの外向きの表面は、フィラメント90および94の近傍を回転するにつれてフィラメント90および94に向けられる。
【0034】
上記のように、フィラメント電力制御モジュール34は直流や交流など事実上いかなる形態でも電流を供給することができるが、電流を交流として供給することが好ましい。
【0035】
動作中、ターンテーブル20は例えば時計方向に回転し、基板12bが前記フィラメントの近傍ないし中を通過した後、それらフィラメントの近傍ないし中を通過する次の基板は12cなどになる。ある例では、第1組のフィラメント94および96にはニッケル(またはチタン)などのデポジタントが装着され、第2組のフィラメントには銀・パラジウム金属合金などのデポジタントが装着される。ここでは、2回のショットによる付着および2層の蒸着層の例が示されている。
【0036】
本明細書を通じて説明しているように、真空チャンバ内におけるすべての作動パラメータが設定された後、フィラメント電力制御モジュール34は第1組のフィラメント94および96に交流電流を通電ないし供給し、それにより真空チャンバ内でニッケルが蒸発ないし気化してアルゴンガスなどのガスとともにプラズマを生成するようになっている。このプラズマ内の陽電荷のニッケルイオンと陽電荷のアルゴンイオンとは、陰電位にある基板12aから12dに引きつけられる。一般的に、基板が回転する際に基板が第1組のフィラメント90および92に近いほど、より多くの材料が蒸着される。ターンテーブルは回転しているので、均一ないしより平坦な層がさまざまな基板に付着する。
【0037】
第1のプラズマが基板12aから12dの配列上にメッキされて基板上にデポジタント層のベース層が形成された後、フィラメント電力制御モジュール34が通電されて第2組のフィラメント90および92に十分な大きさの電流が供給される。同様に、アルゴンイオンと銀/パラジウムイオンとの間にプラズマが形成され、回転している基板に作用層が形成される。
【0038】
ベース層が付着する第1のショットの間、基板12aから12dの外向きの表面はフィラメント94に配置されたニッケルデポジタントによりまずコーティングされる。同様に、それら基板の内向きの表面はフィラメント96に配置されたニッケルデポジタントによりコーティングされる。同じ関係が、銀/パラジウムが基板上にプラズマメッキされ蒸着層を形成する第2のショットにも当てはまる。
【0039】
図3は、本発明の一実施例により基板12をプラズマメッキするためのフィラメント100の周囲におけるプラズマの形成および散乱を示す側面図である。フィラメント100はタングステンワイヤバスケットなどのワイヤバスケットとして使用され、フィラメント100内に配置されるとともにフィラメント100に機械的に支持されたデポジタント102とともに図示されている。フィラメント電力制御モジュール34がフィラメント100に十分な電流を供給すると、デポジタント102は溶融または気化してプラズマ104が生成される。当然ながら、プラズマメッキが起こるようなプラズマ状態を実現するためには、本発明のすべての作動パラメータが存在していなければならない。
【0040】
陰電位で供給される基板12はプラズマ104の陽イオンを引きつけ蒸着層を形成する。図示のように、プラズマ104の散乱パターンにより、プラズマ104の陽イオンの大部分がフィラメント100およびデポジタント102の近傍ないしもっとも近い側に引きつけられる。基板12の最上面に接触するプラズマ104によって示されるように、回り込みが発生することになる。同様に、プラズマ104の陽イオンには、プラットフォームまたはターンテーブルに引き寄せられるものがある場合がある。図示のように、本発明は、前記デポジタントからのイオンの大部分を蒸着層の形成に用いることにより蒸着層の作成に関する問題を効率的に解決することができる。
【0041】
図4は、ベース層110と、移行層112と、作用層114とを含む基板12の蒸着層を示す断面図である。この蒸着層を形成するさまざまな層の厚さは基板12の寸法との比例関係から大きく外れていることをはじめに留意すべきである。しかし、この蒸着層のさまざまな副層ないし層の相対的な厚さは、本発明の一実施例に従って相互に比例している。
【0042】
一般的に、本発明の教示にかかる基板上の蒸着層全体の厚さはおおむね500〜20,000オングストロームの範囲にあると考えられる。ある好適な実施例では、蒸着層の全体的な厚さは3,000〜10,000オングストロームの範囲にあると考えられる。本発明は、ベース層110、移行層112、作用層114などすべての副層を含む蒸着層の厚さの繰返し精度および制御性をすぐれたものにすることができる。本発明は、層の厚さをおよそ500オングストロームの精度で制御できるものと考えられる。また本発明を用いると1層ないし任意の複数層の副層を備えた蒸着層を形成可能であることに言及すべきである。
【0043】
前記蒸着層の厚さは通常、プラズマメッキされた基板の意図された用途の性質にもとづいて決定される。これには、多くの他の変数や因子の中でも、作業環境の温度、圧力、湿度などの変数が含まれる場合がある。各層に関する望ましい金属またはデポジタントの種類の選択も、プラズマメッキされた基板の意図された用途の性質に大きく依存する。
【0044】
例えば、本発明によれば、構成部品のかじり、かみ合いないし絡み合いが防止されるかまたは大幅に抑えられる。かじりには、ねじ表面などの2つの表面がともに荷重を受けた際によく発生する係合した構成部品の焼付きが含まれる。かじりは構成部品の破砕や破損を招くことがあり、それらは多くの場合、深刻な損害をもたらす。プラズマメッキを用いると、1以上の接触面をメッキすることによって、かじりを防止ないし抑えることができる。
【0045】
この有益な効果を実現するため、さまざまなデポジタントを使用することができる。しかし、ニッケルまたはチタンのベース層と銀/パラジウム金属合金の作用層とを1以上の接触面上に蒸着するプラズマメッキ処理によってかじりを抑えることが好ましいと考えられる。華氏650度を超えるような高温の用途に関しては、ニッケルまたはチタンのベース層と金の作用層とを蒸着するプラズマメッキ処理によってかじりを抑えることが好ましいと考えられる。
【0046】
かじりを抑えるためにクロムはうまく作用しないことが実験から分かっているが、これにはクロムをベース層、移行層、作用層のいずれかとして蒸着する場合が含まれる。クロムは、プラズマメッキ処理中に制御することがより困難なデポジタントになりうると考えられる。
【0047】
非核用途におけるバルブステムなどのバルブ部品をメッキするためプラズマメッキを利用することもでき、それらの部品は、チタンのベース層、金の移行層、およびインジウムの作用層を用いてプラズマメッキすることが好ましい。原子力プラント用などの核用途においては、インジウムは放射性同位元素を吸収しすぎると考えられるため好適なプラズマメッキデポジタントではない。それよりも、核用途におけるバルブステムは、ニッケルのベース層と銀/パラジウム金属合金の作用層とを用いてプラズマメッキすることが好ましい。
【0048】
図4に示すように、作用層14は、対応する移行層112およびベース層110よりも相当程度厚くして設けるのが普通である。また基板12の上面のコーティングは、基板12の中心ないし中央ないしその付近において薄くなるものとして図示されていることに留意すべきである。この効果は、プラズマメッキ処理中にフィラメントがどのように配置されるかによっている。例えば、フィラメントが図2および3に示すものと同様に配置される場合、基板12の中央ないし中心部は蒸着層の側部よりも全体的断面が概して薄くなる。
【0049】
本明細書ではさまざまな範囲の厚さについて論じてきたが、本発明は蒸着層の最大厚さに限定されないものであることが理解されるべきである。蒸着層の厚さ、特に作用層114の厚さは、通常、プラズマメッキされた基板12が導入される作業環境に応じて事実上任意の所望の厚さとすることができる。作用層114の下のベース層110、移行層112および他の層は、対応する作用層114の厚さよりも相当薄くして設けることが好ましい。例えば、ベース層110および移行層112は500〜750オングストロームの範囲の厚さで設け、作用層114は事実上任意の厚さ、例えば18,000オングストロームで設けることが可能である。
【0050】
図5は、本発明の一実施例にかかるプラズマメッキ方法500のフローチャートである。この方法500は、ブロック502で始まり、ブロック504へ進む。ブロック504において、プラズマメッキされる材料または基板の処理準備がなされる。これには、異物、汚染物質、および油の除去のための基板洗浄が含まれる。鋼構造物塗装審議会(Steel Structures Painting Council (SSPC))によって規定されているものなどさまざまな既知の洗浄処理を任意に利用することができる。例えば、SSPC−5規格を用いて基板をホワイトメタル状態まで洗浄してもよい。同様に、SSPC−10規格を用いてもよい。好ましくは、基板にブラストをかけるのがよい(例えば、異物や汚染物質をさらに確実に除去するためのビードブラスティングなど)。基板の表面に酸化層が存在してもよいことに留意すべきである。本発明によれば、酸化層が存在していても、基板表面上に蒸着層をプラズマメッキし、すぐれた付着性と機械的特性とを得ることができる。
【0051】
方法500は、次にブロック506へ進み、プラズマメッキシステムの前提条件が設定される。これにはプラズマメッキ用システムの構成に応じて、さまざまな項目のいずれかが含まれる。拡散ポンプを真空システムの一部分として用いる場合、冷却水の利用可能性などの項目を設定する必要がある。同様に、プラズマメッキ用システムに関係するさまざまな装備、弁、および機構を操作するための潤滑油および水の適切な利用可能性を設定する必要がある。アルゴンガスなどのガスの適切な供給は、ブロック510に進む前のこの時点で確認および検査すべきである。
【0052】
拡散ポンプが真空システムの一部分として用いられると仮定すると、ブロック510で拡散ポンプの操作準備が行なわれる。これには、フォアラインバルブの開弁と、拡散ポンプと組み合わせて使用されるフォアライン真空ポンプの始動とが含まれてもよい。フォアラインの真空が得られると、拡散ポンプのヒータに通電がなされる。これにより拡散ポンプが作動する。
【0053】
方法500は、次にブロック512へ進み、真空チャンバが準備される。これには真空チャンバ内での基板の位置決めなどのいくつかの処理が含まれる。通常これは基板を真空チャンバ14内のプラットフォームまたはターンテーブル上の所定の位置に位置決めないし配置することによって行なわれる。真空チャンバの内容に接近する前に、真空チャンバの密閉を解く必要があり、ベルジャーまたは外部部材をその台板から持ち上げることが好ましい。基板をプラットフォーム上に位置決めすると、フィラメントを基板の配置に対して位置決めすることができる。
【0054】
フィラメントの位置決めにはいくつかの技術が必要であり、フィラメントに供給すべきデポジタントの量および種類、基板に対する距離だけでなく他のフィラメントに対する距離などの変数が含まれる。一般的にフィラメントは、フィラメントの中心線またはデポジタントから基板の最も近い点までで測定した距離で、基板から0.254cm(0.1インチ)ないし15.24cm(6インチ)離して配置される。しかし好ましくは、デポジタントが蒸着層のベース層または移行層となる場合、フィラメントまたはデポジタントと基板との距離は、6.985cm(2.75インチ)ないし8.255cm(3.25インチ)の間のいずれかである。同様に、デポジタントが、基板に蒸着される蒸着層の作用層となる場合、フィラメントまたはデポジタントと基板との距離は、5.08cm(2インチ)ないし6.35cm(2.5インチ)の間で与えられることが好ましい。
【0055】
プラズマメッキ処理において複数のデポジタントまたは複数回のショットが用いられる場合、第2デポジタントを保持するフィラメントに対する第1デポジタントを保持するフィラメントの配置、そしてフィラメントの相互と基板とに対する各々の位置を考慮する必要がある。一般に、蒸着層のベース層、移行層、または作用層となるデポジタントを有する第1フィラメントから第2フィラメントの距離は、0.254cm(0.1インチ)ないし15.24cm(6インチ)の間のいずれかとすべきである。
【0056】
ベース層となるデポジタントを有するフィラメント間の間隔は一般に、0.254cm(0.1インチ)乃至15.24cm(6インチ)の間で与えられる。この距離は、7.62cm(3インチ)ないし10.16cm(4インチ)の間にあることが好ましい。前記フィラメントの間隔に関する情報は、フィラメントに設けられたデポジタントが蒸着層の移行層となる場合にも当てはまる。同様に、蒸着層の作用層となるデポジタントを有するフィラメント間の間隔は一般に、0.254cm(0.1インチ)ないし15.24cm(6インチ)の間とすべきであるが、好ましくは、6.35cm(2.5インチ)ないし7.62cm(3インチ)の間である。
【0057】
ブロック512のチャンバの準備は、プラズマメッキされるプラットフォーム上の基板の配列の配置を考慮に入れる必要がある。例えば、散乱パターンにより基板配列の内向き表面をデポジタントの到達範囲にするように真空チャンバ内で位置決めされるフィラメントは、外向き表面の配列を到達範囲とするように真空チャンバ内で位置決めされるフィラメントと比較した場合、20ないし80パーセント質量または重量が小さいデポジタントを必要とする。内向きと外向きの基準はプラットフォームまたはターンテーブルに対するものであり、内向きとはプラットフォームまたはターンテーブルの中心に近い方の表面を指す。これは、一般的にはプラズマの陽イオンを引きつける力のために、基板配列の内向き表面に対するプラズマメッキ処理の効率が、基板配列の外向き表面に対するものよりも高いためである。これにより、内向き表面および外向き表面上の蒸着層の厚さがより均一になる。このような場合、好ましくはデポジタントの重量または質量は、そのようなフィラメント位置の間で変える必要がある。一般に、これら2つの位置の間の質量または重量の変化は、20ないし80パーセント異なるものであってよい。好ましくは、内向き表面を覆うフィラメント内のデポジタントの質量または重量は、外向き表面を覆うフィラメントのデポジタントよりも40ないし50パーセント小さい。フィラメントに配置されるデポジタントの量は、蒸着層およびその副層の所望の厚さに対応するものである。これは、より詳細に説明されたものであり、図3に関連してより詳細に説明される。
【0058】
フィラメントの種類は、プラズマ生成中のデポジタントの溶融ないし蒸発によりもたらされる散乱パターンに影響を及ぼす。本発明では、さまざまなフィラメントの種類、形状、および構成のうちいずれを用いてもよい。例えば、フィラメントは、タングステンバスケット、ボート、コイル、るつぼ、レイガン、電子ビーム銃、ヒートガン、または真空チャンバ内に設けられた支持構造のような他の構造として設けてもよい。フィラメントは一般に、フィラメントを流れる電流の印加により加熱される。しかし、本発明では、フィラメント内でデポジタントを加熱する任意の方法または手段を用いることができる。
【0059】
真空チャンバの準備には、1個以上のフィラメント内にデポジタントを配置することも含まれる。本発明は、プラズマを生成するように本発明の条件およびパラメータの下で蒸発可能な事実上任意の材料の使用を予期している。例えば、前記デポジタントは、金属合金、金、チタン、クロム、ニッケル、銀、スズ、インジウム、鉛、銅、パラジウム、銀/パラジウム、さまざまな他の金属など事実上任意の金属を含むことが可能である。同様に、前記デポジタントは、カーボン、非金属、セラミック、金属炭化物、金属硝酸塩、さまざまな他の材料など他のいかなる材料を含んでいてもよい。これらデポジタントは一般に、ペレット、顆粒、粒子、粉体、線材、リボン、またはストリップの形状で供給される。フィラメントが適正に位置決めされ装着されると、真空チャンバが閉じられ密閉される。これには、真空チャンバのベル部分をその台板とともに密閉することが含まれてもよい。
【0060】
方法500は、次にブロック514へ進み、真空チャンバ内で真空状態を確立開始する準備が行なわれる。図1に示すシステム10のような実施例では、荒引ポンプが始動して真空チャンバ内の真空排気を開始し、真空チャンバ内の圧力を十分なレベルまで下げることによって、別のポンプが引き継いで真空チャンバ内の圧力をさらに下げられるようにする。ある実施例では、荒引ポンプは始動可能な機械式ポンプであり、荒引バルブを開くと真空チャンバと連絡することが可能である。荒引ポンプがその所望の作用を達成して真空チャンバ内の圧力を所望ないし所期のレベルまで下げると、荒引バルブが閉じられる。この時点で、方法500はブロック516に移行する。
【0061】
ブロック516では、別の真空ポンプを用いて真空チャンバ内の圧力をさらに低下させる。例えば、ある実施例では、拡散ポンプ/フォアラインポンプを利用して真空チャンバ内の圧力をさらに低下させる。図1に示すような本発明の実施例では、これはメインバルブを開き、機械式フォアラインポンプに支援された拡散ポンプに真空チャンバ内の圧力をさらに下げさせることによって実施される。
【0062】
一般に、真空チャンバ内の圧力は4ミリトル以下のレベルまで下げられる。好ましくは、真空チャンバ内の圧力は1.5ミリトル以下のレベルまで下げられる。方法500のブロック518に関連して以下に説明するバックスパッタリングを行なう場合、真空チャンバ内の圧力は100ミリトル以下、一般には20ミリトルないし100ミリトルの範囲のレベルまで下げられる。バックスパッタリングを行なうある好適な実施例では、真空チャンバ内の圧力は50ミリトル以下のレベル、一般には20ミリトルないし50ミリトルのレベルに下げられる。
【0063】
次にブロック518に進み、バックスパッタリング処理を行なって基板をさらに洗浄、準備してもよい。しかしそのような処理は必須ではないことを理解すべきである。バックスパッタリング処理は図6に関連して以下さらに詳細に説明する。バックスパッタリング処理には、真空チャンバ内でのプラットフォームまたはターンテーブルの回転が含まれていてもよい。そのような場合、ターンテーブルは一般に毎分5回転ないし毎分30回転の速度で回転する。好ましくは、ターンテーブルは毎分12回転ないし毎分15回転の速度で回転する。このターンテーブルの動作は、本発明の教示にもとづいて蒸着層が基板上に形成される際にも利用することが好ましい。
【0064】
方法500は次にブロック520へ進み、作業真空が確立される。ブロック514およびブロック516に関連して前に述べたように、真空チャンバ内には真空状態がすでに確立されているが、真空チャンバ内の圧力をおおむね0.1ミリトルないし4ミリトルのレベルに上げるような流量で真空チャンバ内にガスを導入することによって、作業真空を確立することが可能である。好ましくは、このガスの導入を利用して、真空チャンバ内の圧力は0.5ミリトルないし1.5ミリトルのレベルに引き上げられる。これにより、デポジタントイオンのプラズマ内での衝突がなくなり、デポジタントの効率が向上するとともに、基板に清浄で付着性の高い蒸着層が付与される。真空チャンバ内に導入されるガスは、さまざまなガスのうちのいずれでもよいが、不活性ガス、希ガス、反応性ガスまたはアルゴン、キセノン、ラドン、ヘリウム、ネオン、クリプトン、酸素、窒素、さまざまな他のガスなどのガスとして供給することが好ましい。このガスは不燃性ガスであることが望ましい。本発明はガスの導入を必要とせず、ガスの非存在下で実施可能であることを理解すべきである。
【0065】
ブロック522では、前記システムのさまざまな作動パラメータおよび値が設定される。これには一般に、必要な場合、ターンテーブルの回転、直流信号の印加、およびラジオ周波数信号の印加が含まれる。前記プラットフォームがターンテーブルまたは他の回転装置を備えると仮定すると、ターンテーブルの回転はこの時点で設定することが好ましい。これは当然、ターンテーブルの回転がこれ以前に始まっていないこと、および任意のバックスパッタリングブロック518を仮定している。ターンテーブルの回転が設定されると、直流信号およびラジオ周波数信号が基板に印加される。基板に対する直流信号の印加は一般に、1ボルトないし5,000ボルトの電圧の大きさで行なわれる。この電圧の極性はマイナスであることが好ましいが、これは必ず必要というわけではない。ある好適な実施例では、基板に対する直流信号の印加は一般に、マイナス500ボルトないしマイナス750ボルトの電圧レベルで行なわれる。
【0066】
基板に対するラジオ周波数信号の印加は一般に、1ワットないし50ワットの電力レベルで行なわれる。好ましくは、このラジオ周波数信号の電力レベルは、10ワットで、もしくは5ワットから15ワットの範囲で与えられる。このラジオ周波数信号の周波数は、一般に、キロヘルツレンジかメガヘルツレンジの産業用の所定の周波数で与えられる。好ましくは、このラジオ周波数信号は、13.56キロヘルツの周波数で与えられる。ラジオ周波数という用語は、本明細書を通じて、基板に対するラジオ周波数信号の生成および印加を説明するために用いてきたが、ラジオ周波数という用語は、およそ10キロヘルツから100,000メガヘルツの周波数を有する信号という一般に理解されている定義に限定すべきでないことを理解すべきである。ラジオ周波数という用語には、真空チャンバ内でのプラズマの生成または励起に使用可能またはそれらを促進可能な周波数成分をもつどのような信号も含まれる。
【0067】
ブロック522には、ミクサ回路を用い前記直流信号とラジオ周波数信号とを混合して混合信号を生成することも含まれるのが好ましい。これにより1つの信号のみが基板に印加される。これは一般に、前記真空チャンバの台板を貫通して延び、基板に電気的に結合されたプラットフォームの導電部と接触する電気フィードスルーを用いて行なわれる。ブロック522には、ラジオ周波数平衡ネットワークを使用して前記混合信号を平衡化することが含まれてもよい。好ましくは、この混合信号は、定常波反射電力を最小化することによって平衡化される。これは手動方式で制御することが好ましい。
【0068】
前記ミクサ回路から見たアンテナまたは出力の出力特性または負荷特性が変化すると、ミクサまたはソースに戻る出力負荷により電気信号または波動が反射される際に問題が生じることがある。これらの問題には、ラジオ周波数送信機に対するダメージと、十分なプラズマを生成してプラズマメッキ処理に好結果をもたらすための基板および真空チャンバに対する電力伝達の減少とが含まれることがある。
【0069】
この問題は、ある実施例ではその抵抗、インダクタンス、およびキャパシタンスを含むインピーダンスを調整して反射波の存在を調和ないし低下させることが可能なラジオ周波数平衡ネットワークを備えることによって軽減ないし解決することができる。前記出力負荷またはアンテナのインピーダンスおよび電気的特性は、プラズマの存在および/または欠如やプラットフォーム上の基板の形状および性質などによって影響を受ける。プラズマメッキ処理中のそのような変化のため、処理中にラジオ周波数平衡ネットワークを調整し、定常波反射電力を最小化、言い換えれば、定常波比のラジオ周波数送信機に対する戻りを防止ないし低下させることが必要となる場合がある。これらの調整は、プラズマメッキ処理中に操作員が手動で実施することが好ましい。他の実施例では、ラジオ周波数平衡ネットワークは自動的に調整される。しかしながら、この自動調整が出力負荷の変化を過度に補償したり追跡が不十分になったりしないように注意する必要がある。
【0070】
方法500は次にブロック524に進み、デポジタントを溶融ないし蒸発させてプラズマを発生させる。本発明により与えられた条件でプラズマを発生させると、プラズマメッキにより基板の表面上に蒸着層が形成される。蒸着層は平均10eVないし90eVの中位のエネルギー準位で形成されるものと考えられる。
【0071】
デポジタントは一般に、デポジタントの周囲のフィラメントに電流を流すことにより蒸発ないし気化する。ある好適な実施例では、デポジタント内により均一な熱分布を実現するため、デポジタントは緩やかないし徐々に加熱される。これによりプラズマの生成が改善される。前記電流は、デポジタントを溶融させる熱をフィラメントに発生させるのに十分な交流電流または他の電流として供給することができる。他の実施例では、デポジタントと化学的に接触する作動物質の導入によりデポジタントを加熱してもよい。さらに他の実施例では、電磁エネルギーまたはマイクロ波エネルギーを利用してデポジタントを加熱してもよい。
【0072】
真空チャンバ内の前記条件は、プラズマ形成にとって適切なものである。前記プラズマには一般的に、アルゴンイオンなどのガスイオンと、金、ニッケル、またはパラジウムイオンなどのデポジタントイオンとが含まれる。これらガスイオンおよびデポジタントイオンは一般的に、1個以上の電子の欠如により陽イオンとして与えられる。プラズマの生成は、ラジオ周波数信号の導入と、デポジタントの加熱による熱電子現象とにより促進されるものと考えられる。場合によっては、陰電荷イオンを含むプラズマを発生させることができると予想される。
【0073】
前記直流信号により基板に確立された陰電位は、前記プラズマの陽イオンを引きつける。繰り返しになるが、これには第一にデポジタントイオンが含まれ、方法500において前もって導入されたガスからのアルゴンガスイオンなどのガスイオンが含まれる。アルゴンイオンなどのガスイオンが含まれることは、蒸着層の材料または機械的特性を劣化させるものとは考えられない。
【0074】
これまでのいくつかの文献が示唆するところでは、前記プラズマのイオンが基板に引き寄せられて蒸着層を形成する際の経路に影響を与えるため基板またはその近傍に磁石を導入することが望ましいとされていることに留意すべきである。実験的証拠が示唆するところでは、そのような磁石の導入は実際には望ましいものでなく、好ましくない効果をもたらしたということである。磁石の存在は、蒸着厚さの不均一をもたらすとともに、前記処理の制御性、繰返し精度および確実性の喪失ないし大幅な阻害をもたらす可能性がある。
【0075】
蒸着層が複数の副層を備えるように設計する場合は必ず、ブロック524において複数回のショットを行なう必要がある。これは、一旦ベース層デポジタントをそれらのフィラメントの加熱により溶融させ、移行層デポジタント(または付着すべき次の層のデポジタント)をそれらのフィラメントにおける熱の導入により加熱溶融させるということを意味する。このようにして、任意の数の副層を蒸着層に加えることができる。連続するデポジタント副層を形成する前に、先行する層を完全ないしほぼ完全に形成しておくべきである。方法500にはこのように、真空チャンバ内で真空を解除したり再確立したりする必要なしに複数の副層により蒸着層を形成できるという大きな利点がある。これにより、プラズマメッキにかかる全体的な時間と費用を大幅に削減することができる。
【0076】
方法500は、次にブロック526へ進み、処理またはシステムが停止される。図1に示すシステムの実施例では、主バルブを閉じ、真空チャンバの通気弁を開いて真空チャンバ内の圧力を均等化する。その後、真空チャンバを開放し、基板を直ちに取り出すことができる。これは、方法500ではプラズマメッキ処理中に基板に過度の熱が発生しないからである。このことは、基板および蒸着層の素材または機械的構造が極端な温度によって悪影響を受けないので大きな利点となる。この後、プラズマメッキされた基板を必要に応じて使用することができる。これら基板の温度は一般に華氏125度以下なので、熱防護なしに即座に基板を扱うことができる。
【0077】
方法500には不要な副産物が発生しないという別の利点もあり、環境面の心配がない。さらに、方法500は、金や銀などの高価ないし貴重な金属が効率的に利用され、かつ無駄にならないような、デポジタントを効率よく利用する効率的な方法である。さらに、本発明は高エネルギー蒸着技術を用いていないので、基板に冶金学的または機械的な悪影響が及ぶことがない。これは、本発明の蒸着層は基板内に深く埋め込まれることはないが、それでもこの蒸着層がすぐれた付着性、機械的特性、および材料特性を示すという事実によるものと考えられる。ブロック528で基板が取り出された後、方法500はブロック530で終了する。
【0078】
図6は、本発明の一実施例にかかる、本発明の前記システムおよび方法を用いたバックスパッタリングの方法600のフローチャートである。上記のように、プラズマメッキにより基板上に蒸着層を形成する前に基板をさらに洗浄するため、バックスパッタリングを行なってもよい。バックスパッタリングは一般に、汚染物質および異物を除去するものである。これにより、さらに清浄な基板が得られ、その結果、より強固かつ均一な蒸着層が得られる。方法600はブロック602から開始され、ブロック604へ進んで、真空チャンバ内で所望の圧力を維持または創出する流量でガスが真空チャンバ内に導入される。これは、図5に関連してブロック520で前に説明したものと同様である。一般に、真空チャンバ内の圧力は、100ミリトル以下のレベル、例えば20ミリトル〜100ミリトルの範囲とすべきである。好ましくは、前記圧力は30ミリトル〜50ミリトルのレベルで与えられる。
【0079】
方法600は、次にブロック606へ進み、適用可能な場合、プラットフォームまたはターンテーブルの回転が設定される。上記のように、ターンテーブルの回転は毎分5回転ないし毎分30回転の速度とすることができるが、毎分12回転ないし毎分15回転の速度とすることが好ましい。
【0080】
次にブロック608へ進むと、直流信号が設定され、基板に印加される。この直流信号は一般に1ボルト〜4,000ボルトの大きさで与えられる。好ましくは、この直流信号はマイナス100ボルト〜マイナス250ボルトの電圧で与えられる。
【0081】
ブロック608には、基板に印加されるラジオ周波数信号の発生も含まれる。このラジオ周波数信号は一般に、1ワットないし50ワットの電力レベルで与えられる。好ましくは、このラジオ周波数信号は10ワット、もしくは5から15ワットの電力レベルで与えられる。前記直流信号とラジオ周波数信号とは混合および平衡化し、混合信号として基板に印加するのが好ましい。その結果、ブロック604で導入されたガスからプラズマが生じる。このガスは一般に、アルゴンなどの不活性ガスないし希ガスである。プラズマの組成には、このガスからの陽イオンも含まれる。これらプラズマの陽イオンは、基板に対し引き寄せられるとともに加速するが、この基板は陰電位を帯びて供給されることが好ましい。この結果、基板から汚染物質が擦り取られたり取り除かれたりする。汚染物質や異物が基板から除去されると、それらは前記拡散ポンプのような真空ポンプの動作によって真空チャンバから吸い出される。
【0082】
次にブロック610へ進み、おおむね30秒ないし1分の間、前記バックスパッタリング処理を継続する。基板の状態および清浄度によって、バックスパッタリング処理をより長時間またはより短時間継続させてもよい。一般に、バックスパッタリング処理は、バックスパッタリング処理によってもたらされるキャパシタンス放電が実質的に完了するか大幅に低下するまで継続することができる。これは、基板の汚染物質からの容量放電と同時に起こる火花または光のバーストを観察することによって視覚的に観測することが可能である。これはアーキングと呼ばれることもある。
【0083】
このバックスパッタリング処理中は、前記直流信号を制御しなければならない。これは、通常は直流電源装置の手動調整によって行なわれる。好ましくは、この直流信号の電圧は、直流電源装置に過負荷をかけることなく電圧を最大化することができるレベルで与えられる。バックスパッタリング処理が継続するにつれて、バックスパッタリング処理中に生じるプラズマの変化のため直流電源装置内の電流が変動する。このため、バックスパッタリング処理中に前記直流信号の電圧レベルを調整することが必要となる。
【0084】
方法600は、次にブロック612へ進み、前記直流信号およびラジオ周波数信号が除かれガスが遮断される。方法600は、次にブロック614へ進み、この方法は終了する。
【0085】
図7は、本発明の一実施例にかかるコンフィギュラブル真空システムで使用するための真空チャンバ700の正面図である。真空チャンバ700は、真空チャンバ700の主開口に蝶番式に開閉自在に装着された真空チャンバドア702と、真空チャンバ700を支持するように配置された脚部710および脚部708とを備えた円筒型真空チャンバとして図示されている。真空チャンバドア702と真空チャンバ700の主開口との蝶番式に開閉自在の結合ないし接続は蝶番712によって示されている。真空チャンバ700は、例えば金属、鋼、複合材料などのさまざまな材料のいずれによって作製してもよい。レール704およびレール706が、真空チャンバ700の容器(ボリューム)内に図示され、真空チャンバ700の内壁に装着または結合されたものとして示されている。これらのレールは、一方の側のレール704と他方の側のレール706とを用いるか、またはそれらに支持されて、真空チャンバ700の容器内に摺動または転がりによって入り込むことが可能な真空テーブルアセンブリを支持するために用いられる。
【0086】
真空テーブルアセンブリのさまざまなコネクタと結合させるため、真空チャンバ700の内側には、さまざまな種類のコネクタを設けてもよい。これらのコネクタにより、前記メッキ処理中で真空チャンバ700内が真空状態であるときに、例えば電力(または電流)、電気信号および機械動力を真空テーブルアセンブリに与えることができる。これらの接続は、真空テーブルアセンブリが真空チャンバ700の容器内に配置される際に自動的に実施することができる。このため、さまざまなメッキまたはコーティングの工程が効率的かつ迅速に実施可能になることにより、メッキ処理の全体的な生産性が大幅に向上することになる。
【0087】
例えば図1に関連してこれまでに述べたように、プラズマメッキ処理中に、デポジタントを有する真空テーブルアセンブリのさまざまなフィラメントに対し前記接続により電流を供給し、デポジタントが処理中に加熱され気化されるようにしてもよい。この電流は、図1に示すように、フィラメント電力制御モジュールに発生および供給させることができる。同様に、真空テーブルアセンブリが基板における回転運動などの機械的エネルギーを必要としている場合、接続により外部から真空チャンバ内にそのような機械動力を供給し、必要な回転をさせることができる。図1に示すような電気フィードスルー26により供給され、これまでに説明したような電気信号を真空テーブルアセンブリが必要とする場合、接続および導体をそのような経路とすることが可能である。真空チャンバ700が電力、電気信号、および機械動力のインタフェースまたはコネクタとなることにより、そのような力や信号の外部ソースを外部ソースから蒸着処理中の真空チャンバ700の容器内に提供することができる。
【0088】
そのようなコネクタまたはカプリングの例が、真空チャンバ700内に示されている。フィラメント電力コネクタ714は、真空チャンバ700の底部寄りに示されており、図7に示すフィラメント電力接点パッド716など複数の接点パッドと電気的に結合する複数の導電体を備えている。フィラメント電力コネクタ714の複数の接点パッドの各々は、真空テーブルアセンブリが真空チャンバ700内に挿入される際に真空テーブルアセンブリの対応する接点パッドと自動的に結合することが好ましい。それにより、さまざまなフィラメント、好ましくはそれらフィラメントを機械的に支持するとともに真空テーブルアセンブリ上の多数の装置のいずれにも配置可能なフィラメント電力導電体に電力を送ることができる。真空チャンバ700の内部後方には、電気フィードスルーコネクタ718が機械駆動コネクタ720とともに図示されている。
【0089】
真空テーブルアセンブリは、真空チャンバ700内へ摺動または嵌入する際、好ましくは対応する適合コネクタを備えたこれらのコネクタと自動的に結合する対応するコネクタを備えている。機械駆動コネクタ720は真空テーブルアセンブリの機械式駆動装置またはドライブシャフトに機械的な回転エネルギーを与える。電気フィードスルーコネクタ718は、図1に関連して示した電気フィードスルー26と同様の電気フィードスルーとの電気的結合を行なう。最終的には、これにより、メッキ処理中に真空状態が真空チャンバ700内に存在している間に真空テーブルアセンブリに直流/ラジオ周波数信号などの電気信号を供給できるように導電経路が形成される。例えば、この電気信号は直流/ラジオ周波数信号であってもよく、これは、実施されるコーティングまたはメッキ処理がプラズマメッキである場合に、最終的に基板に供給される。
【0090】
図8は、本発明の一実施例による真空テーブルアセンブリ732において使用可能な支持フレーム730の底面図である。支持フレーム730は、事実上任意の利用可能な構造および配置で設けることが可能である。例えば、支持フレーム730は水平部材および垂直部材の双方を含むユニストラット(圧縮材)を用いて構成してもよい。第1平行側部734には、ホイールまたはローラ738のような1個以上のホイールを取り付けてもよい。同様に、第2平行側部は、図8に示すように複数のホイールまたはローラを備えてもよい。これらのホイールまたはローラは、真空テーブルアセンブリ732の真空チャンバ700内への配置、摺動、または転がりを補助するものである。例えば、第1平行側部734および第2平行側部736のローラまたはホイールは、真空チャンバ700のレール704およびレール706にそれぞれ設けてもよい。これは、メッキ処理の大きな助けとなる。
【0091】
図9は、図8に示したような支持フレーム730に、支持フレーム730に対し結合または位置決めされたフィラメント電力コネクタ740を加えた底面図である。真空テーブルアセンブリ732が真空チャンバ700内にホイールの回転または摺動によって進入すると、フィラメント電力コネクタ740が、図7に示すようなフィラメント電力コネクタ714と自動的に結合することが好ましい。同様に、2つのフィラメント電力制御コネクタ740および714のさまざまな接点はすべて適合形状ないし対になっている。これは、ある好適な実施例では、フィラメント電力接点パッド742や図7に示すフィラメント接点パッド716のようなばね荷重された接点パッドを用いて実現される。
【0092】
図10は、本発明の一実施例にもとづき、図8に示したような支持フレーム730に、支持フレーム730に結合された機械式駆動装置750と、支持フレームに結合されるかまたは支持フレーム上または近傍に位置決めされた電気フィードスルー760とを加えた底面図である。フィラメント電力コネクタ740は、図9では図示したが、図10では、真空テーブルアセンブリ732の説明および理解を簡略にするため図示しない。
【0093】
機械式駆動装置750に焦点を合わせると、一端に機械式駆動装置コネクタ752が図示されている。これは、真空テーブルアセンブリ732が真空チャンバ700内に位置決めされる際に真空チャンバ700の対応する機械式駆動装置コネクタ720と結合するものである。機械式駆動装置750は支持フレーム730の横材758および横材780に取り付けられたシャフトとして示されている。機械式駆動装置750は支持フレーム730のほぼ中央に配置されたものとして示されているが、他の実施例では、一方の側または他方の側にずらしてもよい。機械式駆動装置750は、機械式駆動装置コネクタ752において回転性の機械的エネルギーを受け取り、それにより機械式駆動装置750のシャフトが回転する。この回転エネルギーはギアボックス754を回転させ、ギアボックス754は、機械式駆動装置750の回転エネルギーを、図10では図示されないプラットフォームの回転を駆動できる第2回転エネルギーに変換する。前記プラットフォームまたはターンテーブルは、支持フレーム730の他方側または上部に取り付けることが好ましい。メッキされるべき基板は一般にプラットフォーム上に配置される。ギアボックス754は、ベルト駆動や直結駆動などの駆動アセンブリを用いてプラットフォームの底部と結合してもよい。
【0094】
機械式駆動装置750には歯車756を設けてもよく、機械式駆動装置750の回転が歯車756を回転させるようになっている。別の実施例では、歯車756は、ローラとして使用されたプラットフォームをベルトを用いて駆動するプーリとして使用してもよい。これは以下においてより詳細に説明する。歯車756は、ギアボックス754と同様に、プラットフォームに回転エネルギーを与え、それにより基板が必要に応じ回転するようになっている。
【0095】
電気フィードスルー760に焦点を合わせると、横材758に電気フィードスルーコネクタ762が示されている。電気フィードスルーコネクタ762は、真空チャンバ700の電気フィードスルーコネクタ718と自動的に結合することが好ましい。電気フィードスルー760は電気経路ないし導電経路となり、それにより直流/ラジオ周波数信号などの電気信号が最終的には基板に供給され、プラズマメッキが行なわれる場合などにメッキ処理が促進される。電気フィードスルー760の第2端部764はブラシやばね荷重されたローラのような整流子を備えてもよく、その結果、メッキされている基板に対する電気的経路が与えられる。この整流子は、ばね荷重されたローラが使用される場合などに、基板が回転しているときに基板と直接接触してもよく、またはターンテーブルや導電板などのプラットフォームと電気的に接触して、メッキ中の基板に対する電気的経路を形成し、電気信号を必要に応じ基板に供給できるようにしてもよい。
【0096】
図11は、真空テーブルアセンブリ732の支持フレーム730と2つの支持部材802および804との間の絶縁面の配置の平面図である。支持フレーム730はこの図では見えていない。絶縁面800は、マイカータなど事実上任意の既知あるいは利用可能な材料を用いて構成することができる。フィラメントロッド、棒材または導電体を絶縁面800を貫通して取り付け、さまざまなフィラメントを必要に応じて絶縁面800の上部に配置できるように、絶縁面800はある程度の剛性をもつとともに機械的支持が可能であることが好ましい。絶縁面800は、その表面を貫通して設けられた開口806とともに図示されている。必要に応じさまざまな開口ないし孔のうち任意のものを絶縁面800を貫通して設けることができることに留意すべきである。これにより、機械的および電気的なフィードスルーを絶縁面800の底から絶縁面800の上面まで設けることができる。例えば、機械式駆動装置750および電気フィードスルー760は、最終的には絶縁面800の開口を貫通して設けられる。
【0097】
さまざまなプラットフォームのうち任意のものを真空テーブルアセンブリ732の上部に装着できるように、支持部材802および支持部材804を用いて支持構造が形成される。ある実施例では、支持部材802および804は、絶縁面800の底部側の支持フレーム730に結合された金属ユニストラット部材として使用される。このユニストラットは有益な融通性を備えており、ターンテーブル、ローラ、導電プレートなどさまざまなプラットフォームを真空テーブルアセンブリ732に結合することができる。
【0098】
絶縁面800の底部側はさまざまな導電経路ないし導線のいずれかを備えることが好ましく、それによりフィラメント電力コネクタ714のフィラメント電力接点パッドがそのような導線ないし経路を介して絶縁面800上の所望の箇所と結合される。さらに絶縁面800には孔ないし開口が設けられ、フィラメント導電体がフィラメント電力コネクタ714に電気的に結合されたまま、そのような孔を貫通して設けられるようになっている。これにより、フィラメントを絶縁面800の上面上に必要に応じて事実上どこにでも配置することができる。
【0099】
図12aおよびbはフィラメント820を示す真空テーブルアセンブリ732の平面図および側面図であり、フィラメント820は第1フィラメント導電体822と第2フィラメント導電体824とによって機械的に支持されている。第1フィラメント導電体822および第2フィラメント導電体824は、上記のようにフィラメント電力コネクタ740の所望のパッドに戻る電気的経路となる。
【0100】
プラットフォーム830は、支持部材804および802と、テーブルまたはプラットフォーム830の下の基部に結合されたベルト832を用い絶縁面800の開口を通して機械式駆動装置750のギアボックス754により駆動されるベルトとを用いて取り付けられるものとして示されている。プラットフォーム830の上面には、基板をコーティングのため配置することができる。電気フィードスルー760の第2端部764には、絶縁面800を貫通して図12aでは示されていない整流子が設けられ、この整流子がプラットフォーム830の底部と接触して、プラットフォーム830の上面への、したがってコーティングすべき基板への電気的経路を形成するようになっている。
【0101】
図12bは、図12aにおいて真空チャンバ700の容器内に真空テーブルアセンブリ732を設けた側面図を概略的に示す。整流子840は、電気フィードスルー760と結合され、かつプラットフォーム830の底面と電気的に結合されて示されている。また図示のように、真空チャンバ700の容器内に真空テーブルアセンブリ732が設けられているので、さまざまな機械的および電気的接続は相互に関連するように図示されている。
【0102】
図13は、プラットフォーム830を複式ローラアセンブリとして使用した真空テーブルアセンブリ732の平面図である。この構成により、2個の長円筒形の基板を同時に回転させ、メッキすることができる。歯車756は、歯車854に結合されたベルト850を介して中央部ローラ852を駆動する。この回転により、例えば、2つの原子炉容器ヘッドスタッドを並べて配置し回転させることができる。ばね荷重されたローラ、整流子などの整流子880は、原子炉容器ヘッドスタッドなどの基板の各々と接触し、それにより電気信号を必要に応じ基板に供給できるようになっている。このことは、さまざまな、種類の異なるプラットフォームが使用可能であることを示しており、それにより支持部材804および802の融通性が例証される。
【0103】
図14aおよびbは、プラットフォーム830を単一ローラアセンブリとして使用した真空テーブルアセンブリ732の平面図および側面図である。これは図13とは異なり、所定の時間に円筒状の基板を1つだけ供給可能なので単一ローラアセンブリと呼称される。図14aは、基板が回転している際にその各端部にローラが2個だけ配置されることを除いて図13と同様である。
【0104】
図14bは、プラットフォーム830が基板900のいずれかの端部における前記ローラとともに設けられることを除いて図12bと同様の側面図である。基板900は原子炉容器ヘッドスタッドとして設け、回転とともにコーティングすることができる。デポジタントはフィラメント820内に設けられ、メッキ処理中に気化する。
【0105】
図15aおよびbは、プラットフォームを導電プレート902として使用した真空テーブルアセンブリ732の平面図および側面図である。図15aでは、図13に関連して図示し、これまでに説明したように、導電プレート902が複式ローラアセンブリの上に設けられる。ある好適な実施例では、山形鉄部材920および山形鉄部材922が図示のようにローラを横切って配置される。これにより、プレート902に関する機械的な安定性および支持が付加される。
【0106】
図15bは、基板900が導電プレート902の表面上に示されていることを除いて図15aに示したものの側面図を示している。導電プレート902は、整流子または直接結線880によって電気フィードスルー760と電気的に結合される。
【0107】
図16は、運搬車960上に載置され、この運搬車により真空チャンバ700まで搬送されるものとして示される真空テーブルアセンブリ732を備えたコンフィギュラブル真空システム1000の側面図であり、真空テーブルアセンブリ732が真空チャンバ700内に摺動または転がりによって進入すると、真空テーブルアセンブリ732のさまざまな接続部が自動的に接続されるようになっている。メッキ処理またはデポジタント処理を制御し、真空チャンバ700に対する機械的および電気的入力を制御するための制御キャビネット962が図示されている。
【0108】
このように、本発明により、上記で述べた利点のうち一つ以上を満たすコンフィギュラブル真空システムおよび方法が提供されたことは明らかである。上記好適な実施例を詳細に説明してきたが、上記で明らかにした利点のすべて、一つ、または幾つかが存していないとしても、本発明の範囲から外れることなく種々の変更、代用、および修正をなしうることを理解すべきである。例えば、特定の蒸着技術用途においては、機械式駆動装置、電気フィードスルー、フィラメント電力コネクタのうち1つ以上を必要としなくてもよい。別の例として、機械式駆動装置およびフィラメント電力コネクタは例えば、相互に真空テーブルアセンブリの支持体と直接、もしくは中間継手または取付け台を介して結合可能である。本発明は、さまざまな材料および構成のいずれかを用いて実施することができる。例えば、本発明ではさまざまな真空ポンプシステム、設備、および技術のいずれを用いることも可能である。これらは、本発明において企図されかつその範囲に含まれるコンフィギュラブル真空システムおよび方法の他の配置または構成の例のうちの少数に過ぎない。
【0109】
本発明において離散的または別個のものとして説明および図示したさまざまな構成部品、設備、物質、要素、および処理は、本発明の範囲から外れることなく他の要素および処理と組み合わせるか、または一体化してもよい。例えば、機械式駆動装置と電気フィードスルーとは1つの構造により構成可能であると考えられる。変更、代用、および修正の他の例は当業者により容易に確かめられるものであり、それらは本発明の精神および範囲から外れることなく実施可能である。
【図面の簡単な説明】
【図1】材料をメッキするために使用できる本発明の一実施例によるプラズマメッキ用システムを示す概略図である。
【図2】プラズマメッキ用システムの真空チャンバの平面図であり、ターンテーブルとして用いられたプラットフォームの一実施例を示している。
【図3】本発明の一実施例により基板をプラズマメッキするためのフィラメントの周囲におけるプラズマの形成および散乱を示す側面図である。
【図4】ベース層と、移行層と、作用層とを含む蒸着層を示す断面図である。
【図5】本発明の一実施例よるプラズマメッキ方法を示すフローチャートである。
【図6】本発明の一実施例よる本発明の前記システムを用いたバックスパッタリングの方法を示すフローチャートである。
【図7】本発明の一実施例よるコンフィギュラブル真空システムで使用するための真空チャンバの正面図である。
【図8】本発明の一実施例による真空テーブルアセンブリの支持フレームの底面図である。
【図9】前記支持フレームに結合されたフィラメント電力コネクタを加えた図8に示した前記支持フレームの底面図である。
【図10】本発明の一実施例による前記支持フレームに結合された機械式駆動装置と前記支持フレームに結合された電気フィードスルーとを加えた図8に示した前記支持フレームの底面図である。
【図11】図示されているように、本発明の一実施例による前記真空テーブルアセンブリの前記支持フレームと2つの支持部材との間に配置された絶縁面の平面図である。
【図12】図12aと12bは、プラットフォームがターンテーブルとして使用されると共にフィラメントが所望の位置に配置された前記真空テーブルアセンブリの平面図と側面図である。
【図13】プラットフォームを複式ローラアセンブリとして使用した前記真空テーブルアセンブリの平面図および側面図である。
【図14】図14aと14bとは、プラットフォームを単一ローラアセンブリとして使用した前記真空テーブルアセンブリの平面図および側面図である。
【図15】図15aと15bとは、プラットフォームを導電プレートとして使用した前記真空テーブルアセンブリの平面図および側面図である。
【図16】運搬車を用いて前記真空テーブルアセンブリが前記真空チャンバ内に装入されつつある前記コンフィギュラブル真空システムの側面図である。

Claims (22)

  1. 基板をメッキするための真空チャンバで用いられる真空テーブルアセンブリを備え、
    前記真空テーブルアセンブリは、
    上部と底部とを有すると共に、前記真空テーブルアセンブリを構造的に支持できる支持フレームと、
    上部と底部とを有すると共に、前記支持フレームの前記上部に配置された絶縁面と、
    前記支持フレームに取り付けられていると共に、外部の機械的エネルギーを第1箇所で機械式駆動装置コネクタを介して受け取り第2箇所で利用するために、前記機械的エネルギーを伝達できる機械式駆動装置と、
    前記支持フレームに取り付けられていると共に、第1箇所で電気フィードスルーコネクタを介して電気信号を受け取り第2箇所に前記電気信号を伝達できる電気フィードスルーと、
    第1フィラメント導電体と第2フィラメント導電体との間において前記絶縁面の上方に配置されたフィラメントと、
    第1フィラメント電力接点パッドを介して前記第1フィラメント導電体に電気的に結合されると共に、第2フィラメント電力接点パッドを介して前記第2フィラメント導電体に電気的に結合されているフィラメント電力コネクタと、
    前記基板を支持できるプラットフォームとを有し、
    前記真空チャンバは、
    ドア部に主開口と、
    容器内を画定する壁部と、
    前記容器内に配置されていると共に、前記真空テーブルアセンブリの前記フィラメント電力コネクタと結合できるフィラメント電力コネクタと、
    前記容器内に配置されていると共に、前記真空テーブルアセンブリの前記電気フィードスルーと結合できる電気フィードスルーコネクタと、
    前記容器内に配置されていると共に、前記真空テーブルアセンブリの前記機械式駆動装置コネクタと結合できる機械式駆動装置コネクタと、
    前記真空チャンバの前記容器内で前記真空テーブルアセンブリを受容および支持できるレールとを
    有していることを特徴とするコンフィギュラブル真空システム。
  2. 請求項1のコンフィギュラブル真空システムにおいて、
    前記真空テーブルアセンブリが前記真空チャンバの前記容器内に設けられる際に、前記機械式コネクタと前記電気フィードスルーコネクタと前記フィラメント電力コネクタとは、その関係するコネクタと自動的に結合できることを特徴とするコンフィギュラブル真空システム。
  3. 基板をメッキするための真空チャンバで用いられる真空テーブルアセンブリであって、
    上部と底部とを有すると共に、前記真空テーブルアセンブリを構造的に支持できる支持フレームと、
    上部と底部とを有すると共に、前記支持フレームの前記上部に配置された絶縁面と、
    前記支持フレームに取り付けられていると共に、外部の機械的エネルギーを第1箇所で機械式駆動装置コネクタを介して受け取り第2箇所で利用するために、前記機械的エネルギーを伝達できる機械式駆動装置と、
    前記支持フレームに取り付けられていると共に、第1箇所で電気フィードスルーコネクタを介して電気信号を受け取り、前記電気信号を第2箇所に伝達できる電気フィードスルーと、
    第1フィラメント導電体と第2フィラメント導電体との間において前記絶縁面の上方に配置されたフィラメントと、
    第1フィラメント電力接点パッドを介して前記第1フィラメント導電体に電気的に結合され、第2フィラメント電力接点パッドを介して前記第2フィラメント導電体に電気的に結合されているフィラメント電力コネクタと、
    前記基板を支持できるプラットフォームとを
    備えていることを特徴とする真空テーブルアセンブリ。
  4. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記支持フレームの第1平行側部に沿って配置された第1ローラと、
    前記支持フレームの第2平行側部に沿って配置された第2ローラとをさらに備え、
    前記第1ローラと前記第2ローラとは、真空チャンバの前記容器内に配置された支持体と係合するように作用可能であることを特徴とする真空テーブルアセンブリ。
  5. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記支持フレームは、ユニストラットとして使用される支持部材を有することを特徴とする真空テーブルアセンブリ。
  6. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記支持フレームは、水平部材と、垂直部材と、
    上部と底部とを有すると共に前記支持フレームの前記上部に配置された絶縁面とを有していることを特徴とする真空テーブルアセンブリ。
  7. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記絶縁面がマイカータの層を含んでいることを特徴とする真空テーブルアセンブリ。
  8. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記絶縁面は、前記絶縁面の中に形成された開口を有していることを特徴とする真空テーブルアセンブリ。
  9. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記機械式駆動装置はシャフトであり、前記機械的エネルギーは前記シャフトを回転させるために回転エネルギーとして与えられることを特徴とする真空テーブルアセンブリ。
  10. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記機械式駆動装置から機械的な回転エネルギーを受け取り、この回転エネルギーを、前記プラットフォームの前記回転を駆動させ得る第2の回転エネルギーに変換できるギアボックスをさらに備えていることを特徴とする真空テーブルアセンブリ。
  11. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記機械式駆動装置は前記プラットフォームに回転エネルギーを与えることを特徴とする真空テーブルアセンブリ。
  12. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記プラットフォームはターンテーブルであり、前記機械式駆動装置は前記ターンテーブルに回転エネルギーを与えることを特徴とする真空テーブルアセンブリ。
  13. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記プラットフォームはローラであり、前記機械式駆動装置は前記ローラに回転エネルギーを与えることを特徴とする真空テーブルアセンブリ。
  14. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記プラットフォームはプレートであり、前記電気フィードスルーは導電経路を介して前記プレートと結合されることを特徴とする真空テーブルアセンブリ。
  15. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記プラットフォームはターンテーブルであり、前記電気フィードスルーは導電経路を介して前記ターンテーブルと結合されることを特徴とする真空テーブルアセンブリ。
  16. 請求項3に記載の真空テーブルアセンブリにおいて、
    導電経路を介して前記電気フィードスルーの第2端部と結合された整流子をさらに備えていることを特徴とする真空テーブルアセンブリ。
  17. 請求項16に記載の真空テーブルアセンブリにおいて、
    前記プラットフォームはターンテーブルであり、前記整流子は導電経路を介して前記ターンテーブルと結合されることを特徴とする真空テーブルアセンブリ。
  18. 請求項16に記載の真空テーブルアセンブリにおいて、
    前記プラットフォームはローラであり、前記整流子は導電経路を介して前記基板と結合されることを特徴とする真空テーブルアセンブリ。
  19. 請求項16に記載の真空テーブルアセンブリにおいて、
    前記整流子が、ターンテーブルとして使用された前記プラットフォームの下側と接触できるブラシであることを特徴とする真空テーブルアセンブリ。
  20. 請求項16に記載の真空テーブルアセンブリにおいて、
    前記整流子が、前記プラットフォームによって回転する前記基板と電気的に直接接触できるばね荷重されたローラであることを特徴とする真空テーブルアセンブリ。
  21. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記プラットフォームが導電プレートであることを特徴とする真空テーブルアセンブリ。
  22. 請求項3に記載の真空テーブルアセンブリにおいて、
    前記プラットフォームが絶縁材で作製されたローラであることを特徴とする真空テーブルアセンブリ。
JP2001586630A 2000-05-22 2001-05-22 コンフィギュラブル真空システムおよび方法 Pending JP2004514785A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/578,166 US6521104B1 (en) 2000-05-22 2000-05-22 Configurable vacuum system and method
PCT/US2001/016668 WO2001090437A2 (en) 2000-05-22 2001-05-22 Configurable vacuum system and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005237565A Division JP2005344212A (ja) 2000-05-22 2005-08-18 コンフィギュラブル真空システムおよび方法

Publications (1)

Publication Number Publication Date
JP2004514785A true JP2004514785A (ja) 2004-05-20

Family

ID=24311716

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2001586630A Pending JP2004514785A (ja) 2000-05-22 2001-05-22 コンフィギュラブル真空システムおよび方法
JP2005237565A Pending JP2005344212A (ja) 2000-05-22 2005-08-18 コンフィギュラブル真空システムおよび方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2005237565A Pending JP2005344212A (ja) 2000-05-22 2005-08-18 コンフィギュラブル真空システムおよび方法

Country Status (12)

Country Link
US (2) US6521104B1 (ja)
EP (2) EP1855305A1 (ja)
JP (2) JP2004514785A (ja)
KR (1) KR100817764B1 (ja)
CN (2) CN1800442A (ja)
AT (1) ATE371951T1 (ja)
AU (3) AU6485301A (ja)
CA (1) CA2410352A1 (ja)
DE (1) DE60130209T2 (ja)
ES (1) ES2292595T3 (ja)
MX (1) MXPA02011505A (ja)
WO (1) WO2001090437A2 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250196B1 (en) * 1999-10-26 2007-07-31 Basic Resources, Inc. System and method for plasma plating
US6503379B1 (en) 2000-05-22 2003-01-07 Basic Research, Inc. Mobile plating system and method
US6521104B1 (en) * 2000-05-22 2003-02-18 Basic Resources, Inc. Configurable vacuum system and method
US20050277918A1 (en) * 2003-03-07 2005-12-15 Baylis Medical Company Inc. Electrosurgical cannula
US20030180450A1 (en) * 2002-03-22 2003-09-25 Kidd Jerry D. System and method for preventing breaker failure
US20050126497A1 (en) * 2003-09-30 2005-06-16 Kidd Jerry D. Platform assembly and method
US7013884B2 (en) * 2004-03-17 2006-03-21 Masonry Technology Incorporated Dust collection system for a masonry saw
US8039049B2 (en) * 2005-09-30 2011-10-18 Tokyo Electron Limited Treatment of low dielectric constant films using a batch processing system
WO2009073781A2 (en) 2007-12-07 2009-06-11 Zimmer Orthopaedic Surgical Products, Inc. Spacer molds and methods therfor
KR100977613B1 (ko) 2008-03-26 2010-08-23 한전케이피에스 주식회사 고온용 부품의 윤활코팅장치
US8414286B2 (en) * 2008-10-29 2013-04-09 Zimmer Orthopaedic Surgical Products, Inc. Spacer molds with releasable securement
TWI393162B (zh) * 2008-12-30 2013-04-11 Metal Ind Res & Dev Ct 真空連續式載台傳輸偏壓裝置
US8852347B2 (en) * 2010-06-11 2014-10-07 Tokyo Electron Limited Apparatus for chemical vapor deposition control
US8895115B2 (en) 2010-11-09 2014-11-25 Southwest Research Institute Method for producing an ionized vapor deposition coating
US10304665B2 (en) 2011-09-07 2019-05-28 Nano-Product Engineering, LLC Reactors for plasma-assisted processes and associated methods
US9761424B1 (en) 2011-09-07 2017-09-12 Nano-Product Engineering, LLC Filtered cathodic arc method, apparatus and applications thereof
DE102011113563A1 (de) * 2011-09-19 2013-03-21 Oerlikon Trading Ag, Trübbach Karussellschlitten für Vakuumbehandlungsanlage
KR20140101600A (ko) * 2013-02-12 2014-08-20 삼성디스플레이 주식회사 기판 이송 장치
US10196951B2 (en) * 2016-05-31 2019-02-05 Boiler Tube Company Of America Selective catalytic reactor (SCR) door systems
CN107723675A (zh) * 2017-11-17 2018-02-23 东莞颠覆产品设计有限公司 物理气相沉积设备和物理气相沉积方法
DE102018103321A1 (de) * 2018-02-14 2019-08-14 Iwis Motorsysteme Gmbh & Co. Kg Verfahren zur Herstellung von Hartstoffschichten
CN108435714B (zh) * 2018-04-12 2023-08-29 环维电子(上海)有限公司 一种新型干冰清洗底座及其清洗方法
CN109852935B (zh) * 2019-04-15 2023-08-22 浙江世宏实业有限公司 一种用于化妆品管的镀彩装置

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3329601A (en) 1964-09-15 1967-07-04 Donald M Mattox Apparatus for coating a cathodically biased substrate from plasma of ionized coatingmaterial
US3719052A (en) 1971-05-04 1973-03-06 G White Vacuum system cold trap
BE790940A (fr) * 1971-11-04 1973-03-01 Rca Corp Procede de reglage de la composition d'un film
US3961103A (en) 1972-07-12 1976-06-01 Space Sciences, Inc. Film deposition
US4054426A (en) 1972-12-20 1977-10-18 White Gerald W Thin film treated drilling bit cones
US3857682A (en) 1973-02-07 1974-12-31 G White High temperature resistive and dry lubricated film surfaces
US4082636A (en) 1975-01-13 1978-04-04 Sharp Kabushiki Kaisha Ion plating method
US4016389A (en) 1975-02-21 1977-04-05 White Gerald W High rate ion plating source
US4039416A (en) 1975-04-21 1977-08-02 White Gerald W Gasless ion plating
US4022939A (en) * 1975-12-18 1977-05-10 Western Electric Company, Inc. Synchronous shielding in vacuum deposition system
GB1601427A (en) 1977-06-20 1981-10-28 Siemens Ag Deposition of a layer of electrically-conductive material on a graphite body
US4137370A (en) 1977-08-16 1979-01-30 The United States Of America As Represented By The Secretary Of The Air Force Titanium and titanium alloys ion plated with noble metals and their alloys
US4126521A (en) 1977-10-19 1978-11-21 Computer Peripherals, Inc. Method of coating metal surfaces
US4282597A (en) 1977-11-28 1981-08-04 Texas Instruments Incorporated Metal-coated plastic housing for electronic components and the method of making same
JPS581186B2 (ja) 1977-12-13 1983-01-10 双葉電子工業株式会社 イオンプレ−テイング装置
USRE30401E (en) 1978-07-07 1980-09-09 Illinois Tool Works Inc. Gasless ion plating
JPS5557717A (en) 1978-10-25 1980-04-28 Koyo Seiko Co Ltd Rolling bearing
US4310614A (en) * 1979-03-19 1982-01-12 Xerox Corporation Method and apparatus for pretreating and depositing thin films on substrates
DE3064929D1 (en) 1979-07-25 1983-10-27 Secr Defence Brit Nickel and/or cobalt base alloys for gas turbine engine components
US4342631A (en) 1980-06-16 1982-08-03 Illinois Tool Works Inc. Gasless ion plating process and apparatus
US4407712A (en) 1982-06-01 1983-10-04 The United States Of America As Represented By The Secretary Of The Army Hollow cathode discharge source of metal vapor
JPS58221271A (ja) 1982-06-18 1983-12-22 Citizen Watch Co Ltd イオンプレ−テイング法による被膜形成方法
JPS5996137A (ja) 1982-11-25 1984-06-02 Shin Etsu Chem Co Ltd 塩化ビニル系樹脂複合製品の製造方法
US4468309A (en) 1983-04-22 1984-08-28 White Engineering Corporation Method for resisting galling
US4420386A (en) * 1983-04-22 1983-12-13 White Engineering Corporation Method for pure ion plating using magnetic fields
US4540596A (en) * 1983-05-06 1985-09-10 Smith International, Inc. Method of producing thin, hard coating
US4938859A (en) 1984-07-31 1990-07-03 Vacuum Optics Corporation Of Japan Ion bombardment device with high frequency
US4725345A (en) 1985-04-22 1988-02-16 Kabushiki Kaisha Kenwood Method for forming a hard carbon thin film on article and applications thereof
US4990233A (en) 1985-06-14 1991-02-05 Permian Research Corporation Method for retarding mineral buildup in downhole pumps
GB2178061B (en) 1985-07-01 1989-04-26 Atomic Energy Authority Uk Coating improvements
DE3635121B4 (de) 1985-10-15 2004-03-04 Bridgestone Corp. Verfahren zur Herstellung eines gummiartigen Verbundmaterials
US4667620A (en) 1985-10-29 1987-05-26 Cosden Technology, Inc. Method and apparatus for making plastic containers having decreased gas permeability
US4673586A (en) 1985-10-29 1987-06-16 Cosden Technology, Inc. Method for making plastic containers having decreased gas permeability
US4852516A (en) 1986-05-19 1989-08-01 Machine Technology, Inc. Modular processing apparatus for processing semiconductor wafers
US4863581A (en) 1987-02-12 1989-09-05 Kawasaki Steel Corp. Hollow cathode gun and deposition device for ion plating process
US4826365A (en) 1988-01-20 1989-05-02 White Engineering Corporation Material-working tools and method for lubricating
US5225057A (en) * 1988-02-08 1993-07-06 Optical Coating Laboratory, Inc. Process for depositing optical films on both planar and non-planar substrates
US5085499A (en) 1988-09-02 1992-02-04 Battelle Memorial Institute Fiber optics spectrochemical emission sensors
US5565519A (en) * 1988-11-21 1996-10-15 Collagen Corporation Clear, chemically modified collagen-synthetic polymer conjugates for ophthalmic applications
FR2644378B1 (fr) 1988-12-08 1991-06-07 Techmeta Procede de construction de machines sous vide de grandes dimensions a enceintes et equipements mecaniques desolidarises
US5076205A (en) 1989-01-06 1991-12-31 General Signal Corporation Modular vapor processor system
US5061512A (en) 1989-02-21 1991-10-29 General Electric Company Method of producing lubricated bearings
US4956858A (en) 1989-02-21 1990-09-11 General Electric Company Method of producing lubricated bearings
US5055169A (en) * 1989-03-17 1991-10-08 The United States Of America As Represented By The Secretary Of The Army Method of making mixed metal oxide coated substrates
US5409762A (en) 1989-05-10 1995-04-25 The Furukawa Electric Company, Ltd. Electric contact materials, production methods thereof and electric contacts used these
GB9006073D0 (en) 1990-03-17 1990-05-16 D G Teer Coating Services Limi Magnetron sputter ion plating
US5078847A (en) 1990-08-29 1992-01-07 Jerry Grosman Ion plating method and apparatus
US5190703A (en) 1990-12-24 1993-03-02 Himont, Incorporated Plasma reactor chamber
JP3133388B2 (ja) 1991-05-27 2001-02-05 三洋電機株式会社 ステンレス鋼の耐食性改善方法
WO1993007453A1 (en) 1991-10-03 1993-04-15 Iowa State University Research Foundation, Inc. Mobile inductively coupled plasma system
US5252365A (en) 1992-01-28 1993-10-12 White Engineering Corporation Method for stabilization and lubrication of elastomers
US5227203A (en) 1992-02-24 1993-07-13 Nkk Corporation Ion-plating method and apparatus therefor
JPH0673538A (ja) * 1992-05-26 1994-03-15 Kobe Steel Ltd アークイオンプレーティング装置
US5357291A (en) 1992-09-08 1994-10-18 Zapit Technology, Inc. Transportable electron beam system and method
US5439498A (en) 1992-11-10 1995-08-08 Exide Corporation Process and system for the on-site remediation of lead-contaminated soil and waste battery casings
WO1994021839A1 (en) 1993-03-15 1994-09-29 Kabushiki Kaisha Kobeseikosho Apparatus and system for arc ion plating
KR100267617B1 (ko) * 1993-04-23 2000-10-16 히가시 데쓰로 진공처리장치 및 진공처리방법
DE4418161A1 (de) 1994-05-25 1995-11-30 Fraunhofer Ges Forschung Einrichtung zur Durchführung elektronenstrahltechnologischer Prozesse im Vakuum
JPH07331414A (ja) 1994-06-01 1995-12-19 Ykk Kk 耐摩耗性膜
DE19526387C2 (de) * 1994-07-19 1998-12-10 Sumitomo Metal Mining Co Doppelt beschichteter Stahlverbundgegenstand und Verfahren zu dessen Herstellung
US5798496A (en) 1995-01-09 1998-08-25 Eckhoff; Paul S. Plasma-based waste disposal system
DE19505258C2 (de) 1995-02-16 1998-08-06 Samsung Electronics Co Ltd Beschichtungsvorrichtung
JPH08321448A (ja) * 1995-05-25 1996-12-03 Tadahiro Omi 真空排気装置、半導体製造装置及び真空処理方法
US5961798A (en) * 1996-02-13 1999-10-05 Diamond Black Technologies, Inc. System and method for vacuum coating of articles having precise and reproducible positioning of articles
US5730568A (en) * 1996-10-03 1998-03-24 Mcgard, Inc. Anti-galling fastener
BR9713354A (pt) 1996-11-13 2000-01-25 Doerken Ewald Ag Processo para aplicação de um revestimento inorgânico sobre um corpo eletricamente condutor
EP0856602A1 (de) 1997-01-31 1998-08-05 Benninger AG Verfahren und Vorrichtung zur Applikation von Küpenfarbstoff, insbesondere Indigo auf eine Fadenschar
US6156392A (en) 1999-07-13 2000-12-05 Nylok Fastener Corporation Process for triboelectric application of a fluoropolymer coating to a threaded fastener
US6503379B1 (en) 2000-05-22 2003-01-07 Basic Research, Inc. Mobile plating system and method
US6521104B1 (en) 2000-05-22 2003-02-18 Basic Resources, Inc. Configurable vacuum system and method

Also Published As

Publication number Publication date
US6905582B2 (en) 2005-06-14
EP1287545B1 (en) 2007-08-29
WO2001090437A3 (en) 2002-05-30
KR100817764B1 (ko) 2008-04-01
JP2005344212A (ja) 2005-12-15
AU2001264853B2 (en) 2005-09-15
AU2005202627B2 (en) 2008-03-13
KR20030091651A (ko) 2003-12-03
EP1855305A1 (en) 2007-11-14
DE60130209D1 (de) 2007-10-11
EP1287545A2 (en) 2003-03-05
CN1451171A (zh) 2003-10-22
US6521104B1 (en) 2003-02-18
AU2005202627A1 (en) 2005-07-07
CN1800442A (zh) 2006-07-12
CA2410352A1 (en) 2001-11-29
DE60130209T2 (de) 2008-07-31
MXPA02011505A (es) 2004-09-10
WO2001090437A2 (en) 2001-11-29
US20030159926A1 (en) 2003-08-28
CN100576416C (zh) 2009-12-30
ES2292595T3 (es) 2008-03-16
AU6485301A (en) 2001-12-03
ATE371951T1 (de) 2007-09-15

Similar Documents

Publication Publication Date Title
AU2005202627B2 (en) Configurable vacuum system and method
AU2001264853A1 (en) Configurable vacuum system and method
US6858119B2 (en) Mobile plating system and method
AU2001264782A1 (en) Mobile plating system and method
WO2000003414A1 (en) Feedthrough overlap coil
EP0546006A1 (en) Ion plating method
JPH04323375A (ja) 難剥性被覆層を有する工作材料とその製造方法
US3750623A (en) Glow discharge coating apparatus
US20100058986A1 (en) System and method for plasma plating
US20030180450A1 (en) System and method for preventing breaker failure
CA2507735A1 (en) Configurable vacuum system and method
JP3076663B2 (ja) 粉末コーティング装置
JP2001230217A (ja) 基板処理装置及び方法
AU2006200125B2 (en) Mobile plating system and method
EP0193338A2 (en) A method of and apparatus for producing multilayered coatings
KR20040078425A (ko) 전자파 차폐막 코팅장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106