JP2004508698A - 高密度巨大磁気抵抗メモリセル - Google Patents

高密度巨大磁気抵抗メモリセル Download PDF

Info

Publication number
JP2004508698A
JP2004508698A JP2002508831A JP2002508831A JP2004508698A JP 2004508698 A JP2004508698 A JP 2004508698A JP 2002508831 A JP2002508831 A JP 2002508831A JP 2002508831 A JP2002508831 A JP 2002508831A JP 2004508698 A JP2004508698 A JP 2004508698A
Authority
JP
Japan
Prior art keywords
magnetic
memory cell
magnetic layers
layers
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002508831A
Other languages
English (en)
Inventor
トロク・イー.・ジェームズ
スピッツァー・リチャード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Integrated Magnetoelectronics Corp
Original Assignee
Integrated Magnetoelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Integrated Magnetoelectronics Corp filed Critical Integrated Magnetoelectronics Corp
Publication of JP2004508698A publication Critical patent/JP2004508698A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)

Abstract

【解決手段】磁性層のそれぞれが1ビットの情報を磁気的に記憶する、複数の磁性層を備えた多層化されたメモリセルが説明される。複数のアクセス線は複数の磁性層と集積されて、複数のアクセス線および巨大磁気抵抗効果を利用することによって、磁性層の選択されたそれぞれに記憶された情報のビットが独立にアクセスされるように構成される。メモリセルはさらに少なくとも1つのキーパー層を含む。磁性層、アクセス線、および少なくとも1つのキーパー層は実質的に閉磁束構造を形成する。
【選択図】図5

Description

【0001】
【発明の背景】
本出願は、2000年7月11日に出願された米国仮特許出願第60/217,339号、多層化されたマルチレベル不揮発性VLSI磁気RAM、および2001年6月18日に出願された米国特許出願、弁護士事件番号IMECP006の優先権を主張しており、それぞれの全ての開示は全ての目的のためにここで参照によって援用される。
【0002】
本発明はメモリ技術に関しており、特に巨大磁気抵抗を用いて磁気的に記憶された情報にアクセスするメモリに関する。
【0003】
半導体ランダムアクセスメモリ(RAM)は、この技術分野ではよく知られている。RAMは一般に多くの周辺回路とともにチップ上に集積されたメモリセルのセットを備えている。RAMは例えば、Poratらの「Introduction to Digital Techniques」John Wiley、1979年に記載されており、その全体が全ての目的のためにここで参照により援用される。一般にRAM回路は、アドレシング(アクセスの特定位置の選定)、電源供給、ファンアウト(複数負荷への信号の伝送)、および利用可能な出力信号を発生するために必要な環境づくりを含むいくつかの機能を果たす。RAMメモリにおいては、アドレシング方法は、望ましいセルへのランダムなアクセスを許容し、アクセス時間はセル位置に依存しない。そして選択された部分は利用するために抽出される。RAMは一般にCPUに匹敵する程度にじゅうぶん速く、しかし一般には大容量記憶には高価すぎる。さらにメモリへの電源が失われるとその内容も失われるという意味でスタティックRAM(SRAM)およびダイナミックRAM(DRAM)は共に揮発性である。DRAMはまた、定期的なリフレッシュが必要である。よってDRAMまたはSRAMを長期記憶に用いることは実用的ではない。
【0004】
電子的にプログラム可能な読み出し専用メモリ(EPROM)および読み出し専用メモリ(ROM)は、RAMに対する不揮発代替品である。しかし、そのようなメモリはリフレッシュサイクルを必要としない反面、一回しかプログラムできないという明らかな欠点を有する。電気的に書き換え可能な読み出し専用メモリ(EAROM)、電気的に消去可能な読み出し専用メモリ(EEROM)、またはフラッシュ(アプリケーションに最適化されたEPROM)のような、繰り返し書き込みできる他の不揮発性半導体メモリは、長期記憶のための磁気記憶のような信頼性を提供するには程遠い。
【0005】
半導体メモリ技術は、そのさらなる発展の基本的な限界に急速に近づきつつある。半導体メモリ産業が直面する技術的な困難は、Paul Packanの論文「Pushing the Limits」、Science誌、1999年9月24日、p.2079によく要約されており、その全体が全ての目的のためにここで参照によって援用される。
【0006】
上述の従来メモリの欠点を鑑みて、情報記憶の全く新しいパラダイムの基礎として、磁気抵抗および巨大磁気抵抗(GMR)のような代替物をますます求めるようになってきている。GMRは、連続する磁性層群における磁化Mの相対的方向に依存して、磁気多層フィルム(交互に設けられた磁気および非磁気金属層からなる)を通過する伝導電子が受ける抵抗の差を意味する。磁性層のいくつかは記憶に用いられえ、いくつかは記憶および読み出しの双方に、そして他のものはキーパーとして用いられうる。実際、読み出し層でさえも読み出しサイクル時間の一部の間には短時間、情報を記憶することができる。キーパー層を、情報を記憶するそれらの層から区別するために、つまりサイクルの一部だけか、またはサイクルが完了した後までかを区別するために、以後、キーパー(および絶縁)層以外の全てを「記憶層」と呼ぶ。
【0007】
磁気フィルム中のGMRは、導電電子のうち、そのスピンが磁化ベクトルと平行なものと、そのスピンが磁化ベクトルと反平行なものとの間のエネルギー差から生まれる。磁化が大きいほど、巨大磁気抵抗も大きくなる。GMRに基づくメモリ技術の例は、1996年12月24日に付与された米国特許第5,587,943号、NONVOLATILE MAGNETORESISTIVE MEMORY WITH FULLY CLOSED FLUX OPERATIONに記載されており、その全体が全ての目的のためにここで参照によって援用される。そのような技術に基づくメモリセルの動作例が図1を参照しながらここで説明される。
【0008】
図1は、GMR交換結合された3層フィルムを示す。2つの磁性層130および134は、非磁性層132によって分けられている。2つの磁性層は、それらの間の交換結合よりも大きい値だけ異なる保磁力Hcを有しており、層130は高い保磁力を有し、層134は低い保磁力を有する。フィルムの断面136はループのそれぞれの部分における磁化を示す。
【0009】
右上の象限から始めると、上下の層130および134共に同じ方向に飽和している。もし印加された磁界Hが実質的にゼロまで減少され、さらに方向が逆転されると、左上の象限の断面によって示されるように、低い保磁力を持つ層が先に反転(スイッチング)する。この反転は、磁界が、低保磁力層の保磁力と結合磁界との和に等しいときに起こる。
【0010】
印加された磁界Hが負の方向に増加されると、左下の象限に示されるように、高い保磁力を持つ層が方向を反転する。この反転は、磁界が、高保磁力層の保磁力よりも交換結合の値だけ少ないものに等しいときに起こる。よって反転はこのようなフィルムでは2段階で行われる。
【0011】
図1のメモリセルの読み出しは、ワード線の1つから印加される磁界によって得られる、磁化の変化に応じた抵抗の変化を測定することによって非破壊的なやりかたで達成される。磁界の印加は一時的に低保磁力層を反転させる。交換バイアスが低保磁力層の保磁力を越えるこの例では、この層は、ワード線の電流が切断されるときにリセット、つまり元へ反転する。図2(a)および図2(b)は、三角波状のワード電流182が印加されたときの抵抗信号180を示す。図2(a)は、「ゼロ」状態に対応する信号を示し、図2(b)は、「1」状態に対応する信号を示す。
【0012】
持続性および信頼性に関連した明らかな優位性に加えて、GMR技術に基づいたメモリは、従来の半導体メモリに匹敵し、かつそれに勝る密度を達成した。しかしより高い密度を達成することが望ましい。
【0013】
【発明の概要】
本発明によれば、個々のGMRメモリセルが多ビット情報を記憶するように構成される技術が提供される。つまり本発明は、複数の磁性層を有する多層化されたメモリセルを提供し、磁性層のそれぞれは磁気的に1ビットの情報を記憶する。複数のアクセス線は複数の磁性層と集積され、複数のアクセス線の選択されたものと巨大磁気抵抗効果を用いて、磁性層の選択されたものそれぞれに記憶された情報のビットが独立にアクセスされるように構成される。メモリセルはさらに少なくとも1つのキーパー層を含む。記憶層、アクセス線、および少なくとも1つのキーパー層は、実質的に閉磁束構造を構成する。
【0014】
本発明の性質および優位性のさらなる理解は、明細書の残りの部分および図面を参照して理解されうる。
【0015】
【発明の実施の形態】
本発明の具体的な実施形態は、磁気抵抗メモリセルの情報記憶密度が高くなる手法を提供する。後述するように、この増加を達成するためにさまざまなアプローチが、本発明の範囲から離れることなくとられうる。例えばある実施形態によれば、図1の記憶要素は1ビットではなく2ビットの情報を記憶するために用いられうる。つまり、図1のメモリセルの動作説明を参照すれば、セルの記憶密度が充分に活用されていないことになり、すなわち2つの層が1ビットの情報を記憶するために用いられていることになる。したがって本発明は、そのようなメモリセルの両方の層が記憶のために用いられ、よってそのようなセルを用いるメモリデバイスの記憶密度を2倍にする手法を提供する。
【0016】
さらに上述のように、本発明のさまざまな実施形態の磁性層のいくつかは記憶に用いられ、いくつかは読み出しに用いられ、いくつかは記憶および読み出しの両方に用いられ、他のものはキーパーとして用いられる。すなわち、読み出し層でさえも読み出しサイクル時間の一部の間には短時間、情報を記憶することができる。したがってキーパー層を、情報を記憶するそれらの層から区別するために、つまりサイクルの一部だけか、またはサイクルが完了した後までかを区別するために、以後、キーパー(および絶縁)層以外の全てを「記憶層」と呼ぶ。この語の使用は統一をとるためであって、本発明の範囲を限定するために用いられるべきではない。図1に示されたようなメモリセルの記憶容量の手法の具体的な実施形態がここで図3および4を参照しながら説明される。
【0017】
図3は低保磁力記憶層304および高保磁力記憶層306を有するメモリセル302の4つの磁化の状態を示す。図に示されるように、状態のそれぞれはユニークな2ビットの組み合わせを表現する。つまり、状態「00」は両方の記憶層が右に磁化されているように示されており、状態「11」は両方の記憶層が左に磁化されているように示されている。この状態の磁化ベクトルは平行なので、それらは比較的低い抵抗を呈する。対照的に、状態「01」および「10」は、共に反対向きの磁化ベクトルによって特徴づけられ、つまりGMR効果のために、平行ベクトルに比べ比較的高い抵抗状態を示す。
【0018】
当業者であれば状態のそれぞれがどのようにメモリセル302に書き込みしうるかは理解できよう。つまり先ず層306が層の保磁力を超える磁界を印加することによって磁化される。その低い保磁力のため、少なくとも始めは、層304もまた同じ向きに磁化される。そして層304の反平行の状態は、層304の保磁力を超えはするが、層306のそれを超えない程度に充分な反対向きの第2磁界を印加することによって書き込みされうる。
【0019】
メモリセル302に記憶された情報の読み出しが図4を参照して説明される。以下に述べるように、読み出しプロセスはセルの初期状態によって異なる。まず多層セルと関連する抵抗値R1が、セルが初期状態であるときに測定される(カラム1)。そして層304の保磁力を越え、層304を特定の方向、例えば示されるように右に磁化するのに充分な磁界が印加される。そして磁界の印加の後に抵抗値R2が測定(カラム2)され、R1およびR2の差が決定される(カラム3)。示された例においては、もしR2−R1がゼロよりも小さければ、セルの初期状態は「01」状態であると決定される。同様にもしR2−R1がゼロよりも大きければ、初期状態は「11」状態に対応する。そして初期状態がセルに再書き込みされる。
【0020】
いっぽうもし、R1およびR2の間に差がなければ、初期状態は「00」または「10」のどちらかである。もし必要なものが低保磁力層304の状態、つまりいずれの場合も「0」であるなら、それ以上の動作は行われなくてもよい。しかし、もし層306の状態が決定されなければならないなら、第1の磁界と反対の向きに第2の磁界が印加されえて、層304の磁化を反転、つまりこの例では左向きに反転させ、第3の抵抗値R3が測定される(カラム4)。もしR3−R2がゼロよりも大きければ、初期状態は「00」であると決定され、もしゼロよりも小さければ、初期状態は「10」であると決定される(カラム5)。初期状態はそれからセルに再書き込みされる。
【0021】
本発明の具体的な実施形態(図4を参照して上述のような)は異なる保磁力を有する層群(例えば層304および306)を言及しているが、本発明の他の実施形態は、記憶および読み出しを実現させる代替の機構によって同じ保磁力を有する層を用いることに注意されたい。そのような機構の例としては、同じ保磁力を有する近傍の層を反転させることなくある層を反転する、局所化された磁界の利用がある。そのような実施形態の例が後述される。
【0022】
本発明の様々な他の実施形態によれば、複数ビット情報が記憶されうる情報メモリセルの設計が提供される。2、3、または4ビットの情報が記憶されえて、破壊的読み出し(DRO)または非破壊的(NDRO)読み出しを利用する具体的な実施形態が後述される。しかしこれらの設計の具体的なものが、記載されたものよりもより多くのビットの情報を記憶するために一般化されうることがわかるだろう。例えば記載された実施形態の具体的なものを参照しながら、同じ構成に記憶される情報のビット数の2倍までが記憶されるDRO構成として、NDRO構成もまた用いられうることがわかるだろう。
【0023】
DROを利用する3つの実施形態が図5および6を参照しながら説明される。記載されたそれぞれの実施形態は、コバルト記憶層、銅アクセス線、およびダブルキーパーを利用する。しかし、これらの要素の様々なもののために、本発明の範囲を逸脱することなく、様々な材料が用いられうることがわかるだろう。
【0024】
図5は、2ビット情報を記憶するように構成されたメモリセル502を示す。コバルト層504および506が備えられ、それらにおいて、情報の個々のビットがそれぞれに関連する磁化ベクトルによって表現されるように記憶される。具体的な実施形態によれば、層504および506の保磁力は実質的に等しい。銅ワード線508および統合されたセンスディジット線510は、読み出しおよび書き込みアクセスをセル502に与えるために設けられている。トップおよびボトムキーパー512および514は、メモリセル502が実質的に閉じた磁束構造であることを確かにするために設けられている。このような二重キーパー構造は、磁気フィルムからの反磁界を大きく低減しはするが、ストリップラインからの磁界は妨げない。
【0025】
絶縁層は、示された層の間の空白スペースで表現されていることに注意されたい。これらの層は、簡明さのために省略される。さらに様々な層は、説明のために様々な幅で示されている。しかし実際の実施形態の層は、典型的には同じ幅である。最後に、本願の図の垂直方向の大きさは、しばしば説明のために強調されている。
【0026】
図5のメモリセルに基づくメモリモジュールは、米国特許第5,587,943号の単一ビットメモリセルに基づくメモリモジュールに似ており、ここで参照によって援用される。つまり、そのようなメモリモジュールは、x方向に向いたワード線、およびy方向に向いたセンスディジット線を有する。マトリクスの選択は、ワード線およびセンスディジット線を選択するために行われ、ローレベルゲートおよびセンスアンプはセンスディジット線のために設けられる。
【0027】
右手の法則を適用することによって図5のダイビットメモリセル502に書き込みをする方法が理解できるだろう。つまりワード線508の電流がセンスディジット線510中のそれと平行で、大きさが同じであるなら、これらの線の間の磁界はゼロであり、つまりコバルト層504は磁界が印加されないことになる。しかしコバルト層506によって受けられる磁界は、2つの線からの磁界の寄与の総和である。よってコバルト層506は、線508および510の同じ極性の一致電流によって書き込みができ、そのときは、それらのそれぞれはそれ自身による磁界は層506の保磁力を越えられないが(つまりHc未満)、もう一方の線からの磁界と合成されるとき、層506に磁化を与えるのに充分になる(つまりHcよりも大きい)。
【0028】
一方、ワード線508の電流が、センスディジット線510中のそれと反平行であり、電流の大きさが実質的に等しいなら、線508および510の外の合成された磁界は実質上ゼロとなり、線の間の磁界、つまりコバルト層504によって受けられる磁界は2倍になる。よってコバルト層504は、ワード線およびセンスディジット線の反対の極性の一致電流によって書き込みができ、そのときは、それらのそれぞれは、Hc未満の磁界を持つが、合成された総和はHcよりも大きい。
【0029】
具体的な実施形態によれば、ダイビットメモリセル502を読み出しする手順は、いくつかのステップを含む。まず、センスディジット線510の抵抗が測定される。そして既知の論理状態、つまり「1」が、上述のようにアクセス線508および510中の一致電流でコバルト層504に書き込みされる。そしてセンスディジット線510の抵抗が再び測定される。もしそれが変化すれば、層504の初期状態、つまり層504に元々記憶された情報のビットは、現在の状態と異なるはずで、つまりもし層に「1」が書き込みされたら、それは以前は「0」だったはずである。もし抵抗が変化していなければ、反対の結論が得られ、つまり元々層504に記憶された情報のビットは現在の状態と同じである。
【0030】
層506の状態は、その後、層506の状態を反転し、結果として生じる抵抗を最後の抵抗測定と比較することによって決定される。そして層506の状態は、抵抗増加か減少かによって決定されうる。例えば、もしボトム層が「1」から「0」に反転され、抵抗が減少すれば、トップ層は「0」であるはずで、つまり二つの層の磁化ベクトルは平行である。対照的に、もしそのようなシナリオで抵抗がそのような反転の後に増加したなら、トップ層は「1」であるはずで、つまり二つの層の磁化ベクトルは今度は反平行である。読み出し操作の後に、層504および506の元々の状態は必要に応じて再書き込みされうる。
【0031】
もちろん、読み出し操作は、上述のように記憶層の両方の状態を決定するために行われてもよいし、または記憶層のどちらかの状態を別々に決定するために行われてもよい。
【0032】
メモリセル502の構造の変更は本発明の範囲を逸脱することなく行い得ることが理解できるだろう。例えば、それぞれの保磁力または記憶層504および506の組成が変更されうる。具体的な実施形態によれば、パーマロイが魅力的な選択肢であり、これは駆動電流の要件を緩和するからである。さらに、メモリセル502にアクセスするために用いられる電流の電流振幅は、本発明の原理によるイネーブル動作に必ずしも等しくなくてもよい。
【0033】
図6は、3または4ビットの情報を記憶するための様々な具体的な実施形態により構成されたメモリセル602を示す。図5のメモリセル502のように、層間のギャップにある絶縁層は示されておらず、垂直方向の大きさは簡明さのために強調されている。さらに実際の実施形態においては、層とアクセス線とは同じ幅であるが、説明のためにここでは異なるように描かれている。
【0034】
メモリセル602は、4つのコバルト記憶層604、606、608および610を有しており、これらのそれぞれは1ビットの情報を記憶できる。セルのアクセス線は、銅ワード線612、銅センスディジット線614、および銅禁止線616を含む。「禁止線」という語は、セル当たり3本の線を用いて、マージンを増すために用いられていた旧式のフェライトコアメモリの禁止線を参照して用いられている。本発明の禁止線は、対称性を崩すために用いられている。具体的な実施形態によれば、本発明の禁止線はアレイ中の全てのビットをリンク(カバー)する。他の実施形態によれば、禁止線はアレイ中の全てのビットをリンクするわけではない。むしろそれらはアレイを対角線に沿って走るように構成されて、それら自身の選択マトリクスと共に設けられている。
【0035】
以下に明らかになるように、3ビット実施形態においては、記憶層604および610の磁化状態(およびよってそこに記憶された情報)は、独立ではない。つまり、それぞれは互いに逆の向きに磁化されている。他の実施形態(後述)によれば、この対称性は様々な手法を用いて崩すことができ、それにより4つの記憶層のそれぞれが独立に書き込みおよび読み出しできる。
【0036】
3ビット実施形態によれば、メモリセル602の記憶層は、実質的に等しい保磁力によって特徴づけられ、3本のアクセス線中に一致電流を異なる組み合わせで印加することによって書き込みされうる。印加された電流の結果で発生された磁界は、以下で与えられる:
【0037】
=k{−I−I−I} (1)
=k{I−I−I} (2)
=k{I+I−I} (3)
=k{I+I+I} (4)
【0038】
ここでI、I、およびIは、ワード線、禁止線、およびセンスディジット線の電流にそれぞれ対応し、H〜Hは、層604〜610の磁界にそれぞれ対応し、kは、線幅に反比例する比例係数で、1ミクロン幅についてmAあたり6 Oeに等しい。
【0039】
これらの方程式から、層606および608はそれぞれ、セル中の他の層を反転しない電流パルスの組み合わせで反転されえることがわかるだろう。例えば、もしI=+H/3kかつI=I=−H/3kなら、層606における磁界は、Hであり、層604および608における磁界は、H/3であり、層610における磁界は−H/3である。つまり、要求された記憶層と他の記憶層のそれぞれとの間には3対1の比が存在する。しかしまた、この具体的な実施形態においては、層604および610の保磁力は実質的に等しく、これらの層は独立には反転しないことがわかるだろう。つまり、これら2つの層の1つを反転する磁界の組み合わせは、もう1つを逆向きに反転する。よって層604および610がこのように相互依存しているそのような実施形態においては、メモリセル602には3ビットの情報しか記憶されないし、それから取り出せえない。
【0040】
3ビットメモリセル602の情報を読み出しするには、ワード線612およびセンスディジット線614のための制御電子回路は同じである。つまりローレベルゲートおよびプリアンプは、ワード線、実際にはワードセンス線のそれぞれの構造の終端に位置する。個々のコバルト記憶層の読み出しは、ダイビットメモリセル502について上述したのと同じように達成される。つまり、関心のある記憶層が接続されているアクセス線の抵抗が測定される。そして既知の論理状態が関心のある記憶層に書き込みされ、関連するアクセス線の抵抗が再び測定される。もし抵抗が変化すれば、記憶層は、書き込みされたばかりの論理状態とは逆の状態に元々あった。もし抵抗が変化しなければ、現在の論理状態は元々の論理状態と同じであった。またダイビットメモリセル502を参照して上述したように、同じアクセス線に関連した他の記憶層の状態は、第1層を再び反転し、その抵抗が上昇するか、下降するかを決定することによって決定されえる。
【0041】
様々な具体的な実施形態によれば、メモリセル602は、全て4つの記憶層が独立したビット情報を記憶するために用いられうるように改変できる。つまりメモリセル602は、4ビットの情報を記憶するのに充分な記憶層を有するのである。しかし上述のように、もし層の保磁力が実質的に等しいなら、記憶層604を特定の論理状態にする書き込みをおこなう電流パルスシーケンスは、どんなものでも、記憶層610を逆の状態に書き込みもしてしまう。
【0042】
第1の実施形態によれば、メモリセル602は、層604および610の相互依存性につながる対称性を崩すもう1つのアクセス線を追加することによって、4ビットメモリセルになる。この実施形態は、追加のマスキングレベルと、追加されたアクセス線を制御する追加の選択マトリクスとを必要とし、具体的な実施形態においては、このアクセス線はトップキーパーの下に位置する。
【0043】
第2の実施形態によれば、記憶層604および610は、充分に異なって作られており、それらの反転閾値は反転のために異なる磁界強度を必要とする。これは例えば、パーマロイ層をコバルト記憶層604の上に直接、堆積させることによって達成されうる。これにより層604は層610よりも低い保磁力を持つことになる。よって一致電流がアクセス線に印加されるとき、結果として生じる磁界は層610の前に層604に書き込みを行う。
【0044】
第3の実施形態によれば、キーパーおよびコバルト記憶層の間の分離間隔は、反磁界が充分大きくなって対称性が崩れるように調節される。この実施形態は、完璧なキーパーであっても、キーパーから非ゼロの距離を空けている有限の大きさの磁性層の反磁界を完全にはキャンセルできないという事実を利用している。そのような反磁界は、磁界およびキーパーの間の距離に比例する。この反磁界は対称性を崩すのに用いられえて、層604および層610の双方が同じ状態に書き込みされるのを許す。例えばもし、層604および610の双方に「0」を書き込みしたいとすると、パルスの組み合わせはまず層604に「1」を書き込みし、「0」を層610に書き込みするように印加される。それから「1」が層606および608のそれぞれに書き込みされる。これの結果、反磁界が層604および610を「0」状態にバイアスしがちになる。よって、層604に「0」状態を書き込みする傾向があるパルスの組み合わせを後で印加するとき、層610だけが反転される。これにより層604および610の双方が同じ状態、つまり「0」になる。層606および608はそのあとで独立に書き込みされる。
【0045】
メモリセル602の4ビット実施形態は、上述の3ビット実施形態とほとんど同様である。具体的な実施形態によれば、これは内側のビット(つまり層606および608)だけを反転し、かつ図5のダイビットメモリセル502を参照して記載された読み出し手順を用いることによってなされる。
【0046】
本発明のさらなる具体的な実施形態によれば、増加された情報記憶密度を達成するために多層メモリセルが積層される。そのようなある実施形態によって設計された倍密度積層メモリセル702が図7に示される。メモリセル702は、セルのセンスディジット線として機能するGMRフィルム構造704を含む。示された具体的な実施形態によれば、構造704は、3つの銅層714、716、および718によって分離された4つのコバルト層706、708、710、および712を有する多層GMR構造である。またセルは銅ワード線722およびトップおよびボトムキーパー724および726を含む。二重キーパーの目的は、磁性層からの反磁界をキャンセルしつつも、アクセス線からの磁界を妨げないことにある。図示のために、非連続の層間の空白スペースに位置する絶縁層は示されておらず、セルの垂直方向の大きさは強調されている。
【0047】
多層GMR構造704中の逆向きの電流によって生じる磁界を示す図8(a)および8(b)を参照して、メモリセル702の読み出しおよび書き込みが説明される。GMR構造704から紙面の外へ向かって流れる電流は、図8(a)に示す磁界802を発生する。この磁界は上部の2つのコバルト記憶層706および708では左向きであり、下部の2つのコバルト記憶層710および712では右向きである。理解されるように磁界802は、層706および712ではより強く、層708および710ではより弱く、構造の中心ではゼロである。
【0048】
図8bにおいては、電流の向きが逆であり、つまり紙面へと向かい、内側の層708および710の保磁力が磁界804によって越えられないように強さが弱められる。これにより示されるように層708および710ではなく、層706および712の反転が結果として生じる。この結果、それぞれのコバルト層がその隣接するものに反平行に磁化され、この構造はセンスディジット線704の最も高い磁気抵抗を生む。
【0049】
銅の導伝率はコバルトのそれよりもずっと大きいので、センスディジット線704の電流の全てが銅層によって行われるという近似がなされうる。この近似を用いて、層706および712の磁界の大きさは、層708および710の磁界の大きさの約3倍であることがわかる。例えば銅層714からコバルト層708によって受けられる磁界は、銅層716からの磁界によってキャンセルされ、銅層718からの磁界成分しか残らない。対照的に、コバルト層706は、銅層のそれぞれからの正の磁界の寄与を受ける。磁界の大きさのこの差が、本発明の積層されたメモリセルの動作の基本となる。
【0050】
本発明の具体的な実施形態によるダイビットメモリセル702の書き込みが図7および8を参照して説明される。この実施形態によれば、2つの内側のコバルト層708および710が情報を記憶するために用いられ、2つの外側のコバルト層706および712が情報を非破壊的に(つまりNDRO)読み出しするために用いられる。メモリセルは、ワード線722およびセンスディジット線/GMR構造704中の電流の一致によって書き込みされる。上述のように、センスディジット線704中の電流は、内側のコバルト層よりも外側のコバルト層においてずっと大きい磁界になるので、内側に擾乱を与えることなく外側を反転することが可能である。
【0051】
センスディジット線704中の電流は、コバルト層708中に、コバルト層710によって受けられる磁界と大きさが等しく、向きが逆の磁界を結果として生じる。ワード線722に一致電流が印加されるとき、結果として生じる磁界は層708および710のうち一方の磁界に加わり、他方からは減じられる。これにより層708および710のうちのいずれか一方に書き込みをし、他方に擾乱を与えないことが可能になる。それで例えば、層710に書き込みをするためには、層710において大きさH/2の磁界を生む電流がセンスディジット線704に紙面から出る向きに印加される(図8を参照)。1/3の大きさの電流が一致するようにワード線722に同じ向きで印加され、これにより層710において大きさH/2の別の磁界が生じる。合成された磁界は、層710を反転するのに充分な大きさHを持つ。しかし、層708における第1の磁界の寄与が−H/2なので、2つの磁界はキャンセルし、層708は反転しない。
【0052】
ダイビットセル702に記憶された情報を読み出しするためには、センスディジット線の読み出し電流の大きさは、書き込み電流のそれの1/3である。これにより、層706においてはH/2の磁界が発生し、層712においては−H/2の磁界が発生する。層708および710において結果として生じる磁界はH/6の大きさであり、よってこれらの層には反転を起こさない。層708の情報を読み出しするためには、層706が書き込みされ、つまり第1の向きに磁化され、センスディジット線704の抵抗が測定される。そして層706は、逆の向きに書き込みされ、抵抗が再び測定される。そして二つの抵抗測定値が比較される。層706および708が同じ向きに磁化されているとき抵抗はより低く、逆の向きに磁化されているときにはより高い。よって層708の磁化の向き、つまり層708に記憶された論理状態は抵抗値の比較から決定されうる。層710の読み出しは、おなじ手順を層712に用いて達成される。
【0053】
本発明の別の実施形態によって設計された4倍密度積層メモリセル902が図9に示される。メモリセル902は、セルのセンス線として機能する2つのGMRフィルム構造904および905を含む。本発明の具体的な実施形態によれば、構造904および905のそれぞれは図7、8(a)および8(b)に示すGMRフィルム構造と同様に設計されている。つまり図9に示す実施形態は、4ビットの情報の記憶を実現するために、図7のダイビットメモリセル702の単一GMR構造を二つ積層している。
【0054】
ダイビットセル702のように、クワドビットセル902の4ビットの情報は、センス線904および905のそれぞれの2つの中央のコバルト層に記憶される。センス線904の上部および下部データビット層上の磁界は、それぞれHおよびHと表記される。センス線905の上部および下部データビット層上の磁界は、それぞれHおよびHと表記される。用語kは、メモリ中のそれらの層の幅を持つストリップラインの表面における磁界および電流の比例関係の定数を表現するために用いられる(ライン1ミクロン幅についてmAあたりk=6 Oeであり、ストリップラインの幅に反比例する)。上部センス線904中の電流は、iで表記される。銅ディジット線906中の電流は、iで表記される。下部センス線905中の電流は、iで表記される。これらの定義を用いて、4つの情報記憶層における4つの磁界は、以下で与えられる:
【0055】
=k(i/3+I+I) (5)
=k(−i/3+I+I) (6)
=k(−i−I+I/3) (7)
=k(−i−I−I/3) (8)
【0056】
クワドビットセル902は、ダイビットセル702のセンスディジット線704のように、2つのセンス線904および905のそれぞれに同じ制御電子回路、つまりローレベルゲートおよびプリアンプを有する。方程式5〜8から、クワドビットセル902の4つの情報記憶層のそれぞれが、センス線904および905、ディジット線906およびワード線908中の一致電流パルスの適当な組み合わせによって他とは独立に書き込みされうる。
【0057】
図7のダイビットメモリセル702を参照して上述された読み出しおよび書き込み手法は、NDROクワドビットメモリセル902に記憶された情報を読み出しするためにも用いられうる。それで例えば、読み出しは、関心のある記憶層がその一部であるセンス線の抵抗の測定から始まる。そして関心のあるデータビットに最も近い外側の層が特定の論理状態、例えば「0」に書き込みされる。その層を含むセンス線の抵抗がそれから再び測定され、2つの抵抗測定値が比較される。もし外側の層に「0」が書き込みされ、かつセンス線の抵抗が上昇していれば、関心のあるデータビットは「1」であり、もし抵抗が減少していれば、関心のあるデータビットは「0」である。もし2つの測定値の間に抵抗の変化がなければ、関心のあるデータビットに最も近い外側の層に逆の状態、つまり「1」が書き込みされ、センス線の抵抗が再び測定される。もし抵抗が減少していれば、関心のあるデータビットは「1」である。もし抵抗が上昇していれば、関心のあるデータビットは「0」である。
【0058】
本発明の具体的な実施形態によれば、図10に示すように本発明の様々なメモリセルがメモリアレイ1000に構成されうる。アレイのメモリセルは、S字状のワード線1002が垂直アクセス線1004と重なるところに位置しており、このアクセス線は例えばダイビットセル702のような多層センスディジット線か、またはクワドビットセル902のような別々のセンス線およびディジット線を備えている。
【0059】
他の実施形態によれば、本発明のダイビットおよびクワドビットメモリセルのビット密度は、そのデバイス中のアレイ1100中のワード線の形状を変えて、別々のセンスおよびディジット線を用いることによってさらに2倍にされうる。これは図11aおよび11bを参照して理解されうる。そのような実施形態によれば、ワード線1102は直線であり、かつ別々であるセンス線およびディジット線(それぞれ1104および1106)と直交する。図11bは、ダイビットセルの実施形態を示す。しかし同じ考え方がクワドビットセルの実施形態にも適用されうることが理解されるだろう。
【0060】
図10および11aのアレイデザインを比較すれば容易にわかるように、アレイ1100中のワード線間の間隔は、アレイ1000に比較して1/2に減少され、それに伴いビット密度は2倍になっている。図10の設計によるワード線の役割と、図11aのそれとは基本的な違いがあることに注意されたい。双方の設計において、ディジット線は、磁化容易軸の向きに半反転磁界を与える。図10の設計では、ワード線はまた、ワード線およびディジット線によって寄与される磁界が同じ向きであり、算術的に加算するように、磁化容易軸の磁界を与える。図11aの設計では、ワード線は、磁化容易軸と直交する向きの磁化困難軸を与える。このことは二つの結果を生む。磁化は一部は磁化困難軸に向かって回転され、ディジットおよびワード線からの磁界は算術的にではなく、ベクトル的に加算される。結果として生じるベクトル的に加算された磁界の一部回転された磁化に沿った成分が、反転磁界を与える。
【0061】
本発明は特に具体的な実施形態を参照しながら示され、説明されてきたが、当業者には開示された実施形態の形式および詳細は、本発明の精神および範囲から離れることなく変更することができることが理解されよう。例えば、いくつかの実施形態は、磁性層としてコバルト層が言及され、非磁性層として銅が言及されるように説明されてきた。しかしながら、ここで説明された具体的な実施形態におけるコバルト層は、他の導伝性磁性アロイ、例えば本発明の範囲を逸脱することなく、パーマロイを含む層と置き換えされてもよい。さらにいくつかの実施形態における非磁性銅層は、様々な適切な非磁性導伝体、例えば銀、金、またはクロムなどのいずれと置換されてもよい。
【0062】
さらにダイビットセル702の上部の2つの磁性層(706および708)は、下部の2つの層(710および712)に擾乱を与えることなく、別々に読み出しでき、逆もまた可能であるので、中心の銅層(716)を窒化珪素または二酸化珪素のような絶縁層で置き換えすることも可能である。絶縁層の置き換えは、例えば、そうでなければ金属の導伝性フィルムで分離されている2つの磁性フィルム間の結合効果を緩和するために有利でありうる。そのような結合は2つの磁性フィルムの磁化をアラインさせる傾向にある。もし両側の磁性フィルムが銅フィルムを通して2つの隣接する磁性体に結合されると、この結合は2倍の強さになり、中間の磁性フィルムが独立に振る舞うのをより困難にしてしまう。銅フィルムのうちの1つを絶縁フィルムと置換することは、結合を弱め、それによりそれに関連したマイナスの効果をも減らす。
【0063】
さらに、ここに説明されたメモリセル構造の様々なものは、NDROおよびDROの双方に、つまり図5、7、および9の構造に用いられうること、およびここに説明されたもの以上の追加の磁性層および記憶容量を有するメモリセルが考えられることは理解されるだろう。
【0064】
ここでは選択および制御回路は、本発明による関連する様々なメモリセルおよびアレイについて言及されてきた。この回路は、従来の半導体電子技術、および従来のメモリ技術による選択および制御回路のよく知られた設計を用いて実現されえる。しかしながらそのような選択および制御回路は、1999年7月27日に交付された米国特許第5,929,636号、「ALL−METAL GIANT MAGNETORESISTIVE, SOLID−STATE COMPONENT」に記載された全金属GMR電子技術を用いて実現されえ、この特許はその全体が全ての目的のためにここで参照によって援用される。よって本発明の範囲は添付の特許請求の範囲を参照して決定されるべきである。
【図面の簡単な説明】
【図1】GMRメモリセルの動作を示す図である。
【図2】GMRメモリセルの動作を示す図である。
【図3】ダイビットGMRメモリセルの磁化状態を示す図である。
【図4】本発明の具体的な実施形態によるGMRメモリセルの動作を示す図である。
【図5】本発明のある具体的な実施形態によって設計されたダイビットメモリセルを示す図である。
【図6】本発明の他の具体的な実施形態によって設計されたトリプルまたはクワドビットメモリセルを示す図である。
【図7】本発明のさらに他の具体的な実施形態によって設計されたダイビットメモリセルを示す図である。
【図8】GMR薄膜構造における磁界および電流の関係を示す図である。
【図9】本発明のさらなる具体的な実施形態によって設計されたクワドビットメモリセルを示す図である。
【図10】本発明によって設計されたメモリセルのアレイの簡略図である。
【図11a】他の実施形態によるメモリセルの他のアレイの簡略図である。
【図11b】本発明によって設計されたさらに他のダイビットメモリセルを示す図である。

Claims (57)

  1. 多層化されたメモリセルであって、
    複数の磁性層であって、前記磁性層の少なくとも2つのそれぞれが磁気的に1ビットの情報を記憶する磁性層、
    前記複数の磁性層と集積された複数のアクセス線であって、前記複数のアクセス線の選択されたものおよび巨大磁気抵抗効果を用いて、前記磁性層の選択されたもののそれぞれに記憶された情報の前記ビットが独立にアクセスされるように構成された複数のアクセス線、
    少なくとも1つのキーパー層
    を備え、
    前記磁性層、前記アクセス線、および前記少なくとも1つのキーパー層は実質的に閉磁束構造を形成するメモリセル。
  2. 前記複数の磁性層のいくつかはコバルトから成る請求項1に記載のメモリセル。
  3. 前記複数の磁性層のいくつかはパーマロイから成る請求項1に記載のメモリセル。
  4. 前記複数のアクセス線のいくつかは銅から成る請求項1に記載のメモリセル。
  5. 前記複数のアクセス線の少なくとも1つは絶縁材料から成る請求項1に記載のメモリセル。
  6. 前記絶縁材料は窒化珪素および二酸化珪素のいずれか1つから成る請求項5に記載のメモリセル。
  7. 前記複数のアクセス線のいくつかは多層化された線を備えている請求項1に記載のメモリセル。
  8. 前記メモリセルは、ダイビットメモリセルを備えており、前記複数の磁性層は、前記情報を記憶する2つの磁性層を備えている請求項1に記載のメモリセル。
  9. 前記2つの磁性層および前記複数のアクセス線は、情報のビットを破壊的に読み出しするように構成されている請求項8に記載のメモリセル。
  10. 前記2つの磁性層および前記複数のアクセス線は、情報のビットを非破壊的に読み出しするように構成されている請求項8に記載のメモリセル。
  11. 前記メモリセルは、3ビットメモリセルを備えており、前記複数の磁性層は、情報を記憶する3つの磁性層を備えている請求項1に記載のメモリセル。
  12. 前記3つの磁性層および前記複数のアクセス線は、情報のビットを破壊的に読み出しするように構成されている請求項11に記載のメモリセル。
  13. 前記3つの磁性層および前記複数のアクセス線は、情報のビットを非破壊的に読み出しするように構成されている請求項11に記載のメモリセル。
  14. 前記メモリセルは、4ビットメモリセルを備えており、前記複数の磁性層は、情報を記憶する4つの磁性層を備えている請求項1に記載のメモリセル。
  15. 前記4つの磁性層および前記複数のアクセス線は、情報のビットを破壊的に読み出しするように構成されている請求項14に記載のメモリセル。
  16. 前記4つの磁性層および前記複数のアクセス線は、情報のビットを非破壊的に読み出しするように構成されている請求項14に記載のメモリセル。
  17. 前記メモリセルは、ダイビットメモリセルを備えており、
    前記複数の磁性層は、第1および第2磁性層を備えており、
    前記複数のアクセス線は、ワード線およびセンスディジット線を備えており、
    前記少なくとも1つのキーパー層は、上部および下部キーパー層を備えており、
    前記第1および第2磁性層および前記ワード線およびセンスディジット線は、前記上部および下部キーパー層の間に構成されており、それにより前記ワード線およびセンスディジット線の平行電流が、前記第1磁性層だけを反転できる第1磁界を発生し、かつそれにより前記ワード線およびセンスディジット線の反平行電流が、前記第2磁性層だけを反転できる第2磁界を発生する請求項1に記載のメモリセル。
  18. 前記メモリセルは、3ビットメモリセルを備えており、
    前記複数の磁性層は、第1、第2、第3、および第4磁性層を備えており、
    前記複数のアクセス線は、3つのアクセス線を備えており、
    前記少なくとも1つのキーパー層は、上部および下部キーパー層を備えており、
    前記磁性層および前記アクセス線は、前記上部および下部キーパー層の間に構成されており、それにより電流の異なる組み合わせが前記アクセス線に印加され、それにより前記第1、第2、および第3磁性層が独立に反転され、前記第1および第4磁性層は相互依存的に反転される請求項1に記載のメモリセル。
  19. 前記メモリセルは、4ビットメモリセルを備えており、
    前記複数の磁性層は、4つの磁性層を備えており、
    前記複数のアクセス線は、少なくとも3つのアクセス線を備えており、
    前記少なくとも1つのキーパー層は、上部および下部キーパー層を備えており、
    前記磁性層および前記アクセス線は、前記上部および下部キーパー層の間に構成されており、それにより電流の異なる組み合わせが前記アクセス線に印加され、それにより前記4つの磁性層が独立に反転される請求項1に記載のメモリセル。
  20. 前記少なくとも3つのアクセス線は、4つのアクセス線を備えており、前記4つのアクセス線のうち1つは、前記磁性層の2つの反転相互依存性を克服するためのアクセス線である請求項19に記載のメモリセル。
  21. 少なくとも2つの前記磁性層に関連した反転閾値は、少なくとも2つの前記磁性層の反転相互依存性を克服するように制御される請求項19に記載のメモリセル。
  22. 選択された前記キーパー層と前記磁性層との間隔は、結果として生じる反磁界が前記磁性層の2つの反転相互依存性を克服するように制御される請求項19に記載のメモリセル。
  23. 前記メモリセルは、ダイビットメモリセルを備えており、
    前記複数の磁性層は、第1、第2、第3、および第4磁性層を備えており、
    前記アクセス線の第1のものは、巨大磁気抵抗を示し、かつ前記磁性層の少なくともいくつかを含む多層構造を備えており、
    前記第1および第2磁性層は、情報の第1ビットに対応しており、
    前記第3および第4磁性層は、情報の第2ビットに対応しており、
    前記磁性層および前記アクセス線は、前記第1アクセス線の電流が、前記第1および第4磁性層における磁界がそれぞれ前記第2および第3磁性層におけるそれよりも大きい磁界を発生するように構成されており、
    前記第2および第3磁性層の情報は、それぞれ前記第1および第4磁性層を反転することおよび前記巨大磁気抵抗効果を利用することによって決定される請求項1に記載のメモリセル。
  24. 前記メモリセルは、4ビットメモリセルを備えており、
    前記複数の磁性層は、第1、第2、第3、第4、第5、第6、第7、および第8磁性層を備えており、
    前記アクセス線の第1および第2のものは、巨大磁気抵抗を示し、かつ前記磁性層の少なくともいくつかを含む多層構造を備えており、
    前記第1、第2、第3、および第4磁性層は、前記第1アクセス線および情報の第1および第2ビットに対応しており、
    前記第5、第6、第7、および第8磁性層は、前記第2アクセス線および情報の第3および第4ビットに対応しており、
    前記磁性層および前記アクセス線は、前記第1および第2アクセス線のそれぞれの電流が、前記対応する磁性層の一つのペアにおける磁界が前記対応する磁性層のもう一つのペアにおけるそれよりも大きい磁界を発生するように構成されており、
    前記磁性層の一つのペアの情報は、前記磁性層のもう一つのペアを反転することおよび前記巨大磁気抵抗効果を利用することによって決定される請求項1に記載のメモリセル。
  25. カラムおよびロウを有するメモリアレイ状に構成されており、
    それぞれのカラムおよびそれぞれのロウは、前記アクセス線の1つに対応しており、
    前記メモリアレイは、電流を前記アクセス線に印加することによって前記メモリアレイの個々のメモリセルの読み出しおよび書き込みを行う制御電子回路をさらに備えている請求項1に記載の前記多層化されたメモリセルの複数。
  26. 請求項17に記載のダイビットメモリセルを読み出す方法であって、
    前記センスディジット線に関連する第1抵抗値を読み出しすること、
    論理状態を前記第2磁性層に書き込みすること、
    前記センスディジット線に関連する第2抵抗値を読み出しすること、
    前記第1および第2抵抗値を参照して、前記第1および第2磁性層の少なくとも1つと関連した前記情報のビットを決定すること、
    を備える方法。
  27. 前記情報のビットを決定した後に前記第2磁性層を再書き込みすることを備える請求項26に記載の方法。
  28. 請求項17に記載のダイビットメモリセルに対する書き込み方法であって、
    前記ワード線およびセンスディジット線に平行電流を印加し、それにより前記第1磁界が前記第1磁性層に関連した保磁力を克服し、それにより第1の向きに前記第1磁性層を磁化する書き込み方法。
  29. 請求項17に記載のダイビットメモリセルに対する書き込み方法であって、
    前記ワード線およびセンスディジット線に反平行電流を印加し、それにより前記第2磁界が前記第2磁性層に関連した保磁力を克服し、それにより第1の向きに前記第2磁性層を磁化する書き込み方法。
  30. 請求項18に記載の3ビットメモリセルの読み出し方法であって、
    前記アクセス線の第1のものに関連した第1抵抗値を読み出しすること、
    前記磁性層の1つに論理状態を書き込みすること、
    前記第1アクセス線に関連した第2抵抗値を読み出しすること、および
    前記第1および第2抵抗値を参照して、前記磁性層の少なくとも1つに関連した前記情報のビットを決定すること、
    を備える読み出し方法。
  31. 前記情報のビットを決定した後に前記磁性層の前記1つを再書き込みすることを備えている請求項30に記載の方法。
  32. 請求項18に記載の3ビットメモリセルに対する書き込み方法であって、
    前記アクセス線の選択されたものの電流の組み合わせを印加することによって前記磁性層の一つだけに関連した保磁力を克服し、それにより第1の向きに前記磁性層の前記1つを磁化することを備える書き込み方法。
  33. 請求項19に記載の4ビットメモリセルの読み出し方法であって、
    前記アクセス線の第1のものに関連した第1抵抗値を読み出しすること、
    前記磁性層の1つに論理状態を書き込みすること、
    前記第1アクセス線に関連した第2抵抗値を読み出しすること、および
    前記第1および第2抵抗値を参照して、前記磁性層の少なくとも1つに関連した前記情報のビットを決定すること、
    を備える読み出し方法。
  34. 前記情報のビットを決定した後に前記磁性層の前記1つを再書き込みすることを備えている請求項33に記載の方法。
  35. 請求項19に記載の4ビットメモリセルに対する書き込み方法であって、
    前記アクセス線の選択されたものの電流の組み合わせを印加することによって前記磁性層の一つだけに関連した保磁力を克服し、それにより第1の向きに前記磁性層の前記1つを磁化することを備える書き込み方法。
  36. 請求項23に記載のダイビットメモリセルに対する書き込み方法であって、
    前記第1アクセス線に関連した第1抵抗値を読み出しすること、
    前記第1および第4磁性層の1つに論理状態を書き込みすること、
    前記第1アクセス線に関連した第2抵抗値を読み出しすること、
    前記第1および第2抵抗値を参照して、前記第2および第3磁性層の1つに関連した前記情報のビットを決定することであって、決定された前記情報のビットに擾乱を与えることがないこと、
    を備える読み出し方法。
  37. 請求項23に記載のダイビットメモリセルに対する書き込み方法であって、
    前記第1アクセス線および前記アクセス線の第2のものに平行電流を印加し、それにより前記第1および第2磁性層に関連した保磁力が克服され、それにより第1の向きに前記第1および第2磁性層を磁化することを備える書き込みする方法。
  38. 請求項23に記載のダイビットメモリセルに対する書き込み方法であって、
    前記第1アクセス線および前記アクセス線の第2のものに反平行電流を印加し、それにより前記第3および第4磁性層に関連した保磁力が克服され、それにより第1の向きに前記第3および第4磁性層を磁化することを備える書き込み方法。
  39. 請求項24に記載の4ビットメモリセルの読み出し方法であって、
    前記第1アクセス線に関連した第1抵抗値を読み出しすること、
    前記第1および第4磁性層の1つに論理状態を書き込みすること、
    前記第1アクセス線に関連した第2抵抗値を読み出しすること、
    前記第1および第2抵抗値を参照して、前記第2および第3磁性層の1つに関連した前記情報のビットを決定することであって、決定された前記情報のビットに擾乱を与えることがないこと、
    を備える読み出し方法。
  40. 請求項24に記載の4ビットメモリセルの読み出し方法であって、
    前記第2アクセス線に関連した第1抵抗値を読み出しすること、
    前記第5および第8磁性層の1つに論理状態を書き込みすること、
    前記第2アクセス線に関連した第2抵抗値を読み出しすること、
    前記第1および第2抵抗値を参照して、前記第6および第7磁性層の1つに関連した前記情報のビットを決定することであって、決定された前記情報のビットに擾乱を与えることがないこと、
    を備える読み出し方法。
  41. 請求項24に記載の4ビットメモリセルに対する書き込み方法であって、
    前記第1アクセス線および前記アクセス線の第3のものに平行電流を印加し、それにより前記第1および第2磁性層に関連した保磁力が克服され、それにより第1の向きに前記第1および第2磁性層を磁化することを備える書き込み方法。
  42. 請求項24に記載の4ビットメモリセルに対する書き込み方法であって、
    前記第1アクセス線および前記アクセス線の第3のものに反平行電流を印加し、それにより前記第3および第4磁性層に関連した保磁力が克服され、それにより第1の向きに前記第3および第4磁性層を磁化することを備える書き込み方法。
  43. 請求項24に記載の4ビットメモリセルに対する書き込み方法であって、
    前記第2アクセス線および前記アクセス線の第3のものに平行電流を印加し、それにより前記第5および第6磁性層に関連した保磁力が克服され、それにより第1の向きに前記第5および第6磁性層を磁化することを備える書き込み方法。
  44. 請求項24に記載の4ビットメモリセルに対する書き込み方法であって、
    前記第2アクセス線および前記アクセス線の第3のものに反平行電流を印加し、それにより前記第7および第8磁性層に関連した保磁力が克服され、それにより第1の向きに前記第7および第8磁性層を磁化することを備える書き込み方法。
  45. 情報の第1および第2ビットにそれぞれ対応すると共に、第1磁性層は第2磁性層よりも高い保持力を有する第1および第2磁性層を備えるメモリセルから情報の第1および第2ビットを読み出しする方法であって、
    前記第1および第2磁性層の第1磁化状態に関連する第1抵抗値を決定すること、
    第1の向きに向いて、かつ前記第2磁性層だけを反転するのに充分強い第1磁界を発生すること、
    前記第1および第2磁性層の第2磁化状態に関連する第2抵抗値を決定すること、
    前記第1および第2抵抗値間の差が非ゼロであるときには、前記情報の第1および第2ビットを前記第1および第2抵抗値間の前記差を参照して決定すること、
    前記第1および第2抵抗値間の差がゼロであるときには、前記第1の向きと逆である第2の向きに向いて、かつ前記第2磁性層だけを反転するために充分強い第2磁界を発生すること、
    前記第1および第2磁性層の第3磁化状態に関連する第3抵抗値を決定すること、
    前記第2および第3抵抗値間の差を参照して前記情報の第1および第2ビットを決定すること、
    を備える方法。
  46. 前記複数のアクセス線は前記アレイ中に前記複数の磁性層に垂直な向きに配置されており、前記アクセス線が前記複数のメモリセルのそれぞれと一致する請求項25に記載のメモリアレイ。
  47. 前記複数のアクセス線は前記アレイ中に前記複数の磁性層に平行な向きに配置されており、前記アクセス線が前記複数のメモリセルのそれぞれと一致する請求項25に記載のメモリアレイ。
  48. 前記複数の磁性層は、非磁性導伝層によって分離された2つの磁性層を備えており、前記2つの磁性層は前記非磁性導伝層により電気的接触が保たれており、前記複数のアクセス線は、前記2つの磁性層が絶縁されている第1アクセス線を備えており、情報の2ビットが記憶される請求項1に記載のメモリセル。
  49. 前記少なくとも1つのキーパー層は、前記2つの磁性層および前記第1アクセス線の組み合わせの外部に配置されている請求項48のメモリセル。
  50. 2つの構造を備えており、前記構造のそれぞれが、非磁性導伝層によって分離され、かつ電気的接触が保たれている前記磁性層の2つを備えており、前記メモリセルは、前記2つの構造の間にあって、それらか絶縁された追加の導伝層をさらに備えている、請求項1に記載のメモリセル。
  51. 前記少なくとも1つのキーパー層は、前記2つの構造の外部に配置されている請求項50に記載のメモリセル。
  52. 前記少なくとも1つのキーパー層は、前記追加の導伝層の中に配置されている請求項50に記載のメモリセル。
  53. 前記複数の磁性層は、4つの磁性層を備えており、
    前記複数のアクセス線は、前記磁性層を分離し、それらと電気的接触を保つ3つの非磁性導伝層を備えており、
    前記メモリセルは、前記磁性層から絶縁された第4の非磁性導伝体をさらに備えており、
    前記少なくとも1つのキーパー層は、前記磁性層および前記非磁性導伝体の組み合わせの外部に配置されており、
    前記メモリセルは、2ビットの非破壊的読み出しおよび4ビットの破壊的読み出しのいずれかのために構成されている請求項1に記載のメモリセル。
  54. 前記少なくとも1つのキーパー層は、上部および下部キーパー層を備えており、
    前記メモリセルは、電流を前記他の4つの非磁性導伝体に実質的に垂直に通す第5非磁性導伝体をさらに備えており、
    前記第5非磁性導伝体は、前記上部および下部キーパー層の間に、かつ前記上部および下部キーパー層に隣接して配置されており、
    前記メモリセルは4ビットの非破壊的読み出しおよび8ビットの破壊的読み出しのいずれかのために構成されている請求項53に記載のメモリセル。
  55. 第1および第2センス線を備えたメモリデバイスであって、
    それぞれのセンス線は、4つの磁性層を備えており、
    前記磁性層は、非磁性導伝体層によって分離され、かつそれと電気的接触を保っており、
    前記メモリデバイスは、前記第1および第2センス線の間に、それらから絶縁されて第1非磁性導伝体層を備えており、
    前記メモリデバイスは、前記第1および第2センス線の上に、それらから絶縁されて第2非磁性導伝体層を備えており、
    前記メモリデバイスは、前記第1および第2センス線および前記第1および第2非磁性導伝体層の組み合わせの外部に配置された少なくとも1つのキーパーを備えており、
    前記メモリデバイスは、4ビットの非破壊的読み出しのために構成されているメモリデバイス。
  56. 前記少なくとも1つのキーパー層の1つは、前記第1非磁性導伝体層の中に配置されており、前記メモリデバイスは、8ビットの破壊的読み出しのためにも構成されている請求項55に記載のメモリデバイス。
  57. 非磁性導伝体層によって分離され、かつそれと電気的接触を保っている第1および第2磁性層を備えている構造に記憶された情報を読み出しする方法であって、
    前記構造の抵抗値を測定すること、
    前記第1磁性層を第1の向きに反転するために充分ではあるが、前記第2磁性層を反転するためには不充分である第1信号を印加すること、
    前記構造の前記抵抗値を2回目に測定すること、
    前記第1磁性層を第2の向きに反転するために充分ではあるが、前記第2磁性層を反転するためには不充分である第2信号を印加すること、
    前記構造の前記抵抗値を3回目に測定すること、
    を備える方法。
JP2002508831A 2000-07-11 2001-06-27 高密度巨大磁気抵抗メモリセル Pending JP2004508698A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21733900P 2000-07-11 2000-07-11
US09/883,672 US6594175B2 (en) 2000-07-11 2001-06-18 High density giant magnetoresistive memory cell
PCT/US2001/041177 WO2002005318A2 (en) 2000-07-11 2001-06-27 High density giant magnetoresistive memory cell

Publications (1)

Publication Number Publication Date
JP2004508698A true JP2004508698A (ja) 2004-03-18

Family

ID=26911850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002508831A Pending JP2004508698A (ja) 2000-07-11 2001-06-27 高密度巨大磁気抵抗メモリセル

Country Status (5)

Country Link
US (1) US6594175B2 (ja)
EP (1) EP1386322A2 (ja)
JP (1) JP2004508698A (ja)
AU (1) AU2001276046A1 (ja)
WO (1) WO2002005318A2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW544677B (en) * 2000-12-26 2003-08-01 Matsushita Electric Ind Co Ltd Magneto-resistance memory device
KR100462791B1 (ko) * 2001-11-30 2004-12-20 한국과학기술연구원 자기 메모리 및 센서에 응용 가능한 키퍼층을 가진 워드선제조방법
US6885576B2 (en) * 2002-08-13 2005-04-26 Micron Technology, Inc. Closed flux magnetic memory
US6925000B2 (en) 2003-12-12 2005-08-02 Maglabs, Inc. Method and apparatus for a high density magnetic random access memory (MRAM) with stackable architecture
CN1305525C (zh) * 2004-03-27 2007-03-21 中国人民解放军第三军医大学 人和易感动物o157菌基因工程多价亚单位疫苗及制备方法
US20050269612A1 (en) * 2004-05-11 2005-12-08 Integrated Magnetoelectronics Solid-state component based on current-induced magnetization reversal
US7061037B2 (en) * 2004-07-06 2006-06-13 Maglabs, Inc. Magnetic random access memory with multiple memory layers and improved memory cell selectivity
US7075818B2 (en) * 2004-08-23 2006-07-11 Maglabs, Inc. Magnetic random access memory with stacked memory layers having access lines for writing and reading
US7911830B2 (en) * 2007-05-17 2011-03-22 Integrated Magnetoelectronics Scalable nonvolatile memory
WO2011103437A1 (en) * 2010-02-22 2011-08-25 Integrated Magnetoelectronics Corporation A high gmr structure with low drive fields
US9741923B2 (en) 2015-09-25 2017-08-22 Integrated Magnetoelectronics Corporation SpinRAM
JP6258452B1 (ja) * 2016-12-02 2018-01-10 株式会社東芝 磁気メモリ
US10762940B2 (en) 2016-12-09 2020-09-01 Integrated Magnetoelectronics Corporation Narrow etched gaps or features in multi-period thin-film structures

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972786A (en) 1974-06-28 1976-08-03 Ampex Corporation Mechanically enhanced magnetic memory
US4751677A (en) 1986-09-16 1988-06-14 Honeywell Inc. Differential arrangement magnetic memory cell
US5173873A (en) 1990-06-28 1992-12-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High speed magneto-resistive random access memory
US5420819A (en) * 1992-09-24 1995-05-30 Nonvolatile Electronics, Incorporated Method for sensing data in a magnetoresistive memory using large fractions of memory cell films for data storage
US5422621A (en) 1993-10-29 1995-06-06 International Business Machines Corporation Oriented granular giant magnetoresistance sensor
FR2712420B1 (fr) 1993-11-08 1995-12-15 Commissariat Energie Atomique Tête magnétique de lecture à élément magnétorésistant multicouche et à concentrateur et son procédé de réalisation.
US5650889A (en) 1994-02-07 1997-07-22 Hitachi, Ltd. Magnetic recording medium containing heavy rare gas atoms, and a magnetic transducing system using the medium
US5587943A (en) * 1995-02-13 1996-12-24 Integrated Microtransducer Electronics Corporation Nonvolatile magnetoresistive memory with fully closed flux operation
US5652445A (en) 1995-04-21 1997-07-29 Johnson; Mark B. Hybrid hall effect device and method of operation
US5654566A (en) 1995-04-21 1997-08-05 Johnson; Mark B. Magnetic spin injected field effect transistor and method of operation
US5585986A (en) 1995-05-15 1996-12-17 International Business Machines Corporation Digital magnetoresistive sensor based on the giant magnetoresistance effect
US5741435A (en) * 1995-08-08 1998-04-21 Nano Systems, Inc. Magnetic memory having shape anisotropic magnetic elements
US5640343A (en) 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
US5650958A (en) 1996-03-18 1997-07-22 International Business Machines Corporation Magnetic tunnel junctions with controlled magnetic response
US5852574A (en) 1997-12-24 1998-12-22 Motorola, Inc. High density magnetoresistive random access memory device and operating method thereof
JPH11306750A (ja) 1998-04-20 1999-11-05 Univ Kyoto 磁気型半導体集積記憶装置
US5969978A (en) 1998-09-30 1999-10-19 The United States Of America As Represented By The Secretary Of The Navy Read/write memory architecture employing closed ring elements
US6134138A (en) 1999-07-30 2000-10-17 Honeywell Inc. Method and apparatus for reading a magnetoresistive memory
US6483740B2 (en) * 2000-07-11 2002-11-19 Integrated Magnetoelectronics Corporation All metal giant magnetoresistive memory

Also Published As

Publication number Publication date
WO2002005318A2 (en) 2002-01-17
AU2001276046A1 (en) 2002-01-21
US20020009840A1 (en) 2002-01-24
WO2002005318A3 (en) 2003-09-04
US6594175B2 (en) 2003-07-15
EP1386322A2 (en) 2004-02-04

Similar Documents

Publication Publication Date Title
EP1248273B1 (en) Cladded read conductor for a tunnel junction memory cell
KR100816746B1 (ko) 자기 메모리 셀
EP1600977B1 (en) Multi-bit magnetic random acces memory device
KR100776879B1 (ko) 자기 저항 효과 소자 및 자기 메모리
KR20060122812A (ko) 복수-상태 자기 랜덤 액세스 메모리 셀로의 기록 방법
JP2004507885A (ja) 全金属巨大磁気抵抗メモリ
KR20060037562A (ko) 멀티 비트 셀 어레이 구조를 가지는 마그네틱 램
JP2000030434A (ja) 磁気メモリセル
KR100697140B1 (ko) 자기 랜덤 액세스 메모리
JP2004508698A (ja) 高密度巨大磁気抵抗メモリセル
JP4747507B2 (ja) 磁気メモリ及びその記録方法
Everitt et al. Size dependence of switching thresholds for pseudo spin valve MRAM cells
JP2000331473A (ja) 磁気メモリ装置
JP2003510755A (ja) 多価の磁気抵抗読取り/書込みメモリー、ならびに、このメモリーからの読取り方法およびこのメモリーへの書込み方法
Daughton Advanced MRAM concepts
US6807089B2 (en) Method for operating an MRAM semiconductor memory configuration
JP2004087870A (ja) 磁気抵抗効果素子および磁気メモリ装置
US7554836B2 (en) Data write in control circuit for toggle magnetic random access memory
JP4480411B2 (ja) トンネル接合体およびトンネル接合体を用いたメモリ
JP2005251336A (ja) 磁気抵抗ランダムアクセスメモリおよびその駆動方法
JP2005513795A (ja) サブミクロンメモリとして使用するのに適した高磁気安定性デバイス
JP4124844B2 (ja) 磁気薄膜メモリ
JP2002042457A (ja) 磁性メモリ
JP2004152449A (ja) 磁気メモリ
EP1890296B1 (en) Multi-bit magnetic random access memory device and methods of operating and sensing the same