JP2004359933A - Sealing material for optical element - Google Patents

Sealing material for optical element Download PDF

Info

Publication number
JP2004359933A
JP2004359933A JP2004056772A JP2004056772A JP2004359933A JP 2004359933 A JP2004359933 A JP 2004359933A JP 2004056772 A JP2004056772 A JP 2004056772A JP 2004056772 A JP2004056772 A JP 2004056772A JP 2004359933 A JP2004359933 A JP 2004359933A
Authority
JP
Japan
Prior art keywords
group
substituent
sealing material
bond
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004056772A
Other languages
Japanese (ja)
Other versions
JP4734832B2 (en
Inventor
Hirofumi Nishida
裕文 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Chemtex Corp
Original Assignee
Nagase Chemtex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Chemtex Corp filed Critical Nagase Chemtex Corp
Priority to JP2004056772A priority Critical patent/JP4734832B2/en
Publication of JP2004359933A publication Critical patent/JP2004359933A/en
Application granted granted Critical
Publication of JP4734832B2 publication Critical patent/JP4734832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly durable sealing material for ultraviolet (UV) to blue light elements without yellowing even by exposure to UV light and capable of overcoming short-life due to yellow discoloration. <P>SOLUTION: The sealing material for optical elements are substituent-containing silsesquioxanes with a ladder or a cage structure or their partially cleaved structures (structures with a partially deleted silicon atom or a partially cleaved silicon-oxygen bonding in the cage structure) having at least two functional groups selected from the group consisting of an aliphatic unsaturated binding group, an epoxy ring and an optionally substituted silyl group having an Si-H bond. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、置換基含有シルセスキオキサンからなる光素子用封止材及び該封止材を使用した光素子に関し、とくに紫外乃至青色光素子用に好適な光素子用封止材及び該封止材を使用した光素子に関する。   The present invention relates to an optical element encapsulant comprising a silsesquioxane having a substituent and an optical element using the encapsulant, and particularly to an optical element encapsulant and an optical element suitable for an ultraviolet to blue light element. The present invention relates to an optical element using a stopper.

近紫外光素子を含む紫外乃至青色光素子は、光情報通信、光情報記録、ディスプレイ、バイオテクノロジー等の分野で研究開発が進んでおり、次世代型素子として注目されている。なお、紫外乃至青色光素子とは、紫外乃至青色の領域の光に関する光素子をいい、典型的には、ピーク波長が350〜490nmの光に関する光素子をいう。概ね、可視光線の短波長端である波長400nm程度未満の光は紫外線であり、光素子に関する紫外線としては、300〜360nmの深紫外領域や波長360〜400nm程度の近紫外領域等が知られている。波長400〜435nm程度の光は紫の可視光線である。波長435〜490nm程度の光は青〜緑青色の可視光線であるが、便宜上、本明細書では青色光という。光素子には、各種レーザー、発光ダイオード、受光素子、複合光素子、光回路部品、光集積回路等がある。例えば、近紫外線に関する光素子(近紫外光素子ともいう)は、発光ダイオード(LED)、半導体レーザー(LD)及びこれらの発光源からの光を導波、受光する各種素子を含む。なかでも、近紫外LEDは、ピーク波長が概ね360〜400nm程度の近紫外線を発光するLEDである。LEDは、従来主として表示用途等に使用されてきたが、近年、高発光効率のLEDの出現により照明用途への適用が可能となり、白色発光ダイオードを用いた省エネルギー効果の高い照明の実用化が試みられている。可視光のLEDは赤、緑、青のものが開発されており、これらを組み合わせてマルチチップタイプの白色LEDが実現されているが、いずれか1色のLEDチップの故障があると白色光を得ることができなくなる欠点を有する。また、青色発光LEDと黄色発光蛍光体とを組み合わせて補色関係の2色から白色光を得る方式も開発されているが、この白色光には演色性がない。そこで、近紫外LED発光で赤、青、緑発光蛍光体を励起して白色光を発光させる技術が注目されている。   Ultraviolet to blue light elements including near-ultraviolet light elements are being researched and developed in fields such as optical information communication, optical information recording, displays, and biotechnology, and are attracting attention as next-generation elements. The ultraviolet to blue light element refers to an optical element relating to light in the ultraviolet to blue region, and typically refers to an optical element relating to light having a peak wavelength of 350 to 490 nm. Generally, light having a wavelength of less than about 400 nm, which is a short wavelength end of visible light, is ultraviolet light. As ultraviolet light related to an optical element, a deep ultraviolet region having a wavelength of 300 to 360 nm or a near ultraviolet region having a wavelength of approximately 360 to 400 nm is known. I have. Light having a wavelength of about 400 to 435 nm is violet visible light. Light having a wavelength of about 435 to 490 nm is visible light of blue to greenish blue, but is referred to as blue light in this specification for convenience. Optical devices include various lasers, light emitting diodes, light receiving devices, composite optical devices, optical circuit components, optical integrated circuits, and the like. For example, an optical element related to near ultraviolet light (also referred to as near ultraviolet light element) includes a light emitting diode (LED), a semiconductor laser (LD), and various elements that guide and receive light from these light emitting sources. Above all, near-ultraviolet LEDs are LEDs that emit near-ultraviolet light having a peak wavelength of about 360 to 400 nm. Conventionally, LEDs have been used mainly for display purposes, but recently, the emergence of LEDs with high luminous efficiency has made it possible to apply them to lighting applications, and attempts have been made to commercialize lighting with high energy-saving effects using white light emitting diodes. Have been. Red, green and blue LEDs for visible light have been developed, and a multi-chip white LED has been realized by combining these. However, if any one of the LED chips fails, white light is emitted. It has the disadvantage that it cannot be obtained. In addition, a method of obtaining white light from two complementary colors by combining a blue light emitting LED and a yellow light emitting phosphor has been developed, but this white light has no color rendering properties. Therefore, a technique of exciting red, blue, and green light-emitting phosphors by near-ultraviolet LED light emission to emit white light has attracted attention.

しかしながら、従来、LED等の封止に使用されてきた透明エポキシ樹脂は、可視光や紫外線により経時的に黄変するため素子の寿命が短いという問題があった。特に近紫外線に照射されると急速に透過率が低下し、耐久性のある近紫外LEDの実装が困難であった。そこで、近紫外線にさらされても黄変しない近紫外LED封止材が切望されていた。また、青色LEDにおいては、発光をより高輝度とするためにはより強電流にする必要があるが、この場合に封止材の耐久性が問題となってくるのであって、この場合にも現実には紫外乃至近紫外用LEDと同レベルの耐久性が要求されている。   However, conventionally, a transparent epoxy resin used for encapsulating an LED or the like has a problem in that the life of the element is short because the epoxy resin is yellowed over time due to visible light or ultraviolet light. In particular, when irradiated with near-ultraviolet light, the transmittance is rapidly reduced, and it is difficult to mount a durable near-ultraviolet LED. Therefore, a near-ultraviolet LED encapsulant that does not yellow even when exposed to near-ultraviolet light has been desired. Further, in the case of a blue LED, it is necessary to use a higher current in order to make the light emission have higher luminance. In this case, however, the durability of the sealing material becomes a problem. In reality, the same level of durability as an ultraviolet or near-ultraviolet LED is required.

一方、ケイ素を含んだネットワーク型オリゴマーであるシルセスキオキサンは、エレクトロニクス、フォトニクス等の分野への応用が試みられており、例えば、オキセタン環含有シルセスキオキサンを硬化させてなる高分子膜を用いた光導波路素子(例えば、特許文献1参照。)や、水素シルセスキオキサンとコロイダルシリカからなる紫外線透過性樹脂コーティング(例えば、特許文献2参照。)等が知られている。しかしながら、これらの技術は光素子用の封止材として長寿命に使用可能な技術であるか否かは一切不明である。すなわち、半導体素子等においては、外部環境から保護して各種信頼性を確保し、実装を容易にするためパッケージが必要であり、そのために封止材が使用されるのであるが、封止材には、素子の信頼性を確保するために、接着性、耐湿性、耐熱衝撃性等がきびしく要求され、高Tgと少なくとも100ミクロン程度以上の塗布厚みが要求される。これに対して、これらの従来技術は、いずれも光導波路を形成するものであるから、封止材に関する技術分野とは技術分野を異にし、また、封止材に要求される形成厚みを実現してエポキシ樹脂の代わりに使用することができるというものではない。   On the other hand, silsesquioxane, which is a network-type oligomer containing silicon, has been attempted to be applied to fields such as electronics and photonics.For example, a polymer film obtained by curing an oxetane ring-containing silsesquioxane is used. The used optical waveguide element (for example, see Patent Document 1), and an ultraviolet-transparent resin coating made of hydrogen silsesquioxane and colloidal silica (for example, see Patent Document 2) are known. However, it is unclear at all whether these technologies can be used for a long life as a sealing material for an optical element. In other words, in semiconductor devices, etc., a package is required to protect from the external environment to ensure various reliability and to facilitate mounting, and a sealing material is used for that purpose. In order to ensure the reliability of the element, adhesiveness, moisture resistance, thermal shock resistance and the like are strictly required, and a high Tg and a coating thickness of at least about 100 microns are required. On the other hand, since these conventional technologies all form an optical waveguide, the technical field is different from the technical field related to the sealing material, and the forming thickness required for the sealing material is realized. It does not mean that it can be used instead of an epoxy resin.

特開2003−21735号公報JP-A-2003-21735 特開平11−106658号公報JP-A-11-106658

上述の現状に鑑みて、本発明は、紫外線にさらされても黄変せず、黄変による短寿命化を克服することができ、エポキシ樹脂の代わりに使用することができて耐久性に優れ、紫外乃至青色光素子に好適な光素子用封止材を提供することを目的とする。   In view of the above situation, the present invention does not yellow even when exposed to ultraviolet rays, can overcome the shortened life due to yellowing, can be used in place of epoxy resin, and has excellent durability It is an object of the present invention to provide an optical element sealing material suitable for an ultraviolet to blue light element.

本発明者らは上記課題を解決するべく鋭意検討した結果、オキセタニル基、カルボニル基、窒素、イオウ等を含有する置換基を有するシルセスキオキサンは紫外線にさらすと早期に黄変するものの、特定種類の側鎖を有する反応性シルセスキオキサンの架橋物は紫外線の透過性を維持し得ることを見いだし、この知見に基づいて本発明を完成した。
すなわち、本発明は、脂肪族不飽和結合基、エポキシ環、及び、Si−H結合を有する置換されていてもよいシリル基からなる群から選択された少なくとも1種の官能基を少なくとも2つ有する置換基含有シルセスキオキサンからなる光素子用封止材である。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, silsesquioxane having a substituent containing an oxetanyl group, a carbonyl group, nitrogen, sulfur, etc., is yellowed at an early stage when exposed to ultraviolet light. The inventors have found that a crosslinked product of a reactive silsesquioxane having various kinds of side chains can maintain the transmittance of ultraviolet rays, and based on this finding, completed the present invention.
That is, the present invention has at least two functional groups selected from the group consisting of an aliphatic unsaturated bond group, an epoxy ring, and an optionally substituted silyl group having a Si—H bond. It is a sealing material for optical elements comprising a silsesquioxane having a substituent.

本発明の1態様は、置換基含有シルセスキオキサンが、一般式(1)で表される籠型構造体のシルセスキオキサンの少なくとも1種である。
(X−R−Si)・O(3n−m)/2(OH)m−a・(R′) (1)
式(1)中、nは4〜18の整数、mは0又はn+2以下の整数、ただし、mが0のときはnは6〜18の偶数である。aは0〜mの整数である。複数のRは、同一又は異なって、直接結合、ハロゲン置換基を有していてもよい炭素数1〜20のアルキレン基、炭素数5〜12のシクロアルキレン基、エーテル結合を含有する炭素数1〜20の2価の炭化水素基、エステル結合を含有する炭素数1〜20の2価の炭化水素基(エステル結合中の炭素原子を含まない。以下同じ。)、及び、置換基を有していてもよいオルガノシロキシ基を含有する炭素数1〜12の2価の炭化水素基(置換基中の炭素原子を含まない。以下同じ。)からなる群から選択された少なくとも1種である。複数のXは、同一又は異なって、エポキシ基、3,4−エポキシシクロヘキシル基、ビニル基、及び、Rとともにヒドロシリル基を構成していてもよい水素原子からなる群から選択される少なくとも1種であり、R′は、−O−R′′又は−O−Si(R′′)(R′′は水素原子であってもよい置換基。ただし、R′′が複数あるときは同一でも異なっていてもよい。)を表し、かつ、複数のX及びR′′のうち少なくとも二つは架橋点を形成し得るものである。ただし、R′が複数あるときは同一でも異なっていてもよい。
本発明の他の態様においては、さらに、硬化剤、又は、硬化剤及び硬化触媒を含有する。
本発明はまた、上記反応性オリゴマーの架橋物で封止されてなるピーク波長が350〜490nmの光に関する光素子、とくに、ピーク波長が350〜490nmの光を発光するLED素子でもある。
In one embodiment of the present invention, the silsesquioxane having a substituent is at least one silsesquioxane having a cage structure represented by the general formula (1).
(X-R-Si) n · O (3 nm) / 2 (OH) ma · (R ′) a (1)
In the formula (1), n is an integer of 4 to 18, m is 0 or an integer of n + 2 or less, provided that when m is 0, n is an even number of 6 to 18. a is an integer of 0 to m. A plurality of Rs may be the same or different and each may be a direct bond, an alkylene group having 1 to 20 carbon atoms which may have a halogen substituent, a cycloalkylene group having 5 to 12 carbon atoms, or a carbon atom containing an ether bond. -20 to 20 divalent hydrocarbon groups, divalent hydrocarbon groups having 1 to 20 carbon atoms containing an ester bond (not including carbon atoms in the ester bond; the same applies hereinafter), and a substituent. At least one selected from the group consisting of a divalent hydrocarbon group having 1 to 12 carbon atoms and containing an optionally substituted organosiloxy group (not including the carbon atom in the substituent; the same applies hereinafter). A plurality of Xs are the same or different and are at least one selected from the group consisting of an epoxy group, a 3,4-epoxycyclohexyl group, a vinyl group, and a hydrogen atom which may form a hydrosilyl group together with R. R ′ is —O—R ″ or —O—Si (R ″) 3 (R ″ is a substituent which may be a hydrogen atom. However, when there are a plurality of R ″ s, they may be the same. And at least two of X's and R '''s can form a crosslinking point. However, when there are a plurality of R's, they may be the same or different.
In another embodiment of the present invention, the composition further contains a curing agent or a curing agent and a curing catalyst.
The present invention is also an optical element relating to light having a peak wavelength of 350 to 490 nm, which is sealed with a crosslinked product of the reactive oligomer, and particularly an LED element that emits light having a peak wavelength of 350 to 490 nm.

本発明は上述の構成により、紫外乃至青色領域、とくにピーク波長が350〜490nmの領域で透明であるのみならず、紫外線を浴びても黄変することがない。また、Tgを好ましくは80℃以上、より好ましくは100℃以上に達成することができる。本発明は、封止材に要求される形成厚みを実現してエポキシ樹脂の代わりに使用することができる耐久性に優れた紫外乃至青色光素子用封止材を提供することができる。
以下、本発明を詳細に説明する。
According to the above configuration, the present invention is not only transparent in an ultraviolet to blue region, particularly a region having a peak wavelength of 350 to 490 nm, and does not yellow even when exposed to ultraviolet rays. Moreover, Tg can be preferably attained at 80 ° C. or higher, more preferably at 100 ° C. or higher. ADVANTAGE OF THE INVENTION This invention can provide the sealing material for ultraviolet to blue light elements excellent in durability which can realize the formation thickness required of a sealing material and can be used instead of an epoxy resin.
Hereinafter, the present invention will be described in detail.

シルセスキオキサンは、通常、ASiQ(Aは、水素原子、アルキル基、アルケニル基、アリール基、アラルキル基等、Qはハロゲン、アルコキシ基等)で表される3官能性有機ケイ素化合物の加水分解、重縮合により合成されるポリシロキサンであってASiO3/2単位を有する。シルセスキオキサンの分子配列の形状は、代表的には無定形構造、ラダー型構造、籠型(完全縮合ケージ型)構造又はその部分開裂構造体(籠型構造からケイ素原子のうちの一部が欠けた構造や籠型構造の一部のケイ素−酸素結合が切断された構造のもの)等が知られている。なお、Si原子に結合する基が水素原子のみであるシルセスキオキサンに対して、Si原子に結合する基が水素原子のみではなく、他の種類の基を、水素原子とともに、又は、水素原子に代えて、含有するシルセスキオキサンを、本明細書中、置換基含有シルセスキオキサンという。 Silsesquioxane is usually a hydrolyzate of a trifunctional organosilicon compound represented by ASiQ 3 (A is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an aralkyl group, etc., and Q is a halogen, an alkoxy group, etc.). Polysiloxane synthesized by decomposition and polycondensation and having ASiO 3/2 units. The molecular arrangement of silsesquioxane typically has an amorphous structure, a ladder structure, a cage structure (completely condensed cage structure) or a partially cleaved structure thereof (from a cage structure to a part of silicon atoms). Or a structure in which a silicon-oxygen bond is partially broken in a cage-shaped structure) or the like. It should be noted that, in contrast to silsesquioxane in which the group bonding to the Si atom is only a hydrogen atom, the group bonding to the Si atom is not limited to the hydrogen atom, and another type of group may be replaced with a hydrogen atom or a hydrogen atom. In the present specification, the contained silsesquioxane is referred to as a substituted silsesquioxane.

本発明における置換基含有シルセスキオキサンは、これらのシルセスキオキサン化合物のうち、いずれの構造のものであってもよく、また、それらの混合物であってもよい。このようなシルセスキオキサンの具体的な構造体は、例えば、
(i)上記式(1)で表される籠型構造体のシルセスキオキサンにおいて、m及びaが0の場合の(X−R−SiO3/2で表される籠型構造体、
(ii)上記式(1)においてaが0の場合の(X−R−SiO3/2(O1/2H)で表される籠型構造体の部分開裂構造体、
(iii)ラダー型構造体、例えば、下記一般式で表される構造体、
The substituent-containing silsesquioxane in the present invention may have any structure among these silsesquioxane compounds, or may be a mixture thereof. Specific structures of such silsesquioxane are, for example,
(I) In the silsesquioxane of the cage-type structure represented by the above formula (1), when m and a are 0, the cage-type structure represented by ( XR -SiO3 / 2 ) n ,
(Ii) a partially-cleaved structure of a cage-type structure represented by ( XR -SiO3 / 2 ) n (O1 / 2H) m when a is 0 in the above formula (1);
(Iii) a ladder-type structure, for example, a structure represented by the following general formula;

Figure 2004359933
Figure 2004359933

上記式中、Aは上記式(1)におけるX−R−又はBを表し、Bは上記式(1)におけるR′′を表す。ただし、少なくとも二つのAはX−R−を表す。複数のA及びBは、それぞれ、同一でも異なっていてもよい。平均重合度nは、保存安定性の観点から下限は好ましくは4であり、粘度の観点から上限は好ましくは15である。;及び、
(iv)無定形構造体、例えば、上記A及びBで表される基を有する無定形構造体。ただし、少なくとも二つのAはX−R−を表す。複数のA及びBは、それぞれ、同一でも異なっていてもよい;
等が挙げられる。
In the above formula, A represents XR- or B in the formula (1), and B represents R "in the formula (1). However, at least two A represent XR-. A plurality of A and B may be the same or different, respectively. The lower limit of the average polymerization degree n is preferably 4 from the viewpoint of storage stability, and the upper limit is preferably 15 from the viewpoint of viscosity. ;as well as,
(Iv) An amorphous structure, for example, an amorphous structure having the groups represented by A and B above. However, at least two A represent XR-. A and B may each be the same or different;
And the like.

上記(i)で表される籠型構造体のシルセスキオキサンにおけるnの値は、6〜18の偶数であり、好ましくは6〜14、より好ましくは8、10又は12であり、さらに好ましくは、8である。具体例としては、例えば、nが6のものは三角柱型構造式を有し、nが8のものは6面体型構造式を有し、nが10のものは5角柱型構造式を有し、nが12のものは4角形4面と5角形4面とからなる8面体型構造式を有し、nが14のものは4角形3面と5角形6面とからなる9面体型構造式を有することが知られている。   The value of n in the silsesquioxane of the cage-type structure represented by the above (i) is an even number of 6 to 18, preferably 6 to 14, more preferably 8, 10 or 12, and still more preferably. Is 8. As a specific example, for example, when n is 6 has a triangular prism structural formula, when n is 8 has a hexahedral structural formula, and when n is 10 has a pentagonal structural formula. , N is 12 has an octahedral structure consisting of 4 tetragons and 4 pentagons, and n is 14 is a 9-hedron structure consisting of 3 tetragons and 6 pentagons It is known to have a formula.

上記(ii)で表される籠型構造体の部分開裂構造体は、(ii−1)籠型構造からケイ素原子のうちの一部が欠けた構造又は(ii−2)籠型構造の一部のケイ素−酸素結合が切断された構造のものを表す。nの値は、4〜18であり、好ましくは4〜14である。籠型構造からケイ素原子のうちの一部が欠けた構造(ii−1)としては、例えば、n=6の完全縮合ケージ型構造の一つのケイ素原子が欠けた構造:(X−R−SiO3/26−1(O1/2H)、n=6の完全縮合ケージ型構造の二つのケイ素原子が欠けた構造:(X−R−SiO3/26−2(O1/2H)又は(X−R−SiO3/26−2(O1/2H)、n=8の完全縮合ケージ型構造の一つのケイ素原子が欠けた構造:(X−R−SiO3/28−1(O1/2H)、n=8の完全縮合ケージ型構造の二つのケイ素原子が欠けた構造:(X−R−SiO3/28−2(O1/2H)又は(X−R−SiO3/28−2(O1/2H)、n=10の完全縮合ケージ型構造の一つのケイ素原子が欠けた構造:(X−R−SiO3/210−1(O1/2H)、n=10の完全縮合ケージ型構造の二つのケイ素原子が欠けた構造:(X−R−SiO3/210−2(O1/2H)又は(X−R−SiO3/210−2(O1/2H)、n=10の完全縮合ケージ型構造の隣り合う三つのケイ素原子が欠けた構造:(X−R−SiO3/210−3(O1/2H)、n=12の完全縮合ケージ型構造の一つのケイ素原子が欠けた構造:(X−R−SiO3/212−1(O1/2H)、n=12の完全縮合ケージ型構造の二つのケイ素原子が欠けた構造:(X−R−SiO3/212−2(O1/2H)又は(X−R−SiO3/212−2(O1/2H)、n=12の完全縮合ケージ型構造の隣り合う三つのケイ素原子が欠けた構造:(X−R−SiO3/212−3(O1/2H)、n=14の完全縮合ケージ型構造の一つのケイ素原子が欠けた構造:(X−R−SiO3/214−1(O1/2H)、n=14の完全縮合ケージ型構造の二つのケイ素原子が欠けた構造:(X−R−SiO3/214−2(O1/2H)又は(X−R−SiO3/214−2(O1/2H)、n=14の完全縮合ケージ型構造の隣り合う三つのケイ素原子が欠けた構造:(X−R−SiO3/214−3(O1/2H)、n=14の完全縮合ケージ型構造の隣り合う四つのケイ素原子が欠けた構造:(X−R−SiO3/214−4(O1/2H)又は(X−R−SiO3/214−4(O1/2H)、等を挙げることができる。 The partially-cleaved structure of the cage-type structure represented by the above (ii) is a structure in which a part of silicon atoms is missing from the (ii-1) cage-type structure or (ii-2) a cage-type structure. In which the silicon-oxygen bond is broken. The value of n is 4-18, preferably 4-14. As the structure (ii-1) in which some of the silicon atoms are missing from the cage structure, for example, a structure in which one silicon atom in a complete condensation cage structure in which n = 6 is missing: (XR-SiO 3/2 ) 6-1 (O 1/2 H) 3 , a structure in which two silicon atoms are lacking in a complete condensation cage type structure in which n = 6: (X-R-SiO 3/2 ) 6-2 (O ( 1/2 H) 4 or ( XR -SiO 3/2 ) 6-2 (O 1/2 H) 6 , n = 8, a structure in which one silicon atom is missing in a complete condensation cage type structure: (X -R-SiO 3/2 ) 8-1 (O 1/2 H) 3 , n = 8 complete condensation cage type structure lacking two silicon atoms: (X-R-SiO 3/2 ) 8 -2 (O 1/2 H) 4 or ( XR -SiO 3/2 ) 8-2 (O 1/2 H) 6 , n = 10, complete condensation cage type structure One silicon atom lacking structure: ( XR -SiO 3/2 ) 10-1 (O 1/2 H) 3 , n = 10 Completely condensed cage type structure lacks two silicon atoms structure: (X-R-SiO 3/2 ) 10-2 (O 1/2 H) 4 or (X-R-SiO 3/2) 10-2 (O 1/2 H) of 6, n = 10 One of the completely condensed cage structures in which three adjacent silicon atoms are missing in the completely condensed cage structure: ( XR -SiO 3/2 ) 10-3 (O 1/2 H) 5 , n = 12 Structure lacking two silicon atoms: ( XR -SiO 3/2 ) 12-1 (O 1/2 H) 3 , structure in which two silicon atoms lacking in a complete condensation cage type structure of n = 12: ( X-R-SiO 3/2) 12-2 (O 1/2 H) 4 or (X-R-SiO 3/2) 12-2 (O 1 2 H) 6, n = 12 for full condensation cage type three silicon atoms chipped structure adjacent the structure: (X-R-SiO 3/2 ) 12-3 (O 1/2 H) 5, n = 14 complete condensed cage type structure in which one silicon atom is missing: ( XR -SiO 3/2 ) 14-1 (O 1/2 H) 3 , n = 14 fully condensed cage type structure One of the silicon atoms missing structure: (X-R-SiO 3/2 ) 14-2 (O 1/2 H) 4 or (X-R-SiO 3/2) 14-2 (O 1/2 H) 6 , a structure in which three silicon atoms adjacent to each other in the complete condensation cage type structure in which n = 14 is missing: ( XR -SiO 3/2 ) 14-3 (O 1/2 H) 5 , in which n = 14 four silicon atoms chipped structure adjacent fused cage structure: (X-R-SiO 3/2 ) 14-4 (O 1 / 2 H) 4 or (X-R-SiO 3/2) 14-4 (O 1/2 H) 6, and the like.

籠型構造の一部のケイ素−酸素結合が切断された構造(ii−2)としては、例えば、n=6の完全縮合ケージ型構造の一つのケイ素−酸素結合が切断された構造:(X−R−SiO3/2(O1/2H)、n=6の完全縮合ケージ型構造の二つのケイ素−酸素結合が切断された構造:(X−R−SiO3/2(O1/2H)、n=8の完全縮合ケージ型構造の一つのケイ素−酸素結合が切断された構造:(X−R−SiO3/2(O1/2H)、n=8の完全縮合ケージ型構造の二つのケイ素−酸素結合が切断された構造:(X−R−SiO3/2(O1/2H)、n=10の完全縮合ケージ型構造の一つのケイ素−酸素結合が切断された構造:(X−R−SiO3/210(O1/2H)、n=10の完全縮合ケージ型構造の二つのケイ素−酸素結合が切断された構造:(X−R−SiO3/210(O1/2H)、n=10の完全縮合ケージ型構造の三つのケイ素−酸素結合が切断された構造:(X−R−SiO3/210(O1/2H)、n=12の完全縮合ケージ型構造の一つのケイ素−酸素結合が切断された構造:(X−R−SiO3/212(O1/2H)、n=12の完全縮合ケージ型構造の二つのケイ素−酸素結合が切断された構造:(X−R−SiO3/212(O1/2H)、n=12の完全縮合ケージ型構造の三つの一つのケイ素−酸素結合が切断された構造:(X−R−SiO3/212(O1/2H)、n=14の完全縮合ケージ型構造の一つのケイ素−酸素結合が切断された構造:(X−R−SiO3/214(O1/2H)、n=14の完全縮合ケージ型構造の二つのケイ素−酸素結合が切断された構造:(X−R−SiO3/214(O1/2H)、n=14の完全縮合ケージ型構造の三つのケイ素−酸素結合が切断された構造:(X−R−SiO3/214(O1/2H)、等を挙げることができる。 Examples of the structure (ii-2) in which a part of the cage-type structure in which silicon-oxygen bonds are cleaved include, for example, a structure in which one silicon-oxygen bond in n = 6 complete condensation cage type structure is cleaved: (X —R—SiO 3/2 ) 6 (O 1/2 H) 2 , n = 6, a structure in which two silicon-oxygen bonds of a complete condensation cage type structure are cleaved: ( XR —SiO 3/2 ) 6 (O 1/2 H) 4 , n = 8, a structure in which one silicon-oxygen bond is cleaved in a complete condensation cage type structure: ( XR -SiO 3/2 ) 8 (O 1/2 H) 2 , a structure in which two silicon-oxygen bonds of a complete condensation cage structure of n = 8 are cleaved: ( XR -SiO 3/2 ) 8 (O 1/2 H) 4 , a complete condensation of n = 10 Structure in which one silicon-oxygen bond in the cage type structure has been cut: ( XR -SiO 3/2 ) 10 (O 1 / 2 H) 2, n = 10 two silicon fully condensed cage structure of - oxygen bond is cleaved structure: (X-R-SiO 3/2 ) 10 (O 1/2 H) 4, n = 10 Of the completely condensed cage type structure of ( XR -SiO 3/2 ) 10 (O 1/2 H) 6 , where n = 12 A structure in which two silicon-oxygen bonds are broken: two silicon-oxygen bonds in a complete condensation cage type structure of ( XR -SiO3 / 2 ) 12 (O1 / 2H) 2 , n = 12 are broken. Structure: ( XR —SiO 3/2 ) 12 (O 1/2 H) 4 , n = 12, in which three single silicon-oxygen bonds of the complete condensation cage type structure are cut: (X- R-SiO 3/2 ) 12 (O 1/2 H) 6 , n = 14 having a completely condensed cage structure Structure in which one silicon-oxygen bond is broken: Two silicon-oxygen bonds in a complete condensation cage type structure of ( XR -SiO3 / 2 ) 14 (O1 / 2H) 2 , n = 14 are broken. Structure: ( XR —SiO 3/2 ) 14 (O 1/2 H) 4 , n = 14, a structure in which three silicon-oxygen bonds of a complete condensation cage type structure are cut: (XR —SiO 3/2 ) 14 (O 1/2 H) 6 , and the like.

また、式(1)においいてm及びaが0でない場合に該当する、上記(ii)における部分開裂構造体のSi原子に直結する水酸基の一部又は全部が−O−又は−O−Si−構造を含有する置換基で置換された部分開裂構造体であってもよい。   Further, when m and a are not 0 in the formula (1), a part or all of the hydroxyl group directly connected to the Si atom of the partially cleaved structure in the above (ii) is -O- or -O-Si-. It may be a partially-cleaved structure substituted with a substituent having a structure.

本発明において、置換基含有シルセスキオキサンは、官能基を少なくとも2つ、好ましくは少なくとも4つ、より好ましくは少なくとも6つ、有する。ここにいう官能基は、シルセスキオキサンの架橋物を形成するために必要な官能基であって、適切な架橋剤との組み合わせにより、又は、自己縮合的若しくは自己付加的に、架橋物を形成することができる、架橋点となり得る官能基をいう。なお、架橋物とは、架橋剤分子により架橋されたもの、及び、架橋剤を使用することなしに自己縮合的又は自己付加的にシルセスキオキサン同士が相互に結合した硬化物をいう。ただし、上記官能基としては、本発明においては、オキセタニル基、カルボニル基(ただし、エステルに含まれるC=Oは含まない)、窒素、イオウ等を含有する置換基以外の特定の種類の官能基を有する。具体的には、脂肪族不飽和結合基、エポキシ環、及び、Si−H結合を有する置換されていてもよいシリル基からなる群から選択された少なくとも1種の官能基を少なくとも2つ有する。なお、本発明のシルセスキオキサンは置換基を含有している。ここにいう置換基とは、Si原子に水素原子に代替して結合する基であり、本発明のシルセスキオキサンはこのような置換基を含有するものである。上記置換基には、上記官能基のうち脂肪族不飽和結合基、エポキシ環、及び、Si−H結合を有する置換シリル基がふくまれる。しかし、上記官能基がSi−H結合を有する置換されていないシリル基である場合は、本発明のシルセスキオキサンは少なくとも一つの置換基をSi原子上に有する。この置換基は、例えば、脂肪族不飽和結合基、Si−H結合を有する置換シリル基若しくはエポキシ基であってもよく(この場合は複数種類の官能基を有することになる)、又は、後述する脂肪族不飽和結合を有していない炭素数1〜20の炭化水素基等であってもよい(この場合は官能基と官能基以外の置換基を有することになる)。上記官能基としては、好ましくは、上記式(1)におけるX−R−において、複数のRは、同一又は異なって、直接結合、ハロゲン置換基を有していてもよい炭素数1〜20のアルキレン基、炭素数5〜12のシクロアルキレン基、エーテル結合を含有する炭素数1〜20の2価の炭化水素基、エステル結合を含有する炭素数1〜20の2価の炭化水素基、及び、置換基を有していてもよいオルガノシロキシ基を含有する炭素数1〜12の2価の炭化水素基からなる群から選択された少なくとも1種である。複数のXは、同一又は異なって、エポキシ基、3,4−エポキシシクロヘキシル基、ビニル基、及び、Rとともにヒドロシリル基を構成していてもよい水素原子からなる群から選択される少なくとも1種である。上記XとRとは上述の基のいずれの組み合わせであってもよい。   In the present invention, the substituent-containing silsesquioxane has at least two, preferably at least four, and more preferably at least six functional groups. The functional group referred to here is a functional group necessary for forming a crosslinked product of silsesquioxane, and the crosslinked product is combined with an appropriate crosslinking agent or self-condensed or self-added. It refers to a functional group that can be formed and can be a crosslinking point. The crosslinked product refers to a product crosslinked by a crosslinking agent molecule and a cured product in which silsesquioxanes are mutually bonded to each other in a self-condensing or self-adding manner without using a crosslinking agent. However, in the present invention, as the functional group, a specific type of functional group other than an oxetanyl group, a carbonyl group (however, C = O contained in the ester is not included), a substituent containing nitrogen, sulfur or the like is used. Having. Specifically, it has at least two functional groups selected from the group consisting of an aliphatic unsaturated bond group, an epoxy ring, and an optionally substituted silyl group having a Si—H bond. The silsesquioxane of the present invention contains a substituent. The term “substituent” as used herein refers to a group that is bonded to a Si atom instead of a hydrogen atom, and the silsesquioxane of the present invention contains such a substituent. The substituent includes an aliphatic unsaturated bond group, an epoxy ring, and a substituted silyl group having a Si—H bond among the functional groups. However, when the functional group is an unsubstituted silyl group having a Si-H bond, the silsesquioxane of the present invention has at least one substituent on a Si atom. This substituent may be, for example, an aliphatic unsaturated bond group, a substituted silyl group having a Si—H bond, or an epoxy group (in this case, it will have a plurality of types of functional groups), or Or a hydrocarbon group having 1 to 20 carbon atoms having no aliphatic unsaturated bond (in this case, it has a functional group and a substituent other than the functional group). As the functional group, preferably, in X—R— in the above formula (1), a plurality of Rs are the same or different and each have a direct bond or a C 1 to C 20 which may have a halogen substituent. An alkylene group, a cycloalkylene group having 5 to 12 carbon atoms, a divalent hydrocarbon group having 1 to 20 carbon atoms containing an ether bond, a divalent hydrocarbon group having 1 to 20 carbon atoms containing an ester bond, and And at least one selected from the group consisting of a divalent hydrocarbon group having 1 to 12 carbon atoms containing an organosiloxy group which may have a substituent. A plurality of Xs are the same or different and are at least one selected from the group consisting of an epoxy group, a 3,4-epoxycyclohexyl group, a vinyl group, and a hydrogen atom which may form a hydrosilyl group together with R. is there. X and R may be any combination of the groups described above.

また、本発明において置換基含有シルセスキオキサンは、その水酸基の一部又はすべてが置換基R′で置換された構造であってもよく、その置換基R′は、−O−R′′又は−O−Si(R′′)(R′′は水素原子であってもよい置換基。ただし、R′′が複数あるときは同一でも異なっていてもよい。)を表す。ただし、R′が複数あるときは同一でも異なっていてもよい。 Further, in the present invention, the substituent-containing silsesquioxane may have a structure in which a part or all of the hydroxyl groups are substituted with a substituent R ′, and the substituent R ′ is —O—R ″. Or —O—Si (R ″) 3 (R ″ is a substituent which may be a hydrogen atom. However, when there are a plurality of R ″ s, they may be the same or different.) However, when there are a plurality of R's, they may be the same or different.

本発明において、置換基含有シルセスキオキサンは、複数のX及びR′′のうち少なくとも二つは架橋点を形成し得るものである。   In the present invention, the substituent-containing silsesquioxane is such that at least two of X and R ″ can form a crosslinking point.

上記ハロゲンとしては、例えば、塩素、フッ素等を挙げることができる。   Examples of the halogen include chlorine and fluorine.

炭素数1〜20のアルキレン基としては特に限定されず、例えば、メチレン、エチレン、トリメチレン、テトラメチレン等が挙げられる。   The alkylene group having 1 to 20 carbon atoms is not particularly limited, and includes, for example, methylene, ethylene, trimethylene, tetramethylene and the like.

炭素数5〜12のシクロアルキレン基としては、例えば、シクロペンチレン、シクロヘキシレン、ノルボルニレン、トリシクロドデシレン等が挙げられる。   Examples of the cycloalkylene group having 5 to 12 carbon atoms include cyclopentylene, cyclohexylene, norbornylene, tricyclododecylene, and the like.

エステル結合を含有する炭素数1〜20の2価の炭化水素基としては、例えば、−(C=O)−O−CH−、−(C=O)−O−(CH−、−CH−(C=O)−、−(CH−(C=O)−O−、−(CH−(C=O)−O−(CH−等が挙げられる。 Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms containing an ester bond, for example, - (C = O) -O -CH 2 -, - (C = O) -O- (CH 2) 2 - , -CH 2 - (C = O ) -, - (CH 2) 2 - (C = O) -O -, - (CH 2) 2 - (C = O) -O- (CH 2) 2 - , etc. Is mentioned.

置換基を有していてもよいオルガノシロキシ基を含有する炭素数1〜12の2価の炭化水素基としては、例えば、メチレン、エチレン、トリメチレン、テトラメチレン等に置換基を有していてもよいオルガノシロキシ基が結合した基等があげられる。   Examples of the divalent hydrocarbon group having 1 to 12 carbon atoms containing an organosiloxy group which may have a substituent include, for example, methylene, ethylene, trimethylene, tetramethylene, etc. And a group to which a good organosiloxy group is bonded.

R′′は、水素原子又はメチル、エチル、シクロヘキシル、フェネチル等の置換基である。   R ″ is a hydrogen atom or a substituent such as methyl, ethyl, cyclohexyl, phenethyl and the like.

以下X−R−の具体例を示す。
(1)エポキシ環を含有し、エーテル結合を有していてもよい炭素数1〜10の炭化水素基、例えば、下記の(2)〜(10)で表される基等が挙げられる。
Hereinafter, specific examples of XR- will be shown.
(1) A hydrocarbon group containing an epoxy ring and having 1 to 10 carbon atoms which may have an ether bond, for example, groups represented by the following (2) to (10) and the like.

Figure 2004359933
Figure 2004359933

(2)炭素−炭素不飽和結合を含有する炭素数1〜12の炭化水素基、例えば、ビニル基、アリル基、3−ブテニル基、3−シクロヘキセニル基、5−(ビシクロヘプテニル基、シクロペンテニル基、CH=CH−(CH−等を挙げることができる。 (2) C1-C12 hydrocarbon groups containing carbon-carbon unsaturated bonds, for example, vinyl, allyl, 3-butenyl, 3-cyclohexenyl, 5- (bicycloheptenyl, cyclo Pentenyl group, CH 2 CHCH— (CH 2 ) 8 — and the like.

(3)脂肪族不飽和結合を有するシリルオキシ基、例えば、ジメチルビニルシリルオキシ基、アリルジメチルシリルオキシ基、CH=CH−(CH−Si(Me)−O−等が挙げられる。 (3) A silyloxy group having an aliphatic unsaturated bond, for example, a dimethylvinylsilyloxy group, an allyldimethylsilyloxy group, CH 2 CHCH— (CH 2 ) 8 —Si (Me) 2 —O— and the like. .

(4)エポキシ環を含有するシリルオキシ基、例えば、下記(11)〜(19)で表される基等が挙げられる。   (4) An epoxy ring-containing silyloxy group, for example, groups represented by the following (11) to (19).

Figure 2004359933
Figure 2004359933

(5)水素、H−Si(Me)−O−で表される基等。
ただし、上記において式中のMeはメチル基を表す。
(5) Hydrogen, a group represented by H—Si (Me) 2 —O—, and the like.
However, in the above, Me in the formula represents a methyl group.

本発明において、置換基含有シルセスキオキサンは、上記反応性置換基以外に、脂肪族不飽和結合を有していない炭素数1〜20の炭化水素基を有していてもよい。このような炭化水素基としては特に限定されず、例えば、メチル基、イソブチル基、オクチル基、フェニル基、フェネチル基、シクロヘキシル基、シクロペンチル基、アダマンチル基、アダマンチルエチル基等を挙げることができる。   In the present invention, in addition to the reactive substituent, the substituent-containing silsesquioxane may have a hydrocarbon group having 1 to 20 carbon atoms and having no aliphatic unsaturated bond. Such a hydrocarbon group is not particularly limited, and examples thereof include a methyl group, an isobutyl group, an octyl group, a phenyl group, a phenethyl group, a cyclohexyl group, a cyclopentyl group, an adamantyl group, and an adamantylethyl group.

上記籠型シルセスキオキサンの合成法としては、籠型シルセスキオキサンの骨格構造(すなわち、籠型シルセスキオキサン構造及びその部分開裂構造体構造)を合成したものに置換基を導入する方法、又は、置換基を有する3官能有機ケイ素モノマーの加水分解による方法、等が知られているが、そのいずれの方法を用いてもよい。籠型シルセスキオキサン類の骨格構造は、各種の方法で合成でき、例えば、Chem.Rev.1995,95,1431やJ.Am.Chem.Soc.1989,111,1741あるいはOrganometallics1991,10,2526等の方法で合成することができることが報告されている。また、例えば、6面体の各頂点がケイ素で各辺が酸素でできたオクタキス(ヒドリドシルセスキオキサン)にヒドロシリル化反応を利用して頂点のケイ素上にアルキル基を導入することができることが知られている(例えば、特許第3020164号公報参照)。   As a method for synthesizing the cage-type silsesquioxane, a substituent is introduced into a compound obtained by synthesizing the skeleton structure of the cage-type silsesquioxane (that is, the cage-type silsesquioxane structure and its partially-cleaved structure structure). A method or a method by hydrolysis of a trifunctional organosilicon monomer having a substituent is known, and any of these methods may be used. The skeleton structure of the cage silsesquioxane can be synthesized by various methods, for example, as described in Chem. Rev .. 1995, 95, 1431; Am. Chem. Soc. 1989, 111, 1741 or Organometallics 1991, 10, 2526, and the like. Further, for example, it is known that an alkyl group can be introduced on silicon at an apex of a hexahedron by using a hydrosilylation reaction on octakis (hydridosilsesquioxane) made of silicon at each apex and oxygen at each side thereof. (See, for example, Japanese Patent No. 3201264).

また、籠状シルセスキオキサンの部分開裂構造体の合成法としては、完全縮合型の籠型シルセスキオキサン類を製造する際に同時に生成することが報告されている。また、完全縮合型シルセスキオキサンをトリフルオロメタンスルフォン酸やテトラエチルアンモニウムヒドロキサイドによって部分切断することでも合成できることが知られている。   In addition, as a method for synthesizing a partially cleaved structure of cage silsesquioxane, it is reported that the silsesquioxane is produced simultaneously with the production of a complete condensation cage silsesquioxane. It is also known that the synthesis can be performed by partially cleaving the completely condensed silsesquioxane with trifluoromethanesulfonic acid or tetraethylammonium hydroxide.

一方、置換基を有する3官能有機ケイ素モノマーの加水分解による方法は、例えば、置換基X−R−を有するX−R−SiZ(Zはハロゲン原子又はアルコキシ基)を原料として、上記の籠状シルセスキオキサン及びその部分開裂構造体と同様の合成法により合成することができる。 On the other hand, a method of hydrolyzing a trifunctional organosilicon monomer having a substituent is described, for example, by using XR-SiZ 3 (Z is a halogen atom or an alkoxy group) having a substituent XR- as a raw material. Can be synthesized by the same synthetic method as that for the silsesquioxane and its partially cleaved structure.

また、置換基を有する籠型シルセスキオキサンが市場にて入手可能であるものもあり、例えば、POSS(登録商標)シリーズのシルセスキオキサン(ハイブリッドプラスチックス社製)等を使用してもよい。   Some cage-type silsesquioxanes having a substituent are commercially available. For example, POSS (registered trademark) series silsesquioxane (manufactured by Hybrid Plastics Co., Ltd.) may be used. Good.

ラダー構造体の製造方法としてはとくに限定されず、例えば、本明細書の実施例に記載の方法、又は、特開平6−306173号公報に記載の方法等により製造することができる。すなわち、トリアルコキシシラン又はトリクロロシランを共加水分解縮合して製造する方法等が知られており、これを利用することができ、架橋性反応基含有トリアルコキシシラン又はトリクロロシランを用いて官能基を導入することができる。また、架橋性反応基を形成しうる架橋性反応基前駆体を有するポリオルガノシロキサンをまず製造し、このポリオルガノシロキサンの架橋性反応基前駆体を高分子反応により架橋性反応基とすることで製造することもできる。反応温度としては、例えば、20〜100℃であり、反応時間は1〜24時間である。ラダー構造の規則性を高めるために、最初の加水分解反応を20〜60℃の比較的低温で0.5〜1時間おこなってから、引き続き昇温して70〜90℃で1〜23時間反応させることが好ましい。この条件でない場合は、無定形物の出現が増加する。また、本明細書の実施例に記載の方法においては、有機ケイ素モノマーの加水分解を行うpHと縮合反応を行うpHとを調節することにより、ラダー型シルセスキオキサンの重合度を調節することができる。   The method for producing the ladder structure is not particularly limited, and for example, the ladder structure can be produced by the method described in Examples of the present specification or the method described in JP-A-6-306173. That is, a method of producing a trialkoxysilane or trichlorosilane by co-hydrolysis-condensation is known, and this method can be used, and a functional group is synthesized using a crosslinkable reactive group-containing trialkoxysilane or trichlorosilane. Can be introduced. Further, a polyorganosiloxane having a crosslinkable reactive group precursor capable of forming a crosslinkable reactive group is first produced, and the crosslinkable reactive group precursor of the polyorganosiloxane is converted into a crosslinkable reactive group by a polymer reaction. It can also be manufactured. The reaction temperature is, for example, 20 to 100 ° C., and the reaction time is 1 to 24 hours. In order to increase the regularity of the ladder structure, the first hydrolysis reaction is performed at a relatively low temperature of 20 to 60 ° C for 0.5 to 1 hour, and then the temperature is raised to 70 to 90 ° C for 1 to 23 hours. Preferably. Otherwise, the appearance of amorphous objects will increase. Further, in the method described in the examples of the present specification, by adjusting the pH at which the organic silicon monomer is hydrolyzed and the pH at which the condensation reaction is performed, the degree of polymerization of the ladder-type silsesquioxane is adjusted. Can be.

本発明において、置換基含有シルセスキオキサンは、架橋物を形成して硬化するのであるが、この硬化は、シルセスキオキサンの自己縮合反応又は自己付加反応によるものであってもよい。このような反応は、相互に反応可能な置換基同士の組み合わせによって可能となり、例えば、ビニル基とSi原子に直結した水素原子とのヒドロシリル化反応、籠型構造体シルセスキオキサンの部分開裂体におけるシラノール基同士の加水分解・縮合、エポキシ環を含有する炭化水素基とシラノール基との反応等がその典型例である。このような反応が自己触媒的に進行する場合は、特に触媒を加えなくても反応が進行するので、貯蔵安定性を増すためには、低温保管が好ましい。また、逆に、加温や促進剤添加等により硬化反応を促進することが、例えば、エポキシ環とシラノール基との反応のためには好ましい。この場合には、アニオン重合触媒として弱酸(CHCOOH、Si−OH等)のアルカリ金属(例えば、K、Na、Li等。Kが最も好ましく、つぎにNaが好ましく、そのつぎにLiが好ましい。)塩を使用することが好ましい。さらに、エポキシ環のカチオン重合が、カチオン重合触媒(ルイス酸触媒、例えば、ハロゲン化金属(BF、AlCl等)、有機金属化合物(CAlCl等)等)の使用により行うことができる。 In the present invention, the substituent-containing silsesquioxane forms a crosslinked product and cures. This curing may be caused by a self-condensation reaction or a self-addition reaction of the silsesquioxane. Such a reaction is enabled by a combination of mutually reactive substituents, for example, a hydrosilylation reaction between a vinyl group and a hydrogen atom directly bonded to a Si atom, a partially-cleaved cage-type structure silsesquioxane. Typical examples thereof include hydrolysis / condensation between silanol groups in the above, reaction between a hydrocarbon group containing an epoxy ring and a silanol group, and the like. When such a reaction proceeds autocatalytically, the reaction proceeds without adding a catalyst, and therefore, low-temperature storage is preferable in order to increase storage stability. Conversely, it is preferable to accelerate the curing reaction by heating or adding an accelerator, for example, for the reaction between an epoxy ring and a silanol group. In this case, as an anion polymerization catalyst, an alkali metal (for example, K, Na, Li, etc.) of a weak acid (CH 3 COOH, Si—OH, etc.) is most preferably K, then Na is preferable, and then Li is preferable. )) It is preferred to use salts. Further, the cationic polymerization of the epoxy ring is carried out by using a cationic polymerization catalyst (Lewis acid catalyst, for example, a metal halide (BF 3 , AlCl 3, etc.), an organometallic compound (C 2 H 5 AlCl 2, etc.)). Can be.

本発明においては、置換基含有シルセスキオキサンの架橋物を形成するために、硬化剤を使用してもよい。このような硬化剤としては、熱硬化性樹脂の硬化に使用される硬化系を使用することができ、エポキシ基と酸無水物との組み合わせを好適に使用することができる。   In the present invention, a curing agent may be used to form a crosslinked product of the substituted silsesquioxane. As such a curing agent, a curing system used for curing a thermosetting resin can be used, and a combination of an epoxy group and an acid anhydride can be suitably used.

このような硬化剤としては、例えば、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、ノルボルナン−2,3−ジカルボン酸無水物、メチルノルボルナン−2,3−ジカルボン酸無水物等を挙げることができる。硬化剤の配合量は、エポキシ基1モルに対して0.4〜1モルが好ましく、より好ましくは0.5〜0.7モルである。   Examples of such a curing agent include methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, norbornane-2,3-dicarboxylic anhydride, methylnorbornane-2,3-dicarboxylic anhydride and the like. . The compounding amount of the curing agent is preferably from 0.4 to 1 mol, more preferably from 0.5 to 0.7 mol, per 1 mol of the epoxy group.

本発明においては、置換基含有シルセスキオキサンの架橋物を形成するために、硬化剤とともに硬化触媒を使用してもよい。このような硬化触媒としては、4級ホスホニウム塩、例えば、テトラフェニルホスホニウムブロミド、テトラブチルホスホニウムブロミド、メチルトリフェニルホスホニウムブロミド、エチルトリフェニルホスホニウムブロミド、n−ブチルトリフェニルホスホニウムブロミド、等が挙げられる。これらのうち、テトラフェニルホスホニウムブロミドが好ましい。   In the present invention, a curing catalyst may be used together with a curing agent to form a crosslinked product of the substituted silsesquioxane. Examples of such a curing catalyst include quaternary phosphonium salts such as tetraphenylphosphonium bromide, tetrabutylphosphonium bromide, methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, and n-butyltriphenylphosphonium bromide. Of these, tetraphenylphosphonium bromide is preferred.

このような硬化触媒の配合量は、組成物中、0.05〜1phrが好ましく、より好ましくは0.08〜0.5phrである。   The compounding amount of such a curing catalyst is preferably 0.05 to 1 phr, more preferably 0.08 to 0.5 phr in the composition.

本発明の封止材には、本発明の目的を阻害しないかぎり、その他の添加剤を使用することができる。このような添加剤としては、シランカップリング剤、ヒンダードアミン系光安定化剤、ヒンダードフェノール系酸化防止剤等が挙げられる。シランカップリングとしては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、ビルニトリメトキシシラン、ビルニトリエトキシシラン等が挙げられる。ヒンダードアミン系光安定化剤としては、例えば、TINUVIN(登録商標)770、TINUVIN(登録商標)622LD(いずれもチバスペシャルティーケミカルズ社製)、アデカスタブ(登録商標)LA−57(旭電化工業社製)等が挙げられる。ヒンダードフェノール系酸化防止剤としては、例えば、IRGANOX(登録商標)1010(チバスペシャルテーケミカルズ社製)、ノクラックNS−30(商品名)(大内新興化学工業社製)、トミノックスTT(商品名)(吉豊ファインケミカル社製)等が挙げられる。
ただし、溶剤は使用しないことが好ましい。
Other additives can be used in the sealing material of the present invention as long as the object of the present invention is not impaired. Examples of such additives include a silane coupling agent, a hindered amine light stabilizer, and a hindered phenol antioxidant. Examples of the silane coupling include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and β- (3,4- (Epoxycyclohexyl) ethyltriethoxysilane, virunitrimethoxysilane, virunitriethoxysilane, and the like. Examples of the hindered amine light stabilizer include TINUVIN (registered trademark) 770, TINUVIN (registered trademark) 622LD (all manufactured by Ciba Specialty Chemicals), and ADK STAB (registered trademark) LA-57 (manufactured by Asahi Denka Kogyo). And the like. Examples of the hindered phenolic antioxidant include IRGANOX (registered trademark) 1010 (manufactured by Ciba Specialty Chemicals), Nocrack NS-30 (trade name) (manufactured by Ouchi Shinko Chemical Co., Ltd.), and Tominox TT (trademark) Name) (manufactured by Yoshitoyo Fine Chemical Co., Ltd.).
However, it is preferable not to use a solvent.

上記シランカップリング剤の配合量は、組成物中、0.1〜5phrが好ましく、より好ましくは0.5〜2phrである。
上記ヒンダードアミン系光安定化剤の配合量は、組成物中、0.01〜0.5phrが好ましく、より好ましくは0.1〜0.3phrである。
上記ヒンダードフェノール系酸化防止剤の配合量は、組成物中、0.01〜0.5phrが好ましく、より好ましくは0.1〜0.3phrである。
The amount of the silane coupling agent is preferably 0.1 to 5 phr, more preferably 0.5 to 2 phr in the composition.
The amount of the hindered amine light stabilizer is preferably 0.01 to 0.5 phr, more preferably 0.1 to 0.3 phr in the composition.
The amount of the hindered phenol-based antioxidant is preferably 0.01 to 0.5 phr, more preferably 0.1 to 0.3 phr, in the composition.

本発明の封止材は、特定の官能基を含有し、オキセタニル基、カルボニル基(ただし、エステルに含まれるC=Oは含まない)、窒素、イオウ等を含有する置換基を含有しないので、近紫外領域で透明であるのみならず、近紫外線を浴びても黄変することがない。また、Tgを好ましくは80℃以上、より好ましくは100℃以上に達成することができる。従って、従来のエポキシ樹脂系封止剤の欠点を克服した紫外光素子用の封止材として極めて好適に使用することができる。また、架橋性官能基がSi−H基であっても、置換基を含有するシルセスキオキサンであるので、接着性、耐湿性、耐熱衝撃性等に優れ、封止材として好適に使用することができる。   Since the encapsulant of the present invention contains a specific functional group and does not contain a substituent containing an oxetanyl group, a carbonyl group (however, C = O contained in the ester is not included), nitrogen, sulfur and the like, Not only is it transparent in the near ultraviolet region, but it does not yellow even when exposed to near ultraviolet light. Moreover, Tg can be preferably attained at 80 ° C. or higher, more preferably at 100 ° C. or higher. Therefore, it can be used very suitably as a sealing material for an ultraviolet light element which overcomes the disadvantages of the conventional epoxy resin-based sealing agent. Further, even if the crosslinkable functional group is a Si-H group, since it is a silsesquioxane containing a substituent, it is excellent in adhesion, moisture resistance, thermal shock resistance, etc., and is suitably used as a sealing material. be able to.

紫外光素子にはLEDやLD等がある。例えば、近紫外LEDの構造は、一般に、金属ステムの上に電極配線サブマウントが設置され、その上にLEDチップがマウントされる。このサブマウント上のチップを封止材で封止することにより近紫外LED素子が形成される。この封止材として本発明の封止材を使用することができる。また、白色発光LEDとするためにLEDチップ上に蛍光体層が配置されていてもよい。この場合に、一般には、熱硬化性樹脂に蛍光体を含有させたもので蛍光体層が形成される。この蛍光体層の形成を、熱硬化性樹脂として本発明の封止材を使用してチップを封止することにより行うことができる。一般には、このうえにさらに封止材が適用されて白色発光LEDが形成される。さらに、同様にして、本発明の封止材を使用して高耐久性の高輝度青色発光LEDを形成することができる。本発明の素子は、上述の例示の態様が示すように、本発明の封止材が使用されてなる近紫外光素子である。   Examples of the ultraviolet light element include an LED and an LD. For example, in the structure of a near-ultraviolet LED, generally, an electrode wiring submount is provided on a metal stem, and an LED chip is mounted thereon. By sealing the chip on the submount with a sealing material, a near-ultraviolet LED element is formed. The sealing material of the present invention can be used as the sealing material. Further, a phosphor layer may be arranged on the LED chip to obtain a white light emitting LED. In this case, generally, a phosphor layer is formed of a thermosetting resin containing a phosphor. This phosphor layer can be formed by sealing the chip using the sealing material of the present invention as a thermosetting resin. Generally, a sealing material is further applied thereon to form a white light emitting LED. Further, similarly, a highly durable high-luminance blue light-emitting LED can be formed using the sealing material of the present invention. The element of the present invention is a near-ultraviolet light element using the sealing material of the present invention as shown in the above-described exemplary embodiment.

以下に実施例を示して、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

製造例1
置換基を有する籠型シルセスキオキサンの合成
撹拌機及び温度計を設置した反応容器に、イソフロパノール150g、水酸化テトラメチルアンモニウムの10%水溶液5.4g(水270mmol、水酸化テトラメチルアンモニウム5.93mmol)、水12gを仕込んだ後、γ−グリシドキシプロピルトリメトキシシラン42.5g(180mmol)を徐々に加え、室温で20時間撹拌放置した。
Production Example 1
Synthesis of cage-type silsesquioxane having substituents In a reaction vessel equipped with a stirrer and a thermometer, 150 g of isofopanol and 5.4 g of a 10% aqueous solution of tetramethylammonium hydroxide (270 mmol of water, tetramethylammonium hydroxide 5. After charging 93 g of water and 12 g of water, 42.5 g (180 mmol) of γ-glycidoxypropyltrimethoxysilane was gradually added thereto, and the mixture was stirred at room temperature for 20 hours.

反応終了後、系内にトルエン200gを加え、減圧してイソフロパノールを除去し、分液ロートを用いて反応溶液を蒸留水により水洗した。分液ロートの水層が中性になるまで水洗を繰り返した後、有機層を分取し、無水硫酸ナトリウムで脱水した後、減圧下でトルエンを留去して目的の化合物(SQ−1)を得た。エポキシ当量175g/eqであった。   After the completion of the reaction, 200 g of toluene was added to the system, isotropanol was removed under reduced pressure, and the reaction solution was washed with distilled water using a separating funnel. After repeatedly washing with water until the aqueous layer of the separating funnel becomes neutral, the organic layer is separated, dehydrated with anhydrous sodium sulfate, and then toluene is distilled off under reduced pressure to obtain the desired compound (SQ-1). Got. The epoxy equivalent was 175 g / eq.

製造例2
置換基を有するラダー型シルセスキオキサンの合成
攪拌機及び温度計を設置した反応容器に、γ−グリシドキシプロピルトリメトキシシラン94.4g(0.38mol)、及び、0.9%塩酸水溶液を14.6g(水0.80mol)仕込み、室温で1時間、60℃で3時間攪拌し、加水分解させた。その後、メチルイソブチルケトン(以下、MIBKと略す)240g、炭酸ナトリウム4.2g(0.04mol)、及び蒸留水160g(8.89mol)を加え、室温で20時間攪拌し、縮合させた。その後、水層が弱酸性(pH=6程度)になるまで1N−塩酸を滴下して中和した。約400gの蒸留水を用いて3回洗浄し有機層のMIBKを留去して目的のγ−グリシドキシプロピル基を置換基として有するラダー型シルセスキオキサン(SQ−2)を得た(数平均分子量=3058、重量平均分子量=5128)。
Production Example 2
Synthesis of Ladder-Type Silsesquioxane Having a Substituent A reaction vessel equipped with a stirrer and a thermometer was charged with 94.4 g (0.38 mol) of γ-glycidoxypropyltrimethoxysilane and a 0.9% hydrochloric acid aqueous solution. 14.6 g (0.80 mol of water) was charged, and the mixture was stirred at room temperature for 1 hour and at 60 ° C for 3 hours to be hydrolyzed. Thereafter, 240 g of methyl isobutyl ketone (hereinafter abbreviated as MIBK), 4.2 g (0.04 mol) of sodium carbonate, and 160 g (8.89 mol) of distilled water were added, and the mixture was stirred at room temperature for 20 hours to condense. Then, 1N-hydrochloric acid was added dropwise and neutralized until the aqueous layer became weakly acidic (about pH = 6). Washing was performed three times using about 400 g of distilled water, and MIBK of the organic layer was distilled off to obtain a target ladder-type silsesquioxane (SQ-2) having a γ-glycidoxypropyl group as a substituent ( (Number average molecular weight = 3058, weight average molecular weight = 5128).

実施例1、2及び比較例1
表1に示す各成分及び組成でそれぞれ配合して混合し、均一な組成物を調製した。下記の条件で硬化させて硬化物を得た。
硬化条件:120℃、10h。
長さ約20mm、幅約10〜15mm、厚さ約2mmの試験片について、以下の方法で損失正接(tanδ)を求めた。0〜300℃の範囲でtanδの最大値を与える温度をチャートから読み取った。
また、260μm厚さの試験片について、以下の方法で、メタリングウエザーメーターの曝露の前後における380nmの近紫外光の透過率の変化を求めて、メタリングウエザーメーター曝露による紫外線照射の影響を調べ、耐UV特性を測定した。結果をそれぞれ表1に示した。なお、表中の略号は以下のとおりである。
MH−700A:メチルヘキサヒドロ無水フタル酸−ヘキサヒドロ無水フタル酸(70:30混合物、酸無水当量168)(新日本理化社製)
TPP−PB:テトラメチルホスホニウム・ブロミド(北興化学社製)
XNR5212B:エポキシ樹脂組成物
XNH5212:変性脂環式酸無水物
ただし、XNR5212B及びXNH5212はLED封止用エポキシ樹脂と硬化剤(ナガセケムテックス社製)である。
Examples 1 and 2 and Comparative Example 1
Each component and composition shown in Table 1 were blended and mixed to prepare a uniform composition. The composition was cured under the following conditions to obtain a cured product.
Curing conditions: 120 ° C., 10 h.
The loss tangent (tan δ) of a test piece having a length of about 20 mm, a width of about 10 to 15 mm, and a thickness of about 2 mm was determined by the following method. The temperature giving the maximum value of tan δ in the range of 0 to 300 ° C. was read from the chart.
Further, with respect to a test piece having a thickness of 260 μm, the change in the transmittance of near-ultraviolet light at 380 nm before and after exposure to the metalling weather meter was determined by the following method, and the effect of ultraviolet irradiation by the metalling weather meter exposure was examined. And UV resistance were measured. The results are shown in Table 1. The abbreviations in the table are as follows.
MH-700A: methyl hexahydrophthalic anhydride-hexahydrophthalic anhydride (70:30 mixture, acid anhydride equivalent 168) (manufactured by Shin Nippon Rika Co., Ltd.)
TPP-PB: Tetramethylphosphonium bromide (Hokuko Chemical Co., Ltd.)
XNR5212B: Epoxy resin composition XNH5212: Modified alicyclic anhydride An XNR5212B and XNH5212 are an LED sealing epoxy resin and a curing agent (manufactured by Nagase ChemteX Corporation).

評価方法
Tg:動的粘弾性測定(曲げモード、1Hz)によるtanδピーク温度として求めた。測定は、セイコーインスツルメント社製粘弾性測定装置DMS6100を用いて、両持ち曲げモードで1Hzの正弦歪みを印加することにより行った。測定温度範囲は0〜300℃で、昇温速度は2℃/minとした。
耐UV特性:260μm厚の試験片の380nm光の初期透過率t(%)、及び、メタリングウエザーメーター(スガ試験機社製M6T)50h曝露(83℃、相対湿度20%)(放射照度1.24kW/m(紫外部))後の380nm光の透過率t(%)を求め、耐UV特性=(t/t)×100(%)とした。
Evaluation method Tg: determined as a tan δ peak temperature by dynamic viscoelasticity measurement (bending mode, 1 Hz). The measurement was performed using a viscoelasticity measuring device DMS6100 manufactured by Seiko Instruments Inc. by applying a sinusoidal strain of 1 Hz in a double-ended bending mode. The measurement temperature range was 0 to 300 ° C, and the rate of temperature rise was 2 ° C / min.
UV resistance: Initial transmittance t 0 (%) of a 380 nm light of a test piece having a thickness of 260 μm, and exposure to a metalling weather meter (M6T manufactured by Suga Test Instruments Co., Ltd.) for 50 hours (83 ° C., relative humidity 20%) (irradiance) The transmittance t 1 (%) of 380 nm light after 1.24 kW / m 2 (ultraviolet) was determined, and the UV resistance = (t 1 / t 0 ) × 100 (%).

Figure 2004359933
Figure 2004359933

上記実施例から、シルセスキオキサンエポキシを酸無水物で硬化した実施例1及び2の硬化物は、従来のLED封止材と同程度のTgを有していて、UV曝露を受けた後も近紫外領域の透過率が殆ど低下しないことがわかった。
一方、従来の典型的な透明エポキシ樹脂硬化物である比較例1の場合は、UV曝露を受けた後の近紫外領域の透過率が著しく低下していた。
このように、本発明の組成物の硬化物は、従来の典型的なLED封止材では殆ど実用に耐えないようなUV曝露を受ける条件でも、殆ど透過率の低下がなく、極めて優れた耐UV特性を有するものであることが確認された。また、本発明の組成物からなる形成物の厚さも従来のエポキシ樹脂と同様に厚くすることができ、数ミクロン乃至十数ミクロン程度が限界とされる従来技術の水素シルセスキオキサン樹脂膜では実現困難である封止材用途に有利に適用できることが確認された。
なお、メタリングウエザーメーターにおける曝露試験は、一般のサンシャインウェザオメーターの約10倍の耐候促進能力があるので、50時間の曝露は500時間のサンシャインウェザオメーター曝露にほぼ相当する。
From the above examples, the cured products of Examples 1 and 2, in which silsesquioxane epoxy was cured with an acid anhydride, had a Tg comparable to that of a conventional LED encapsulant, and after being subjected to UV exposure. It was also found that the transmittance in the near ultraviolet region hardly decreased.
On the other hand, in the case of Comparative Example 1, which is a typical cured conventional transparent epoxy resin, the transmittance in the near ultraviolet region after being exposed to UV light was significantly reduced.
As described above, the cured product of the composition of the present invention has almost no decrease in transmittance even under the condition of exposure to UV which is hardly practical for a conventional typical LED encapsulant, and has extremely excellent resistance to heat. It was confirmed that the product had UV characteristics. In addition, the thickness of the formed product composed of the composition of the present invention can be increased similarly to the conventional epoxy resin, and in the conventional hydrogen silsesquioxane resin film having a limit of about several microns to several tens of microns, It was confirmed that the method can be advantageously applied to a sealing material that is difficult to realize.
The exposure test using a metering weather meter has about 10 times the ability of accelerating the weather resistance of a general sunshine weatherometer, so that 50 hours of exposure is almost equivalent to 500 hours of sunshine weatherometer exposure.

本発明は、従来のエポキシ樹脂系封止剤の欠点を克服しエポキシ樹脂に代わる紫外乃至青色光素子用封止材として極めて好適である。   INDUSTRIAL APPLICABILITY The present invention overcomes the drawbacks of the conventional epoxy resin-based sealant, and is extremely suitable as a sealant for ultraviolet to blue light elements that replaces epoxy resin.

Claims (8)

脂肪族不飽和結合基、エポキシ環、及び、Si−H結合を有する置換されていてもよいシリル基からなる群から選択された少なくとも1種の官能基を少なくとも2つ有する置換基含有シルセスキオキサンからなる光素子用封止材。 Substituent-containing silsesquioki having at least two functional groups selected from the group consisting of an aliphatic unsaturated bond group, an epoxy ring, and an optionally substituted silyl group having a Si-H bond. An optical element sealing material made of Sun. 置換基含有シルセスキオキサンは、一般式(1)で表される籠型構造体のシルセスキオキサンの少なくとも1種である請求項1記載の封止材。
(X−R−Si)・O(3n−m)/2(OH)m−a・(R′) (1)
(式(1)中、nは4〜18の整数、mは0又はn+2以下の整数、ただし、mが0のときはnは6〜18の偶数である。aは0〜mの整数である。複数のRは、同一又は異なって、直接結合、ハロゲン置換基を有していてもよい炭素数1〜20のアルキレン基、炭素数5〜12のシクロアルキレン基、エーテル結合を含有する炭素数1〜20の2価の炭化水素基、エステル結合を含有する炭素数1〜20の2価の炭化水素基、及び、置換基を有していてもよいオルガノシロキシ基を含有する炭素数1〜12の2価の炭化水素基からなる群から選択された少なくとも1種である。複数のXは、同一又は異なって、エポキシ基、3,4−エポキシシクロヘキシル基、ビニル基、及び、Rとともにヒドロシリル基を構成していてもよい水素原子からなる群から選択される少なくとも1種であり、R′は、−O−R′′又は−O−Si(R′′)(R′′は水素原子であってもよい置換基。ただし、R′′が複数あるときは同一でも異なっていてもよい。)を表し、かつ、複数のX及びR′′のうち少なくとも二つは架橋点を形成し得るものである。ただし、R′が複数あるときは同一でも異なっていてもよい。)
The sealing material according to claim 1, wherein the silsesquioxane having a substituent is at least one silsesquioxane having a cage structure represented by the general formula (1).
(X-R-Si) n · O (3 nm) / 2 (OH) ma · (R ′) a (1)
(In the formula (1), n is an integer of 4 to 18, m is 0 or an integer of n + 2 or less, provided that when m is 0, n is an even number of 6 to 18. a is an integer of 0 to m. A plurality of Rs may be the same or different and each may be a direct bond, an alkylene group having 1 to 20 carbon atoms which may have a halogen substituent, a cycloalkylene group having 5 to 12 carbon atoms, or a carbon atom having an ether bond. A divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent hydrocarbon group having 1 to 20 carbon atoms containing an ester bond, and 1 carbon atom containing an organosiloxy group which may have a substituent X is at least one selected from the group consisting of divalent hydrocarbon groups of from 12 to 12. A plurality of Xs are the same or different and are together with an epoxy group, a 3,4-epoxycyclohexyl group, a vinyl group, and R Is it a hydrogen atom that can constitute a hydrosilyl group? It is at least one selected from the group consisting, R 'is, -O-R''or -O-Si (R'') 3 (R'' substituent may be a hydrogen atom. However, R '' may be the same or different when there are a plurality of R ''), and at least two of X and R '' are capable of forming a crosslinking point, provided that R 'is When there is more than one, they may be the same or different.)
置換基含有シルセスキオキサンは、(1)エポキシ環を含有し、エーテル結合を有していてもよい炭素数1〜10の炭化水素基、(2)炭素−炭素不飽和結合を含有する炭素数1〜12の炭化水素基、(3)脂肪族不飽和結合を有するシリルオキシ基、(4)エポキシ環を含有するシリルオキシ基、及び、(5)水素、H−Si(Me)−O−で表される基(式中、Meはメチル基を表す。)からなる群から選択される少なくとも1種の官能基を少なくとも2つ有するものである請求項1又は2記載の封止材。 The substituent-containing silsesquioxane includes (1) a hydrocarbon group having 1 to 10 carbon atoms which may have an epoxy bond and (2) a carbon group having a carbon-carbon unsaturated bond. A hydrocarbon group of the formulas 1 to 12, (3) a silyloxy group having an aliphatic unsaturated bond, (4) a silyloxy group containing an epoxy ring, and (5) hydrogen, H-Si (Me) 2- O-. The sealing material according to claim 1 or 2, wherein the sealing material has at least two functional groups selected from the group consisting of groups represented by the following formula (wherein Me represents a methyl group). さらに、硬化剤を含有してなる請求項1〜3のいずれか記載の封止材。 The sealing material according to claim 1, further comprising a curing agent. さらに、硬化触媒を含有してなる請求項4記載の封止材。 The sealing material according to claim 4, further comprising a curing catalyst. ピーク波長が350〜490nmの光を発光するLED用の封止材である請求項1〜5のいずれか記載の封止材。 The sealing material according to any one of claims 1 to 5, which is a sealing material for an LED that emits light having a peak wavelength of 350 to 490 nm. 一般式(1)で表される籠型構造体のシルセスキオキサンの架橋物で封止されてなるピーク波長が350〜490nmの光に関する光素子。
(X−R−Si)・O(3n−m)/2(OH)m−a・(R′) (1)
(式(1)中、nは4〜18の整数、mは0又はn+2以下の整数、ただし、mが0のときはnは6〜18の偶数である。aは0〜mの整数である。複数のRは、同一又は異なって、直接結合、ハロゲン置換基を有していてもよい炭素数1〜20のアルキレン基、炭素数5〜12のシクロアルキレン基、エーテル結合を含有する炭素数1〜20の2価の炭化水素基、エステル結合を含有する炭素数1〜20の2価の炭化水素基、及び、置換基を有していてもよいオルガノシロキシ基を含有する炭素数1〜12の2価の炭化水素基からなる群から選択された少なくとも1種である。複数のXは、同一又は異なって、エポキシ基、3,4−エポキシシクロヘキシル基、ビニル基、及び、Rとともにヒドロシリル基を構成していてもよい水素原子からなる群から選択される少なくとも1種であり、R′は、−O−R′′又は−O−Si(R′′)(R′′は水素原子であってもよい置換基。ただし、R′′が複数あるときは同一でも異なっていてもよい。)を表し、かつ、複数のX及びR′′のうち少なくとも二つは架橋点を形成し得るものである。ただし、R′が複数あるときは同一でも異なっていてもよい。)
An optical element for light having a peak wavelength of 350 to 490 nm, which is sealed with a crosslinked silsesquioxane of a cage-type structure represented by the general formula (1).
(X-R-Si) n · O (3 nm) / 2 (OH) ma · (R ′) a (1)
(In the formula (1), n is an integer of 4 to 18, m is 0 or an integer of n + 2 or less, provided that when m is 0, n is an even number of 6 to 18. a is an integer of 0 to m. A plurality of Rs may be the same or different and each may be a direct bond, an alkylene group having 1 to 20 carbon atoms which may have a halogen substituent, a cycloalkylene group having 5 to 12 carbon atoms, or a carbon atom having an ether bond. A divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent hydrocarbon group having 1 to 20 carbon atoms containing an ester bond, and 1 carbon atom containing an organosiloxy group which may have a substituent X is at least one selected from the group consisting of divalent hydrocarbon groups of from 12 to 12. A plurality of Xs are the same or different and are together with an epoxy group, a 3,4-epoxycyclohexyl group, a vinyl group, and R Is it a hydrogen atom that can constitute a hydrosilyl group? It is at least one selected from the group consisting, R 'is, -O-R''or -O-Si (R'') 3 (R'' substituent may be a hydrogen atom. However, R '' may be the same or different when there are a plurality of R ''), and at least two of X and R '' are capable of forming a crosslinking point, provided that R 'is When there is more than one, they may be the same or different.)
ピーク波長が350〜490nmの光を発光するLED素子である請求項7記載の素子。 The device according to claim 7, which is an LED device that emits light having a peak wavelength of 350 to 490 nm.
JP2004056772A 2003-05-14 2004-03-01 Encapsulant for optical element Expired - Fee Related JP4734832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056772A JP4734832B2 (en) 2003-05-14 2004-03-01 Encapsulant for optical element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003136364 2003-05-14
JP2003136364 2003-05-14
JP2004056772A JP4734832B2 (en) 2003-05-14 2004-03-01 Encapsulant for optical element

Publications (2)

Publication Number Publication Date
JP2004359933A true JP2004359933A (en) 2004-12-24
JP4734832B2 JP4734832B2 (en) 2011-07-27

Family

ID=34067236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056772A Expired - Fee Related JP4734832B2 (en) 2003-05-14 2004-03-01 Encapsulant for optical element

Country Status (1)

Country Link
JP (1) JP4734832B2 (en)

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100445A1 (en) * 2004-04-16 2005-10-27 Jsr Corporation Composition for sealing optical semiconductor, optical semiconductor sealing material, amd method for producing composition for sealing optical semiconductor
JP2006036898A (en) * 2004-07-26 2006-02-09 Jsr Corp Photocurable composition and optical waveguide using the same
WO2006038530A1 (en) * 2004-10-01 2006-04-13 Nippon Kayaku Kabushiki Kaisha Epoxy resin composition for optical semiconductor encapsulation
JP2006104249A (en) * 2004-10-01 2006-04-20 Nippon Kayaku Co Ltd Epoxy resin composition for sealing optical semiconductor
JP2006299149A (en) * 2005-04-22 2006-11-02 Asahi Kasei Corp Composition for sealant and optical device
JP2006299150A (en) * 2005-04-22 2006-11-02 Asahi Kasei Corp Composition for sealant and optical device
JP2007009080A (en) * 2005-06-30 2007-01-18 Nagase Chemtex Corp Coating composition for optical use
JP2007016128A (en) * 2005-07-07 2007-01-25 Nagase Chemtex Corp Optical resin
JP2007031619A (en) * 2005-07-28 2007-02-08 Nagase Chemtex Corp Resin composition for optical element sealing use
JP2007063394A (en) * 2005-08-31 2007-03-15 Asahi Kasei Corp Cage silsesquioxane polymer
JP2007131782A (en) * 2005-11-11 2007-05-31 Jsr Corp Thermosetting resin composition and its application
JP2007221071A (en) * 2006-02-20 2007-08-30 Matsushita Electric Works Ltd Semiconductor optical device and transparent optical member
JP2007246880A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor light device and transparent optical member
JP2007251122A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor optical device and transparent optical member
JP2007251123A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor optical device and transparent optical member
JP2007251121A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor optical device and transparent optical member
JP2007326988A (en) * 2006-06-09 2007-12-20 Chisso Corp Epoxy resin composition
JP2007332211A (en) * 2006-06-13 2007-12-27 Univ Kansai Thermosetting polymer composition and its cured product
EP1883949A1 (en) * 2005-05-27 2008-02-06 The Governors of the University of Alberta Method for preparing nanocrystalline silicon in sio2 and freestanding silicon nanoparticles
JP2008127577A (en) * 2006-11-24 2008-06-05 Cheil Industries Inc Epoxy resin composition for sealing multi-chip package and multi-chip package using the same
WO2008065787A1 (en) * 2006-11-27 2008-06-05 Panasonic Electric Works Co., Ltd. Optical semiconductor device and transparent optical member
WO2008065967A1 (en) * 2006-11-27 2008-06-05 Panasonic Electric Works Co., Ltd. Semiconductor optical device and transparent optical member
WO2008065966A1 (en) * 2006-11-27 2008-06-05 Panasonic Electric Works Co., Ltd. Semiconductor optical device and transparent optical member
WO2008065786A1 (en) * 2006-11-27 2008-06-05 Panasonic Electric Works Co., Ltd. Optical semiconductor device and transparent optical member
WO2008069193A1 (en) * 2006-12-04 2008-06-12 Panasonic Corporation Optical head, optical information recording and retrieval device, and optical information system device
JP2008201832A (en) * 2007-02-16 2008-09-04 Shin Etsu Chem Co Ltd Siloxane polymer, method for producing the same, coating liquid for forming porous film containing the polymer, porous film and semiconductor apparatus using the porous film
WO2008133138A1 (en) 2007-04-17 2008-11-06 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
WO2008149603A1 (en) 2007-06-08 2008-12-11 Mabuchi Motor Co., Ltd. Small motor of polygonal external shape
JP2009504890A (en) * 2005-08-16 2009-02-05 ハイブリッド・プラスティックス・インコーポレイテッド Preparation of polyhedral oligomeric silsesquioxane silanols and siloxanes functionalized with olefinic groups
WO2009025017A1 (en) * 2007-08-17 2009-02-26 Panasonic Electric Works Co., Ltd. Semiconductor photodevice and transparent optical member
JP2009108109A (en) * 2007-10-26 2009-05-21 Arakawa Chem Ind Co Ltd Thermosetting resin composition, cured product, and light emitting diode derived from them
WO2009075233A1 (en) 2007-12-10 2009-06-18 Kaneka Corporation Alkali-developable curable composition, insulating thin film using the same, and thin film transistor
JP2009167390A (en) * 2007-12-19 2009-07-30 Chisso Corp Thermosetting resin composition and use thereof
JP2010180384A (en) * 2009-02-09 2010-08-19 Showa Denko Kk Resin composition for adhesion of light-emitting element, adhesion method for light emitting element and lamp
US7915369B2 (en) 2004-12-07 2011-03-29 Panasonic Electric Works Co., Ltd. Ultraviolet transmissive polyhedral silsesquioxane polymers
WO2011111673A1 (en) 2010-03-09 2011-09-15 リンテック株式会社 Curable composition, hardened material, and method for using curable composition
US8026332B2 (en) 2007-03-28 2011-09-27 Lintec Corporation Sealing material for optical element and sealed optical element
US8481669B2 (en) 2007-06-29 2013-07-09 Lintec Corporation Molding material comprising polysilsesquioxane compound, sealing material, and sealed optical element
US8507044B2 (en) 2008-02-14 2013-08-13 Lintec Corporation Molding material composed of polyorganosiloxane compound, sealing material, and sealed optical device
WO2013141360A1 (en) 2012-03-23 2013-09-26 リンテック株式会社 Curable composition, cured product, and method for using curable composition
KR20140007840A (en) 2011-02-18 2014-01-20 제이엔씨 주식회사 Curable resin composition and colour conversion material using same
WO2014069508A1 (en) 2012-10-30 2014-05-08 リンテック株式会社 Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or like
US8728624B2 (en) 2008-03-26 2014-05-20 Lintec Corporation Fixing material comprising silane compound polymer and photonic device sealed body
KR20140096311A (en) 2011-10-25 2014-08-05 샌트랄 글래스 컴퍼니 리미티드 Siloxane-based composition and cured product thereof, and use therefor
US8809458B2 (en) 2006-12-01 2014-08-19 Kaneka Corporation Polysiloxane composition
US8809414B2 (en) 2008-10-02 2014-08-19 Kaneka Corporation Photocurable composition and cured product
WO2014133103A1 (en) 2013-02-28 2014-09-04 リンテック株式会社 Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
KR101488018B1 (en) 2007-06-29 2015-01-29 린텍 가부시키가이샤 Molding material comprising polysilsesquioxane compound, sealing material, and sealed optical element
WO2015041342A1 (en) 2013-09-20 2015-03-26 リンテック株式会社 Curable composition, curing product, and method for using curable composition
KR20160058788A (en) 2013-09-20 2016-05-25 린텍 가부시키가이샤 Curable composition, curing product, and method for using curable composition
KR20170007296A (en) 2014-05-07 2017-01-18 린텍 가부시키가이샤 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition, etc.
KR20170008218A (en) 2014-05-07 2017-01-23 린텍 가부시키가이샤 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition
KR20170033272A (en) 2014-07-23 2017-03-24 린텍 가부시키가이샤 Curable composition, method for manufacturing curable composition, cured product, method for using curable composition, and optical device
KR20170045212A (en) 2014-08-26 2017-04-26 린텍 가부시키가이샤 Curable composition, method of producing curable composition, cured material, method of using curable composition, and optical device
KR20170045213A (en) 2014-08-26 2017-04-26 린텍 가부시키가이샤 Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
KR20170046650A (en) 2014-08-26 2017-05-02 린텍 가부시키가이샤 Curable composition, method of producing curable composition, cured material, method of using curable composition, and optical device
KR20170046648A (en) 2014-08-26 2017-05-02 린텍 가부시키가이샤 Curable composition, cured product, method for using curable composition, and optical device
US9688851B2 (en) 2010-05-28 2017-06-27 Kaneka Corporation Polysiloxane composition, hardened material and optical device
US9698320B2 (en) 2010-09-22 2017-07-04 Kaneka Corporation Modified product of polyhedral structure polysiloxane, polyhedral structure polysiloxane composition, cured product, and optical semiconductor device
WO2018061988A1 (en) 2016-09-29 2018-04-05 株式会社カネカ Photosensitive composition, colored pattern and method for producing same
KR20180097619A (en) 2015-12-22 2018-08-31 린텍 가부시키가이샤 CURABLE COMPOSITION, METHOD FOR PRODUCING CURABLE COMPOSITION, CURVE, METHOD FOR USE OF CURABLE COMPOSITION, AND OPTICAL DEVICE
KR20180098292A (en) 2015-12-22 2018-09-03 린텍 가부시키가이샤 CURABLE COMPOSITION, METHOD FOR PRODUCING CURABLE COMPOSITION, METHOD FOR USE OF CURED MATERIAL, AND CURABLE COMPOSITION
KR20200131228A (en) 2018-03-12 2020-11-23 린텍 가부시키가이샤 Curable composition, cured product, method of producing cured product, and method of using curable composition
KR20210066801A (en) 2018-09-28 2021-06-07 린텍 가부시키가이샤 Curable compositions, cured products, and methods of using the curable compositions
KR20210066800A (en) 2018-09-28 2021-06-07 린텍 가부시키가이샤 Curable polysilsesquioxane compound, curable composition, cured product, and method of using curable composition
KR20210070269A (en) 2018-09-28 2021-06-14 린텍 가부시키가이샤 Curable compositions, cured products, and methods of using the curable compositions
KR20210145119A (en) 2019-03-26 2021-12-01 린텍 가부시키가이샤 Curable composition, cured product, and method of using the curable composition
KR20210148069A (en) 2019-03-26 2021-12-07 린텍 가부시키가이샤 Curable composition, cured product, and method of using the curable composition
US11315899B2 (en) 2019-04-18 2022-04-26 Lintec Corporation Die bonding material, light-emitting device, and method for producing light-emitting device
KR20220068952A (en) 2019-09-27 2022-05-26 린텍 가부시키가이샤 Curable compositions, cured products and methods of using the curable compositions
KR20220074817A (en) 2019-09-27 2022-06-03 린텍 가부시키가이샤 Curable compositions, cured products and methods of using the curable compositions
KR20230119792A (en) 2022-02-08 2023-08-16 주식회사 파이오셀 Novel meta-POSS (meta-polyhedral oligomeric silsesquioxane) compounds
WO2023218889A1 (en) * 2022-05-13 2023-11-16 Agc株式会社 Composition, compound, surface treatment agent, article and method for producing article
KR20240014705A (en) 2022-07-26 2024-02-02 주식회사 파이오셀 A novel meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound, a preparation method thereof, and a composition comprising a meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound prepared by the preparation method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106632A (en) * 1985-10-31 1987-05-18 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Formation of organic glass insulating layer
JPH0632903A (en) * 1992-05-19 1994-02-08 Nippon Shokubai Co Ltd Production of polysiloxane macromonomer
JPH06298940A (en) * 1993-04-15 1994-10-25 Toray Dow Corning Silicone Co Ltd Silicone resin containing epoxy group and its production
JPH06298897A (en) * 1993-04-15 1994-10-25 Toray Dow Corning Silicone Co Ltd Curable resin composition
JPH06306173A (en) * 1993-04-26 1994-11-01 Showa Denko Kk Reactive polyoganosiloxane
JPH07292108A (en) * 1993-11-05 1995-11-07 Shin Etsu Chem Co Ltd Method for producing organic functional group-containing organopolysiloxane and organopolysiloxane obtained from the production method
JPH10251407A (en) * 1997-03-14 1998-09-22 Nippon Steel Chem Co Ltd Silicone compound and its production
JPH11106658A (en) * 1997-09-24 1999-04-20 Dow Corning Asia Kk Optically transparent hydrogensilsesquioxane resin composition, its production and silicon oxide film
JPH11116682A (en) * 1997-08-11 1999-04-27 Toagosei Co Ltd Photo-cation curable resin composition
JP2002088157A (en) * 2000-09-12 2002-03-27 Kanegafuchi Chem Ind Co Ltd Ladder type silsesquioxane compound containing styryl group as substituent group and method for producing the same
WO2002100867A1 (en) * 2000-10-27 2002-12-19 The Regents Of The University Of Michigan Well-defined nanosized building blocks for organic/inorganic nanocomposites
JP2004143449A (en) * 2002-09-30 2004-05-20 Nippon Steel Chem Co Ltd Cage-type silsesquioxan resin with functional group and method for producing the same
JP2004212983A (en) * 2003-01-08 2004-07-29 Internatl Business Mach Corp <Ibm> Patternable low dielectric constant material and its use in ulsi interconnection
JP2004238589A (en) * 2003-02-10 2004-08-26 Stanley Electric Co Ltd Sealing resin for light-emitting diode and surface-mounting type light-emitting diode using the same
JP2005015738A (en) * 2002-09-13 2005-01-20 Chisso Corp Method of producing silsesquioxane derivative having functional group and silsesquioxane derivative

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106632A (en) * 1985-10-31 1987-05-18 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Formation of organic glass insulating layer
JPH0632903A (en) * 1992-05-19 1994-02-08 Nippon Shokubai Co Ltd Production of polysiloxane macromonomer
JPH06298940A (en) * 1993-04-15 1994-10-25 Toray Dow Corning Silicone Co Ltd Silicone resin containing epoxy group and its production
JPH06298897A (en) * 1993-04-15 1994-10-25 Toray Dow Corning Silicone Co Ltd Curable resin composition
JPH06306173A (en) * 1993-04-26 1994-11-01 Showa Denko Kk Reactive polyoganosiloxane
JPH07292108A (en) * 1993-11-05 1995-11-07 Shin Etsu Chem Co Ltd Method for producing organic functional group-containing organopolysiloxane and organopolysiloxane obtained from the production method
JPH10251407A (en) * 1997-03-14 1998-09-22 Nippon Steel Chem Co Ltd Silicone compound and its production
JPH11116682A (en) * 1997-08-11 1999-04-27 Toagosei Co Ltd Photo-cation curable resin composition
JPH11106658A (en) * 1997-09-24 1999-04-20 Dow Corning Asia Kk Optically transparent hydrogensilsesquioxane resin composition, its production and silicon oxide film
JP2002088157A (en) * 2000-09-12 2002-03-27 Kanegafuchi Chem Ind Co Ltd Ladder type silsesquioxane compound containing styryl group as substituent group and method for producing the same
WO2002100867A1 (en) * 2000-10-27 2002-12-19 The Regents Of The University Of Michigan Well-defined nanosized building blocks for organic/inorganic nanocomposites
JP2005015738A (en) * 2002-09-13 2005-01-20 Chisso Corp Method of producing silsesquioxane derivative having functional group and silsesquioxane derivative
JP2004143449A (en) * 2002-09-30 2004-05-20 Nippon Steel Chem Co Ltd Cage-type silsesquioxan resin with functional group and method for producing the same
JP2004212983A (en) * 2003-01-08 2004-07-29 Internatl Business Mach Corp <Ibm> Patternable low dielectric constant material and its use in ulsi interconnection
JP2004238589A (en) * 2003-02-10 2004-08-26 Stanley Electric Co Ltd Sealing resin for light-emitting diode and surface-mounting type light-emitting diode using the same

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100445A1 (en) * 2004-04-16 2005-10-27 Jsr Corporation Composition for sealing optical semiconductor, optical semiconductor sealing material, amd method for producing composition for sealing optical semiconductor
JPWO2005100445A1 (en) * 2004-04-16 2008-03-06 Jsr株式会社 Optical semiconductor sealing composition, optical semiconductor sealing material, and method for producing optical semiconductor sealing composition
JP2006036898A (en) * 2004-07-26 2006-02-09 Jsr Corp Photocurable composition and optical waveguide using the same
JP4639685B2 (en) * 2004-07-26 2011-02-23 Jsr株式会社 Photocurable composition and optical waveguide using the same
WO2006038530A1 (en) * 2004-10-01 2006-04-13 Nippon Kayaku Kabushiki Kaisha Epoxy resin composition for optical semiconductor encapsulation
JP2006104249A (en) * 2004-10-01 2006-04-20 Nippon Kayaku Co Ltd Epoxy resin composition for sealing optical semiconductor
US7915369B2 (en) 2004-12-07 2011-03-29 Panasonic Electric Works Co., Ltd. Ultraviolet transmissive polyhedral silsesquioxane polymers
JP2006299149A (en) * 2005-04-22 2006-11-02 Asahi Kasei Corp Composition for sealant and optical device
JP2006299150A (en) * 2005-04-22 2006-11-02 Asahi Kasei Corp Composition for sealant and optical device
US8323731B2 (en) 2005-05-27 2012-12-04 The Governors Of The University Of Alberta Method for preparing nanocrystalline silicon in SiO2 and freestanding silicon nanoparticles
EP1883949A4 (en) * 2005-05-27 2012-03-07 Univ Alberta Method for preparing nanocrystalline silicon in sio2 and freestanding silicon nanoparticles
EP1883949A1 (en) * 2005-05-27 2008-02-06 The Governors of the University of Alberta Method for preparing nanocrystalline silicon in sio2 and freestanding silicon nanoparticles
JP2007009080A (en) * 2005-06-30 2007-01-18 Nagase Chemtex Corp Coating composition for optical use
JP2007016128A (en) * 2005-07-07 2007-01-25 Nagase Chemtex Corp Optical resin
JP2007031619A (en) * 2005-07-28 2007-02-08 Nagase Chemtex Corp Resin composition for optical element sealing use
JP2009504890A (en) * 2005-08-16 2009-02-05 ハイブリッド・プラスティックス・インコーポレイテッド Preparation of polyhedral oligomeric silsesquioxane silanols and siloxanes functionalized with olefinic groups
JP2007063394A (en) * 2005-08-31 2007-03-15 Asahi Kasei Corp Cage silsesquioxane polymer
JP2007131782A (en) * 2005-11-11 2007-05-31 Jsr Corp Thermosetting resin composition and its application
JP2007251121A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor optical device and transparent optical member
JP2007251123A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor optical device and transparent optical member
JP2007251122A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor optical device and transparent optical member
JP2007246880A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor light device and transparent optical member
JP2007221071A (en) * 2006-02-20 2007-08-30 Matsushita Electric Works Ltd Semiconductor optical device and transparent optical member
JP2007326988A (en) * 2006-06-09 2007-12-20 Chisso Corp Epoxy resin composition
JP2007332211A (en) * 2006-06-13 2007-12-27 Univ Kansai Thermosetting polymer composition and its cured product
JP2008127577A (en) * 2006-11-24 2008-06-05 Cheil Industries Inc Epoxy resin composition for sealing multi-chip package and multi-chip package using the same
WO2008065786A1 (en) * 2006-11-27 2008-06-05 Panasonic Electric Works Co., Ltd. Optical semiconductor device and transparent optical member
WO2008065966A1 (en) * 2006-11-27 2008-06-05 Panasonic Electric Works Co., Ltd. Semiconductor optical device and transparent optical member
JP5210881B2 (en) * 2006-11-27 2013-06-12 パナソニック株式会社 Semiconductor optical device and transparent optical member
JP5210880B2 (en) * 2006-11-27 2013-06-12 パナソニック株式会社 Semiconductor optical device and transparent optical member
WO2008065967A1 (en) * 2006-11-27 2008-06-05 Panasonic Electric Works Co., Ltd. Semiconductor optical device and transparent optical member
WO2008065787A1 (en) * 2006-11-27 2008-06-05 Panasonic Electric Works Co., Ltd. Optical semiconductor device and transparent optical member
JPWO2008065967A1 (en) * 2006-11-27 2010-03-04 パナソニック電工株式会社 Semiconductor optical device and transparent optical member
JPWO2008065966A1 (en) * 2006-11-27 2010-03-04 パナソニック電工株式会社 Semiconductor optical device and transparent optical member
US8809458B2 (en) 2006-12-01 2014-08-19 Kaneka Corporation Polysiloxane composition
JP5154440B2 (en) * 2006-12-04 2013-02-27 パナソニック株式会社 Optical head, optical information recording / reproducing apparatus, and optical information system apparatus
US8208359B2 (en) 2006-12-04 2012-06-26 Panasonic Corporation Optical head, optical information recording and reproducing device, and optical information system device
WO2008069193A1 (en) * 2006-12-04 2008-06-12 Panasonic Corporation Optical head, optical information recording and retrieval device, and optical information system device
JPWO2008069193A1 (en) * 2006-12-04 2010-03-18 パナソニック株式会社 Optical head, optical information recording / reproducing apparatus, and optical information system apparatus
JP2008201832A (en) * 2007-02-16 2008-09-04 Shin Etsu Chem Co Ltd Siloxane polymer, method for producing the same, coating liquid for forming porous film containing the polymer, porous film and semiconductor apparatus using the porous film
US8470953B2 (en) 2007-03-28 2013-06-25 Lintec Corporation Sealing material for optical element and sealed optical element
US8026332B2 (en) 2007-03-28 2011-09-27 Lintec Corporation Sealing material for optical element and sealed optical element
US9416231B2 (en) 2007-04-17 2016-08-16 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
US9422405B2 (en) 2007-04-17 2016-08-23 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
US9035009B2 (en) 2007-04-17 2015-05-19 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
EP3656778A1 (en) 2007-04-17 2020-05-27 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
US8399592B2 (en) 2007-04-17 2013-03-19 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
EP3042909A1 (en) 2007-04-17 2016-07-13 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
WO2008133138A1 (en) 2007-04-17 2008-11-06 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
EP3378867A1 (en) 2007-04-17 2018-09-26 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
EP2727925A1 (en) 2007-04-17 2014-05-07 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
WO2008149603A1 (en) 2007-06-08 2008-12-11 Mabuchi Motor Co., Ltd. Small motor of polygonal external shape
US8481669B2 (en) 2007-06-29 2013-07-09 Lintec Corporation Molding material comprising polysilsesquioxane compound, sealing material, and sealed optical element
KR101488018B1 (en) 2007-06-29 2015-01-29 린텍 가부시키가이샤 Molding material comprising polysilsesquioxane compound, sealing material, and sealed optical element
WO2009025017A1 (en) * 2007-08-17 2009-02-26 Panasonic Electric Works Co., Ltd. Semiconductor photodevice and transparent optical member
JP2009108109A (en) * 2007-10-26 2009-05-21 Arakawa Chem Ind Co Ltd Thermosetting resin composition, cured product, and light emitting diode derived from them
US9464172B2 (en) 2007-12-10 2016-10-11 Kaneka Corporation Alkali-developable curable composition, insulating thin film using the same, and thin film transistor
WO2009075233A1 (en) 2007-12-10 2009-06-18 Kaneka Corporation Alkali-developable curable composition, insulating thin film using the same, and thin film transistor
JP2009167390A (en) * 2007-12-19 2009-07-30 Chisso Corp Thermosetting resin composition and use thereof
US8507044B2 (en) 2008-02-14 2013-08-13 Lintec Corporation Molding material composed of polyorganosiloxane compound, sealing material, and sealed optical device
KR101524058B1 (en) * 2008-02-14 2015-05-29 린텍 가부시키가이샤 Molding material composed of polyorganosiloxane compouind, sealing material, and sealed optical device
US8728624B2 (en) 2008-03-26 2014-05-20 Lintec Corporation Fixing material comprising silane compound polymer and photonic device sealed body
KR101530742B1 (en) * 2008-03-26 2015-06-22 린텍 가부시키가이샤 Fixing material comprising silane compound polymer and photonic device sealed body
US8809414B2 (en) 2008-10-02 2014-08-19 Kaneka Corporation Photocurable composition and cured product
JP2010180384A (en) * 2009-02-09 2010-08-19 Showa Denko Kk Resin composition for adhesion of light-emitting element, adhesion method for light emitting element and lamp
WO2011111673A1 (en) 2010-03-09 2011-09-15 リンテック株式会社 Curable composition, hardened material, and method for using curable composition
US8703880B2 (en) 2010-03-09 2014-04-22 Lintec Corporation Curable composition, cured product, and method for using of curable composition
US9822248B2 (en) 2010-05-28 2017-11-21 Kaneka Corporation Polysiloxane composition, hardened material and optical device
US9688851B2 (en) 2010-05-28 2017-06-27 Kaneka Corporation Polysiloxane composition, hardened material and optical device
US9698320B2 (en) 2010-09-22 2017-07-04 Kaneka Corporation Modified product of polyhedral structure polysiloxane, polyhedral structure polysiloxane composition, cured product, and optical semiconductor device
US9279078B2 (en) 2011-02-18 2016-03-08 Jnc Corporation Hardening resin composition and color conversion material using the same
KR20140007840A (en) 2011-02-18 2014-01-20 제이엔씨 주식회사 Curable resin composition and colour conversion material using same
KR20140096311A (en) 2011-10-25 2014-08-05 샌트랄 글래스 컴퍼니 리미티드 Siloxane-based composition and cured product thereof, and use therefor
US9080017B2 (en) 2011-10-25 2015-07-14 Central Glass Company, Limited Siloxane-based composition and cured product thereof, and use therefor
WO2013141360A1 (en) 2012-03-23 2013-09-26 リンテック株式会社 Curable composition, cured product, and method for using curable composition
US9359533B2 (en) 2012-03-23 2016-06-07 Lintec Corporation Curable composition, cured product, and method for using curable composition
KR20140135763A (en) 2012-03-23 2014-11-26 린텍 가부시키가이샤 Curable composition, cured product, and method for using curable composition
WO2014069508A1 (en) 2012-10-30 2014-05-08 リンテック株式会社 Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or like
US9487627B2 (en) 2012-10-30 2016-11-08 Lintec Corporation Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or the like
KR20150081302A (en) 2012-10-30 2015-07-13 린텍 가부시키가이샤 Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or like
US9783715B2 (en) 2013-02-28 2017-10-10 Lintec Corporation Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
WO2014133103A1 (en) 2013-02-28 2014-09-04 リンテック株式会社 Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
KR20150122223A (en) 2013-02-28 2015-10-30 린텍 가부시키가이샤 Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
CN105745253A (en) * 2013-09-20 2016-07-06 琳得科株式会社 Curable composition, curing product, and method for using curable composition
KR20160058788A (en) 2013-09-20 2016-05-25 린텍 가부시키가이샤 Curable composition, curing product, and method for using curable composition
US9540490B2 (en) 2013-09-20 2017-01-10 Lintec Corporation Curable composition, curing product, and method for using curable composition
WO2015041342A1 (en) 2013-09-20 2015-03-26 リンテック株式会社 Curable composition, curing product, and method for using curable composition
KR20160058789A (en) 2013-09-20 2016-05-25 린텍 가부시키가이샤 Curable composition, curing product, and method for using curable composition
KR20170007296A (en) 2014-05-07 2017-01-18 린텍 가부시키가이샤 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition, etc.
US10370498B2 (en) 2014-05-07 2019-08-06 Lintec Corporation Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition
KR20170008218A (en) 2014-05-07 2017-01-23 린텍 가부시키가이샤 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition
US10113035B2 (en) 2014-05-07 2018-10-30 Lintec Corporation Curable polysilsesquioxane compound, production method therefor, curable composition, cured product and use method of curable composition
US10308850B2 (en) 2014-07-23 2019-06-04 Lintec Corporation Curable composition, method for manufacturing curable composition, cured product, method for using curable composition, and optical device
KR20170033272A (en) 2014-07-23 2017-03-24 린텍 가부시키가이샤 Curable composition, method for manufacturing curable composition, cured product, method for using curable composition, and optical device
KR20170046648A (en) 2014-08-26 2017-05-02 린텍 가부시키가이샤 Curable composition, cured product, method for using curable composition, and optical device
KR20170045213A (en) 2014-08-26 2017-04-26 린텍 가부시키가이샤 Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
US10774249B2 (en) 2014-08-26 2020-09-15 Lintec Corporation Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
US9963624B2 (en) 2014-08-26 2018-05-08 Lintec Corporation Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
KR20170045212A (en) 2014-08-26 2017-04-26 린텍 가부시키가이샤 Curable composition, method of producing curable composition, cured material, method of using curable composition, and optical device
US10266734B2 (en) 2014-08-26 2019-04-23 Lintec Corporation Curable composition, cured product, method for using curable composition, and optical device
US10294398B2 (en) 2014-08-26 2019-05-21 Lintec Corporation Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
KR20170046650A (en) 2014-08-26 2017-05-02 린텍 가부시키가이샤 Curable composition, method of producing curable composition, cured material, method of using curable composition, and optical device
US10920117B2 (en) 2015-12-22 2021-02-16 Lintec Corporation Curable composition, method for producing curable composition, cured product, use of curable composition, and optical device
US10745559B2 (en) 2015-12-22 2020-08-18 Lintec Corporation Curable composition, method for producing curable composition, cured product, and use of curable composition
KR20180098292A (en) 2015-12-22 2018-09-03 린텍 가부시키가이샤 CURABLE COMPOSITION, METHOD FOR PRODUCING CURABLE COMPOSITION, METHOD FOR USE OF CURED MATERIAL, AND CURABLE COMPOSITION
KR20180097619A (en) 2015-12-22 2018-08-31 린텍 가부시키가이샤 CURABLE COMPOSITION, METHOD FOR PRODUCING CURABLE COMPOSITION, CURVE, METHOD FOR USE OF CURABLE COMPOSITION, AND OPTICAL DEVICE
WO2018061988A1 (en) 2016-09-29 2018-04-05 株式会社カネカ Photosensitive composition, colored pattern and method for producing same
KR20200131228A (en) 2018-03-12 2020-11-23 린텍 가부시키가이샤 Curable composition, cured product, method of producing cured product, and method of using curable composition
KR20210066801A (en) 2018-09-28 2021-06-07 린텍 가부시키가이샤 Curable compositions, cured products, and methods of using the curable compositions
KR20210066800A (en) 2018-09-28 2021-06-07 린텍 가부시키가이샤 Curable polysilsesquioxane compound, curable composition, cured product, and method of using curable composition
KR20210070269A (en) 2018-09-28 2021-06-14 린텍 가부시키가이샤 Curable compositions, cured products, and methods of using the curable compositions
KR20210145119A (en) 2019-03-26 2021-12-01 린텍 가부시키가이샤 Curable composition, cured product, and method of using the curable composition
KR20210148069A (en) 2019-03-26 2021-12-07 린텍 가부시키가이샤 Curable composition, cured product, and method of using the curable composition
US11315899B2 (en) 2019-04-18 2022-04-26 Lintec Corporation Die bonding material, light-emitting device, and method for producing light-emitting device
KR20220068952A (en) 2019-09-27 2022-05-26 린텍 가부시키가이샤 Curable compositions, cured products and methods of using the curable compositions
KR20220074817A (en) 2019-09-27 2022-06-03 린텍 가부시키가이샤 Curable compositions, cured products and methods of using the curable compositions
KR20230119792A (en) 2022-02-08 2023-08-16 주식회사 파이오셀 Novel meta-POSS (meta-polyhedral oligomeric silsesquioxane) compounds
WO2023218889A1 (en) * 2022-05-13 2023-11-16 Agc株式会社 Composition, compound, surface treatment agent, article and method for producing article
KR20240014705A (en) 2022-07-26 2024-02-02 주식회사 파이오셀 A novel meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound, a preparation method thereof, and a composition comprising a meta-POSS (meta-polyhedral oligomeric silsesquioxane) compound prepared by the preparation method

Also Published As

Publication number Publication date
JP4734832B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4734832B2 (en) Encapsulant for optical element
JP2005263869A (en) Resin composition for sealing optical semiconductor
JP4322949B2 (en) Thermosetting resin composition and optical semiconductor sealing material
KR101153652B1 (en) Resin for optical semiconductor element encapsulation containing polyborosiloxane
US20070148476A1 (en) Siloxane encapsulants
KR101296082B1 (en) Silicone resin composition; and usage method for silicone resin-containing structure using same, optical semiconductor element sealed body using same, and said silicone resin composition using same
JP2008019422A (en) Epoxy-silicone mixed resin composition and light emitting semiconductor device
CN102939313B (en) Curable resin composition and cured article thereof
KR101472829B1 (en) Curable composition, cured product, photo-semiconductor device, and polysiloxane
KR20160035581A (en) Encapsulation material for light emitting diodes
CN102791760A (en) Curable resin composition and cured article thereof
JP2006124710A (en) Silicone encapsulant for light emitting diode
CN102639590B (en) Curable resin composition and cured product thereof
JPWO2010090280A1 (en) Transparent encapsulant composition and optical semiconductor element
KR101408006B1 (en) Epoxy silicone condensate, curable composition comprising epoxy silicone condensate, and cured product thereof
JP5891617B2 (en) Thermosetting resin composition, semiconductor device member, and semiconductor device using the same
CN102939315A (en) Curable resin composition and substance obtained by curing same
JP2012241059A (en) Thermosetting resin composition, member for semiconductor device, and semiconductor device using the same
KR101775476B1 (en) Curable resin composition
JP5647071B2 (en) Epoxy resin composition for optical semiconductor device and optical semiconductor device using the same
KR20140083619A (en) Siloxane monomer and composition for encapsulant and encapsulant and electronic device
JP2013057000A (en) Thermosetting resin composition, semiconductor device member and semiconductor light-emitting device using the same
JP2007016128A (en) Optical resin
WO2013062303A1 (en) Modified silicone resin composition
KR101546299B1 (en) Composition for encapsulating light emitting device and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R150 Certificate of patent or registration of utility model

Ref document number: 4734832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees