WO2008065786A1 - Optical semiconductor device and transparent optical member - Google Patents

Optical semiconductor device and transparent optical member Download PDF

Info

Publication number
WO2008065786A1
WO2008065786A1 PCT/JP2007/066028 JP2007066028W WO2008065786A1 WO 2008065786 A1 WO2008065786 A1 WO 2008065786A1 JP 2007066028 W JP2007066028 W JP 2007066028W WO 2008065786 A1 WO2008065786 A1 WO 2008065786A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound
cage
carbon
Prior art date
Application number
PCT/JP2007/066028
Other languages
French (fr)
Japanese (ja)
Inventor
Ken-Ichi Shinotani
Takao Hayashi
Shunpei Fujii
Norihiro Takamura
Original Assignee
Panasonic Electric Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006319019A external-priority patent/JP5204394B2/en
Priority claimed from JP2006319018A external-priority patent/JP5204393B2/en
Application filed by Panasonic Electric Works Co., Ltd. filed Critical Panasonic Electric Works Co., Ltd.
Publication of WO2008065786A1 publication Critical patent/WO2008065786A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a semiconductor optical device using a silsesquioxane compound as a sealing material, and a transparent optical member using a silsesquioxane compound as a molding material.
  • semiconductor light emitting devices such as light emitting diodes, laser diodes, and semiconductor lasers have been used as light emission sources.
  • light-emitting diodes are widely used as long-life, compact light sources for sine light sources and display light sources.
  • Semiconductor light-emitting elements are also being developed as lighting fixtures incorporating white LED units, and are expected to become increasingly widespread in the future.
  • the white LED light source used in the white LED unit is a blue / near-ultraviolet LED, and development to achieve high output and high brightness is being promoted in order to satisfy the requirements of lighting equipment. It has been.
  • Patent Document 1 discloses a semiconductor device obtained by encapsulating a semiconductor light emitting element using metalloxane, which is a metal oxide obtained by a sol-gel method, as a material having excellent heat resistance and light resistance.
  • metalloxane which is a metal oxide obtained by the sol-gel method, has a problem in that it has a porous structure and therefore has a high water absorption rate and may absorb moisture and cause cracks during use.
  • a DVD device that records light by irradiating light onto a resin disk is used as information recording.
  • light in the blue region and near ultraviolet region is used.
  • a device that records and reads data by irradiating is being studied. When reading information recorded on a resin disc, the laser light in the blue / near ultraviolet region is irradiated onto the recording surface of the resin disc, and the light reflected on the recording surface is received by the semiconductor light receiving element.
  • Such semiconductor light receiving elements are generally sealed and protected with a sealing material, and are irradiated with a single laser beam with a higher output than those using conventional red laser light.
  • a sealing material When using this sealing material, there was a problem that the sealing material was likely to deteriorate.
  • Patent Document 1 Japanese Patent No. 3412152
  • the present invention has been made in view of the above points, and in a semiconductor optical device in which a semiconductor light emitting element or a semiconductor light receiving element is sealed with a sealing material, the sealing material is unlikely to deteriorate and has an excellent lifetime.
  • a transparent optical member used for a portion irradiated with light in a blue region (near ultraviolet region) a transparent optical member that is hardly deteriorated and has an excellent lifetime is provided. It is intended to provide.
  • the present inventors have developed a glass-like inorganic property when a desired force and a silsesquioxane compound are used as a sealant, and a blue region- It has resistance to near-ultraviolet light and can also be formed into a desired shape due to its organic properties, and its power and type silsesquioxane compounds are used as sealing agents for semiconductor optical devices.
  • the inventors have found that the present invention is optimal and have completed the present invention.
  • the semiconductor optical device includes a cage silsesquioxane compound represented by the following formula (1), or a force obtained by partial addition reaction of this compound, a cage silsesquioxane compound.
  • equation (1) is (AR R SiOSiO) (R R HSiOSiO) (BR R SiOSiO
  • A is a group having a carbon-carbon unsaturated bond
  • B is a substituted or unsubstituted saturated alkyl group or hydroxyl group
  • R 1, R 2, R 3, R 4, R 5 and R 5 are each independently a lower alkyl group.
  • the invention of claim 2 is characterized in that, in claim 1, in addition to the cage silsesquioxane compound of the above formula (1), a compound represented by the following formula (2) is contained.
  • X represents a divalent functional group or an oxygen atom
  • R 1, R 2, R 3, and R 5 are each independently carbon
  • represents a divalent functional group
  • the invention of claim 4 is the invention according to any one of claims 1 to 3, wherein ⁇ in formula (1) is carbon.
  • the semiconductor optical device is a chain hydrocarbon group having a carbon unsaturated bond.
  • the transparent optical member according to claim 5 of the present invention is a cage-type silsesquioxane compound represented by the following formula (1) or a partial polymer of a cage-type silsesquioxane compound obtained by partial addition reaction of this compound. It is characterized by polymerizing the contained key compound.
  • A is a group having a carbon-carbon unsaturated bond
  • B is a substituted or unsubstituted saturated alkyl group or hydroxyl group
  • R 1, R 2, R 3, R 4, R 5 and R 5 are each independently a lower alkyl group.
  • the invention of claim 6 is characterized in that, in claim 5, it contains a compound represented by the following formula (2) in addition to the cage silsesquioxane compound of the above formula (1).
  • X represents a divalent functional group or an oxygen atom
  • R 1, R 2, R 3, and R 5 are each independently carbon
  • the invention of claim 7 is characterized in that, in claim 5, it contains a compound represented by the following formula (3) in addition to the cage silsesquioxane compound of the above formula (1).
  • represents a divalent functional group
  • the invention of claim 8 is the transparent optical member according to any one of claims 5 to 7, wherein ⁇ in formula (1) is a chain hydrocarbon group having a carbon-carbon unsaturated bond. It is.
  • the cage silsesquioxane compound of the formula (1) has a polyhedral structure formed of silicon atoms and oxygen atoms, a hydrogen atom bonded to the silicon atom via a siloxane bond, and a siloxane bond. And a group having a carbon-carbon unsaturated bond bonded to each other, so that a hydrogen atom is subjected to a hydrosilylation reaction with a group having a carbon-carbon unsaturated bond of another cage-type silsesquioxane compound, and added.
  • It has a more uniform network structure with fewer unreacted residues, and can form a three-dimensional cross-linked structure of the silsesquioxane compound, which can suppress stress cracking of the cured product and is tough In addition, it can improve the irradiation resistance against short wavelength high energy light such as Blu-ray.
  • the cage silsesquioxane compound can be cross-linked and cured with the compound of formula (3), and it has a more uniform network structure with fewer unreacted residues and a cage silsess Can form a three-dimensional cross-linked structure of a xanthone compound, suppresses stress cracking of the cured product, enhances toughness, and improves irradiation resistance to short wavelength high energy light such as Blu-ray It is something that can be done.
  • a semiconductor optical device can be formed with a sealing material that does not easily deteriorate and has a long life, and a transparent optical member can be obtained with a material that does not easily deteriorate and has a long life.
  • the affinity of the surface with a heavy metal sol such as TiO or ZrO whose surface is covered with the hydroxyl group can be increased.
  • a cured product having an increased refractive index can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a semiconductor optical device of the present invention.
  • FIG. 2 is a view schematically showing a three-dimensional crosslinked structure polymer crosslinked by a cage silsesquioxane compound of the present invention.
  • FIG. 3 is a graph showing the wavelength dependence of the transmittance of the cage silsesquioxane compound according to Example 1.
  • FIG. 4 is a schematic cross-sectional view illustrating the force according to Example 1 and a method for sealing a cage silsesquioxane compound.
  • FIG. 5 is a graph showing the luminous flux maintenance factor of the cage silsesquioxane compound according to Example 1.
  • FIG. 7 Color-printed images of senalmon observation in the Blu-ray irradiation test.
  • A is for Example 4 and
  • B is for Reference Example 2.
  • FIG. 8 Far-field images are color-printed in the Blu-ray irradiation test.
  • (A) is for Example 5 and (b) is for Example 1.
  • FIG. 9 Color-printed images of senalmon observation in the Blu-ray irradiation test.
  • FIG. 1 shows an example of a semiconductor optical device.
  • a semiconductor light emitting element 2 is mounted on the surface of a substrate 1, and the entire semiconductor light emitting element 2 and a part of the surface of the substrate 1 are sealed with a sealing material 3. It is.
  • a phosphor layer 4 is formed on the surface of the sealing material 3.
  • An electronic circuit 5 is formed on the substrate 1, and in the embodiment shown in FIG. 1, the electrical circuit 5 is electrically connected to the semiconductor light emitting element 2 by a bonding wire 6.
  • the semiconductor light-emitting element 2 when a device that outputs light having a wavelength in the blue region or near-ultraviolet region of 450 nm or less, which can use the known semiconductor light-emitting device 2, is obtained. It is preferable because it can increase the illuminance of the light device and enhance the color rendering.
  • a semiconductor substrate such as GaAlN, ZnS, ZnSe, SiC, GaP, GaAlAs, AlInGaP, InGaN, GaN, AlInGaN formed as a light emitting layer is used. Can do.
  • the mounting of the semiconductor light emitting element 2 can be performed by placing the semiconductor light emitting element 2 on the portion of the substrate 1 where the semiconductor light emitting element 2 is mounted and performing wire bonding mounting or flip chip mounting.
  • the substrate 1 can be obtained by molding a resin material such as a ceramic material, a thermoplastic resin or a thermosetting resin into a desired shape by various molding methods. It is not limited. Examples of the ceramic material that can be used for the substrate 1 include alumina, aluminum nitride, zirconium oxide, and carbide carbide. These are formed by known compression molding, injection molding (CIM), etc., and sintered. Can be formed as a substrate 1 by the force S. Since the ceramic material is excellent in thermal conductivity, it can be preferably used from the viewpoint that the heat generated by the semiconductor light emitting element 2 can be diffused throughout the substrate 1 and efficiently radiated.
  • a resin material such as a ceramic material, a thermoplastic resin or a thermosetting resin into a desired shape by various molding methods. It is not limited. Examples of the ceramic material that can be used for the substrate 1 include alumina, aluminum nitride, zirconium oxide, and carbide carbide. These are formed by known compression molding, injection molding (CIM), etc.
  • thermoplastic resins such as polyphenylene sulfide (PPS), polyphthalimide (PPA), or liquid crystal polymer (LCP), and thermosetting resins such as epoxy resin and phenol resin can be used.
  • thermosetting resins such as epoxy resin and phenol resin
  • a filler such as glass, silica, or alumina
  • a predetermined pattern connected to the semiconductor light emitting element 2 as described above is formed on the surface of the substrate 1.
  • the electric circuit 5 is formed! /,
  • the force to be formed is not particularly limited, and a known method is used to reduce the force S.
  • the semiconductor optical device according to the present invention has been described using a semiconductor light emitting device in which the semiconductor light emitting element 2 is sealed with the sealing material 3.
  • the semiconductor light receiving element is made of the sealing material. Even a semiconductor light-receiving device that is sealed! /, Noha! /, Undo! /.
  • the sealing material 3 includes a cage silsesquioxane compound represented by the following formula (1), or a force obtained by partial addition reaction of this compound, a cage silsesquioxane. It is formed by crosslinking a key compound containing a partial polymer of the compound.
  • Equation (1) is expressed as (AR R SiOSiO) (R R HSiOSiO) (BR R SiOSiO)
  • A represents a group having a carbon-carbon unsaturated bond, and is not particularly limited as long as it includes a carbon-carbon double bond or a carbon-carbon triple bond as part of the group.
  • those containing an alkenyl group, an alkynyl group, and a cyclohexenyl group can be exemplified.
  • the group containing an alkenyl group or an alkynyl group include a group having a carbon-carbon double bond such as a bur group and an aryl group, Examples thereof include a group having a carbon-carbon triple bond such as an ether group and a vinyl group.
  • a group in which a group having a carbon-carbon double bond or a carbon-carbon triple bond and a divalent group not having an unsaturated group are bonded, and a divalent group not having an unsaturated group is bonded examples include cyclohexenylethyldimethyloxy group.
  • B represents a substituted or unsubstituted saturated alkyl group or hydroxyl group.
  • substituted or unsubstituted saturated alkyl group include a monovalent saturated hydrocarbon group having 1 to 8 carbon atoms, which is substituted or unsubstituted.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group or an octyl group; a cycloalkyl group such as a cyclopentyl group or a cyclohexyl group; Group, alkoxy group such as ethoxy group; aralkyl group such as 2-phenylethyl group, 2 phenylpropyl group, 3-phenylpropyl group; chloromethyl group,
  • Illustrative examples include halogen-substituted hydrocarbon groups such as ⁇ -chloropropyl group and 3,3,3-trifluoropropyl group.
  • a methyl group which is preferably an alkyl group having 1 to 4 carbon atoms, is particularly preferable from the viewpoint of reducing steric hindrance during the reaction.
  • each B group may be the same or different.
  • R 1, R 2, R 3, R 4, R 5 and R 5 are each independently a lower alkyl group.
  • a phenyl group is preferable from the viewpoint of reducing the steric hindrance of the reaction, and a methyl group preferably increasing the refractive index.
  • n l to m
  • 1 represents an integer of 1
  • p represents an integer of l to m-n
  • q represents an integer of 0 to m-n-p.
  • cage silsesquioxane compound examples include those represented by the following formula (4) and formula (5).
  • R force A compound of S methyl group (Me), approximately 6 faces formed by silicon atom and oxygen atom
  • a groups are bonded to 4 silicon atoms via siloxane bonds (O Si), and the other 4 silicon atoms are bonded to siloxane bonds (O — Si). It has a structure in which hydrogen atoms are bonded.
  • the structural formula of formula (4) is as follows. (One OS iMe-A) is bonded to four silicon atoms out of eight silicon atoms constituting an approximately hexahedral structure, and is bonded to the other four silicon atoms. (One O SiMe H)
  • R, R, R, R and B are methyl group compounds formed by silicon and oxygen atoms
  • the structural formula of formula (5) is that, among the eight silicon atoms constituting the substantially hexahedral structure, (O SiMe-A) is bonded to three silicon atoms one by one, and the other three silicon atoms (- ⁇
  • SiMe H are bonded to each other, and (O SiMe) is connected to the remaining two silicon atoms.
  • an octacanion with an approximately hexahedral structure (such as Si O 8 and chlorohydridodimethylsilane).
  • the hydridodimethylsiloxy group is bonded to the eight silicon atoms of octanion to form octakis [hydridodimethylsilane] silsesquioxane ⁇ . OHSS). Then, by using this OHSS, a compound having two or more carbon-carbon unsaturated groups in the molecule, such as 4-butyl1-1-cyclohexene, is reacted in an amount less than the equivalent, so that some hydridodimethylsiloxy groups are inactivated.
  • Addition reaction of a compound having two or more saturated groups in the molecule forms an approximately hexahedral structure formed by silicon atoms and oxygen atoms. A group having a carbon-carbon unsaturated bond is bonded to some of the eight silicon atoms. Then, a caged silsesquioxane compound represented by the formula (4) in which a hydridodimethylsiloxy group is bonded to another silicon atom can be prepared.
  • the octacanion can be obtained by hydrolytic polycondensation of tetraethoxysilane in the presence of tetramethylammonium hydroxide.
  • a reactive halogen having a carbon-carbon unsaturated group such as dimethylvinylchlorosilane, dimethylallylchlorosilane, chlorocycloalkenyldimethylsilane and chlorohydridodimethylsilane with octacanion
  • a group having a carbon-carbon unsaturated bond is bonded to a part of eight silicon atoms constituting a substantially hexahedral structure formed of silicon atoms and oxygen atoms, and a hydridodimethylsiloxy group is bonded to other silicon atoms.
  • a cage-type silsesquioxane compound such as formula (4) can be prepared.
  • an approximately hexahedral structure is formed by mixing and reacting an unsaturated group such as chlorotrimethylsilane and a reactive halogen having no active hydrogen.
  • an unsaturated group such as chlorotrimethylsilane and a reactive halogen having no active hydrogen.
  • a cage-type silsesquioxane compound represented by the formula (5) in which a non-reactive group is bonded to a part of one silicon atom can be prepared.
  • the gale silsesquioxane compound in a substantially hexahedral structure formed of silicon atoms and oxygen atoms, has hydrogen atoms bonded to the silicon atoms via siloxane bonds. And a group having a carbon-carbon unsaturated bond group, so that this hydrogen atom is subjected to a hydrosilylation reaction with an unsaturated group contained in the carbon-carbon unsaturated bond group of another cage-type silsesquioxane compound. Then, it is cross-linked and cured by addition polymerization to form a three-dimensional cross-linked structure.
  • Figure 2 schematically shows a three-dimensional cross-linked structure in which an approximately hexahedral structure (symbol 7) formed by silicon atoms and oxygen atoms is cross-linked.
  • [Chemical Formula 2] shows the cross-linking reaction of a three-dimensional cross-linked structure of a cage silsesquioxane compound in which A in formula (4) is a cyclohexenyl group.
  • This three-dimensional cross-linking structure is a nano-sac made of silica (glass). It has a structure in which the cage structure is connected by an organic segment, and can exhibit a glass-like function.
  • the reacting carbon-carbon unsaturated bond group and the hydrogen atom are both bonded to the polyhedral structure part of silsesquioxane (Si 2 O 3) via a siloxane bond (1 O—Si—).
  • the crosslinked structure of the cured product obtained as described above has a structure in which silicon atoms constituting the polyhedral structure of silsesquioxane are bonded to four oxygen atoms to form a glass which is an inorganic material.
  • the structure is close, and the organic group is not directly bonded to the silicon atom, so it is difficult to deteriorate even if it is used under irradiation with light in the blue and near ultraviolet regions.
  • the sealing material 3 for sealing the semiconductor light emitting element 2 or the like a light transmitting epoxy resin, polyester, polyacrylate, organopolysiloxane or the like that has been used conventionally is used.
  • a light transmitting epoxy resin, polyester, polyacrylate, organopolysiloxane or the like that has been used conventionally is used.
  • the cage silsesquioxane compound of the present invention In sealing the semiconductor light emitting device 2 using the cage silsesquioxane compound of the present invention, it is particularly limited as long as the polymerization / crosslinking reaction of the cage silsesquioxane compound proceeds. Any method can be adopted without any reaction, and the reaction may be carried out using an addition reaction catalyst such as platinum or noradium as necessary.
  • the cage silsesquioxane compound according to the present invention is a liquid at room temperature or a solid that melts at a relatively low temperature until it is crosslinked, the semiconductor light-emitting element 2 and the like can be easily sealed. Is possible.
  • the partial polymer of the cage silsesquioxane compound obtained by partial addition reaction of the cage silsesquioxane compound represented by the above formula (1) of the present invention is represented by the formula (1).
  • the sealing material 3 can be formed of a cured product that is hardly deteriorated and has a low water absorption even when used in a state of being irradiated with light in the blue region and near-ultraviolet region.
  • the encapsulant 3 for encapsulating the semiconductor light emitting device 2 and the like has a cage-type silsesquioxane compound represented by the above formula (1) or a force obtained by partial addition reaction of this compound,
  • a key compound having addition reactivity may be contained as long as desirable optical and physical properties of the cured product are maintained.
  • the substituted or unsubstituted alkyl group of the basket-type silsesquioxane compound represented by formula (1) B is an alkoxy group and q 2
  • the bond between a group having a carbon unsaturated bond and a hydrogen atom it is also possible to crosslink by a hydrolysis / polycondensation bond between these alkoxy groups. Increased properties are preferable.
  • the bond between a group having a carbon-carbon unsaturated bond and a hydrogen atom becomes a main cross-linked structure, it is preferable that the thickness of the cured product becomes relatively easy.
  • the decomposition / polycondensation bond is a main cross-linked structure because of relatively high transparency.
  • [Chemical Formula 3] shows an example of a crosslinking reaction of a three-dimensional crosslinked structure when A in the formula (1) is a cyclohexenyl group and B is an ethoxy group.
  • the cage silsesquioxane compound of the formula (1) or a portion of a cage silsesquioxane compound obtained by partial addition reaction of this compound The semiconductor optical device in which the semiconductor light emitting element or the semiconductor light receiving element is sealed with the polymer has been described.
  • the cage silsesquioxane compound represented by the formula (1) or a partial addition reaction of this compound A transparent optical member such as a lens or a prism can be produced by using a partially polymerized product of a cage-type silsesquioxane compound as a molding material and molding and polymerizing and curing it. .
  • a transparent optical member such as a protective layer of a Blu-ray disc by coating and polymerizing on the surface of the optical disc.
  • the cured product of the force-type silsesquioxane compound is transparently sealed for LED white illumination replacement paper (Rule 26)
  • LED white illumination replacement paper When applied to optical applications such as materials, it is necessary to improve the refractive index, and in order to form a cured product of a rugged silsesquioxane compound to have a high refractive index, It is preferable to mix a heavy metal sol such as TiO or ZrO and introduce the heavy metal sol into the cured product of the cage silsesquioxane compound.
  • the cage-type silsesquioxane compound is generally incompatible with heavy metal sols such as TiO and ZrO, and it is difficult to uniformly disperse the heavy metal sol, and as a result, the transparency of the cured product tends to be impaired.
  • A is an aryl group, R, R,
  • aryl groups are bonded to three silicon atoms via siloxane bonds (—O—Si—). It has a structure in which a hydrogen atom is bonded to three silicon atoms via a siloxane bond (one O—Si—) and a hydroxyl group is bonded to two silicon atoms.
  • Such a cage silsesquioxane having a hydroxyl group bonded to a part of eight silicon atoms constituting an approximately hexahedral structure can be obtained as follows.
  • the cage silsesquioxane compound such as the above [Chemical 4] is prepared by reacting with the following [Chemical 12] and [Chemical 13] reaction, and eight reaction sites of S and Octanion.
  • the amount of allyl dimethyl chlorosilane or dimethyl chlorosilane should be a large excess (for example, 30 times equivalent or more) with respect to octacanion. Must be set.
  • the force-type silsesquioxane compounds are directly crosslinked by hydrosilylation reaction between a carbon-carbon unsaturated bond and a hydrogen atom.
  • the cage silsesquioxane compound represented by the formula (1) is blended with the following formula (2) or formula (3) as a reactive monomer, and the cage silsesquioxane compound is obtained.
  • the compound is cured by crosslinking with the compound of formula (2) or formula (3).
  • X represents a divalent functional group or an oxygen atom.
  • R 1, R 2, R 3 and R 5 are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom.
  • the compound represented by the formula (2) is not particularly limited, but examples thereof include those represented by the following [Chemical Formula 6].
  • the amount of the compound of the formula (2) with respect to the force of the formula (1) and the type silsesquioxane compound is not particularly limited.
  • the amount equivalent to the amount of the unreacted A unsaturated group remaining when the hydrosilylation reaction with a hydrogen atom is performed is preferably set slightly higher than the equivalent amount.
  • the cage-type silsesquioxane compound is blended with the compound of the formula (2) as a reactive monomer and reacted, thereby producing a force-type silsesquioxane as shown in [Chemical Formula 7].
  • the cage-type silsesquioxane compound can be cross-linked with the compound of formula (2) and hardened, and the nano-sized cage structure with silica power is connected by organic segments.
  • Such a three-dimensional crosslinked structure can be formed.
  • the aryl group is bonded to the X silicon atoms through a siloxane bond (one O—Si—) and the other 8—X atoms. It has a structure in which a hydrogen atom is bonded to a silicon atom via a siloxane bond (one O—Si—).
  • Y represents a divalent functional group
  • the compound represented by the formula (3) is not particularly limited, but is represented by the following [Chemical Formula 8]. It can be illustrated.
  • the amount of the compound of formula (3) to the cage silsesquioxane compound of formula (1) is not particularly limited, but the cage silsesquioxane compound of formula (1) It is preferable to set the amount to be equivalent to the amount of unreacted hydrogen atoms remaining when the carbon-carbon unsaturated bond and the hydrogen atom are subjected to a hydrosilylation reaction, or a little less than the equivalent.
  • the cage-type silesquioxane compound is compounded with the compound of the formula (3) as a reactive monomer and subjected to an X reaction, as shown in [Chemical Formula 9].
  • One CH CH group hydrosilylation reaction at both ends of the compound of formula (3) on one SiH group of the compound
  • cage-type silsesquioxane compound can be cross-linked with the compound of formula (3) and cured, and the nano-sized cage structure composed of silica is connected by organic segments.
  • a three-dimensional crosslinked structure can be formed.
  • a force-type silsesquioxane compound having one SiH group in the reactive monomer sea gradually reacts with the compound of formula (3).
  • the progress of the reaction can be controlled more mildly, and even if one unreacted SiH group occurs during the course of the crosslinking reaction, the formula (3) The compound moves to the residue and undergoes a crosslinking reaction.
  • the freezing of the reaction can be controlled mildly to delay the structure freezing, and more uniform network structure with fewer unreacted residues and the cage-type cinresesquioxane compound It is possible to form a tertiary five-crosslinked structure, to suppress stress cracking of the cured body and to improve toughness, and to improve irradiation resistance against short wavelength high-energy energy such as Blu-ray. it can.
  • the force-type silsesquioxane compound according to Embodiment 2 is a group in which A in the cage-type silsesquioxane compound represented by Formula (1) in Embodiment 1 has a carbon-carbon unsaturated bond.
  • A is a chain hydrocarbon group having a carbon-carbon unsaturated bond. Different from sesquioxane compounds.
  • 'Encapsulant 3 is a cage-type silsesquioxane compound represented by the following formula (1), or a portion of a cage-type silsesquioxane compound obtained by partial addition reaction of this compound. It is formed by cross-linking a key compound containing a polymer.
  • A is a chain hydrocarbon group having a carbon-carbon unsaturated bond.
  • A is not particularly limited as long as it contains a carbon-carbon double bond or a carbon-carbon triple bond as part of the group.
  • Examples include groups containing alkenyl groups and alkynyl groups.
  • groups containing alkenyl groups or alkynyl groups include groups having a carbon-carbon double bond such as a buyl group and an allyl group, an ether group, and a vinyl group.
  • groups having a carbon-carbon triple bond such as a group.
  • a group in which a group having a carbon-carbon double bond or a carbon-carbon triple bond and a divalent group not having an unsaturated group are bonded can also be exemplified.
  • the position of the carbon-carbon unsaturated bond of the chain hydrocarbon group having these carbon-carbon unsaturated bonds is preferably at the terminal from the viewpoint of reducing steric hindrance during hydrolysis.
  • OHSS octakis [hydridodimethyloxy] silsesquioxane
  • a chain-like group having a carbon-carbon unsaturated bond is bonded to some of the eight silicon atoms that form an approximately hexahedral structure formed by silicon atoms and oxygen atoms, and the other silicon atoms are bonded to other silicon atoms.
  • a cage-type silsesquioxane compound represented by the formula (4) to which a hydridodimethylsiloxy group is bonded can be prepared.
  • the above octanion can be obtained by hydrolysis polycondensation reaction of tetraethoxysilane in the presence of tetramethylammonium salt.
  • a silicon atom and Carbon is carbon-saturated to some of the eight silicon atoms that make up the nearly hexahedral structure formed by oxygen atoms.
  • a cage-type silsesquioxane compound represented by the formula (4) in which a chain group having a sum bond is bonded and a hydridodimethylsiloxy group is bonded to another silicon atom can be prepared.
  • the gale silsesquioxane compound includes a hydrogen atom bonded to a silicon atom having a substantially hexahedral structure formed of a silicon atom and an oxygen atom through a siloxane bond; And a chain hydrocarbon group having a carbon-carbon unsaturated bond, so that this hydrogen atom is included in the chain hydrocarbon having a carbon-carbon unsaturated bond of another cage silsesquioxane compound. Hydrosilylation reaction with an unsaturated group, followed by addition polymerization to crosslink and cure to form a three-dimensional crosslinked structure.
  • FIG. 2 schematically shows a three-dimensional cross-linked structure in which a substantially hexahedral structure (symbol 7) formed of silicon atoms and oxygen atoms is cross-linked.
  • the cross-linking of the oxane compound is shown.
  • the power of [Chemical Formula 15] is that the silsesquioxane of the hexagonal structure has four hydrogen atoms bonded to eight silicon atoms of approximately hexahedral structure via siloxane bonds, and via siloxane bonds. Four hexenyl groups are bonded, and a hydrogen atom and an unsaturated group of hexenyl are crosslinked by hydrosilylation reaction.
  • This three-dimensional cross-linking structure has a structure in which nano-sized cage structures made of silica (glass) are connected by organic segments, and can exhibit a glass-like function.
  • the crosslinked structure of the cured product obtained as described above has a structure close to that of glass, which is an inorganic material, in which the silicon atoms constituting the polyhedral structure of silsesquioxane are bonded to four oxygen atoms.
  • glass which is an inorganic material, in which the silicon atoms constituting the polyhedral structure of silsesquioxane are bonded to four oxygen atoms.
  • the organic group is not directly bonded to the silicon atom, it is difficult to deteriorate even if it is used in the state of being irradiated with light in the blue region and near ultraviolet region.
  • the cured product since it has a nano-sized cage structure that also has silica (glass) force, the cured product has a higher crosslink density and lower water absorption than metalloxane obtained by the sol-gel method. Obtain power S. [0082] [Chemical 15]
  • Tetramethylammonium hydroxide (334 mL), methanol (164 mL), and water (123 mL) were added to an lOOOOmL flask equipped with a reflux tube and a dropping funnel and stirred.
  • the dropping funnel was charged with 179 mL of tetraethoxysilane (TEOS), and the whole flask was cooled to about 5 ° C in an ice bath, and when the temperature reached about 5 ° C, TEOS was added dropwise. The dripping of 179 mL of TEOS was completed in about 1 hour from the start of dripping.
  • TEOS tetraethoxysilane
  • the mixture was stirred for 10 minutes in an ice bath, while the stirring was continued, the ice bath was removed, and the mixture was further stirred at room temperature for 6 hours to proceed the reaction.
  • the solution in the flask was transferred to a 2 L separatory funnel, and the lower methanol layer was taken out.
  • the upper hexane layer was transferred to a 2 L Erlenmeyer flask, sodium sulfate was added, and the mixture was allowed to stand for about 10 minutes to dry the water in the solution.
  • the upper hexane layer formed by standing was transferred to the 2 L Erlenmeyer flask to which the above hexane layer was transferred, The water in the solution was dried.
  • the dried hexane layer was transferred to a 1 L eggplant type flask, and the hexane was volatilized from the solution using a rotary evaporator and removed from the system.
  • the damp white solid remaining in the 1 L eggplant type flask where hexane was volatilized was further dried under reduced pressure (133 Pa (lmmHg), room temperature) using a vacuum pump.
  • Acetonitrile was added to a 1 L eggplant-shaped flask containing a white solid, the white solid was stirred, and then the solid was filtered off with a suction filter bottle. Next, this filtered white solid was transferred to a lOOmL beaker, further washed with acetonitrile lOOmL, and suction filtered to take out the white solid. This washing operation was repeated twice, followed by drying under reduced pressure using a vacuum pump to obtain white solid octakis [hydridodimethylsiloxy] silsesquioxane (OHSS). The yield at this time was 56%.
  • the basket-type silsesquioxane compound thus obtained was purified by adding a acetonitrile solvent, and then the white precipitate was filtered. This procedure was repeated three times for purification, and the resulting white powder was dried in vacuo.
  • the purified force, yield of the gale silsesquioxane compound was 3.5 g (2.4 mmol, 24.5%).
  • the cage-type silsesquioxane compound thus obtained was poured into a mold made of Teflon (registered trademark), heated and melted at 90 ° C, degassed under reduced pressure, and further maintained under vacuum. The temperature was raised to 00 ° C. and heated for 5 hours to cure to obtain a resin plate.
  • the resin plate had a size of 5 cm x 3 cm and a thickness of about 1 mm.
  • the wavelength dependence of the light transmittance of the resin plate was measured using an ultraviolet, visible, and near-infrared spectrophotometer ("UV-3100PC” manufactured by Shimadzu Corporation) at a slit width of 20 nm. For comparison, it does not contain an aromatic component!
  • a resin plate molded and cured using a silicone resin (“KE-006” manufactured by Shin-Etsu Chemical Co., Ltd.) and a light-transmitting alicyclic epoxy resin The same measurement was conducted on a resin plate that was molded and cured. The results are shown in Figure 3. As can be seen in FIG. 3, it was confirmed that the resin plate of this example has high transparency up to a low wavelength.
  • a semiconductor light-emitting element 2 having an emission wavelength peak of 380 ⁇ m is mounted on the bottom of the cavity la of the substrate 1, and the cage silsesquioxane obtained as described above is mounted.
  • the compound was filled into the cavity la and heated at 200 ° C. for 5 hours to cure, thereby sealing the semiconductor light emitting element 2 and fabricating a semiconductor optical device. Then, with this semiconductor optical device at room temperature, the semiconductor light emitting element 2 was turned on, and the maintenance rate of the luminous flux with respect to the illuminance at the start of lighting was measured.
  • a semiconductor optical device sealed with a silicone resin containing no aromatic component (“KE-006” manufactured by Shin-Etsu Chemical Co., Ltd.) and a light-transmitting alicyclic epoxy resin are used for sealing.
  • the semiconductor optical device encapsulated with the cage-type silsesquioxane compound obtained in this example maintains a light flux of nearly 90% even after 1000 hours. It was confirmed that it was high! / And resistant! /.
  • the lifetime defined by the time when the luminous flux maintenance factor falls to 50% of the initial value was predicted by the following Lehmann equation, and it was confirmed that the lifetime was 60,000 hours or more. It was.
  • ⁇ (t) luminous flux after t time
  • ⁇ (0) initial luminous flux
  • time constant of degradation
  • constant
  • Example 2 The OHSS obtained in Example 1 was charged to lg (lmmol) in a lOOmL Schlenk flask having a reflux condenser. The flask was heated under vacuum to remove residual air and moisture, then flushed with nitrogen, and then 5 mL of toluene, 0.32 g of 4-Buyl 1-cyclohexene (2. 9 mmol), 0.25 g (l. 9 mmol) of dimethyl butylethoxysilane, and 2 mM Pt (dcp) -toluene solution as a catalyst were added to a 0 ⁇ l mL (Pt: 0.02 ppm) flask. The mixture was reacted with stirring at 90 ° C. for 4 hours, and the solvent was evaporated in vacuum at room temperature to obtain 1.49 g (0.95 mmol) of a white powder. The yield at this time was 95%.
  • the composition obtained by concentrating the obtained hydrolyzate was poured into a 10 mL Teflon (registered trademark) mold and cured by heating at 200 ° C. for 5 hours to obtain a resin plate.
  • the resin plate had a size of 5 cm x 3 cm and a thickness of about 1 mm.
  • the tris [cyclohexenylethyldimethylsilane] tris [dimethylsilaneoxy] di [dimethyl ethersilylethyldimethylsiloxy] cinolesesquioxane obtained as described above was used for curing. It was confirmed that the addition reaction could be cured after hydrolysis polycondensation, and it was confirmed that the addition could be cured by hydrolysis polycondensation after the addition reaction.
  • Hexalylsilsesquioxane 1 ⁇ Og synthesized as shown in [Chemical Formula 12] was mixed with 0.24 g of tetramethyldisiloxane as the compound of formula (2), and 3.0 Add 10% to 3 % by weight Pt (cts) toluene solution to the entire system and mix evenly, then in the air, 12 replacement paper (Rule 26) It was cured by heating at 0 ° C. for 3 hours to obtain a colorless and transparent resin plate.
  • Example 3 in the method of synthesizing hexarylsilsesquioxane having two SiH groups in [Chemical Formula 12], 19.8 mL of allyldimethylchlorosilane was added to 376 mL of hexane. As shown in the above [Chemical 4], except that 14.6 mL of dimethylchlorosilane was added and octanion was allowed to react, it was shown in the above [Chemical 4]. Axane was synthesized.
  • Example 3 and Reference Example 1 were immersed in an acetone solution (RT), and stress cracking was evaluated based on the presence or absence of cracks in the resin plate during the immersion.
  • RT acetone solution
  • the resin plate of Reference Example 1 in which the cage-type silsesquioxane compound was directly crosslinked was cross-linked with a reactive monomer.
  • the cage-type silsesquioxane compound was instantly cracked by immersion in an acetone solution.
  • the resin plate of Example 3 was not cracked.
  • the obtained reaction solution was extracted 3 times with 40 mL of hexane, and the hexane layer was dried with a desiccant (sodium sulfate) and then filtered with suction. As shown in [Chemical Formula 14], the obtained filtrate is evaporated to remove hexane, and the reaction product power obtained is removed by purification while heating at 50 ° C with a vacuum pump. A tetrahexenyl silsesquioxane having four SiH groups was obtained.
  • diallyl silsesquioxane obtained in [Chemical Formula 13] above and tetrahexenylsilsesquioxane are mixed in a mass ratio of 30:70, By heating at 120 ° C for 4 hours, the spaces were directly crosslinked and cured to obtain a colorless and transparent resin plate.
  • Example 4 The resin plate obtained in Example 4 and the resin plate obtained in Reference Example 2 were evaluated for BluRay irradiation resistance.
  • each resin plate was irradiated with 405 nm Blu-ray under the conditions of power density 1.1 W / wake 2 and spot size 200 m, and the time-dependent change of the irradiated part screen enlarged image (far field image) was observed. Senna / lemon observation was performed on the sample after completion of the irradiation test.
  • FIG. 6 (a) shows the time-dependent change of the far field image of Example 4
  • FIG. 6 (b) shows the time-dependent change of the far field image of Reference Example 2.
  • the example 4 crosslinked with a reactive monomer was used before the Blu-ray irradiation ( The change in far-field image was small compared to O r). After 240 hours of irradiation (240 r), the change was almost unchanged. .
  • Fig. 7 (a) shows the senalmon observation of Example 4
  • Fig. 7 (b) shows the senalmon observation of Reference Example 2.
  • Reference Example 2 a slight irradiation mark is seen at the center as shown in Fig. 7 (b), but in the case of Example 4, the irradiation mark was not seen as shown in Fig. 7 (a). .
  • Example 4 and Reference Example 2 were immersed in an acetone solution (RT), and stress cracking was evaluated based on the presence or absence of cracks in the resin plate during the immersion. As a result, the resin plate of Reference Example 2 was instantly cracked when immersed in an aceto solution.
  • RT acetone solution
  • An apparatus equipped with a dropping funnel, thermometer, and reagent injection valve was assembled in a three-necked flask, and 376 mL of hexane, 33.8 mL of allyldimethyl chronolesilane, and 4.3 niL of dimethinorechlorsilane were added to the three-flask.
  • the whole system in the three-necked flask is cooled in an ice bath to 5 ° C or less, and after confirming that the temperature in the system is 5 ° C or less, the dropping funnel replacement paper ( (Rule 26) Force Octanion 140 mL was added dropwise at a rate of 1-2 drops per second.
  • the whole system in the three-necked flask is cooled in a water bath so that the temperature is 5 ° C or less, and when the temperature in the system becomes 5 ° C or less, it is 70 m from the dropping funnel.
  • each resin plate obtained in Example 5 and the resin plate obtained in Example 1 was irradiated with benoray ray under the conditions of a power density of 1.1 W, ⁇ 2 and a spot size of 200 am, and the time-dependent changes in the screen image of the irradiated area (far field image) were observed. did.
  • FIG. 8 (a) shows the time-dependent change of the far field image of Example 5
  • FIG. 8 (b) shows the time-dependent change of the far field image of Example 1.
  • FIG. 8 (a) and 8 (b) shows the time-dependent change of the far field image of Example 1.
  • FIG. 9 (a) shows the senalmon observation of Example 5
  • FIG. 9 (b) shows the senalmon observation of Example 1.
  • Example 1 there is an irradiation mark as shown in FIG.
  • the force of Example 5 shows a slight damage after 183 hr irradiation as shown in FIG. 9 (a). The damage is extremely small compared to that of Example 1.
  • X 1CT Add 3 ppm by mass of Pt (cts) toluene solution at a concentration of 3 % by mass, mix uniformly, and then cure by heating at 120 ° C for 4 hours in air to obtain a colorless and transparent resin plate It was.
  • Example 6 in a method for synthesizing hexarylsilsesquioxane having two SiH groups of [Chemical Formula 17], 19.8 mL of allyldimethylchlorosilane was added to 376 mL of hexane. The reaction was purified in the same manner except that 14.6 mL of dimethylchlorosilane was mixed and reacted with octananion, so that tetraallylsilsesquioxane having four SiH groups shown in [Chemical 4] above was obtained.
  • Example 6 in a method for synthesizing hexarylsilsesquioxane having two SiH groups of [Chemical Formula 17].

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

Disclosed is an optical semiconductor device comprising a semiconductor light-emitting element or a semiconductor light-receiving element sealed with a sealing material, wherein the sealing material is hardly deteriorated and has low water absorbability. A silicon compound containing a cage silsesquioxane compound represented by the formula shown below or a partial polymerization product of the compound is used to seal a semiconductor light-emitting element or a semiconductor light-receiving element. (AR1R2SiOSiO1.5)n(R3R4HSiOSiO1.5)p(BR5R6SiOSiO1.5)q(HOSiO1.5)m-n-p-q [wherein A represents a group having a carbon-carbon unsaturated bond or a linear hydrocarbon group having a carbon-carbon unsaturated bond; B represents a substituted or unsubstituted saturated alkyl group or a hydroxy group; R1, R2, R3, R4, R5 and R6 independently represent a functional group selected from a lower alkyl group, a phenyl group and a lower arylalkyl group; m represents a number selected from 6, 8, 10 and 12; n represents an integer of 1 to m-1; p represents an integer of 1 to m-n; and q represents an integer of 0 to m-n-p].

Description

明 細 書  Specification
半導体光装置及び透明光学部材  Semiconductor optical device and transparent optical member
技術分野  Technical field
[0001] 本発明は、シルセスキォキサン化合物を封止材として用いた半導体光装置、及び シルセスキォキサン化合物を成形材として用いた透明光学部材に関するものである  TECHNICAL FIELD [0001] The present invention relates to a semiconductor optical device using a silsesquioxane compound as a sealing material, and a transparent optical member using a silsesquioxane compound as a molding material.
背景技術 Background art
[0002] 近年、発光ダイオード、レーザーダイオード、半導体レーザー等の半導体発光素子 が発光光源として利用されている。特に発光ダイオードは長寿命な小型光源としてサ イン光源用途やディスプレイ光源用途として幅広く利用されている。  In recent years, semiconductor light emitting devices such as light emitting diodes, laser diodes, and semiconductor lasers have been used as light emission sources. In particular, light-emitting diodes are widely used as long-life, compact light sources for sine light sources and display light sources.
[0003] また、半導体発光素子は白色 LEDユニットを組み込んだ照明用器具としての開発 も進められており、今後ますます広く普及していくことが予想されている。 白色 LEDュ ニットに用いられる白色 LEDの光源には青色域 ·近紫外域 LEDが用いられ、照明用 器具としての要求を満足させるために高出力 ·高輝度化を達成するための開発が進 められている。  [0003] Semiconductor light-emitting elements are also being developed as lighting fixtures incorporating white LED units, and are expected to become increasingly widespread in the future. The white LED light source used in the white LED unit is a blue / near-ultraviolet LED, and development to achieve high output and high brightness is being promoted in order to satisfy the requirements of lighting equipment. It has been.
[0004] そしてこのように高出力 ·高輝度化された半導体発光素子からは高い熱エネルギー 及び光エネルギーが発せられるために、このような半導体発光素子を基板上に実装 して封止した場合には、一般に用いられているエポキシ系の封止材の場合、封止材 が急速に劣化してしまい、比較的低寿命になるという問題があった。  [0004] Since a semiconductor light emitting device with such high output and high brightness emits high thermal energy and light energy, such a semiconductor light emitting device is mounted on a substrate and sealed. However, in the case of an epoxy-based sealing material that is generally used, there is a problem that the sealing material deteriorates rapidly, resulting in a relatively short life.
[0005] 前記問題を解決するために、耐熱'耐候性に優れた封止材、例えばシロキサン化 合物のような金属酸化物や低融点ガラス等を用いた封止材が検討されて!/、る。例え ば、特許文献 1では耐熱 ·耐光性に優れた材料として、ゾルーゲル法により得られる 金属酸化物であるメタロキサンを用いて半導体発光素子を封止することにより得られ る半導体装置が開示されてレ、る。  [0005] In order to solve the above problems, a sealing material excellent in heat resistance and weather resistance, for example, a sealing material using a metal oxide such as a siloxane compound or low-melting glass has been studied! / RU For example, Patent Document 1 discloses a semiconductor device obtained by encapsulating a semiconductor light emitting element using metalloxane, which is a metal oxide obtained by a sol-gel method, as a material having excellent heat resistance and light resistance. RU
[0006] しかし、ゾルーゲル法で得られる金属酸化物であるメタロキサンは、多孔質構造とな つてしまうため吸水率が高ぐ使用時に吸湿してクラック等が生じる恐れがあるという 問題があった。 [0007] また、情報の記録として、樹脂ディスクに光を照射して記録する例えば DVD装置等 が用いられており、近年の高容量化の要望に対応するため、青色域'近紫外域の光 を照射して記録 ·読み出しする装置が検討されている。そして樹脂ディスクに記録さ れた情報を読み取る場合には、青色域 ·近紫外域のレーザー光を樹脂ディスクの記 録面に照射して、記録面で反射した光を半導体受光素子で受光することにより、情 報の読み出しが行われている。このような半導体受光素子も、一般に封止材で封止 されて保護されており、従来の赤色レーザー光を用いたものと比較して高出力のレー ザ一光が照射されるため、エポキシ系の封止材を用いた場合、封止材が劣化しやす いという問題があった。 [0006] However, metalloxane, which is a metal oxide obtained by the sol-gel method, has a problem in that it has a porous structure and therefore has a high water absorption rate and may absorb moisture and cause cracks during use. [0007] In addition, for example, a DVD device that records light by irradiating light onto a resin disk is used as information recording. In order to meet the recent demand for higher capacity, light in the blue region and near ultraviolet region is used. A device that records and reads data by irradiating is being studied. When reading information recorded on a resin disc, the laser light in the blue / near ultraviolet region is irradiated onto the recording surface of the resin disc, and the light reflected on the recording surface is received by the semiconductor light receiving element. Thus, the information is read out. Such semiconductor light receiving elements are generally sealed and protected with a sealing material, and are irradiated with a single laser beam with a higher output than those using conventional red laser light. When using this sealing material, there was a problem that the sealing material was likely to deteriorate.
[0008] さらに、 DVD装置では、記録スピードの向上も要望されている。ディスクの回転スピ ードアップにより記録速度向上が図られる力 S、回転スピードが速いと、遅いときと比較 して一定時間中にディスクに照射されるレーザー光量 (パワー密度)が減少する。こ の減少分を補完する目的でレーザーパワーの増大が進んでおり、この点でもェポキ シ系の封止材を用いた場合、封止材が劣化しやすいという問題があった。  [0008] Further, there is a demand for an improvement in recording speed in a DVD device. The power to increase the recording speed by increasing the rotational speed of the disk S. When the rotational speed is high, the amount of laser light (power density) irradiated to the disk during a certain period of time decreases compared to when it is slow. In order to compensate for this decrease, the laser power has been increasing, and in this respect as well, there has been a problem that the sealing material tends to deteriorate when using an epoxy type sealing material.
[0009] また、上記青色域 ·近紫外域のレーザー光を樹脂ディスクの記録面に照射して、記 録面で反射した光を半導体受光素子で受光するに際し、レーザー光の径を絞ったり 、光路を曲げることが行われており、この場合に用いられるレンズやプリズム等の透明 光学部材も、比較的高出力のレーザー光が照射されるため、エポキシ系の樹脂を用 V、て製造した場合、劣化し易いとレ、う問題があった。  [0009] In addition, when the laser light in the blue region / near ultraviolet region is irradiated onto the recording surface of the resin disk, and the light reflected by the recording surface is received by the semiconductor light receiving element, the diameter of the laser light is reduced, The optical path is bent, and transparent optical members such as lenses and prisms used in this case are also irradiated with relatively high-power laser light. There was a problem that it was easy to deteriorate.
特許文献 1:特許第 3412152号公報  Patent Document 1: Japanese Patent No. 3412152
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明は上記の点に鑑みてなされたものであり、半導体発光素子または半導体受 光素子を封止材で封止した半導体光装置において、封止材が劣化し難く寿命に優 れた半導体光装置を提供することを目的とするものであり、また青色域'近紫外域の 光が照射される部分に使用される透明光学部材において、劣化し難く寿命に優れた 透明光学部材を提供することを目的とするものである。 The present invention has been made in view of the above points, and in a semiconductor optical device in which a semiconductor light emitting element or a semiconductor light receiving element is sealed with a sealing material, the sealing material is unlikely to deteriorate and has an excellent lifetime. In a transparent optical member used for a portion irradiated with light in a blue region (near ultraviolet region), a transparent optical member that is hardly deteriorated and has an excellent lifetime is provided. It is intended to provide.
課題を解決するための手段 [0011] 本発明者らは、叙上に鑑み鋭意研究を重ねた結果、封止剤として所望の力、ご型シ ルセスキォキサン化合物を用いれば、ガラスライクな無機的性質を発現し、青色域- 近紫外域の光に対しても耐性を備えるとともに、有機的性質により所望の形状にも形 成することが可能であり、力、ご型シルセスキォキサン化合物は半導体光装置の封止 剤として最適であることを見出し、本発明を完成するに至った。 Means for solving the problem [0011] As a result of intensive studies in view of the above, the present inventors have developed a glass-like inorganic property when a desired force and a silsesquioxane compound are used as a sealant, and a blue region- It has resistance to near-ultraviolet light and can also be formed into a desired shape due to its organic properties, and its power and type silsesquioxane compounds are used as sealing agents for semiconductor optical devices. The inventors have found that the present invention is optimal and have completed the present invention.
したがって、本発明の請求項 1に係る半導体光装置は、下記式(1)で表されるかご 型シルセスキォキサン化合物、又はこの化合物が部分的に付加反応してなる力、ご型 シルセスキォキサン化合物の部分重合物を含有するケィ素化合物で、半導体発光 素子又は半導体受光素子を封止して成ることを特徴とするものである。  Therefore, the semiconductor optical device according to claim 1 of the present invention includes a cage silsesquioxane compound represented by the following formula (1), or a force obtained by partial addition reaction of this compound, a cage silsesquioxane compound. A silicon compound containing a partial polymer of an oxan compound, wherein the semiconductor light emitting device or the semiconductor light receiving device is sealed.
[0012] ここで、式(1)とは、(AR R SiOSiO ) (R R HSiOSiO ) (BR R SiOSiO  Here, the equation (1) is (AR R SiOSiO) (R R HSiOSiO) (BR R SiOSiO
1 2 1. 5 n 3 4 1. 5 p 5 6 1. 5 1 2 1. 5 n 3 4 1. 5 p 5 6 1. 5
) (HOSiO ) …ひ) ) (HOSiO)… hi)
q 1. 5 m— n— p— q  q 1.5 m— n— p— q
(式(1)中、 Aは炭素 炭素不飽和結合を有する基、 Bは置換又は非置換の飽和ァ ルキル基もしくは水酸基、 R , R , R , R , R , Rは各々独立に低級アルキル基、フ  (In the formula (1), A is a group having a carbon-carbon unsaturated bond, B is a substituted or unsubstituted saturated alkyl group or hydroxyl group, and R 1, R 2, R 3, R 4, R 5 and R 5 are each independently a lower alkyl group. The
1 2 3 4 5 6  1 2 3 4 5 6
ェニル基、低級ァリールアルキル基から選ばれた官能基を表し、 mは 6, 8, 10, 12 から選ばれた数、 nは;!〜 m— 1の整数、 pは l〜m— nの整数, qは 0〜m— n— pの 整数を表す)を意味する。  Represents a functional group selected from an aryl group and a lower arylalkyl group, m is a number selected from 6, 8, 10, and 12, n is an integer from !! to m—1, p is l to m—n , Q represents an integer from 0 to m—n—p).
また請求項 2の発明は、請求項 1において、上記式(1)のかご型シルセスキォキサ ン化合物の他に、下記式(2)で示される化合物を含有することを特徴とするものであ  The invention of claim 2 is characterized in that, in claim 1, in addition to the cage silsesquioxane compound of the above formula (1), a compound represented by the following formula (2) is contained.
[0013] ここで、式(2)とは、 HR R Si-X- SiHR R · ' · (2) [0013] Here, the equation (2) is HR R Si-X- SiHR R · '· (2)
7 8 9 10  7 8 9 10
(式(2)中、 Xは 2価の官能基又は酸素原子を表し、 R , R , R , R は各々独立に炭  (In the formula (2), X represents a divalent functional group or an oxygen atom, and R 1, R 2, R 3, and R 5 are each independently carbon
7 8 9 10  7 8 9 10
素数 1〜3のアルキル基又は水素原子を表す)を意味する。  Represents an alkyl group having a prime number of 1 to 3 or a hydrogen atom.
また請求項 3の発明は、請求項 1において、上記式(1)のかご型シルセスキォキサ ン化合物の他に、下記式(3)で示される化合物を含有することを特徴とするものであ ここで、式(3)とは、 H C = CH-Y-CH = CH · ' · (3)  The invention of claim 3 is characterized in that, in claim 1, in addition to the cage silsesquioxane compound of the above formula (1), the compound of the following formula (3) is contained. , Equation (3): HC = CH-Y-CH = CH · '· (3)
2 2  twenty two
(式(3)中、 Υは 2価の官能基を表す)を意味する。  (In formula (3), Υ represents a divalent functional group).
また、請求項 4の発明は、請求項 1〜3のいずれかにおいて、式(1)中の Αが炭素 炭素不飽和結合を有する鎖状炭化水素基であることを特徴とする半導体光装置 である。 The invention of claim 4 is the invention according to any one of claims 1 to 3, wherein Α in formula (1) is carbon. The semiconductor optical device is a chain hydrocarbon group having a carbon unsaturated bond.
本発明の請求項 5に係る透明光学部材は、下記式(1)で表されるかご型シルセス キォキサン化合物、又はこの化合物が部分的に付加反応してなるかご型シルセスキ ォキサン化合物の部分重合物を含有するケィ素化合物を、重合して成ることを特徴と するものである。  The transparent optical member according to claim 5 of the present invention is a cage-type silsesquioxane compound represented by the following formula (1) or a partial polymer of a cage-type silsesquioxane compound obtained by partial addition reaction of this compound. It is characterized by polymerizing the contained key compound.
[0014] ここで、式(1)とは、上記同様、(AR R SiOSiO ) (R R HSiOSiO ) (BR R  Here, the expression (1) is similar to the above (AR R SiOSiO 2) (R R HSiOSiO 2) (BR R
1 2 1. 5 n 3 4 1. 5 p 5 6 1 2 1. 5 n 3 4 1. 5 p 5 6
SiOSiO ) (HOSiO ) …ひ) SiOSiO) (HOSiO) ...
1. 5 q 1. 5 m— n— p— q  1. 5 q 1. 5 m— n— p— q
(式(1)中、 Aは炭素 炭素不飽和結合を有する基、 Bは置換又は非置換の飽和ァ ルキル基もしくは水酸基、 R , R , R , R , R , Rは各々独立に低級アルキル基、フ  (In the formula (1), A is a group having a carbon-carbon unsaturated bond, B is a substituted or unsubstituted saturated alkyl group or hydroxyl group, and R 1, R 2, R 3, R 4, R 5 and R 5 are each independently a lower alkyl group. The
1 2 3 4 5 6  1 2 3 4 5 6
ェニル基、低級ァリールアルキル基から選ばれた官能基を表し、 mは 6, 8, 10, 12 から選ばれた数、 nは;!〜 m— 1の整数、 pは l〜m— nの整数, qは 0〜m— n— pの 整数を表す)を意味する。  Represents a functional group selected from an aryl group and a lower arylalkyl group, m is a number selected from 6, 8, 10, and 12, n is an integer from !! to m—1, p is l to m—n , Q represents an integer from 0 to m—n—p).
また請求項 6の発明は、請求項 5において、上記式(1)のかご型シルセスキォキサ ン化合物の他に、下記式(2)で示される化合物を含有することを特徴とするものであ  The invention of claim 6 is characterized in that, in claim 5, it contains a compound represented by the following formula (2) in addition to the cage silsesquioxane compound of the above formula (1).
[0015] ここで、式(2)とは、上記同様、 HR R Si-X- SiHR R · ' · (2) [0015] Here, the expression (2) is the same as above, HR R Si-X- SiHR R · '· (2)
7 8 9 10  7 8 9 10
(式(2)中、 Xは 2価の官能基又は酸素原子を表し、 R , R , R , R は各々独立に炭  (In the formula (2), X represents a divalent functional group or an oxygen atom, and R 1, R 2, R 3, and R 5 are each independently carbon
7 8 9 10  7 8 9 10
素数 1〜3のアルキル基又は水素原子を表す)を意味する。  Represents an alkyl group having a prime number of 1 to 3 or a hydrogen atom.
また請求項 7の発明は、請求項 5において、上記式(1)のかご型シルセスキォキサ ン化合物の他に、下記式(3)で示される化合物を含有することを特徴とするものであ ここで、式(3)とは、上記同様、 H C = CH-Y-CH = CH · ' · (3)  The invention of claim 7 is characterized in that, in claim 5, it contains a compound represented by the following formula (3) in addition to the cage silsesquioxane compound of the above formula (1). , Equation (3) is the same as above, HC = CH-Y-CH = CH · '· (3)
2 2  twenty two
(式(3)中、 Υは 2価の官能基を表す)を意味する。  (In formula (3), Υ represents a divalent functional group).
さらにまた、請求項 8の発明は、請求項 5〜7のいずれかにおいて、式(1)中の Αが 炭素 炭素不飽和結合を有する鎖状炭化水素基であることを特徴とする透明光学 部材である。  Furthermore, the invention of claim 8 is the transparent optical member according to any one of claims 5 to 7, wherein Α in formula (1) is a chain hydrocarbon group having a carbon-carbon unsaturated bond. It is.
発明の効果 [0016] 式(1)のかご型シルセスキォキサン化合物は、シリコン原子と酸素原子で形成され た多面体構造において、そのシリコン原子に、シロキサン結合を介して結合した水素 原子と、シロキサン結合を介して結合した炭素 炭素不飽和結合を有する基とを有し ているため、水素原子が、他のかご型シルセスキォキサン化合物の炭素 炭素不飽 和結合を有する基とヒドロシリル化反応して、付加重合することにより架橋して硬化し 、シリカからなるナノサイズのかご型構造を有機のセグメントでつなぎ合わせたような 三次元架橋構造が形成されてなるものであり、ガラスライクな機能を発現し、青色域- 近紫外域の光が照射された状態で使用されても劣化し難ぐかつ吸水率が低い硬化 物となる。しかも、炭素 炭素不飽和結合を有する鎖状炭化水素基は環状の炭化水 素基よりも立体障害が小さぐヒドロシリル化反応による架橋反応が効率よく進行し、 硬化物中の未反応残基が少なくなつて、ブルーレイ照射耐性などが向上する。 The invention's effect [0016] The cage silsesquioxane compound of the formula (1) has a polyhedral structure formed of silicon atoms and oxygen atoms, a hydrogen atom bonded to the silicon atom via a siloxane bond, and a siloxane bond. And a group having a carbon-carbon unsaturated bond bonded to each other, so that a hydrogen atom is subjected to a hydrosilylation reaction with a group having a carbon-carbon unsaturated bond of another cage-type silsesquioxane compound, and added. It is crosslinked and cured by polymerization, and is formed by forming a three-dimensional crosslinked structure in which nano-sized cage structures made of silica are connected by organic segments, and it exhibits a glass-like function. Even when used in the blue-near-ultraviolet light, it becomes a cured product that hardly deteriorates and has a low water absorption rate. In addition, the chain hydrocarbon group having a carbon-carbon unsaturated bond has a smaller steric hindrance than the cyclic hydrocarbon group, and the crosslinking reaction by the hydrosilylation reaction proceeds efficiently, and there are few unreacted residues in the cured product. The resistance to Blu-ray irradiation is improved.
[0017] また、両末端に SiH基を有する式(2)の化合物を反応性モノマーとして式(1)の かご型シルセスキォキサン化合物に反応させることによって、力、ご型シルセスキォキ サン化合物の炭素 炭素不飽和結合(一 C = C)に SiHがヒドロシリル化反応して 付加重合し、式(1)のかご型シルセスキォキサン化合物を式(2)の化合物で架橋し て硬化させることができ、未反応残基の少ない、より均一なネットワーク構造であって 力、ご型シルセスキォキサン化合物の三次元架橋構造を形成することができ、硬化体 のストレスクラッキングを抑制することができると共に強靭性を高めることができ、また ブルーレイなど短波長高エネルギー光に対する照射耐性を向上させることができるも のである。  [0017] Further, by reacting the compound of the formula (2) having SiH groups at both ends with the cage-type silsesquioxane compound of the formula (1) as a reactive monomer, the force, carbon of the silsesquioxane compound of the type SiH can be hydrosilylated to the carbon unsaturated bond (one C = C) to undergo addition polymerization, and the cage silsesquioxane compound of formula (1) can be crosslinked with the compound of formula (2) and cured. It has a more uniform network structure with fewer unreacted residues, and can form a three-dimensional cross-linked structure of the silsesquioxane compound, which can suppress stress cracking of the cured product and is tough In addition, it can improve the irradiation resistance against short wavelength high energy light such as Blu-ray.
[0018] また、両末端に CH = CH基を有する式(3)の化合物を反応性モノマーとして式  [0018] Further, a compound of formula (3) having CH = CH groups at both ends is used as a reactive monomer.
2  2
(1)の力、ご型シルセスキォキサン化合物に反応させることによって、かご型シルセス キォキサン化合物の水素原子に CH = CH力 Sヒドロシリル化反応して付加重合し、  By reacting with the force of (1), a cage silsesquioxane compound, the hydrogen atom of the cage silsesquioxane compound is subjected to addition polymerization by CH = CH force S hydrosilylation reaction,
2  2
式(1)の力、ご型シルセスキォキサン化合物を式(3)の化合物で架橋して硬化させるこ とができ、未反応残基の少ない、より均一なネットワーク構造であってかご型シルセス キォキサン化合物の三次元架橋構造を形成することができ、硬化体のストレスクラッ キングを抑制することができると共に強靭性を高めることができ、またブルーレイなど 短波長高エネルギー光に対する照射耐性を向上させることができるものである。 [0019] 従って本発明では、劣化し難く寿命に優れた封止材で半導体光装置を形成するこ とができ、また劣化し難く寿命に優れた材料で透明光学部材を得ることができる。 The force of formula (1), the cage silsesquioxane compound can be cross-linked and cured with the compound of formula (3), and it has a more uniform network structure with fewer unreacted residues and a cage silsess Can form a three-dimensional cross-linked structure of a xanthone compound, suppresses stress cracking of the cured product, enhances toughness, and improves irradiation resistance to short wavelength high energy light such as Blu-ray It is something that can be done. Accordingly, in the present invention, a semiconductor optical device can be formed with a sealing material that does not easily deteriorate and has a long life, and a transparent optical member can be obtained with a material that does not easily deteriorate and has a long life.
[0020] また、かご型シルセスキォキサン化合物に水酸基を導入することによって、表面が 水酸基で覆われる TiOや ZrO等の重金属ゾルとの親和性を高めることができ、かご 型シルセスキォキサン化合物と重金属ゾルとの分散性を高めて、重金属ゾルの導入 によって透明性を維持しつつ、屈折率を高めた硬化物を得ることができる。  [0020] Further, by introducing a hydroxyl group into the cage silsesquioxane compound, the affinity of the surface with a heavy metal sol such as TiO or ZrO whose surface is covered with the hydroxyl group can be increased. By increasing the dispersibility between the sol and the heavy metal sol and maintaining the transparency by introducing the heavy metal sol, a cured product having an increased refractive index can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の半導体光装置の実施の形態の一例を示す概略断面図である。  FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a semiconductor optical device of the present invention.
[図 2]本発明のかご型シルセスキォキサン化合物が架橋した三次元架橋構造ポリマ 一を模式的に示す図である。  FIG. 2 is a view schematically showing a three-dimensional crosslinked structure polymer crosslinked by a cage silsesquioxane compound of the present invention.
[図 3]実施例 1に係るかご型シルセスキォキサン化合物の透過率の波長依存性を示 す図である。  FIG. 3 is a graph showing the wavelength dependence of the transmittance of the cage silsesquioxane compound according to Example 1.
[図 4]実施例 1に係る力、ご型シルセスキォキサン化合物の封止方法を説明する概略 断面図である。  FIG. 4 is a schematic cross-sectional view illustrating the force according to Example 1 and a method for sealing a cage silsesquioxane compound.
[図 5]実施例 1に係るかご型シルセスキォキサン化合物の光束維持率を示す図である FIG. 5 is a graph showing the luminous flux maintenance factor of the cage silsesquioxane compound according to Example 1.
Yes
[図 6]ブルーレイ照射試験においてファーフィールドイメージをカラー印刷した図であ り、(a)は実施例 4、(b)は参考例 2についてのものである。  [Fig. 6] Far-field image printed in color in the Blu-ray irradiation test. (A) is for Example 4 and (b) is for Reference Example 2.
[図 7]ブルーレイ照射試験においてセナルモン観察をカラー印刷した図であり、 (a) は実施例 4、 (b)は参考例 2についてのものである。  [FIG. 7] Color-printed images of senalmon observation in the Blu-ray irradiation test. (A) is for Example 4 and (b) is for Reference Example 2.
[図 8]ブルーレイ照射試験においてファーフィールドイメージをカラー印刷した図であ り、(a)は実施例 5、(b)は実施例 1についてのものである。  [Fig. 8] Far-field images are color-printed in the Blu-ray irradiation test. (A) is for Example 5 and (b) is for Example 1.
[図 9]ブルーレイ照射試験においてセナルモン観察をカラー印刷した図であり、 (a) は実施例 5、 (b)は実施例 1につ!/、てのものである。  [FIG. 9] Color-printed images of senalmon observation in the Blu-ray irradiation test. (A) Example 5 and (b) Example 1!
符号の説明  Explanation of symbols
[0022] 2 半導体発光素子 [0022] 2 Semiconductor light emitting device
3 封止材  3 Sealing material
発明を実施するための最良の形態 [0023] 以下、本発明を実施するための最良の形態を説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described.
(実施の形態 1)  (Embodiment 1)
図 1は半導体光装置の一例を示すものであり、基板 1の表面に半導体発光素子 2 が実装され、半導体発光素子 2の全体と基板 1の表面の一部が封止材 3により封止さ れている。この封止材 3の表面には蛍光体の層 4が形成されている。また基板 1上に は電子回路 5が形成され、図 1の実施の形態ではボンディングワイヤ 6により電気回 路 5は半導体発光素子 2と電気的に接続されている。  FIG. 1 shows an example of a semiconductor optical device. A semiconductor light emitting element 2 is mounted on the surface of a substrate 1, and the entire semiconductor light emitting element 2 and a part of the surface of the substrate 1 are sealed with a sealing material 3. It is. A phosphor layer 4 is formed on the surface of the sealing material 3. An electronic circuit 5 is formed on the substrate 1, and in the embodiment shown in FIG. 1, the electrical circuit 5 is electrically connected to the semiconductor light emitting element 2 by a bonding wire 6.
[0024] 上記の半導体発光素子 2としては、公知の半導体発光素子 2を使用することができ る力 450nm以下の青色域や近紫外域の波長の光を出力する素子を用いる場合、 得られる半導体光装置の照度を高めたり、演色性を高めることができるために好まし い。半導体発光素子 2の具体例としては、例えば半導体基材上に GaAlN、 ZnS、 Zn Se、 SiC、 GaP、 GaAlAs, AlInGaP, InGaN, GaN、 AlInGaN等の半導体を発光 層として形成させたものを用いることができる。この半導体発光素子 2の実装は、基板 1の半導体発光素子 2を実装する部分に半導体発光素子 2を載置し、ワイヤボンディ ング実装ゃフリップチップ実装等することにより行なうことができる。  [0024] As the semiconductor light-emitting element 2, when a device that outputs light having a wavelength in the blue region or near-ultraviolet region of 450 nm or less, which can use the known semiconductor light-emitting device 2, is obtained. It is preferable because it can increase the illuminance of the light device and enhance the color rendering. As a specific example of the semiconductor light-emitting element 2, for example, a semiconductor substrate such as GaAlN, ZnS, ZnSe, SiC, GaP, GaAlAs, AlInGaP, InGaN, GaN, AlInGaN formed as a light emitting layer is used. Can do. The mounting of the semiconductor light emitting element 2 can be performed by placing the semiconductor light emitting element 2 on the portion of the substrate 1 where the semiconductor light emitting element 2 is mounted and performing wire bonding mounting or flip chip mounting.
[0025] また上記の基板 1は、セラミックス材料、熱可塑性樹脂'熱硬化性樹脂等の樹脂材 料を各種成形法により所望の形状に成形して得ることができるものであり、その形状 は特に限定されない。基板 1に用いることのできるセラミックス材料としては、アルミナ 、窒化アルミニウム、ジルコユア、炭化ケィ素等を挙げることができ、これらは公知の 圧縮成形や射出成形(CIM)等により成形し、焼結することによって基板 1として形成 すること力 Sできる。セラミックス材料は熱伝導性に優れているために半導体発光素子 2の発熱による熱を基板 1の全体に拡散させ、効率的に放熱できる点から好ましく用 いること力 Sできる。また、樹脂材料としては、ポリフエ二レンサルファイド (PPS)、ポリフ タルイミド (PPA)或いは液晶ポリマー(LCP)等の熱可塑性樹脂や、エポキシ樹脂、 フエノール樹脂等の熱硬化性樹脂を使用することができる。この樹脂材料にガラス、 シリカ、アルミナ等の充填材を配合することによって、基板 1の熱伝導性や耐熱性を 向上させること力 Sでさる。  The substrate 1 can be obtained by molding a resin material such as a ceramic material, a thermoplastic resin or a thermosetting resin into a desired shape by various molding methods. It is not limited. Examples of the ceramic material that can be used for the substrate 1 include alumina, aluminum nitride, zirconium oxide, and carbide carbide. These are formed by known compression molding, injection molding (CIM), etc., and sintered. Can be formed as a substrate 1 by the force S. Since the ceramic material is excellent in thermal conductivity, it can be preferably used from the viewpoint that the heat generated by the semiconductor light emitting element 2 can be diffused throughout the substrate 1 and efficiently radiated. As the resin material, thermoplastic resins such as polyphenylene sulfide (PPS), polyphthalimide (PPA), or liquid crystal polymer (LCP), and thermosetting resins such as epoxy resin and phenol resin can be used. . By adding a filler such as glass, silica, or alumina to this resin material, it is possible to improve the thermal conductivity and heat resistance of the substrate 1 with the force S.
[0026] さらに基板 1の表面には、上記のように半導体発光素子 2と接続する所定パターン の電気回路 5が形成されて!/、る力 この形成方法は特に限定されず公知の方法を用 いること力 Sでさる。 [0026] Further, a predetermined pattern connected to the semiconductor light emitting element 2 as described above is formed on the surface of the substrate 1. The electric circuit 5 is formed! /, The force to be formed This forming method is not particularly limited, and a known method is used to reduce the force S.
尚、図 1の実施の形態では、本発明に係る半導体光装置を、半導体発光素子 2を 封止材 3で封止した半導体発光装置を用いて説明したが、半導体受光素子を封止 材で封止してなる半導体受光装置であってもよ!/、のは!/、うまでもな!/、。  In the embodiment of FIG. 1, the semiconductor optical device according to the present invention has been described using a semiconductor light emitting device in which the semiconductor light emitting element 2 is sealed with the sealing material 3. However, the semiconductor light receiving element is made of the sealing material. Even a semiconductor light-receiving device that is sealed! /, Noha! /, Undo! /.
[0027] そして本発明において、上記の封止材 3は、下記の式(1)で表されるかご型シルセ スキォキサン化合物、またはこの化合物が部分的に付加反応してなる力、ご型シルセ スキォキサン化合物の部分重合物を含有するケィ素化合物を、架橋して形成された ものである。 In the present invention, the sealing material 3 includes a cage silsesquioxane compound represented by the following formula (1), or a force obtained by partial addition reaction of this compound, a cage silsesquioxane. It is formed by crosslinking a key compound containing a partial polymer of the compound.
[0028] ここで、式(1)は、 (AR R SiOSiO ) (R R HSiOSiO ) (BR R SiOSiO )  Here, the equation (1) is expressed as (AR R SiOSiO) (R R HSiOSiO) (BR R SiOSiO)
1 2 1. 5 n 3 4 1. 5 p 5 6 1. 5 ¾ 1 2 1. 5 n 3 4 1. 5 p 5 6 1. 5 ¾
(HOSiO ) …ひ) (HOSiO)… hi)
1. 5 m— n— p— q  1. 5 m— n— p— q
により表される。  Is represented by
上記の式(1)において、 Aは炭素 炭素不飽和結合を有する基を表すものであり、 炭素 炭素二重結合または炭素 炭素三重結合を基の一部に含むものであれば 特に限定はされない。例えば、アルケニル基、アルキニル基、シクロへキセニル基を 含むものを挙げることができ、アルケニル基またはアルキニル基を含む基としては、 例えばビュル基、ァリル基等の炭素 炭素二重結合を有する基や、ェチュル基、プ ロビニル基等の炭素 炭素三重結合を有する基を挙げることができる。また炭素 炭素二重結合または炭素 炭素三重結合を有する基と、不飽和基を有しない 2価の 基が結合した基を挙げることもでき、この不飽和基を有しない 2価の基が結合した基 の例としては、シクロへキセニルェチルジメチルシ口キシ基等を挙げることができる。  In the above formula (1), A represents a group having a carbon-carbon unsaturated bond, and is not particularly limited as long as it includes a carbon-carbon double bond or a carbon-carbon triple bond as part of the group. For example, those containing an alkenyl group, an alkynyl group, and a cyclohexenyl group can be exemplified. Examples of the group containing an alkenyl group or an alkynyl group include a group having a carbon-carbon double bond such as a bur group and an aryl group, Examples thereof include a group having a carbon-carbon triple bond such as an ether group and a vinyl group. In addition, a group in which a group having a carbon-carbon double bond or a carbon-carbon triple bond and a divalent group not having an unsaturated group are bonded, and a divalent group not having an unsaturated group is bonded. Examples of the group include cyclohexenylethyldimethyloxy group.
[0029] また上記の式(1)において、 Bは置換または非置換の飽和アルキル基もしくは水酸 基を表す。置換または非置換の飽和アルキル基としては、例えば、置換されまたは置 換されていない、炭素数 1〜8の 1価の飽和炭化水素基を挙げることができる。具体 的には、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシル基、へ プチル基、ォクチル基等のアルキル基;シクロペンチル基、シクロへキシル基等のシ クロアルキル基;メトキシ基、エトキシ基等のアルコキシ基; 2—フエニルェチル基、 2 フエニルプロピル基、 3—フエニルプロピル基等のァラルキル基;クロロメチル基、 γ クロ口プロピル基、 3, 3, 3—トリフルォロプロピル基等のハロゲン置換炭化水素 基等を例示することができる。これらの中でも、反応時の立体障害を減らす点から炭 素数 1〜4のアルキル基が好ましぐメチル基が特に好ましい。尚、一つの分子内に 複数の Β基を有する場合、すなわち q≥ 2の場合、それぞれの B基は同じであってもよ く、異なっていてもよい。 [0029] In the above formula (1), B represents a substituted or unsubstituted saturated alkyl group or hydroxyl group. Examples of the substituted or unsubstituted saturated alkyl group include a monovalent saturated hydrocarbon group having 1 to 8 carbon atoms, which is substituted or unsubstituted. Specifically, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group or an octyl group; a cycloalkyl group such as a cyclopentyl group or a cyclohexyl group; Group, alkoxy group such as ethoxy group; aralkyl group such as 2-phenylethyl group, 2 phenylpropyl group, 3-phenylpropyl group; chloromethyl group, Illustrative examples include halogen-substituted hydrocarbon groups such as γ-chloropropyl group and 3,3,3-trifluoropropyl group. Among these, a methyl group, which is preferably an alkyl group having 1 to 4 carbon atoms, is particularly preferable from the viewpoint of reducing steric hindrance during the reaction. In addition, when there are a plurality of Β groups in one molecule, that is, when q≥2, each B group may be the same or different.
[0030] また上記の式(1)において、 R , R , R , R , R , Rは、各々独立して、低級アル [0030] In the above formula (1), R 1, R 2, R 3, R 4, R 5 and R 5 are each independently a lower alkyl group.
1 2 3 4 5 6  1 2 3 4 5 6
キル基、フエ二ル基、低級ァリールアルキル基から選ばれた一つの官能基を表すも のであり、メチル基、ェチル基、プロピル基等の炭素数が 1〜4のアルキル基や、フエ ニル基や、ベンジル基、フエネチル基等の炭素数 7〜 10のァリールアルキル基を例 示すること力 Sできる。これらの中でも、反応の立体障害を減らす点から、メチル基が好 ましぐ屈折率を高める点からフエニル基が好ましい。  It represents one functional group selected from a kill group, a phenyl group, and a lower arylalkyl group, such as an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a propyl group, or a phenyl group. Group, aryl group having 7 to 10 carbon atoms such as benzyl group and phenethyl group. Among these, a phenyl group is preferable from the viewpoint of reducing the steric hindrance of the reaction, and a methyl group preferably increasing the refractive index.
[0031] さらに上記の式(1)において、 mは 6, 8, 10, 12から選ばれた数を表し、 nは l〜m [0031] Further, in the above formula (1), m represents a number selected from 6, 8, 10, and 12, and n represents l to m
1の整数を表し、 pは l〜m— nの整数を表し、 qは 0〜m— n— pの整数を表すもの である。  1 represents an integer of 1, p represents an integer of l to m-n, and q represents an integer of 0 to m-n-p.
[0032] 上記のかご型シルセスキォキサン化合物としては、例えば次の式 (4)や式(5)で表 されるあのを挙げること力 Sでさる。  [0032] Examples of the cage silsesquioxane compound include those represented by the following formula (4) and formula (5).
[0033] 式(4)の化合物は、上記の式(1)において、 m= 8、 n = 4、 p = 4、 q = 0、 R , R , R [0033] The compound of the formula (4) has the following formula (1): m = 8, n = 4, p = 4, q = 0, R 1, R 2, R
1 2 1 2
, R力 Sメチル基(Me)の化合物であり、シリコン原子と酸素原子で形成された略 6面, R force A compound of S methyl group (Me), approximately 6 faces formed by silicon atom and oxygen atom
3 4 3 4
体構造を構成する 8つのシリコン原子のうち、 4つのシリコン原子に、シロキサン結合( O Si )を介して A基が結合し、他の 4つのシリコン原子にシロキサン結合( O — Si )を介して水素原子が結合した構造を有するものである。尚、式 (4)の構造式 は、略 6面体構造を構成する 8つのシリコン原子のうち 4つのシリコン原子に(一 O S iMe— A)がーつずつ結合し、他の 4つのシリコン原子に(一 O SiMe H)がーつ  Of the 8 silicon atoms that make up the body structure, A groups are bonded to 4 silicon atoms via siloxane bonds (O Si), and the other 4 silicon atoms are bonded to siloxane bonds (O — Si). It has a structure in which hydrogen atoms are bonded. It should be noted that the structural formula of formula (4) is as follows. (One OS iMe-A) is bonded to four silicon atoms out of eight silicon atoms constituting an approximately hexahedral structure, and is bonded to the other four silicon atoms. (One O SiMe H)
2 2 ずつ結合してレ、ることを簡略化して表現して!/、る(以下の構造式にお!/、ても同様に簡 略化して表現する)。  2 Combine 2 by 2 and express it in a simplified manner! (In the following structural formula,! / Is simplified as well).
[0034] また式(5)の化合物は、上記式(1)において、 m= 8、 n = 3、 p = 3、 q = 2、 R , R  [0034] Further, the compound of the formula (5) has the following formula (1): m = 8, n = 3, p = 3, q = 2, R 1, R 2
1 2 1 2
, R , R , R , R及び Bがメチル基の化合物であり、シリコン原子と酸素原子で形成さ , R, R, R, R and B are methyl group compounds formed by silicon and oxygen atoms
3 4 5 6  3 4 5 6
れた略 6面体構造を構成する 8つのシリコン原子のうち、 3つのシリコン原子にシロキ サン結合( O Si )を介して A基が結合し、他の 3つのシリコン原子にシロキサン 結合(一 O Si )を介して水素原子が結合し、残りの 2つのシリコン原子にシロキサ ン結合( O Si )を介して Bのメチル基が結合した構造を有するものである。尚、 式(5)の構造式は、略 6面体構造を構成する 8つのシリコン原子のうち、 3つのシリコ ン原子に( O SiMe—A)がーつずつ結合し、他の 3つのシリコン原子に(ー〇 Of the eight silicon atoms that make up the roughly hexahedral structure, three silicon atoms The A group is bonded through the Sun bond (O Si), the hydrogen atom is bonded through the siloxane bond (one O Si) to the other three silicon atoms, and the siloxane bond (O It has a structure in which the methyl group of B is bonded via Si). The structural formula of formula (5) is that, among the eight silicon atoms constituting the substantially hexahedral structure, (O SiMe-A) is bonded to three silicon atoms one by one, and the other three silicon atoms (-〇
2  2
SiMe H)がーつずつ結合し、残りの 2つのシリコン原子に( O SiMe )がーつず SiMe H) are bonded to each other, and (O SiMe) is connected to the remaining two silicon atoms.
2 3 つ結合してレ、ることを簡略化して表現して!/、る。 2 Connect the three and express it in a simplified way!
[化 1] [Chemical 1]
Figure imgf000012_0001
Figure imgf000012_0001
Figure imgf000012_0002
次に、上記のかご型シルセスキォキサンの合成方法の一例を説明する。まず、略 6 面体構造を有するォクタァニオン(Si O 8 と、クロロヒドリドジメチルシランのような
Figure imgf000012_0002
Next, an example of a method for synthesizing the above cage silsesquioxane will be described. First, an octacanion with an approximately hexahedral structure (such as Si O 8 and chlorohydridodimethylsilane).
8 12  8 12
反応性ハロゲンとを反応させ、ォクタァニオンの 8つのシリコン原子にヒドリドジメチル シロキシ基を結合させて、ォクタキス [ヒドリドジメチルシ口キシ]シルセスキォキサン ί OHSS)を調製する。そしてこの OHSSを用いて、 4—ビュル一 1—シクロへキセン等 の炭素 炭素不飽和基を分子中に 2つ以上有する化合物を当量未満で反応させる ことにより、一部のヒドリドジメチルシロキシ基に不飽和基を分子中に 2つ以上有する 化合物を付加反応させ、シリコン原子と酸素原子で形成された略 6面体構造を構成 する 8つのシリコン原子の一部に炭素 炭素不飽和結合を有する基が結合し、他の シリコン原子にヒドリドジメチルシロキシ基が結合した、式 (4)のようなかご型シルセス キォキサン化合物を調製することができる。尚、上記ォクタァニオンは、水酸化テトラ メチルアンモニゥムの存在下テトラエトキシシランを加水分解重縮合して得ることが可 能である。 By reacting with a reactive halogen, the hydridodimethylsiloxy group is bonded to the eight silicon atoms of octanion to form octakis [hydridodimethylsilane] silsesquioxane ί. OHSS). Then, by using this OHSS, a compound having two or more carbon-carbon unsaturated groups in the molecule, such as 4-butyl1-1-cyclohexene, is reacted in an amount less than the equivalent, so that some hydridodimethylsiloxy groups are inactivated. Addition reaction of a compound having two or more saturated groups in the molecule forms an approximately hexahedral structure formed by silicon atoms and oxygen atoms. A group having a carbon-carbon unsaturated bond is bonded to some of the eight silicon atoms. Then, a caged silsesquioxane compound represented by the formula (4) in which a hydridodimethylsiloxy group is bonded to another silicon atom can be prepared. The octacanion can be obtained by hydrolytic polycondensation of tetraethoxysilane in the presence of tetramethylammonium hydroxide.
[0037] また、ジメチルビユルクロロシラン、ジメチルァリルクロロシラン、クロロシクロアルケ二 ルジメチルシラン等の炭素 炭素不飽和基を有する反応性ハロゲンとクロロヒドリドジ メチルシランとの混合物をォクタァニオンと反応させることにより、シリコン原子と酸素 原子で形成された略 6面体構造を構成する 8つのシリコン原子の一部に炭素 炭素 不飽和結合を有する基が結合し、他のシリコン原子にヒドリドジメチルシロキシ基が結 合した、式 (4)のようなかご型シルセスキォキサン化合物を調製することができる。  [0037] Further, by reacting a mixture of a reactive halogen having a carbon-carbon unsaturated group such as dimethylvinylchlorosilane, dimethylallylchlorosilane, chlorocycloalkenyldimethylsilane and chlorohydridodimethylsilane with octacanion, A group having a carbon-carbon unsaturated bond is bonded to a part of eight silicon atoms constituting a substantially hexahedral structure formed of silicon atoms and oxygen atoms, and a hydridodimethylsiloxy group is bonded to other silicon atoms. A cage-type silsesquioxane compound such as formula (4) can be prepared.
[0038] さらにこの混合物をォクタァニオンと反応させるときに、クロロトリメチルシランのよう な不飽和基や活性水素を有しない反応性ハロゲンをも混合して反応させることにより 、略 6面体構造を構成する 8つのシリコン原子の一部に反応性を有しない基が結合し た、式(5)のようなかご型シルセスキォキサン化合物を調製することができる。  [0038] Further, when this mixture is reacted with octacanion, an approximately hexahedral structure is formed by mixing and reacting an unsaturated group such as chlorotrimethylsilane and a reactive halogen having no active hydrogen. A cage-type silsesquioxane compound represented by the formula (5) in which a non-reactive group is bonded to a part of one silicon atom can be prepared.
[0039] 上記のようにして得られる力、ご型シルセスキォキサン化合物は、シリコン原子と酸素 原子で形成された略 6面体構造において、そのシリコン原子にシロキサン結合を介し て結合した水素原子と、炭素 炭素不飽和結合基を有する基とを有しているため、こ の水素原子が、他のかご型シルセスキォキサン化合物の炭素 炭素不飽和結合基 に含まれる不飽和基とヒドロシリル化反応して、付加重合することにより架橋して硬化 し、三次元架橋構造を形成する。図 2にシリコン原子と酸素原子で形成された略 6面 体構造 (符号 7)が架橋結合された三次元架橋構造を模式的に示す。また [化 2]に、 式(4)の Aがシクロへキセニル基であるかご型シルセスキォキサン化合物の、三次元 架橋構造の架橋反応を示す。この三次元架橋構造は、シリカ(ガラス)からなるナノサ ィズのかご型構造を有機のセグメントでつなぎ合わせたような構造を有しており、ガラ スライクな機能を発現させることができる。 [0039] The force obtained in the manner described above, the gale silsesquioxane compound, in a substantially hexahedral structure formed of silicon atoms and oxygen atoms, has hydrogen atoms bonded to the silicon atoms via siloxane bonds. And a group having a carbon-carbon unsaturated bond group, so that this hydrogen atom is subjected to a hydrosilylation reaction with an unsaturated group contained in the carbon-carbon unsaturated bond group of another cage-type silsesquioxane compound. Then, it is cross-linked and cured by addition polymerization to form a three-dimensional cross-linked structure. Figure 2 schematically shows a three-dimensional cross-linked structure in which an approximately hexahedral structure (symbol 7) formed by silicon atoms and oxygen atoms is cross-linked. [Chemical Formula 2] shows the cross-linking reaction of a three-dimensional cross-linked structure of a cage silsesquioxane compound in which A in formula (4) is a cyclohexenyl group. This three-dimensional cross-linking structure is a nano-sac made of silica (glass). It has a structure in which the cage structure is connected by an organic segment, and can exhibit a glass-like function.
[0040] [化 2]  [0040] [Chemical 2]
Figure imgf000014_0001
Figure imgf000014_0001
[0041] ここで、この反応する炭素一炭素不飽和結合基と水素原子は共に、シルセスキォキ サン (Si O )の多面体構造の部分と、シロキサン結合(一 O— Si—)を介して結 し [0041] Here, the reacting carbon-carbon unsaturated bond group and the hydrogen atom are both bonded to the polyhedral structure part of silsesquioxane (Si 2 O 3) via a siloxane bond (1 O—Si—).
8 12  8 12
ているため、他のかご型シルセスキォキサン化合物と重合する際に、立体障害が起き にくくなつており、反応率が高い硬化物を得ることが可能であり、また未反応残基が少 なくなって、未反応残基に起因する信頼性低下を防ぐことが可能である。さらにこのよ うにシリカ(ガラス)からなるナノサイズのかご型構造を有しているため、ゾル一ゲル法 により得られるメタロキサン等と比較して架橋密度が高くなり、吸水率が低レ、硬化物を 得ること力 Sできる。  Therefore, when polymerizing with other cage-type silsesquioxane compounds, steric hindrance is less likely to occur, and it is possible to obtain a cured product with a high reaction rate, and there are few unreacted residues. Thus, it is possible to prevent a decrease in reliability due to unreacted residues. Furthermore, since it has a nano-sized cage structure made of silica (glass), the crosslink density is higher than metalloxane obtained by the sol-gel method, and the water absorption is low. The ability to obtain S.
[0042] また、上記のように得られる硬化物の架橋構造は、シルセスキォキサンの多面体構 造を構成するシリコン原子が 4つの酸素原子と結合してレ、て、無機材料であるガラス に近い構造となっており、しかもこのシリコン原子に有機基は直接結合していないた め、青色域,近紫外域の光が照射された状態で使用きれても、劣化し難くなつている  [0042] Further, the crosslinked structure of the cured product obtained as described above has a structure in which silicon atoms constituting the polyhedral structure of silsesquioxane are bonded to four oxygen atoms to form a glass which is an inorganic material. The structure is close, and the organic group is not directly bonded to the silicon atom, so it is difficult to deteriorate even if it is used under irradiation with light in the blue and near ultraviolet regions.
[0043] そして、半導体発光素子 2等を封止する封止材 3として、従来から使用されてレ、る光 透過性エポキシ樹脂、ポリエステル、ポリアタリレート、オルガノポリシロキサン等を用 いると、これらに含まれる架橋結合と吸収基の存在のために、必要とされるスペクトル 領域に不要な吸収ピークが出現しやすレヽが、本発明のかご型シルセスキォキサン化 合物の硬化物を用いると、このような吸収ピークが少なぐ良好な青色光や紫外線光 の透過性を有する封止材 3となる。 [0043] Then, as the sealing material 3 for sealing the semiconductor light emitting element 2 or the like, a light transmitting epoxy resin, polyester, polyacrylate, organopolysiloxane or the like that has been used conventionally is used. When the cured product of the cage-type silsesquioxane compound of the present invention is used, an unnecessary absorption peak is likely to appear in the required spectral region due to the presence of crosslinks and absorbing groups contained in Thus, the sealing material 3 having good blue light and ultraviolet light permeability with few absorption peaks is obtained.
[0044] 尚、本発明の上記式(1)で表されるかご型シルセスキォキサン化合物の分子中に  [0044] In the molecule of the cage silsesquioxane compound represented by the above formula (1) of the present invention,
差替え用紙 (規則 26) 有する、シリコン原子と酸素原子で形成された多面体構造において、そのシリコン原 子にシロキサン結合を介して結合した水素原子の数と、炭素 炭素不飽和結合を有 する基の数 (すなわち nと p)は、同じであることが好ましいが、硬化物の望ましい光学 および物理的特性が維持される限りにお!/、て多少異なって!/、ても良!/、。 Replacement paper (Rule 26) In the polyhedral structure formed of silicon atoms and oxygen atoms, the number of hydrogen atoms bonded to the silicon atom via a siloxane bond and the number of groups having carbon-carbon unsaturated bonds (i.e., n and p) Are preferably the same, but may be slightly different! /, As long as the desired optical and physical properties of the cured product are maintained!
[0045] 本発明のかご型シルセスキォキサン化合物を用いて半導体発光素子 2を封止する にあたっては、かご型シルセスキォキサン化合物の重合 ·架橋反応が進む条件であ れば、特に限定されることなく任意の方法を採用することができ、必要に応じて白金、 ノ ラジウム等の付加反応触媒を用いて反応させても良い。ここで、本発明に係るかご 型シルセスキォキサン化合物は、架橋させるまでは、室温で液状ないしは比較的低 温で溶融する固形であるため、半導体発光素子 2等の封止を容易に行なうことが可 能となる。 [0045] In sealing the semiconductor light emitting device 2 using the cage silsesquioxane compound of the present invention, it is particularly limited as long as the polymerization / crosslinking reaction of the cage silsesquioxane compound proceeds. Any method can be adopted without any reaction, and the reaction may be carried out using an addition reaction catalyst such as platinum or noradium as necessary. Here, since the cage silsesquioxane compound according to the present invention is a liquid at room temperature or a solid that melts at a relatively low temperature until it is crosslinked, the semiconductor light-emitting element 2 and the like can be easily sealed. Is possible.
[0046] また、本発明の上記式(1)で表されるかご型シルセスキォキサン化合物が部分的 に付加反応してなるかご型シルセスキォキサン化合物の部分重合物は、式(1)で表 される力、ご型シルセスキォキサン化合物が 2〜; 10個程度重合したオリゴマーであり、 半導体発光素子 2等を封止することが可能な流動性を持つものである。従ってこの部 分重合物を用いた場合も、他のかご型シルセスキォキサン化合物またはその部分重 合物と重合することにより架橋し、例えば図 2に示すような三次元架橋構造が形成さ れる。そしてこの場合も同様に、青色域'近紫外域の光が照射された状態で使用され ても、劣化し難ぐかつ吸水率が低い硬化物で封止材 3を形成することができる。  [0046] Further, the partial polymer of the cage silsesquioxane compound obtained by partial addition reaction of the cage silsesquioxane compound represented by the above formula (1) of the present invention is represented by the formula (1). Is an oligomer in which about 10 silsesquioxane compounds are polymerized, and has fluidity capable of sealing the semiconductor light-emitting element 2 and the like. Therefore, even when this partially polymerized product is used, it is crosslinked by polymerizing with another cage-type silsesquioxane compound or a partially polymerized product thereof, and, for example, a three-dimensional crosslinked structure as shown in FIG. 2 is formed. . In this case as well, the sealing material 3 can be formed of a cured product that is hardly deteriorated and has a low water absorption even when used in a state of being irradiated with light in the blue region and near-ultraviolet region.
[0047] 尚、半導体発光素子 2等を封止する封止材 3には、上記式(1)で表されるかご型シ ルセスキォキサン化合物またはこの化合物が部分的に付加反応してなる力、ご型シル セスキォキサン化合物の部分重合物に加えて、付加反応性を有するケィ素化合物を 、硬化物の望ましい光学および物理的特性が維持される限りにおいて含有しても良 い。  [0047] The encapsulant 3 for encapsulating the semiconductor light emitting device 2 and the like has a cage-type silsesquioxane compound represented by the above formula (1) or a force obtained by partial addition reaction of this compound, In addition to the partially polymerized type silsesquioxane compound, a key compound having addition reactivity may be contained as long as desirable optical and physical properties of the cured product are maintained.
[0048] 上記の説明では、上記式(1)のかご型シルセスキォキサン化合物を m= 8の場合 で説明したが、 mが 6 , 10, 12の場合も、同様に反応させることにより、力、ご型シルセ スキォキサン化合物やかご型シルセスキォキサン化合物の部分重合物を得ることが できる。そして、これらの化合物を用いた場合も、他のかご型シルセスキォキサン化合 を骨格に有する三次元架橋構造が形成される。そしてこの場合も同様に、青色域'近 紫外域の光が照射された状態で使用されても、劣化しにくぐかつ吸水率が低レ、硬 化物となる。 [0048] In the above description, the cage silsesquioxane compound of the above formula (1) has been described in the case of m = 8, but when m is 6, 10, 12, the reaction is performed in the same manner, A partially polymerized product of force, cage silsesquioxane compound or cage silsesquioxane compound can be obtained. Even when these compounds are used, other cage-type silsesquioxane compounds Is formed as a three-dimensional cross-linked structure. In this case as well, even when used in the state of being irradiated with light in the blue region and near-ultraviolet region, it is difficult to deteriorate and has a low water absorption, resulting in a cured product.
[0049] 尚、上記の式(1)で表されるカゝご型シルセスキォキサン化合物力 Bの置換または 非置換のアルキル基がアルコキシ基であり、かつ q 2である場合、上記した炭素一 炭素不飽和結合を有する基と水素原子との結合に加えて、このアルコキシ基同士の 加水分解 ·重縮合の結合でも架橋することが可能となり、利用の汎用性が高まると共 に硬化の汎用性が高まり好ましい。このとき、炭素一炭素不飽和結合を有する基と水 素原子との結合が主な架橋構造になると、硬化物の厚膜化が比較的容易になって 好ましぐまた、アルコキシ基同士の加水分解 ·重縮合の結合が主な架橋構造になる と、比較的透明性が高くなつて好ましい。 [化 3]に、式(1)の Aがシクロへキセニル基 、 Bがエトシキ基である場合の、三次元架橋構造の架橋反応の一例を示す。  [0049] Incidentally, when the substituted or unsubstituted alkyl group of the basket-type silsesquioxane compound represented by formula (1) B is an alkoxy group and q 2, In addition to the bond between a group having a carbon unsaturated bond and a hydrogen atom, it is also possible to crosslink by a hydrolysis / polycondensation bond between these alkoxy groups. Increased properties are preferable. At this time, if the bond between a group having a carbon-carbon unsaturated bond and a hydrogen atom becomes a main cross-linked structure, it is preferable that the thickness of the cured product becomes relatively easy. It is preferable that the decomposition / polycondensation bond is a main cross-linked structure because of relatively high transparency. [Chemical Formula 3] shows an example of a crosslinking reaction of a three-dimensional crosslinked structure when A in the formula (1) is a cyclohexenyl group and B is an ethoxy group.
[0050] [化 3]  [0050] [Chemical 3]
Figure imgf000016_0001
Figure imgf000016_0001
[0051] また、上記の実施の形態では、式(1)のかご型シルセスキォキサン化合物、又はこ の化合物が部分的に付加反応してなるかご型シルセスキォキサンィ匕合物の部分重 合物で半導体発光素子又は半導体受光素子を封止した半導体光装置について説 明したが、式(1)で表されるかご型シルセスキォキサン化合物、又はこの化合物が部 分的に付加反応してなるカゝご型シルセスキォキサン化合物の部分重合物を成形材と して用い、これを成形して重合'硬化させることによって、レンズやプリズム等の透明 光学部材を作製することができる。また光学ディスクの表面に塗布して重合させること により、ブルーレイディスクの保護層等の透明光学部材に利用できる。  [0051] In the above-described embodiment, the cage silsesquioxane compound of the formula (1) or a portion of a cage silsesquioxane compound obtained by partial addition reaction of this compound. The semiconductor optical device in which the semiconductor light emitting element or the semiconductor light receiving element is sealed with the polymer has been described. However, the cage silsesquioxane compound represented by the formula (1) or a partial addition reaction of this compound. A transparent optical member such as a lens or a prism can be produced by using a partially polymerized product of a cage-type silsesquioxane compound as a molding material and molding and polymerizing and curing it. . In addition, it can be used for a transparent optical member such as a protective layer of a Blu-ray disc by coating and polymerizing on the surface of the optical disc.
[0052] ここで、力ご型シルセスキォキサン化合物の硬化体を LED白色照明用の透明封止 差替え用紙 (規則 26) 材等の光学用途に応用する場合、屈折率を向上させることが必要であり、力ご型シ ルセスキォキサン化合物の硬化体を高屈折率となるように形成するために、力ご型シ ルセスキォキサン化合物に TiOや ZrO等の重金属ゾルを混合し、この重金属ゾルを かご型シルセスキォキサン化合物の硬化物中に導入することが好ましい。このとき、 かご型シルセスキォキサン化合物は一般に TiOや ZrO等の重金属ゾルと相溶性が 悪く、重金属ゾルを均一に分散させることが難しぐその結果、硬化体の透明性が損 なわれやすい。これは例えば [化 4]のように、式(1)において Aがァリル基、 R, R , [0052] Here, the cured product of the force-type silsesquioxane compound is transparently sealed for LED white illumination replacement paper (Rule 26) When applied to optical applications such as materials, it is necessary to improve the refractive index, and in order to form a cured product of a rugged silsesquioxane compound to have a high refractive index, It is preferable to mix a heavy metal sol such as TiO or ZrO and introduce the heavy metal sol into the cured product of the cage silsesquioxane compound. At this time, the cage-type silsesquioxane compound is generally incompatible with heavy metal sols such as TiO and ZrO, and it is difficult to uniformly disperse the heavy metal sol, and as a result, the transparency of the cured product tends to be impaired. For example, as shown in [Chemical Formula 4], in Formula (1), A is an aryl group, R, R,
2 2
R, Rがメチル基、 m=8、 n =4、 p=4、 q=0であるかご型シルセスキォキサン化合Cage-type silsesquioxane compound in which R and R are methyl groups, m = 8, n = 4, p = 4, q = 0
3 4 3 4
物を架橋反応させる系では、重金属ゾルの表面を覆う一 OHと親和性のある官能基 が存在しなレ、からである。  This is because there is no functional group having affinity for 1 OH covering the surface of the heavy metal sol in the system in which the product is crosslinked.
[0053] [化 4]  [0053] [Chemical 4]
Figure imgf000017_0001
Figure imgf000017_0001
[0054] そこでこの場合には、式(1)において in—n— p—qが 1以上である、— OH基を導 入したシルセスキォキサンィ匕合物を用いることによって、次の [化 5]に示すように、シ ルセスキォキサン化合物の一 OH基と重金属ゾルを覆う一 OH基との親和性によって 、重金属ゾルの分散性を高めることができ、力ご型シルセスキ キサン化合物と重金 属ゾルを均一に分散させて、透明性を維持しつつ高屈折率を有するかご型シルセス キォキサン化合物の硬化物を得ることができる。  [0054] Therefore, in this case, by using a silsesquioxane compound in which in-n-p-q is 1 or more and a —OH group is introduced in the formula (1), the following [ As shown in Figure 5, the affinity between the OH group of the silsesquioxane compound and the OH group covering the heavy metal sol can increase the dispersibility of the heavy metal sol, and the force-type silsesquioxane compound and the heavy metal sol Can be uniformly dispersed to obtain a cured product of a cage-type silsesquioxane compound having a high refractive index while maintaining transparency.
[0055] [化 5] [0055] [Chemical 5]
差替え用紙 (規則 26)
Figure imgf000018_0001
Replacement paper (Rule 26)
Figure imgf000018_0001
[0056] [化 5]に示すカゝご型シルセスキォキサン化合物は、上記の式(1)において Aがァリ ル基、 R, R, R , R力 Sメチル基、 m=8、 n=3、 p = 3 q=0である場合の化合物で  [0056] The basket-type silsesquioxane compound represented by [Chemical Formula 5] has the formula (1) in which A is an aryl group, R, R, R, R force S methyl group, m = 8, n = 3, p = 3 when q = 0
1 2 3 4  1 2 3 4
あり、シリコン原子と酸素原子で形成される略 6面体構造を構成する 8つのシリコン原 子のうち、 3つのシリコン原子にシロキサン結合(—O— Si—)を介してァリル基が結 合し、 3つのシリコン原子にシロキサン結合(一 O— Si—)を介して水素原子が結合し 、 2つのシリコン原子に水酸基が結合した構造を有するものである。  Yes, among the eight silicon atoms that make up the approximately hexahedral structure formed by silicon atoms and oxygen atoms, aryl groups are bonded to three silicon atoms via siloxane bonds (—O—Si—). It has a structure in which a hydrogen atom is bonded to three silicon atoms via a siloxane bond (one O—Si—) and a hydroxyl group is bonded to two silicon atoms.
[0057] このような、略 6面体構造を構成する 8つのシリコン原子の一部に水酸基が結合した かご型シルセスキォキサンは、次のようにして得ることができる。  Such a cage silsesquioxane having a hydroxyl group bonded to a part of eight silicon atoms constituting an approximately hexahedral structure can be obtained as follows.
[0058] 上記の [化 4]のようなかご型シルセスキォキサン化合物は、後述の [化 12]や [化 13] 反応させることによって調製することができる力 S、ォクタァニオンの 8つの反応サイトの 全てにァリルジメチルクロルシランとジメチルクロルシランを置換させるためには、ァリ ルジメチルクロルシランやジメチルクロルシランの配合量はォクタァニオンに対して大 過剰 (例えば 30倍当量以上)となるように設定する必要がある。従って、ォクタァニォ ンに対するァリルジメチルクロルシランゃジメチルクロルシランの過剰度合レ、が少なレヽ 場合、ォクタァニオンの 8つの反応サイトの一部が置換されなくなり、非置換サイトが 加水分解されて一 OH基になり、 [化 5]のような略 6面体構造を構成する一部のシリコ ン原子に OH基を導入したァリルジメチルシロキシシルセスキォキサンを調製すること ができる。またこの過剰度合いを調整することによって、かご型シルセスキォキサンへ 差替え用紙 (規則 26) の OH基の導入数を制御することができる。 [0058] The cage silsesquioxane compound such as the above [Chemical 4] is prepared by reacting with the following [Chemical 12] and [Chemical 13] reaction, and eight reaction sites of S and Octanion. In order to substitute allyl dimethyl chlorosilane and dimethyl chlorosilane for all of the above, the amount of allyl dimethyl chlorosilane or dimethyl chlorosilane should be a large excess (for example, 30 times equivalent or more) with respect to octacanion. Must be set. Therefore, when the excess degree of allyldimethylchlorosilane or dimethylchlorosilane relative to octanion is low, some of the eight reaction sites of octanion will not be substituted, and the unsubstituted site will be hydrolyzed to an OH group. Thus, it is possible to prepare allyldimethylsiloxysilsesquioxane in which OH groups are introduced into a part of silicon atoms constituting an approximately hexahedral structure such as [Chemical Formula 5]. In addition, by adjusting this excess, replacement paper for the cage silsesquioxane (Rule 26) The number of introduced OH groups can be controlled.
[0059] また、上記の実施の形態では、力、ご型シルセスキォキサン化合物同士を炭素 炭 素不飽和結合と水素原子とをヒドロシリル化反応させて、ダイレクトに架橋させるように している。例えば上記の [化 4]のように、かご型シルセスキォキサン化合物を SiH 基と一 CH = CH基の間でダイレクトに架橋させて硬化させるようにしている。し力、しこ [0059] Further, in the above-described embodiment, the force-type silsesquioxane compounds are directly crosslinked by hydrosilylation reaction between a carbon-carbon unsaturated bond and a hydrogen atom. For example, as shown in the above [Chemical Formula 4], a cage silsesquioxane compound is cured by directly crosslinking between a SiH group and one CH = CH group. Strength
2  2
の場合、架橋反応の進行が速いため、力、ご型シルセスキォキサン化合物間の SiH と CH = CHの架橋反応が急激にある程度進行すると構造が凍結され、それ以上  In this case, since the cross-linking reaction proceeds rapidly, the structure freezes when the cross-linking reaction between SiH and CH = CH between the force-type silsesquioxane compound proceeds rapidly to some extent,
2  2
の架橋反応が進まなくなり、この結果、架橋反応が進行している部分と未反応基が残 つている部分とが共存する不均一な架橋構造となることがある。従って、構造が不均 一になり、反応進行が不均一に速く進むために、硬化した分子構造内に残留歪が蓄 積されることになり、硬化物を例えばアセトン等の溶媒に浸すとストレスクラッキングが 生じるなど、脆い硬化物しか得られないおそれがある。また硬化物には未反応基が 残っているため、ブルーレイなど青色域 ·近紫外域の短波長高エネルギー光に対す る照射耐性が十分ではない場合がある。  As a result, a non-uniform cross-linked structure in which a portion where the cross-linking reaction proceeds and a portion where unreacted groups remain coexists may be obtained. Therefore, the structure becomes uneven and the reaction progresses unevenly and rapidly, so that residual strain is accumulated in the cured molecular structure. When the cured product is immersed in a solvent such as acetone, stress is applied. There is a risk that only a brittle cured product may be obtained, such as cracking. In addition, since unreacted groups remain in the cured product, there may be insufficient irradiation resistance to short-wave high-energy light in the blue and near ultraviolet regions such as Blu-ray.
[0060] そこでこの場合には、式(1)のかご型シルセスキォキサン化合物に、次の式(2)や 式(3)の化合物を反応性モノマーとして配合し、かご型シルセスキォキサン化合物を 式(2)や式(3)の化合物で架橋して硬化させるようにする。  [0060] In this case, therefore, the cage silsesquioxane compound represented by the formula (1) is blended with the following formula (2) or formula (3) as a reactive monomer, and the cage silsesquioxane compound is obtained. The compound is cured by crosslinking with the compound of formula (2) or formula (3).
[0061] まず式(2)の化合物を用いる系について説明する。  First, a system using the compound of formula (2) will be described.
[0062] HR R Si-X- SiHR R · · · (2)  [0062] HR R Si-X- SiHR R (2)
5 6 7 8  5 6 7 8
式(2)において、 Xは 2価の官能基又は酸素原子を表すものである。また式(2)に おいて R , R , R , Rは、各々独立して炭素数 1〜3のアルキル基又は水素原子を In the formula (2), X represents a divalent functional group or an oxygen atom. In the formula (2), R 1, R 2, R 3 and R 5 are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom.
5 6 7 8 5 6 7 8
表す。この式(2)に示される化合物としては、特に限定されるものではないが、次の [ 化 6]に示すものを例示することができる。  To express. The compound represented by the formula (2) is not particularly limited, but examples thereof include those represented by the following [Chemical Formula 6].
[0063] [化 6] H
Figure imgf000020_0001
[0063] [Chemical 6] H
Figure imgf000020_0001
[0064] 式 (1)の力 、型シルセスキォキサン化合物に対する式 (2)の化合物の配合量は、 特に限定されるものではないが、式 キサン化合物同士を炭 素—炭素不飽和結合と水素原子とをヒドロシリル化反応させたときに残る未反応の A の不飽和基の量と当量、あるレ、は当量よりも少し多めに設定するのが好ましレ、。 [0064] The amount of the compound of the formula (2) with respect to the force of the formula (1) and the type silsesquioxane compound is not particularly limited. The amount equivalent to the amount of the unreacted A unsaturated group remaining when the hydrosilylation reaction with a hydrogen atom is performed is preferably set slightly higher than the equivalent amount.
[0065] そしてかご型シルセスキォキサンィ匕合物に、式(2)の化合物を反応性モノマーとし て配合して反応させることによって、 [化 7]に示すように、力 型シルセスキォキサン 化合物の一 CH-CH基に式 (2)の化合物の両末端の一 SiH力 Sヒドロシリル化反応  [0065] Then, the cage-type silsesquioxane compound is blended with the compound of the formula (2) as a reactive monomer and reacted, thereby producing a force-type silsesquioxane as shown in [Chemical Formula 7]. One SiH force S hydrosilylation reaction of both ends of the compound of formula (2) to one CH-CH group of the xanthane compound
2  2
して付加重合し、かご型シルセスキォキサン化合物を式 (2)の化合物で架橋して硬 化させることができ、シリカ力 なるナノサイズのかご型構造を有機のセグメントでつな ぎ合わせたような三次元架橋構造を形成することができる。 [化 7]に示すシルセスキ ォキサン化合物は、上記の式(1)において、 m=8 n=xs p=8— x q=0 Aがァリ ル基、 R R , R , R力 Sメチル基である場合の化合物であり、シリコン原子と酸素原 Then, the cage-type silsesquioxane compound can be cross-linked with the compound of formula (2) and hardened, and the nano-sized cage structure with silica power is connected by organic segments. Such a three-dimensional crosslinked structure can be formed. Shirusesuki Okisan compounds shown in Formula 7] In the above formula (1), m = 8 n = x s p = 8- xq = 0 A is § Li Le groups, RR, R, with R force S methyl A compound in some cases, silicon atoms and oxygen atoms
1 2 3 4  1 2 3 4
子で形成された略 6面体構造を構成する 6つのシリコン原子のうち、 X個のシリコン原 子にシロキサン結合(一O— Si— )を介してァリル基が結合され、他の 8— X個のシリコ ン原子にシロキサン結合(一 O— Si—)を介して水素原子が結合された構造を有する ものである。  Out of the six silicon atoms that make up the approximately hexahedral structure formed by the children, the aryl group is bonded to the X silicon atoms through a siloxane bond (one O—Si—) and the other 8—X atoms. It has a structure in which a hydrogen atom is bonded to a silicon atom via a siloxane bond (one O—Si—).
[0066] [化 7] 差替え用紙(規則 26)
Figure imgf000021_0001
[0066] [Chemical 7] Replacement paper (Rule 26)
Figure imgf000021_0001
[0067] このように、かご型シルセスキォキサン化合物に、両末端に一 SiHを有する式(2) の化合物を反応性モノマーとして反応させることによって、式 )の反応性モノマー の海の中で、一CH=CH基を有する式 (1)の力 型シルセスキォキサン化合物が [0067] Thus, by reacting a cage silsesquioxane compound with a compound of formula (2) having one SiH at both ends as a reactive monomer, in the sea of the reactive monomer of formula) A force-type silsesquioxane compound of the formula (1) having one CH═CH group is
2  2
式 (2)の化合物と徐々に反応して架橋してレヽくため、反応の進行をよりマイルドに制 御することができ、また架橋反応の進行の過程で未反応で残っている一 CH==CH 基が生じても、式(2)の化合物が残基部に移動して架橋反応するものである。このよ うに、反応の進行をマイルドに制御して、構造凍結を遅延させることができ、また未反 応残基の少な ヽ、より均一なネットワーク構造であってかご型シルセスキォキサン化 . 合物の三次元架橋構造を形成することができ、硬化体のストレスクラッキングを抑制 することができると共に強靭性を高めることができ、またブルーレイなど短波長高エネ ルギ一光に対する照射耐性を向上させることができる。  Since the reaction with the compound of formula (2) gradually reacts and crosslinks, the progress of the reaction can be controlled more mildly, and the remaining unreacted CH = Even when the = CH group is generated, the compound of the formula (2) moves to the residue and undergoes a crosslinking reaction. In this way, the progress of the reaction can be controlled mildly to delay structure freezing, and there are fewer unreacted residues and a more uniform network structure with a cage-type silsesquioxane. It is possible to form a three-dimensional cross-linked structure of the product, to suppress the stress cracking of the cured product and to improve the toughness, and to improve the irradiation resistance against short wavelength high energy light such as Blu-ray. Can do.
[0068] 次に式 (3)の化合物を用レ、る系について説明する。  Next, a system using the compound of formula (3) will be described.
[0069] . H C=CH-Y-CH=CH -- (3)  [0069]. H C = CH-Y-CH = CH-(3)
2 2  twenty two
式 (3)において、 Yは 2価の官能基を表すものであり、この式 (3)に示される化合物 としては、特に限定されるものではないが、次の [化 8]に示すものを例示することがで きる。  In the formula (3), Y represents a divalent functional group, and the compound represented by the formula (3) is not particularly limited, but is represented by the following [Chemical Formula 8]. It can be illustrated.
[0070] [化 8] [0070] [Chemical 8]
差替え用紙 (規則 26) ジァリルジフエニルシランReplacement paper (Rule 26) Diaryldiphenylsilane
Figure imgf000022_0001
H2C =: GH -Si- 0"Si- CH = CH ジビニル亍トラチルジシロキサン
Figure imgf000022_0001
H 2 C =: GH -Si- 0 "Si- CH = CH Divinyl 亍 tratyl disiloxane
CH3 CH3 CH3 CH3
S - CH2 - CH = CH2 S-CH 2 -CH = CH 2
S - CHi> - CH ジァリルジスルフイド  S-CHi>-CH Diaryl disulfide
CH3 CH3  CH3 CH3
H2G = CH - GH2 -Si- O-Si- CH2 - CH = GH2 ジァリル亍トラメチルジシロキサン H 2 G = CH-GH 2 -Si- O-Si- CH 2 -CH = GH 2 diallyl-tramethyldisiloxane
H2C = CH -Si"0- Si- CH = CH9 ジビニルジフエ二ルジメチルジシロキサン H 2 C = CH -Si "0- Si- CH = CH 9 Divinyldiphenyldimethyldisiloxane
CH<¾ CH3 ジビニルへキサメチルトリシロキサン
Figure imgf000022_0002
CH <¾ CH3 Divinylhexamethyltrisiloxane
Figure imgf000022_0002
[0071] 式(1)のかご型シルセスキォキサン化合物に対する式 (3)の化合物の配合量は、 特に限定されるものではなレ、が、式(1)のかご型シルセスキォキサン化合物同士を炭 素一炭素不飽和結合と水素原子とをヒドロシリル化反応させたときに残る未反応の水 素原子の量と当量、あるいは当量よりも少し少なめに設定するのが好ましい。 [0071] The amount of the compound of formula (3) to the cage silsesquioxane compound of formula (1) is not particularly limited, but the cage silsesquioxane compound of formula (1) It is preferable to set the amount to be equivalent to the amount of unreacted hydrogen atoms remaining when the carbon-carbon unsaturated bond and the hydrogen atom are subjected to a hydrosilylation reaction, or a little less than the equivalent.
[0072] そしてかご型シノレセスキォキサン化合物に、式 (3)の化合物を反応性モノマーとし て配合し X反応させることによって、 [化 9]に示すように、力ご型シルセスキォキサン 化合物の一 SiH基に式(3)の化合物の両末端の一 CH = CH基力ヒドロシリル化反 [0072] Then, the cage-type silesquioxane compound is compounded with the compound of the formula (3) as a reactive monomer and subjected to an X reaction, as shown in [Chemical Formula 9]. One CH = CH group hydrosilylation reaction at both ends of the compound of formula (3) on one SiH group of the compound
2  2
応して付加重合し、かご型シルセスキォキサン化合物を式 (3)の化合物で架橋して 硬化させることができ、シリカからなるナノサイズのかご型構造を有機のセグメントでつ なぎ合わせたような三次元架橋構造を形成することができる。  In addition, the cage-type silsesquioxane compound can be cross-linked with the compound of formula (3) and cured, and the nano-sized cage structure composed of silica is connected by organic segments. A three-dimensional crosslinked structure can be formed.
[0073] [化 9] [0073] [Chemical 9]
差替え用紙 (規則 26)
Figure imgf000023_0001
Replacement paper (Rule 26)
Figure imgf000023_0001
[0074] このように、かご型シルセスキォキサン化合物に、両末端に一 CH=CHを有する [0074] Thus, the cage silsesquioxane compound has one CH = CH at both ends.
2  2
式(3)の化合物を反応性モノマーとして反応させることによって、反応性モノマーの 海の中で一 SiH基を有する力ご型シルセスキォキサン化合物が式(3)の化合物と徐 々に反応して架橋してレ、くため、反応の進行をよりマイルドに制御することができ、ま た架橋反応の進行の過程で未反応で残っている一 SiH基が生じても、式(3)の化合 物が残基部に移動して架橋反応する。このように、反応の瑋行をマイルドに制御して 、構造凍結を遅延させることができ、また未反応残基の少ない、より均一なネットヮー ク構造であってかご型シノレセスキォキサン化合物の三次 5架橋構造を形成すること ができ、硬化体のストレスクラッキングを抑制することができると共に強靭性を高めるこ とができ、またブルーレイなど短波長高工ネルギ一光に対する照射耐性を向上させる ことができる。  By reacting the compound of formula (3) as a reactive monomer, a force-type silsesquioxane compound having one SiH group in the reactive monomer sea gradually reacts with the compound of formula (3). As a result of crosslinking, the progress of the reaction can be controlled more mildly, and even if one unreacted SiH group occurs during the course of the crosslinking reaction, the formula (3) The compound moves to the residue and undergoes a crosslinking reaction. As described above, the freezing of the reaction can be controlled mildly to delay the structure freezing, and more uniform network structure with fewer unreacted residues and the cage-type cinresesquioxane compound It is possible to form a tertiary five-crosslinked structure, to suppress stress cracking of the cured body and to improve toughness, and to improve irradiation resistance against short wavelength high-energy energy such as Blu-ray. it can.
[0075] (実施の形態 2)  [0075] (Embodiment 2)
続 ヽて、本発明の実施の形態 2に係るかご型シルセスキォキサン化合物について 詳細に説明する。本実施の形態 2に係る力 型シルセスキォキサン化合物は、実施 の形態 1では式(1)で表されるカゝご型シルセスキォキサン化合物における Aが炭素一 炭素不飽和結合を有する基であって必ずしも鎖状炭化水素基ではないのに対し、実 施の形態 2では Aが炭素一炭素不飽和結合を有する鎖状炭化水素基である点で実 施の形態 1に係る力 型シルセスキォキサン化合物と異なる。  Next, the cage silsesquioxane compound according to Embodiment 2 of the present invention will be described in detail. The force-type silsesquioxane compound according to Embodiment 2 is a group in which A in the cage-type silsesquioxane compound represented by Formula (1) in Embodiment 1 has a carbon-carbon unsaturated bond. In the second embodiment, however, A is a chain hydrocarbon group having a carbon-carbon unsaturated bond. Different from sesquioxane compounds.
[0076] '封止材 3は、下記の式(1)で表されるかご型シルセスキォキサン化合物、またはこ の化合物が部分的に付加反応してなるかご型シルセスキォキサン化合物の部分重 合物を含有するケィ素化合物を、架橋して形成される。  [0076] 'Encapsulant 3 is a cage-type silsesquioxane compound represented by the following formula (1), or a portion of a cage-type silsesquioxane compound obtained by partial addition reaction of this compound. It is formed by cross-linking a key compound containing a polymer.
ここで、式(1)は、上記同様、(AR R SiOSiO ) (R R HSiOSiO ) (BR R S  Here, the formula (1) is similar to the above (AR R SiOSiO) (R R HSiOSiO) (BR R S
1 2 1. 5 n 3 4 1. 5 p 5 6 差替え用紙(規則 26) iOSiO ) (HOSiO ) …ひ) 1 2 1. 5 n 3 4 1.5 p 5 6 Replacement paper (Rule 26) iOSiO) (HOSiO)… hi)
1. 5 q 1. 5 m— n— p— q  1. 5 q 1. 5 m— n— p— q
で表されるが、式(1)において、 Aは炭素 炭素不飽和結合を有する鎖状炭化水素 基である。ここで、 Aは、炭素 炭素二重結合または炭素 炭素三重結合を基の一 部に含むものであれば特に限定はされない。例えば、アルケニル基、アルキニル基 を含むものを挙げることができ、アルケニル基またはアルキニル基を含む基としては、 例えばビュル基、ァリル基等の炭素 炭素二重結合を有する基や、ェチュル基、プ ロビニル基等の炭素 炭素三重結合を有する基を挙げることができる。また炭素 炭素二重結合または炭素 炭素三重結合を有する基と、不飽和基を有しない 2価の 基が結合した基を挙げることもできる。尚、これらの炭素 炭素不飽和結合を有する 鎖状炭化水素基の炭素 炭素不飽和結合の位置は、加水分解時の立体障害を減 らす点から、末端に有することが好ましい。  In the formula (1), A is a chain hydrocarbon group having a carbon-carbon unsaturated bond. Here, A is not particularly limited as long as it contains a carbon-carbon double bond or a carbon-carbon triple bond as part of the group. Examples include groups containing alkenyl groups and alkynyl groups. Examples of groups containing alkenyl groups or alkynyl groups include groups having a carbon-carbon double bond such as a buyl group and an allyl group, an ether group, and a vinyl group. Examples thereof include groups having a carbon-carbon triple bond such as a group. Further, a group in which a group having a carbon-carbon double bond or a carbon-carbon triple bond and a divalent group not having an unsaturated group are bonded can also be exemplified. The position of the carbon-carbon unsaturated bond of the chain hydrocarbon group having these carbon-carbon unsaturated bonds is preferably at the terminal from the viewpoint of reducing steric hindrance during hydrolysis.
[0077] 次に、本実施の形態 2に係るかご型シルセスキォキサンの合成方法の一例を説明 する。まず、実施の形態 1と同様、略 6面体構造を有するォクタァニオン(Si O 8 )と [0077] Next, an example of a method for synthesizing a cage silsesquioxane according to the second embodiment will be described. First, as in the first embodiment, octacanyon (Si 2 O 8 ) having a substantially hexahedral structure and
8 12 8 12
、クロロヒドリドジメチルシランのような反応性ハロゲンとを反応させ、ォクタァユオンの 8つのシリコン原子にヒドリドジメチルシ口キシ基を結合させて、ォクタキス [ヒドリドジメ チルシ口キシ]シルセスキォキサン(OHSS)を調製する。そしてこの OHSSを用いて 、 1 へキセニル等の炭素 炭素不飽和基を分子中に有する鎖状炭化水素を当量 未満で反応させることにより、一部のヒドリドジメチルシロキシ基に不飽和の鎖状炭化 水素基を付加反応させ、シリコン原子と酸素原子で形成された略 6面体構造を構成 する 8つのシリコン原子の一部に炭素 炭素不飽和結合を有する鎖状の基が結合し 、他のシリコン原子にヒドリドジメチルシロキシ基が結合した、式 (4)のようなかご型シ ルセスキォキサン化合物を調製することができる。尚、上記ォクタァニオンは、テトラメ チルアンモニゥム塩の存在下、テトラエトキシシランの加水分解重縮合反応で得るこ とが可能である。 , Reacting with a reactive halogen such as chlorohydridodimethylsilane, and bonding hydridodimethyloxy group to eight silicon atoms of octayuon to prepare octakis [hydridodimethyloxy] silsesquioxane (OHSS) To do. Then, by using this OHSS, a chain hydrocarbon having a carbon-carbon unsaturated group such as 1 hexenyl in the molecule is reacted in an amount of less than an equivalent amount, so that some hydridodimethylsiloxy groups are unsaturated chain hydrocarbons. A chain-like group having a carbon-carbon unsaturated bond is bonded to some of the eight silicon atoms that form an approximately hexahedral structure formed by silicon atoms and oxygen atoms, and the other silicon atoms are bonded to other silicon atoms. A cage-type silsesquioxane compound represented by the formula (4) to which a hydridodimethylsiloxy group is bonded can be prepared. The above octanion can be obtained by hydrolysis polycondensation reaction of tetraethoxysilane in the presence of tetramethylammonium salt.
[0078] また、ジメチルビユルクロロシラン、ジメチルァリルクロロシラン、ジメチルへキセニノレ クロロシラン等の炭素 炭素不飽和基を有する反応性ハロゲンとクロロヒドリドジメチ ルシランとの混合物をォクタァニオンと反応させることにより、シリコン原子と酸素原子 で形成された略 6面体構造を構成する 8つのシリコン原子の一部に炭素 炭素不飽 和結合を有する鎖状の基が結合し、他のシリコン原子にヒドリドジメチルシロキシ基が 結合した、式 (4)のようなかご型シルセスキォキサン化合物を調製することができる。 [0078] Further, by reacting a mixture of a reactive halogen having a carbon-carbon unsaturated group such as dimethylvinylchlorosilane, dimethylallylchlorosilane, dimethylhexenole chlorosilane and chlorohydridodimethylsilane with octanion, a silicon atom and Carbon is carbon-saturated to some of the eight silicon atoms that make up the nearly hexahedral structure formed by oxygen atoms. A cage-type silsesquioxane compound represented by the formula (4) in which a chain group having a sum bond is bonded and a hydridodimethylsiloxy group is bonded to another silicon atom can be prepared.
[0079] さらにこの混合物をォクタァニオンと反応させるときに、クロロトリメチルシランのよう な不飽和基や活性水素を有しない反応性ハロゲンをも混合して反応させることにより 、略 6面体構造を構成する 8つのシリコン原子の一部に反応性を有しない基が結合し た、式(5)のようなかご型シルセスキォキサン化合物を調製することができる。  [0079] Further, when this mixture is reacted with octacanion, an approximately hexahedral structure is formed by reacting with an unsaturated group such as chlorotrimethylsilane or a reactive halogen having no active hydrogen. A cage-type silsesquioxane compound represented by the formula (5) in which a non-reactive group is bonded to a part of one silicon atom can be prepared.
[0080] 上記のようにして得られる力、ご型シルセスキォキサン化合物は、シリコン原子と酸素 原子で形成された略 6面体構造のシリコン原子にシロキサン結合を介して結合した水 素原子と、炭素 炭素不飽和結合を有する鎖状炭化水素基とを有しているため、こ の水素原子が、他のかご型シルセスキォキサン化合物の炭素 炭素不飽和結合を 有する鎖状炭化水素に含まれる不飽和基とヒドロシリル化反応して、付加重合するこ とにより架橋して硬化し、三次元架橋構造を形成する。  [0080] The force obtained as described above, the gale silsesquioxane compound, includes a hydrogen atom bonded to a silicon atom having a substantially hexahedral structure formed of a silicon atom and an oxygen atom through a siloxane bond; And a chain hydrocarbon group having a carbon-carbon unsaturated bond, so that this hydrogen atom is included in the chain hydrocarbon having a carbon-carbon unsaturated bond of another cage silsesquioxane compound. Hydrosilylation reaction with an unsaturated group, followed by addition polymerization to crosslink and cure to form a three-dimensional crosslinked structure.
[0081] 図 2にシリコン原子と酸素原子で形成された略 6面体構造 (符号 7)が架橋結合され た三次元架橋構造を模式的に示している。また [化 15]に、式(1 )の Aがへキセニル 基、 m= 8、 n = 4、 p = 4、 q = 0、 R , R , R , R力 Sメチル基であるかご型シルセスキ  FIG. 2 schematically shows a three-dimensional cross-linked structure in which a substantially hexahedral structure (symbol 7) formed of silicon atoms and oxygen atoms is cross-linked. Further, in [Chemical Formula 15], a cage-type silsesquialkyl wherein A in the formula (1) is a hexenyl group, m = 8, n = 4, p = 4, q = 0, R, R, R, R force S methyl group.
1 2 3 4  1 2 3 4
ォキサン化合物の架橋を示す。 [化 15]の力、ご型シルセスキォキサンは、略 6面体構 造の 8つのシリコン原子に、シロキサン結合を介して 4個の水素原子が結合していると 共に、シロキサン結合を介して 4個のへキセニル基が結合しており、水素原子とへキ セニルの不飽和基とがヒドロシリル化反応して架橋する。この三次元架橋構造は、シ リカ(ガラス)からなるナノサイズのかご型構造を有機のセグメントでつなぎ合わせたよ うな構造を有しており、ガラスライクな機能を発現させることができる。また、上記のよう に得られる硬化物の架橋構造は、シルセスキォキサンの多面体構造を構成するシリ コン原子が 4つの酸素原子と結合していて、無機材料であるガラスに近い構造となつ ており、し力、もこのシリコン原子に有機基は直接結合していないため、青色域'近紫 外域の光が照射された状態で使用されても、劣化し難くなつている。さらにこのように シリカ(ガラス)力もなるナノサイズのかご型構造を有しているため、ゾル一ゲル法によ り得られるメタロキサン等と比較して架橋密度が高くなり、吸水率が低い硬化物を得る こと力 Sでさる。 [0082] [化 15] The cross-linking of the oxane compound is shown. The power of [Chemical Formula 15] is that the silsesquioxane of the hexagonal structure has four hydrogen atoms bonded to eight silicon atoms of approximately hexahedral structure via siloxane bonds, and via siloxane bonds. Four hexenyl groups are bonded, and a hydrogen atom and an unsaturated group of hexenyl are crosslinked by hydrosilylation reaction. This three-dimensional cross-linking structure has a structure in which nano-sized cage structures made of silica (glass) are connected by organic segments, and can exhibit a glass-like function. The crosslinked structure of the cured product obtained as described above has a structure close to that of glass, which is an inorganic material, in which the silicon atoms constituting the polyhedral structure of silsesquioxane are bonded to four oxygen atoms. However, since the organic group is not directly bonded to the silicon atom, it is difficult to deteriorate even if it is used in the state of being irradiated with light in the blue region and near ultraviolet region. Furthermore, since it has a nano-sized cage structure that also has silica (glass) force, the cured product has a higher crosslink density and lower water absorption than metalloxane obtained by the sol-gel method. Obtain power S. [0082] [Chemical 15]
Figure imgf000026_0001
Figure imgf000026_0001
[0083] ここで、上記のようにかご型シノレセスキォキサン化合物を水素原子と不飽和基とのヒ ドロシリル化反応で架橋させるにあたって、 [化 16]のような Aの炭素一炭素不飽和結 合を有する基として環状ビニルなどの環状炭化水素基を導入したかご型シルセスキ ォキサン化合物を用いた場合、環状炭化水素は立体障害が大きく、シクロへキセニ 」 ルの炭素一炭素不飽和結合と水素原子(—C=CZ—SiH)の間の架橋反応が進行 し難く、かご型シルセスキォキサン化合物を架橋した硬化物中に未反応基が残基と 'して残り易い。このように未反応基力硬化物中に残ると、硬化物のブルーレイ照射耐 性などの耐久性に問題が生じるおそれ力 Sある。 [0083] Here, when the cage-type cinolesesquioxane compound is crosslinked by a hydrosilylation reaction between a hydrogen atom and an unsaturated group as described above, the carbon-to-carbon unsaturation of A as shown in [Chemical Formula 16] When a caged silsesquioxane compound in which a cyclic hydrocarbon group such as cyclic vinyl is introduced as a group having a bond is used, the cyclic hydrocarbon has a large steric hindrance, and the carbon-carbon unsaturated bond of cyclohexenyl and hydrogen The cross-linking reaction between atoms (—C = CZ—SiH) does not proceed easily, and unreacted groups are likely to remain as residues in the cured product obtained by cross-linking the cage silsesquioxane compound. If it remains in the unreacted basic cured product in this way, there is a risk of causing problems in durability such as Blu-ray irradiation resistance of the cured product.
[0084] [化 16] ■ [0084] [Chemical 16] ■
Figure imgf000026_0002
Figure imgf000026_0002
[0085] しかしながら、本実施の形態 2のように、 Aの炭素—炭素不飽和結合を有する基とし て鎖状ビニルなどの鎖状炭化水素基を導入したかご型シルセスキォキサン化合物を 用いることによって、立体障害が起き難くなり、水素原子と炭素一炭素不飽和結合の 間の架橋反応が著しく促進され、未反応残基の量も低減される。この結果、未反応 残基に起因する信頼性低下を防ぐことが可能になり、ブルーレイ照射耐性などの耐 久性が高レ、硬化物を得ることができる。 差替え用紙 (規則 26) 実施例 However, as in Embodiment 2, a cage-type silsesquioxane compound into which a chain hydrocarbon group such as chain vinyl is introduced as the group having a carbon-carbon unsaturated bond of A is used. Thus, steric hindrance is less likely to occur, the crosslinking reaction between the hydrogen atom and the carbon-carbon unsaturated bond is significantly accelerated, and the amount of unreacted residues is also reduced. As a result, it is possible to prevent a decrease in reliability due to unreacted residues, and a cured product can be obtained with high durability such as Blu-ray irradiation resistance. Replacement paper (Rule 26) Example
[0086] 次に、本発明を実施例によって具体的に説明する。  Next, the present invention will be specifically described with reference to examples.
[0087] (実施例 1)  [0087] (Example 1)
還流管と滴下ロートを取り付けた lOOOmLのフラスコに水酸化テトラメチルアンモニ ゥム 334mL、メタノール 164mL、水 123mLを投入して攪拌した。そして滴下ロート に 179mLのテトラエトキシシラン (TEOS)を装てんし、フラスコ全体を氷浴で約 5°C になるまで冷却して、約 5°Cになった時点で TEOSを滴下した。滴下開始から約 1時 間で 179mLの TEOSの滴下を完了させた。滴下完了後、 10分間氷浴中での攪拌 を継続した後、氷浴を取り除き、その後、室温で 10時間攪拌して反応を進めた。 10 時間の室温攪拌を完了した後、反応生成物をろ過し、ろ液としてォクタァニオン/メ タノール溶液を得た。  Tetramethylammonium hydroxide (334 mL), methanol (164 mL), and water (123 mL) were added to an lOOOOmL flask equipped with a reflux tube and a dropping funnel and stirred. The dropping funnel was charged with 179 mL of tetraethoxysilane (TEOS), and the whole flask was cooled to about 5 ° C in an ice bath, and when the temperature reached about 5 ° C, TEOS was added dropwise. The dripping of 179 mL of TEOS was completed in about 1 hour from the start of dripping. After completion of the dropwise addition, stirring in an ice bath was continued for 10 minutes, then the ice bath was removed, and then the reaction was allowed to proceed by stirring at room temperature for 10 hours. After 10 hours of room temperature stirring, the reaction product was filtered to obtain an octanion / methanol solution as a filtrate.
[0088] 次いで、還流管と滴下ロートを取り付けた lOOOmLのフラスコに、へキサン 895mL 、ジメチルクロロシラン 69· 7mLを投入し、攪拌した。そして滴下ロートにォクタァニォ ン/メタノール溶液を装てんし、フラスコ内の溶液を約 5°Cになるまで冷却して、窒素 雰囲気下で、約 5°Cになった時点でォクタァユオン/メタノール溶液を滴下した。滴 下開始から約 2時間で 334mLのォクタァニオン/メタノール溶液の滴下を完了させ た。滴下終了後、 10分間氷浴中で攪拌し、攪拌を継続したまま、氷浴を取り除き、さ らに室温で 6時間攪拌して、反応を進行させた。 6時間攪拌後、 2Lの分液ロートにフ ラスコ内の溶液を移し、下層のメタノール層を取り出した。そして上層のへキサン層を 2Lの三角フラスコに移し、硫酸ナトリウムを加え、約 10分間静置することにより、溶液 中の水分を乾燥させた。また、下層のメタノール層にへキサン lOOmLを加えて反応 物の抽出を行なった後、静置して形成された上層のへキサン層を、上記のへキサン 層を移した 2L三角フラスコに移し、溶液中の水分の乾燥を行なった。次にこの乾燥し 終えたへキサン層を 1Lナス型フラスコに移し、ロータリーエバポレーターを用いて、 溶液からへキサンを揮発させ、系内から除去した。このへキサンを揮発させた 1Lナス 型フラスコ中に残存している湿った白色固体を、真空ポンプを用いて、減圧下(133 Pa (lmmHg) ,室温)でさらに乾燥した。そして白色固体の入っている 1Lナス型フラ スコにァセトニトリルを加え、白色固体を攪拌した後、吸引濾過瓶で固体をろ別した。 次にこのろ別した白色固体を lOOmLビーカーに移し、さらにァセトニトリル lOOmLで 洗浄し、吸引ろ過することで白色固体を取り出した。この洗浄操作を 2回繰り返した後 、真空ポンプを用いて減圧下で乾燥することによって、白色固体のォクタキス [ヒドリド ジメチルシロキシ]シルセスキォキサン(OHSS)を得た。このときの収率は 56%であ つた。 [0088] Next, 895 mL of hexane and 69 · 7 mL of dimethylchlorosilane were added to an lOOOOmL flask equipped with a reflux tube and a dropping funnel and stirred. Then, the octane / methanol solution was loaded into the dropping funnel, the solution in the flask was cooled to about 5 ° C, and when the temperature reached about 5 ° C in a nitrogen atmosphere, the octaneon / methanol solution was dropped. . The dripping of 334 mL of octacanion / methanol solution was completed in about 2 hours from the start of dripping. After completion of the dropwise addition, the mixture was stirred for 10 minutes in an ice bath, while the stirring was continued, the ice bath was removed, and the mixture was further stirred at room temperature for 6 hours to proceed the reaction. After stirring for 6 hours, the solution in the flask was transferred to a 2 L separatory funnel, and the lower methanol layer was taken out. The upper hexane layer was transferred to a 2 L Erlenmeyer flask, sodium sulfate was added, and the mixture was allowed to stand for about 10 minutes to dry the water in the solution. Also, after extracting the reaction product by adding hexane mL to the lower methanol layer, the upper hexane layer formed by standing was transferred to the 2 L Erlenmeyer flask to which the above hexane layer was transferred, The water in the solution was dried. Next, the dried hexane layer was transferred to a 1 L eggplant type flask, and the hexane was volatilized from the solution using a rotary evaporator and removed from the system. The damp white solid remaining in the 1 L eggplant type flask where hexane was volatilized was further dried under reduced pressure (133 Pa (lmmHg), room temperature) using a vacuum pump. Acetonitrile was added to a 1 L eggplant-shaped flask containing a white solid, the white solid was stirred, and then the solid was filtered off with a suction filter bottle. Next, this filtered white solid was transferred to a lOOmL beaker, further washed with acetonitrile lOOmL, and suction filtered to take out the white solid. This washing operation was repeated twice, followed by drying under reduced pressure using a vacuum pump to obtain white solid octakis [hydridodimethylsiloxy] silsesquioxane (OHSS). The yield at this time was 56%.
[0089] 次に、還流冷却器を有する 250mLのシュレンクフラスコに、上記の OHSSを 20g ( 20mmol)仕込んだ。このフラスコを真空下で徐々に加熱して残留空気と水分を除去 した後、窒素を流し、次に、トルエンを 50mL、 4—ビュル一 1—シクロへキセンを 8. 7 g (80mmol)、及び角虫媒として 2mMの Pt (dcp)—トノレェン溶 ί夜を 0. 2mL (Pt : 0. 4p pm)添加した。そしてこの混合物を 90°Cで 5時間攪拌しながら反応させた後、溶媒を 除去することによって、白色の粉状生成物 27. 5g (0. 019mol)を得た。このときの収 率は 94%であった。  Next, 20 g (20 mmol) of the above OHSS was charged into a 250 mL Schlenk flask having a reflux condenser. The flask was heated gradually under vacuum to remove residual air and moisture, then flushed with nitrogen, then toluene (50 mL), 4-bule-1-cyclohexene (8.7 g, 80 mmol), and As a horn beetle medium, 0.2 mM (Pt: 0.4 ppm) of 2 mM Pt (dcp) -tonolenic solution was added. The mixture was reacted with stirring at 90 ° C. for 5 hours, and then the solvent was removed to obtain 27.5 g (0.019 mol) of a white powder product. The yield at this time was 94%.
[0090] 得られた反応物を、 1H— NMRスペクトルと、 13C— NMRスペクトルで分析した結 果、構造式が式(1)において、 Aがシクロへキセニル基、 R , R , R , R力 Sメチル基、  [0090] As a result of analyzing the obtained reaction product by 1H-NMR spectrum and 13C-NMR spectrum, the structural formula was formula (1), A was a cyclohexenyl group, R 1, R 2, R 3, R force S methyl group,
1 2 3 4  1 2 3 4
mが 8、 n力 、 p力 、 qが 0である、構造式が次の [化 10]で示されるテトラキス (シクロ であることが確認された。  It was confirmed that m is 8, n force, p force, q is 0, and the structural formula is tetrakis (cyclo) represented by the following [Chemical Formula 10].
[0091] [化 10] [0091] [Chemical 10]
Figure imgf000028_0001
Figure imgf000028_0001
[0092] 次いで、このように得られたかご型シルセスキォキサン化合物にァセトニトリル溶媒 を添加して精製した後、白色沈殿物をろ過した。この手順を 3回繰り返して精製し、最 終的に得られた白色粉末を真空中で乾燥させた。精製した力、ご型シルセスキォキサ ン化合物の収量は 3· 5g (2. 4mmol、 24. 5%)であった。 Next, the basket-type silsesquioxane compound thus obtained was purified by adding a acetonitrile solvent, and then the white precipitate was filtered. This procedure was repeated three times for purification, and the resulting white powder was dried in vacuo. The purified force, yield of the gale silsesquioxane compound was 3.5 g (2.4 mmol, 24.5%).
[0093] そしてこの得られたかご型シルセスキォキサン化合物をテフロン (登録商標)製の型 に流し込み、 90°Cで加熱溶融させた後、減圧で脱気し、さらに真空を維持したまま 2 00°Cに昇温し、 5時間加熱して硬化させることによって、樹脂板を得た。樹脂板は 5c m X 3cmのサイズとし、厚さは約 lmmとした。 [0093] The cage-type silsesquioxane compound thus obtained was poured into a mold made of Teflon (registered trademark), heated and melted at 90 ° C, degassed under reduced pressure, and further maintained under vacuum. The temperature was raised to 00 ° C. and heated for 5 hours to cure to obtain a resin plate. The resin plate had a size of 5 cm x 3 cm and a thickness of about 1 mm.
[0094] この樹脂板の光透過率の波長依存性を、紫外 ·可視 ·近赤外分光光度計(島津製 作所製「UV— 3100PC」)を用いて、スリット幅 20nmで測定した。尚、比較のために 、芳香族成分を含有しな!、シリコーン樹脂 (信越化学工業社製「KE— 006」)を用い て成形 ·硬化させた樹脂板と、光透過性脂環式エポキシ樹脂を用レ、て成形 ·硬化さ せた樹脂板についても同様に測定した。結果を図 3に示す。図 3にみられるように、 本実施例の樹脂板は低波長まで高い透明性を有することが確認された。  [0094] The wavelength dependence of the light transmittance of the resin plate was measured using an ultraviolet, visible, and near-infrared spectrophotometer ("UV-3100PC" manufactured by Shimadzu Corporation) at a slit width of 20 nm. For comparison, it does not contain an aromatic component! A resin plate molded and cured using a silicone resin (“KE-006” manufactured by Shin-Etsu Chemical Co., Ltd.) and a light-transmitting alicyclic epoxy resin The same measurement was conducted on a resin plate that was molded and cured. The results are shown in Figure 3. As can be seen in FIG. 3, it was confirmed that the resin plate of this example has high transparency up to a low wavelength.
[0095] 次に、図 4に示すように、基板 1のキヤビティ laの底部に発光波長のピークが 380η mの半導体発光素子 2を実装し、上記のように得られたかご型シルセスキォキサン化 合物をキヤビティ la内に充填して、 200°Cで 5時間加熱して硬化させることによって、 半導体発光素子 2を封止し、半導体光装置を作製した。そして、この半導体光装置を 室温の状態で、半導体発光素子 2を点灯し、点灯開始時の照度に対する光束の維 持率を測定した。このとき比較のために、芳香族成分を含有しないシリコーン樹脂( 信越化学工業社製「KE— 006」)を用いて封止した半導体光装置と、光透過性脂環 式エポキシ樹脂を用いて封止した半導体光装置についても同様に測定した。結果を 図 5に示す。図 5にみられるように、本実施例で得られたかご型シルセスキォキサン化 合物を用いて封止した半導体光装置は、 1000時間を越えても、光束が 90%近く維 持されており、高!/、耐性を有して!/、ることが確認された。  Next, as shown in FIG. 4, a semiconductor light-emitting element 2 having an emission wavelength peak of 380 ηm is mounted on the bottom of the cavity la of the substrate 1, and the cage silsesquioxane obtained as described above is mounted. The compound was filled into the cavity la and heated at 200 ° C. for 5 hours to cure, thereby sealing the semiconductor light emitting element 2 and fabricating a semiconductor optical device. Then, with this semiconductor optical device at room temperature, the semiconductor light emitting element 2 was turned on, and the maintenance rate of the luminous flux with respect to the illuminance at the start of lighting was measured. At this time, for comparison, a semiconductor optical device sealed with a silicone resin containing no aromatic component (“KE-006” manufactured by Shin-Etsu Chemical Co., Ltd.) and a light-transmitting alicyclic epoxy resin are used for sealing. The same measurement was performed for the stopped semiconductor optical device. The results are shown in Fig. 5. As can be seen in FIG. 5, the semiconductor optical device encapsulated with the cage-type silsesquioxane compound obtained in this example maintains a light flux of nearly 90% even after 1000 hours. It was confirmed that it was high! / And resistant! /.
[0096] また、この結果を元に光束の維持率が初期の 50%に落ち込む時間で定義される 寿命を、下記の Lehmann式で予測したところ、 6万時間以上の寿命であることが確認 された。 [0096] Based on this result, the lifetime defined by the time when the luminous flux maintenance factor falls to 50% of the initial value was predicted by the following Lehmann equation, and it was confirmed that the lifetime was 60,000 hours or more. It was.
[0097] Φ (ΐ) = Φ (O) exp (—(t/ τ ) p)  [0097] Φ (ΐ) = Φ (O) exp (— (t / τ) p)
Φ (t): t時間後の光束、 Φ (0):初期光束、 τ:劣化の時定数、 ρ :定数  Φ (t): luminous flux after t time, Φ (0): initial luminous flux, τ: time constant of degradation, ρ: constant
[0098] (実施例 2) [Example 2]
還流冷却器を有する lOOmLのシュレンクフラスコに、実施例 1で得た OHSSを lg ( lmmol)仕込んだ。このフラスコを真空下で加熱して残留空気と水分を除去した後、 窒素を流し、次に、トルエンを 5mL、 4—ビュル一 1—シクロへキセンを 0. 32g (2. 9 mmol)、ジメチルビュルエトキシシランを 0. 25g (l . 9mmol)、及び触媒として 2mM の Pt (dcp)—トルエン溶液を 0· lmL (Pt : 0. 02ppm)フラスコに添加した。そしてこ の混合物を 90°Cで 4時間攪拌しながら反応させた後、溶媒を真空中、室温で蒸発さ せることによって、白色粉末 1. 49g (0. 95mmol)を得た。このときの収率は 95%で あった。 The OHSS obtained in Example 1 was charged to lg (lmmol) in a lOOmL Schlenk flask having a reflux condenser. The flask was heated under vacuum to remove residual air and moisture, then flushed with nitrogen, and then 5 mL of toluene, 0.32 g of 4-Buyl 1-cyclohexene (2. 9 mmol), 0.25 g (l. 9 mmol) of dimethyl butylethoxysilane, and 2 mM Pt (dcp) -toluene solution as a catalyst were added to a 0 · l mL (Pt: 0.02 ppm) flask. The mixture was reacted with stirring at 90 ° C. for 4 hours, and the solvent was evaporated in vacuum at room temperature to obtain 1.49 g (0.95 mmol) of a white powder. The yield at this time was 95%.
[0099] 得られた反応物を、 1H— NMRスペクトルと、 13C— NMRスペクトルで分析した結 果、構造式が式(1)において、 Aがシクロへキセニル基、 R , R , R , R , R , Rがメ  [0099] As a result of analyzing the obtained reaction product by 1H-NMR spectrum and 13C-NMR spectrum, the structural formula was Formula (1), A was a cyclohexenyl group, R 1, R 2, R 3, R 4, R and R are
1 2 3 4 5 6 チル基、 mが 8、 nが 3、 pが 3、 qが 2である、構造式が次の [化 11]で示されるトリス [シ シリノレエチノレジメチノレシ口キシ]シノレセスキ才キサンであることが確認、された。  1 2 3 4 5 6 Tyl group, m is 8, n is 3, p is 3, q is 2, and tris is represented by the following chemical formula: It was confirmed and confirmed that she was a Chile Sesuki-san.
[0100] [化 11] si812 [0100] [Chemical 11] si 8 . 12
Figure imgf000030_0001
Figure imgf000030_0001
[0101] 上記のように得られたトリス [シクロへキセニルェチルジメチルシ口キシ]トリス [ジメチ [0101] Tris [cyclohexenylethyldimethylsilane] tris [dimethi] obtained as described above
THF溶媒に溶解し、水、 HC1触媒存在下、 90°Cで 6時間加熱して加水分解した。そ して得られた加水分解物を濃縮した組成物を 10mLテフロン (登録商標)製の型に流 し込み、 90°Cに加熱して溶融させた後、減圧で脱気し、真空を維持したまま 200°C に昇温して、 5時間加熱して硬化させることによって樹脂板を得た。樹脂板は 5cm X 3cmのサイズとし、厚さは約 lmmとした。 It was dissolved in THF solvent and hydrolyzed by heating at 90 ° C for 6 hours in the presence of water and HC1 catalyst. The resulting hydrolyzate-concentrated composition is poured into a 10 mL Teflon (registered trademark) mold, heated to 90 ° C to melt, and then degassed under reduced pressure to maintain the vacuum. The resin plate was obtained by raising the temperature to 200 ° C. and heating for 5 hours to cure. The resin plate had a size of 5 cm x 3 cm and a thickness of about 1 mm.
[0102] 得られたトリス [シクロへキセニノレエチノレジメチノレシ口キシ]トリス [ジメチノレシ口キシ]ジ[ ジメチノレエトキシシリノレエチノレジメチノレシ口キシ]シノレセスキ才キサンをテフロン(登録 商標)製の型に入れ、 90°Cに加熱して溶融した後、減圧で脱気した。その後、 90°C で 30分間加熱し、得られた固形分を THF溶媒に溶解し、水、 HC1触媒存在下、 90 °Cで 6時間加水分解した。得られた加水分解物を濃縮して得られる組成物を 10mL テフロン (登録商標)製の型に流し込み、 200°Cで 5時間加熱して硬化させることによ つて樹脂板を得た。樹脂板は 5cmX 3cmのサイズとし、厚さは約 lmmとした。 [0103] この結果、上記のように得られたトリス [シクロへキセニルェチルジメチルシ口キシ]トリ ス [ジメチルシ口キシ]ジ [ジメテルエトキシシリルェチルジメチルシロキシ]シノレセスキォ キサンは、硬化させるに当たって、加水分解重縮合した後に付加反応硬化させても 良 また付加反応した後に加水分解重縮合させても良レヽことが確認された。 [0102] The resulting tris [cyclohexenoreethinoresi methinoresoxy] tris [dimethino lescioxy] di [dimethenoreethoxysilino retinoresin methinoresoxy] cinolessesquixane was produced by Teflon (registered trademark) It was put into a mold, heated to 90 ° C to melt, and then deaerated under reduced pressure. Thereafter, the mixture was heated at 90 ° C. for 30 minutes, and the resulting solid was dissolved in THF solvent and hydrolyzed at 90 ° C. for 6 hours in the presence of water and HC1 catalyst. The composition obtained by concentrating the obtained hydrolyzate was poured into a 10 mL Teflon (registered trademark) mold and cured by heating at 200 ° C. for 5 hours to obtain a resin plate. The resin plate had a size of 5 cm x 3 cm and a thickness of about 1 mm. [0103] As a result, the tris [cyclohexenylethyldimethylsilane] tris [dimethylsilaneoxy] di [dimethyl ethersilylethyldimethylsiloxy] cinolesesquioxane obtained as described above was used for curing. It was confirmed that the addition reaction could be cured after hydrolysis polycondensation, and it was confirmed that the addition could be cured by hydrolysis polycondensation after the addition reaction.
[0104] (実施例 3)  [Example 3]
三口フラスコに滴下ロート、温度計、試薬注入弁を取り付けた器具を組み、三ロフ ラスコにへキサン 376inL、ァリ /レジメチルクロルシラン 33. 8mL、ジメチルクロノレシラ ン 4. 3mLを投入した。次に三口フラスコ内の系全体を 5°C以下になるように氷浴で 冷却し、系内の温度が 5°C以下になったことを確認した後、奪素気流下で滴下ロート 力 ォクタァニオン 140mLを 1〜2滴 Z秒の速さで滴下した。このとき、ォクタァニォ ンの 8つの反応サイトの全てにァリルジメチルクロルシランとジメチルクロルシランを置 換させるために、ァリルジメチルクロルシランとジメチルクロルシランの配合量はォクタ ァニオンに対して大過剰となるように設定する必要力 Sある。 .  An apparatus equipped with a dropping funnel, thermometer, and reagent injection valve was assembled in a three-necked flask, and 376inL of hexane, 33.8 mL of ali / redimethylchlorosilane, and 4.3 mL of dimethyl chronoresyllan were added to the three-layer flask. Next, the whole system in the three-necked flask is cooled in an ice bath to 5 ° C or less, and after confirming that the temperature in the system is 5 ° C or less, dripping funnel canyon under a deaeration flow 140 mL was added dropwise at a rate of 1-2 drops Z seconds. At this time, in order to replace allyl dimethyl chlorosilane and dimethyl chlorosilane at all eight reaction sites of octanion, the amount of allyl dimethyl chlorosilane and dimethyl chlorosilane is very large with respect to octan anion. There is a necessary power S to be set. .
[0105] 滴下完了後、氷浴を外し、室温で 6時間攪拌して [化 12]に示すようにォクタァニォ 応溶液をへキサンで 3回抽出し、へキサン層を乾燥剤 (硫酸ナトリウム)で乾燥させた 後、吸引濾過した。得られたろ液をエバポレーターにかけてへキサンを留去し、さら にへキサンを除去して得られた反応生成物力 未反応原料を真空ポンプで 45°Cで 加熱しながら除去して、精製することによって、一SiH基を 2個持つへキサァリルシル セスキ才キサンを得た。  [0105] After completion of the dropwise addition, the ice bath was removed, the mixture was stirred at room temperature for 6 hours, and the Octano reaction solution was extracted three times with hexane as shown in [Chemical Formula 12], and the hexane layer was extracted with a desiccant (sodium sulfate). After drying, suction filtration was performed. The obtained filtrate is passed through an evaporator to distill off hexane, and the reaction product obtained by further removing hexane. Unreacted raw materials are removed by heating at 45 ° C with a vacuum pump and purified. Hexalylsilsesquian xanthone with two SiH groups was obtained.
[0106] !? [匕 12] [0106]! [匕 12]
(ァリルジメチルクロルシラン)  (Aryldimethylchlorosilane)
Figure imgf000031_0001
6
Figure imgf000031_0001
6
(ォクタァニオン) (ジメチルクロル ン) (へキサァリルシルセスキォキサン) (Octanion) (Dimethylchloro) (Hexalylsilsesquioxane)
[0107] そして [化 12]のように合成したへキサァリルシルセスキォキサン 1 · Ogに、式(2)の 化合物としてテトラメチルジシロキサン 0. 24gを配合し、さらに 3. 0ズ10ー3質量%濃 度の Pt (cts)トルエン溶液を、系全体の lppin加え、均一に混合した後、空気中、 12 差替え用紙(規則 26) 0°Cで 3時間加熱することによって硬化させ、無色透明な樹脂板を得た。 [0107] Hexalylsilsesquioxane 1 · Og synthesized as shown in [Chemical Formula 12] was mixed with 0.24 g of tetramethyldisiloxane as the compound of formula (2), and 3.0 Add 10% to 3 % by weight Pt (cts) toluene solution to the entire system and mix evenly, then in the air, 12 replacement paper (Rule 26) It was cured by heating at 0 ° C. for 3 hours to obtain a colorless and transparent resin plate.
[0108] (参考例 1)  [0108] (Reference Example 1)
実施例 3にお!/、て [化 12]の— SiH基を 2個持つへキサァリルシルセスキォキサンを 合成する方法において、へキサン 376mLに、ァリルジメチルクロルシランを 19. 8m L、ジメチルクロルシランを 14. 6mL配合し、ォクタァニオンを反応させるようにした他 は、同様にして反応 '精製することによって、上記 [化 4]に示す— SiH基を 4個持つテ トラァリルシルセスキォキサンを合成した。  In Example 3, in the method of synthesizing hexarylsilsesquioxane having two SiH groups in [Chemical Formula 12], 19.8 mL of allyldimethylchlorosilane was added to 376 mL of hexane. As shown in the above [Chemical 4], except that 14.6 mL of dimethylchlorosilane was added and octanion was allowed to react, it was shown in the above [Chemical 4]. Axane was synthesized.
[0109] そしてこの [化 4]のテトラァリルシルセスキォキサンに 3. 0 X 1CT3質量%濃度の Pt [0109] Then, tetraylsilsesquioxane in [Chemical Formula 4] is added with 3.0 X 1CT 3 wt% Pt
(cts)トルエン溶液を lppm加え、均一に混合した後、空気中、 120°Cで 3時間加熱 することによって硬化させ、無色透明な樹脂板を得た。  (cts) lppm of toluene solution was added and mixed uniformly, and then cured by heating in air at 120 ° C for 3 hours to obtain a colorless and transparent resin plate.
[0110] 上記の実施例 3及び参考例 1で得た樹脂板をアセトン溶液 (RT)に浸漬し、浸漬中 の樹脂板の割れの有無でストレスクラッキングを評価した。その結果、かご型シルセス キォキサン化合物をダイレクトに架橋させた参考例 1の樹脂板は、アセトン溶液に浸 漬することによって瞬時に割れが生じた力 かご型シルセスキォキサン化合物を反応 性モノマーで架橋した実施例 3の樹脂板には割れは生じなかった。  [0110] The resin plates obtained in Example 3 and Reference Example 1 were immersed in an acetone solution (RT), and stress cracking was evaluated based on the presence or absence of cracks in the resin plate during the immersion. As a result, the resin plate of Reference Example 1 in which the cage-type silsesquioxane compound was directly crosslinked was cross-linked with a reactive monomer. The cage-type silsesquioxane compound was instantly cracked by immersion in an acetone solution. The resin plate of Example 3 was not cracked.
[0111] (実施例 4)  [0111] (Example 4)
三口フラスコに滴下ロート、温度計、試薬注入弁を取り付けた器具を組み、三ロフ  Assemble a three-neck flask with a dropping funnel, thermometer, and reagent injection valve.
8. 7mLを投入した。次に三口フラスコ内の系全体を 5°C以下になるように氷浴で冷 却し、系内の温度が 5°C以下になったことを確認した後、窒素気流下で滴下ロートか らォクタァニオン 140mLを 1〜2滴/秒の速さで滴下した。このとき、ォクタァニオン の 8つの反応サイトの全てにァリルジメチルクロルシランとジメチルクロルシランを置換 させるために、ァリルジメチルクロルシランとジメチルクロルシランの配合量はォクタァ 二オンに対して大過剰となるように設定する必要がある。 8. Charged 7 mL. Next, the whole system in the three-necked flask is cooled in an ice bath to 5 ° C or lower, and after confirming that the temperature in the system has decreased to 5 ° C or lower, from the dropping funnel under a nitrogen stream. 140 mL of Octanion was added dropwise at a rate of 1 to 2 drops / second. At this time, since all of the eight reaction sites of octanion are substituted with gallium dimethyl chlorosilane and dimethyl chlorosilane, the amount of allyl dimethyl chlorosilane and dimethyl chlorosilane is excessively large with respect to octanion. It is necessary to set as follows.
[0112] 滴下完了後、氷浴を外し、室温で 6時間攪拌して [化 13]に示すようにォクタァニォ 応溶液をへキサンで 3回抽出し、へキサン層を乾燥剤 (硫酸ナトリウム)で乾燥させた 後、吸引濾過した。得られたろ液をエバポレーターにかけてへキサンを留去し、さら にへキサンを除去して得られた反応生成物から未反応原料を真空ポンプで 45°Cで 加熱しながら除去して、精製することによって、 SiH基を 6個持つジァリルシルセス キ才キサンを得た。 [0112] After completion of the dropwise addition, the ice bath was removed, the mixture was stirred at room temperature for 6 hours, and the Octano reaction solution was extracted three times with hexane as shown in [Chemical Formula 13], and the hexane layer was extracted with a desiccant (sodium sulfate). After drying, suction filtration was performed. The obtained filtrate is subjected to an evaporator to distill off hexane, and further By removing the unreacted raw material from the reaction product obtained by removing hexane in the vacuum pump while heating at 45 ° C with a vacuum pump, and purifying it, a diarylsilsesquioxane having 6 SiH groups was obtained. .
[化 13]  [Chemical 13]
0 -Si-°~-si - 0-Si- H
Figure imgf000033_0001
0 -Si- ° ~ -si-0-Si- H
Figure imgf000033_0001
(Octaani n)  (Octaani n)
[0114] そして [化 13]のように合成したジァリルシルセスキォキサン 1· Ogに、式' (3)の化合 物としてジビニルテトラメチルジシロキサン 1. 137gを配合し、さらに 3. 0 X 1CT3質量 %濃度の Pt(cts)トルエン溶液を、系全体の lppm加え、均一に混合した後、空気中 、 120°Cで 4時間加熱することによって硬化させ、無色透明な樹脂板を得た。 [0114] Then, 1.137 g of divinyltetramethyldisiloxane as a compound of the formula (3) is mixed with 1 · Og of diarylsilsesquioxane 1 · Og synthesized as in [Chem. Add 1 ppm of Pt (cts) toluene solution with a concentration of 3 % by mass of 1CT, mix uniformly, and then cure by heating at 120 ° C for 4 hours in air to obtain a colorless and transparent resin plate It was.
[0115] (参考例 2) /一 - o  [0115] (Reference Example 2) / 1-o
丄so -- 三口フラスコに滴下ロート、温度計、試薬注入弁を取り付けた器?一 -具を取り付け、三口 フラスコにへキサン 188mL、ジメチルへキセニノレクロルシラン 12. 16mL、ジメチノレク ロノレシラン 7. 5mLを投入し、系全体を 5°C以下になるように水浴で冷却 oし、系内の温 度が 5°C以下になった時点で、滴下ロートからォクタァニオン 70mLを 1~2/ / s滴 Z秒の 速さで滴下した。滴下完了後、水浴を外し、室温で 6時間攪拌して反応させた。得ら れた反応溶液をへキサン 40mLで 3回抽出し、へキサン層を乾燥剤 (硫酸ナトリウム) で乾燥させた後、吸引濾過した。得られたろ液をエバポレーシヨンしてへキサンを留 去し、得られた反応生成物力 未反応原料を真空ポンプで 50°Cで加熱しながら除去 して精製することによって、 [化 14]に示すような一 SiH基を 4個持つテトラへキセニル シルセスキォキサンを得た。  丄 so-A three-necked flask equipped with a dropping funnel, thermometer, and reagent injection valve? Attach 188 mL of hexane, dimethylhexenol chlorosilane 12.16 mL, and dimethino chloronorolesilane 7.5 mL to a three-necked flask, and cool the whole system with a water bath to 5 ° C or less. When the inside temperature became 5 ° C. or lower, 70 mL of Octanion was added dropwise from the dropping funnel at a rate of 1 to 2 / s drop Z seconds. After completion of the dropwise addition, the water bath was removed and the reaction was allowed to stir at room temperature for 6 hours. The obtained reaction solution was extracted 3 times with 40 mL of hexane, and the hexane layer was dried with a desiccant (sodium sulfate) and then filtered with suction. As shown in [Chemical Formula 14], the obtained filtrate is evaporated to remove hexane, and the reaction product power obtained is removed by purification while heating at 50 ° C with a vacuum pump. A tetrahexenyl silsesquioxane having four SiH groups was obtained.
[0116] そして [化 14]のように、上記の [化 13]で得たジァリルシルセスキォキサンと、テトラ へキセニルシルセスキォキサンとを、 30 : 70の質量比で混合し、 120°Cで 4時間加熱 することによって、カ^間をダイレクトに架橋させて硬化させ、無色透明な樹脂板を得 た。  [0116] Then, as in [Chemical Formula 14], the diallyl silsesquioxane obtained in [Chemical Formula 13] above and tetrahexenylsilsesquioxane are mixed in a mass ratio of 30:70, By heating at 120 ° C for 4 hours, the spaces were directly crosslinked and cured to obtain a colorless and transparent resin plate.
[0117] [化 14] 差替え用紙 (規則 26)
Figure imgf000034_0001
[0117] [Formula 14] Replacement paper (Rule 26)
Figure imgf000034_0001
[0118] 実施例 4で得た樹脂板と、参考例 2で得た樹脂板にっレ、て、ブルーレイ(BluRay) 照射耐性を評価した。試験は、各樹脂板にパワー密度 1. 1W/醒 2、スポットサイズ 200 mの条件で 405nmのブルーレイを照射し、照射部スクリーン拡大イメージ(フ ァーフィールドイメージ)の経時変化を観察し、また照射試験完了後のサンプルに対 しセナ /レモン観察をした。 [0118] The resin plate obtained in Example 4 and the resin plate obtained in Reference Example 2 were evaluated for BluRay irradiation resistance. In the test, each resin plate was irradiated with 405 nm Blu-ray under the conditions of power density 1.1 W / wake 2 and spot size 200 m, and the time-dependent change of the irradiated part screen enlarged image (far field image) was observed. Senna / lemon observation was performed on the sample after completion of the irradiation test.
[0119] 図 6 (a)に実施例 4のファーフィールドイメージの経時変化を、図 6 (b)に参考例 2の ファーフィールドイメージの経時変化を示す。図 6 (a) (b)にみられるように、シルセス キォキサンをダイレクトに架橋させた参考例 2のものに比べて、反応性モノマーで架 橋した実施例 4のものでは、ブルーレイの照射前(O r)に対してファーフィールドィメ ージの変化が少なぐ 240時間照射後(240 r)も殆ど変ィ,ヒしな力 た。.  FIG. 6 (a) shows the time-dependent change of the far field image of Example 4, and FIG. 6 (b) shows the time-dependent change of the far field image of Reference Example 2. As seen in Fig. 6 (a) and (b), compared to the reference example 2 in which silsesquioxane was directly crosslinked, the example 4 crosslinked with a reactive monomer was used before the Blu-ray irradiation ( The change in far-field image was small compared to O r). After 240 hours of irradiation (240 r), the change was almost unchanged. .
[0120] また図 7 (a)に実施例 4のセナルモン観察を、図 7 (b)に参考例 2のセナルモン観察 を示す。参考例 2のものでは図 7 (b)のように中央部に若于の照射痕がみられるが、 実施例 4のものでは図 7 (a)のように照射痕は全くみられな力 た。  [0120] Fig. 7 (a) shows the senalmon observation of Example 4, and Fig. 7 (b) shows the senalmon observation of Reference Example 2. In the case of Reference Example 2, a slight irradiation mark is seen at the center as shown in Fig. 7 (b), but in the case of Example 4, the irradiation mark was not seen as shown in Fig. 7 (a). .
[0121] 従って、シルセスキォキサンを反応性モノマーで架橋して硬ィ匕させるようにした実施 例 4のものは、ブルーレイ照射耐性が向上していることが確認された。  [0121] Therefore, it was confirmed that the product of Example 4 in which silsesquioxane was crosslinked with a reactive monomer and hardened was improved in the resistance to Blu-ray irradiation.
[0122] また、上記の実施例 4及び参考例 2で得た樹脂板をアセトン溶液 (RT)に浸漬し、 浸漬中の樹脂板の割れの有無でストレスクラッキングを評価した。その結果、参考.例 2の樹脂板はアセト 溶液に浸漬することによって瞬時に割れが生じた力 実施例 4 の樹月旨板には割れは生じな力つた。  [0122] Further, the resin plates obtained in Example 4 and Reference Example 2 were immersed in an acetone solution (RT), and stress cracking was evaluated based on the presence or absence of cracks in the resin plate during the immersion. As a result, the resin plate of Reference Example 2 was instantly cracked when immersed in an aceto solution.
[0123] (実施例 5) [0123] (Example 5)
三口フラスコに滴下ロート、温度計、試薬注入弁を取り付けた器具を組み、三ロフ ラスコにへキサン 376mL、ァリルジメチルクロノレシラン 33. 8mL、ジメチノレクロルシラ ン 4. 3niLを投入した。次に三口フラスコ内の系全体を 5°C以下になるように氷浴で 冷却し、系内の温度が 5°C以下になったことを確認した後、窒素気流下で滴下ロート 差替え用紙(規則 26) 力 ォクタァニオン 140mLを 1〜2滴ノ秒の速さで滴下した。このとき、ォクタァニォ ンの 8つの反応サイトの全てにァリルジメチルシクロルシランとジメチルクロルシランを 置換させるために、ァリルジメチルクロルシランとジメチルクロルシランの配合量はォク タァニオンに対して大過剰となるように設定する必要がある。 An apparatus equipped with a dropping funnel, thermometer, and reagent injection valve was assembled in a three-necked flask, and 376 mL of hexane, 33.8 mL of allyldimethyl chronolesilane, and 4.3 niL of dimethinorechlorsilane were added to the three-flask. Next, the whole system in the three-necked flask is cooled in an ice bath to 5 ° C or less, and after confirming that the temperature in the system is 5 ° C or less, the dropping funnel replacement paper ( (Rule 26) Force Octanion 140 mL was added dropwise at a rate of 1-2 drops per second. At this time, in order to substitute allyldimethylcyclosilane and dimethylchlorosilane for all eight reaction sites of octanion, the compounding amount of allyldimethylchlorosilane and dimethylchlorosilane was much larger than octanion. It is necessary to set so that
[0124] 滴下完了後、永浴を外し、室温で 6時間攪拌して [化 17]に示すようにォクタァニォ 応溶液をへキサンで 3回抽出し、へキサン層を乾燥剤 (硫酸ナトリウム)で乾燥した後 、吸引濾過した。得られたろ液をエバポレーターにかけてへキサンを留去し、さらに へキサンを除去して得られた反応性生物力 未反応原料を真空ポンプで 45°Cで加. 熱しながら除去して、精製することによって、一 SiH基を 6個持つジァリルシルセスキ ォキサンを得た。  [0124] After completion of the dropwise addition, the permanent bath was removed, the mixture was stirred at room temperature for 6 hours, and the Octano solution was extracted three times with hexane as shown in [Chemical Formula 17], and the hexane layer was extracted with a desiccant (sodium sulfate). After drying, suction filtration was performed. Reactive biological force obtained by evaporating the obtained filtrate through an evaporator and further removing hexane and removing unreacted raw materials with a vacuum pump at 45 ° C. As a result, diallyl silsesquioxane having 6 SiH groups was obtained.
[0125] [化 17]  [0125] [Chemical 17]
Figure imgf000035_0001
2
Figure imgf000035_0001
2
(ォクタァニオン) (ジメチルクロルシラン) (ジァリルシルセスキォキサン)(Octanion) (Dimethylchlorosilane) (Diarylsilsesquioxane)
[0126] また、三口フラスコに滴下ロート、温度計、試薬注入弁を取り付け、三口: ラスコに へキサン 188mL、ジメチルへキセニルクロノレシラン 12. 16mLsジメチルクロルシラ ン 7. 5mLを投入した。次に三口フラスコ内の系全体を 5°C以下になるように水浴で ' 冷却し、系内の温度が 5°C以下になった時点で、滴下ロートからォクタァニオン 70m [0126] In addition, a dropping funnel into a three-necked flask, a thermometer fitted with a reagent injection valve, three-necked: flask hexane to 188 mL, hexenyl dimethylcyclohexyl Le Chrono les silane 12. 16 mL s-dimethyl chlorobenzene sila emissions 7. charged with 5 mL. Next, the whole system in the three-necked flask is cooled in a water bath so that the temperature is 5 ° C or less, and when the temperature in the system becomes 5 ° C or less, it is 70 m from the dropping funnel.
Lを 1~2滴 秒の速さで滴下した。このとき、ォクタァニオンの 8つの反応サイトの全 てにジメチルへキセニルクロルシランとジメチルクロルシランを置換させるために、ジメ チルへキセニルクロルシランとジメチルクロルシランの配合量はォクタァニオンに対し て大過剰となるように設定する必要がある。  L was dropped at a rate of 1 to 2 drops / second. At this time, in order to replace dimethylhexenylchlorosilane and dimethylchlorosilane in all of the eight reaction sites of octanion, the amount of dimethylhexenylchlorosilane and dimethylchlorosilane was much larger than octanion. It is necessary to set so that
[0127] 滴下完了後、氷浴を外し、室温で 6時間攪拌して [化 18]に示すようにォクタァニォ ンとジメチルへキセニノレクロルシラン及びジメチルクロルシランを反応させた。得られ ' た反応溶液をへキサン 40mLで 3回抽出し、へキサン層を乾燥剤(硫酸ナトリウム)で 差替え用紙 (規則 26) 乾燥した'後、吸引濾過した。得られたろ液をエバポレーシヨンしてへキサンを留去し、 さら 45°C で加熱しながら除去して、精製することによって、一SiH基を 4個持つテトラへキセ ノレシノレセスキ才キサンを得た。 [0127] After completion of the dropwise addition, the ice bath was removed, and the mixture was stirred at room temperature for 6 hours to react octanion with dimethylhexenoylchlorsilane and dimethylchlorosilane as shown in [Chemical Formula 18]. The obtained reaction solution was extracted with 40 mL of hexane three times, and the hexane layer was replaced with a desiccant (sodium sulfate). Replacement paper (Rule 26) After 'drying', it was filtered with suction. The obtained filtrate was evaporated to distill off hexane, and further removed by heating at 45 ° C., followed by purification to obtain a tetrahexenoresinoleseschi-born xylene having four 1 SiH groups.
[0128] [化 18]  [0128] [Chemical 18]
(ジメチルへキセニルクロルシラン〉  (Dimethylhexenylchlorosilane)
Figure imgf000036_0001
Figure imgf000036_0001
(ォクタァニオン) (ジメチルクロルシラン) (亍トラへキセニルシルセスキォキサン)  (Octanion) (dimethylchlorosilane) (シ ラ ン trahexenylsilsesquioxane)
[0129] そして [化 19]のように、ジァリルシルセスキォキサン 0. 4gとテトラへキセニルシルセ スキォキサン 0. 8gを配合し、さらに 3. 0 X 10一3質量0 /0濃度の Pt (cts)トルエン溶液 を、系全体の lppm加え、均一に混合した後、空気中、 120°Cで 4Bき間加熱すること によって硬化させ、無色透明な樹脂板を得た。 [0129] Then, as in [Formula 19], to di § Li Lucille sesquicarbonate O hexanes 0. 4g and tetra blended Kisenirushiruse Sukiokisan 0. 8 g, further 3. 0 X 10 one 3 mass 0/0 concentration of Pt ( cts) Toluene solution was added at lppm of the whole system, mixed uniformly, and then cured by heating in air at 120 ° C for 4B to obtain a colorless and transparent resin plate.
[0130] [化 19]  [0130] [Chemical 19]
硬化
Figure imgf000036_0002
Cure
Figure imgf000036_0002
(ジァリルシルセスキォキサン) (テ卜ラへキセニレシルセスキ才キサン)  (Dialylsilsesquioxane) (Tera Hexenile Silsesquioxane)
[0131] 実施例 5で得た樹脂板と、実施例 1で得た樹脂板について、プル一レイ (BluRay) 照射耐性を評価した。試験は、各樹脂板にパワー密度 1. 1W,讓 2、スポットサイズ 200 a mの条件でブノレーレイを照射し、照射部スクリーン拡大イメージ (ファーフィ一 ルドイメージ)の経時変化を観察し、またセナルモン観察をした。 [0131] With respect to the resin plate obtained in Example 5 and the resin plate obtained in Example 1, the blu-ray irradiation resistance was evaluated. In the test, each resin plate was irradiated with benoray ray under the conditions of a power density of 1.1 W, 讓2 and a spot size of 200 am, and the time-dependent changes in the screen image of the irradiated area (far field image) were observed. did.
[0132] 図 8 (a)に実施例 5のファーフィールドイメージの経時変化を、図 8 (b)に実施例 1の ファーフィールドイメージの経時変化を示す。図 8 (a) (b)にみられるように、式(1)の Aが環状ビニルの実施例 1では、照射 48hrよりファーフィールドイメージの中心部が 暗くなつてくるのに対して、式(1)の Aが鎖状の末端ビニルの実施例 1では、 183hr 照射後もファーフィールドイメージの中心部に変化はなぐファーフィールドイメージ 差替え用紙 (規則 26) 全体も大きな変化は見受けられない。 FIG. 8 (a) shows the time-dependent change of the far field image of Example 5, and FIG. 8 (b) shows the time-dependent change of the far field image of Example 1. FIG. As seen in Figs. 8 (a) and 8 (b), in Example 1 where A in the formula (1) is cyclic vinyl, the center of the far field image becomes darker after 48 hours of irradiation, whereas the formula ( In Example 1 of 1) where A is a chain-end vinyl, the far-field image where the center of the far-field image does not change after irradiation for 183 hours Replacement paper (Rule 26) There is no big change in the whole.
[0133] また図 9 (a)に実施例 5のセナルモン観察を、図 9 (b)に実施例 1のセナルモン観察 を示す。実施例 1のものでは図 9 (b)のように照射痕がありダメージがみられる。一方 、実施例 5のものでは図 9 (a)のように 183hr照射後に若干のダメージが見受けられ る力 実施例 1のものに比べてダメージは極端に小さい。  FIG. 9 (a) shows the senalmon observation of Example 5, and FIG. 9 (b) shows the senalmon observation of Example 1. In Example 1, there is an irradiation mark as shown in FIG. On the other hand, the force of Example 5 shows a slight damage after 183 hr irradiation as shown in FIG. 9 (a). The damage is extremely small compared to that of Example 1.
[0134] 従って、シルセスキォキサンの炭素 炭素不飽和結合を有する基を鎖状炭化水素 基で形成することによって、ブルーレイ照射耐性が向上することが確認された。  [0134] Therefore, it was confirmed that the Blu-ray irradiation resistance was improved by forming a group having a carbon-carbon unsaturated bond of silsesquioxane with a chain hydrocarbon group.
[0135] (実施例 6)  [Example 6]
実施例 5で合成した [化 17]のジァリルシルセスキォキサン 1. Ogに、式(3)の化合 物としてジビュルテトラメチルジシロキサン 1. 137gを酉己合し、さらに 3. 0 X 1CT3質量 %濃度の Pt (cts)トルエン溶液を、系全体の lppm加え、均一に混合した後、空気中 、 120°Cで 4時間加熱することによって硬化させ、無色透明な樹脂板を得た。 The diarylsilsesquioxane 1. Og of [Chemical Formula 17] synthesized in Example 5 was combined with 1.137 g of dibule tetramethyldisiloxane as a compound of the formula (3), and then 3.0. X 1CT Add 3 ppm by mass of Pt (cts) toluene solution at a concentration of 3 % by mass, mix uniformly, and then cure by heating at 120 ° C for 4 hours in air to obtain a colorless and transparent resin plate It was.
[0136] (参考例 3)  [0136] (Reference Example 3)
実施例 6にお!/、て [化 17]の SiH基を 2個持つへキサァリルシルセスキォキサンを 合成する方法において、へキサン 376mLに、ァリルジメチルクロルシランを 19. 8m L、ジメチルクロルシランを 14. 6mL配合して、ォクタァニオンを反応させるようした他 は、同様にして反応 '精製することによって、上記 [化 4]に示す SiH基を 4個持つテ トラァリルシルセスキォキサンを合成した。  In Example 6, in a method for synthesizing hexarylsilsesquioxane having two SiH groups of [Chemical Formula 17], 19.8 mL of allyldimethylchlorosilane was added to 376 mL of hexane. The reaction was purified in the same manner except that 14.6 mL of dimethylchlorosilane was mixed and reacted with octananion, so that tetraallylsilsesquioxane having four SiH groups shown in [Chemical 4] above was obtained. Was synthesized.
[0137] そしてこの [化 4]のテトラァリルシルセスキォキサンに 3. 0 X 1CT3質量0 /0濃度の Pt [0137] And this tetra § Li Lucille sesquicarbonate O-hexane of Formula 4] 3. 0 X 1CT 3 mass 0/0 concentration of Pt
(cts)トルエン溶液を lppm加え、均一に混合した後、空気中、 120°Cで 3時間加熱 することによって硬化させ、無色透明な樹脂板を得た。  (cts) lppm of toluene solution was added and mixed uniformly, and then cured by heating in air at 120 ° C for 3 hours to obtain a colorless and transparent resin plate.
[0138] 上記の実施例 3、 6及び参考例 3で得た樹脂板をアセトン溶液 (RT)に浸漬し、浸漬 中の樹脂板の割れの有無でストレスクラッキングを評価した。その結果、力、ご型シル セスキォキサン化合物をダイレクトに架橋させた参考例 3の樹脂板は、アセトン溶液 に浸漬することによって瞬時に割れが生じたカ、力、ご型シノレセスキォキサン化合物を 反応性モノマーで架橋した実施例 3や実施例 6の樹脂板には割れは生じなかった。  [0138] The resin plates obtained in Examples 3 and 6 and Reference Example 3 were immersed in an acetone solution (RT), and stress cracking was evaluated based on the presence or absence of cracks in the resin plate during the immersion. As a result, the resin plate of Reference Example 3 in which the force and gale silsesquioxane compound were directly cross-linked was obtained by immersing the resin plate in Reference Example 3 in acetone solution. No cracks occurred in the resin plates of Example 3 and Example 6 crosslinked with the reactive monomer.

Claims

請求の範囲 [1] 下記式(1)で表されるかご型シルセスキォキサン化合物、又はこの化合物が部分 的に付加反応してなるかご型シルセスキォキサン化合物部分重合物を含有するケィ 素化合物により、半導体発光素子又は半導体受光素子を封止して成ることを特徴と する半導体光装置。 (AR R SiOSiO ) (R R HSiOSiO ) (BR R SiOSiO ) (HOSiO )1 2 1. 5 n 3 4 1. 5 p 5 6 1. 5 ¾ 1. 5 in— n•••(l) 11 Claims [1] A cage-containing silsesquioxane compound represented by the following formula (1), or a cage-containing silsesquioxane compound partial polymer formed by partial addition reaction of this compound A semiconductor optical device comprising a semiconductor light emitting element or a semiconductor light receiving element sealed with a compound. (AR R SiOSiO) (RR HSiOSiO) (BR R SiOSiO) (HOSiO) 1 2 1. 5 n 3 4 1. 5 p 5 6 1. 5 ¾ 1.5 in- n ••• (l) 11
(式(1)中、 Aは炭素 炭素不飽和結合を有する基、 Bは置換又は非置換の飽和ァ ルキル基もしくは水酸基、 R , R , R , R , R , Rは各々独立に低級アルキル基、フ  (In the formula (1), A is a group having a carbon-carbon unsaturated bond, B is a substituted or unsubstituted saturated alkyl group or hydroxyl group, and R 1, R 2, R 3, R 4, R 5 and R 5 are each independently a lower alkyl group. The
1 2 3 4 5 6  1 2 3 4 5 6
ェニル基、低級ァリールアルキル基から選ばれた官能基を表し、 mは 6, 8, 10, 12 から選ばれた数、 nは;!〜 m— 1の整数、 pは l〜m— nの整数, qは 0〜m— n pの 整数を表す)  Represents a functional group selected from an aryl group and a lower arylalkyl group, m is a number selected from 6, 8, 10, and 12, n is an integer from !! to m—1, p is l to m—n Integer, q represents an integer from 0 to m—np)
[2] 上記式(1)で表されるかご型シルセスキォキサン化合物、又はこの化合物が部分 的に付加反応してなるかご型シルセスキォキサン化合物部分重合物と、下記式(2) で表される化合物とを含有する組成物により、半導体発光素子又は半導体受光素子 を封止して成ることを特徴とする請求項 1に記載の半導体光装置。  [2] The cage silsesquioxane compound represented by the above formula (1), or a cage silsesquioxane compound partial polymer obtained by partial addition reaction of this compound, and the following formula (2): 2. The semiconductor optical device according to claim 1, wherein the semiconductor light-emitting element or the semiconductor light-receiving element is sealed with a composition containing the compound represented.
HR R Si-X- SiHR R …(2)  HR R Si-X- SiHR R (2)
7 8 9 10  7 8 9 10
(式(2)中、 Xは 2価の官能基又は酸素原子を表し、 R , R , R , R は各々独立に炭  (In the formula (2), X represents a divalent functional group or an oxygen atom, and R 1, R 2, R 3, and R 5 are each independently carbon
7 8 9 10  7 8 9 10
素数 1〜3のアルキル基又は水素原子を表す)  Represents an alkyl group of 1 to 3 prime numbers or a hydrogen atom)
[3] 上記式(1)で表されるかご型シルセスキォキサン化合物、又はこの化合物が部分 的に付加反応してなるかご型シルセスキォキサン化合物部分重合物と、下記式(3) で表される化合物とを含有する組成物により、半導体発光素子又は半導体受光素子 を封止して成ることを特徴とする請求項 1に記載の半導体光装置。 [3] A cage silsesquioxane compound represented by the above formula (1), or a cage silsesquioxane compound partial polymer obtained by partial addition reaction of this compound, and the following formula (3): 2. The semiconductor optical device according to claim 1, wherein the semiconductor light-emitting element or the semiconductor light-receiving element is sealed with a composition containing the compound represented.
H C = CH-Y-CH = CH … )  H C = CH-Y-CH = CH…)
2 2  twenty two
(式(3)中、 Yは 2価の官能基を表す)  (In formula (3), Y represents a divalent functional group)
[4] 上記式(1)において Aは炭素 炭素不飽和結合を有する鎖状炭化水素基であるこ とを特徴とする請求項;!〜 3のいずれかに記載の半導体光装置。 [4] The semiconductor optical device according to any one of [1] to [3] above, wherein in the formula (1), A is a chain hydrocarbon group having a carbon-carbon unsaturated bond.
[5] 下記式(1)で表されるかご型シルセスキォキサン化合物、又はこの化合物が部分 的に付加反応してなるかご型シルセスキォキサン化合物部分重合物を含有するケィ 素化合物を、重合して成ることを特徴とする透明光学部材。 [5] A cage silsesquioxane compound represented by the following formula (1), or a part of this compound A transparent optical member obtained by polymerizing a carbon compound containing a cage-type silsesquioxane compound partial polymer obtained by an addition reaction.
(AR R SiOSiO ) (R R HSiOSiO ) (BR R SiOSiO ) (HOSiO ) (AR R SiOSiO) (R R HSiOSiO) (BR R SiOSiO) (HOSiO)
1 2 1. 5 n 3 4 1. 5 p 5 6 1. 5 ¾ 1. 5 in— n1 2 1. 5 n 3 4 1. 5 p 5 6 1. 5 ¾ 1. 5 in— n
•••(l) ••• (l)
11  11
(式(1)中、 Aは炭素 炭素不飽和結合を有する基、 Bは置換又は非置換の飽和ァ ルキル基もしくは水酸基、 R , R , R , R , R , Rは各々独立に低級アルキル基、フ  (In the formula (1), A is a group having a carbon-carbon unsaturated bond, B is a substituted or unsubstituted saturated alkyl group or hydroxyl group, and R 1, R 2, R 3, R 4, R 5 and R 5 are each independently a lower alkyl group. The
1 2 3 4 5 6  1 2 3 4 5 6
ェニル基、低級ァリールアルキル基から選ばれた官能基を表し、 mは 6, 8, 10, 12 から選ばれた数、 nは;!〜 m— 1の整数、 pは l〜m— nの整数, qは 0〜m— n pの 整数を表す) Represents a functional group selected from an aryl group and a lower arylalkyl group, m is a number selected from 6, 8, 10, and 12, n is an integer from !! to m—1, p is l to m—n Integer, q represents an integer from 0 to m—np)
上記式(1)で表されるかご型シルセスキォキサン化合物、又はこの化合物が部分 的に付加反応してなるかご型シルセスキォキサン化合物部分重合物と、下記式(2) で表される化合物とを含有する組成物を、重合して成ることを特徴とする請求項 5に 記載の透明光学部材。  The cage-type silsesquioxane compound represented by the above formula (1), or a cage-type silsesquioxane compound partial polymer obtained by partial addition reaction of this compound, and the following formula (2) 6. The transparent optical member according to claim 5, wherein a composition containing the compound is polymerized.
HR R Si-X- SiHR R …(2)  HR R Si-X- SiHR R (2)
7 8 9 10  7 8 9 10
(式(2)中、 Xは 2価の官能基又は酸素原子を表し、 R , R , R , R は各々独立に炭  (In the formula (2), X represents a divalent functional group or an oxygen atom, and R 1, R 2, R 3, and R 5 are each independently carbon
7 8 9 10  7 8 9 10
素数 1〜3のアルキル基又は水素原子を表す) Represents an alkyl group of 1 to 3 prime numbers or a hydrogen atom)
上記式(1)で表されるかご型シルセスキォキサン化合物、又はこの化合物が部分 的に付加反応してなるかご型シルセスキォキサン化合物部分重合物と、下記式(3) で表される化合物とを含有する組成物を、重合して成ることを特徴とする請求項 5に 記載の透明光学部材。  The cage-type silsesquioxane compound represented by the above formula (1) or a cage-type silsesquioxane compound partial polymer obtained by partial addition reaction of this compound and the following formula (3) 6. The transparent optical member according to claim 5, wherein a composition containing the compound is polymerized.
H C = CH-Y-CH = CH… )  H C = CH-Y-CH = CH…)
2 2  twenty two
(式(3)中、 Yは 2価の官能基を表す)  (In formula (3), Y represents a divalent functional group)
上記式(1)において Aは炭素 炭素不飽和結合を有する鎖状炭化水素基であるこ とを特徴とする請求項 5〜7のいずれかに記載の透明光学部材。  The transparent optical member according to any one of claims 5 to 7, wherein A in the formula (1) is a chain hydrocarbon group having a carbon-carbon unsaturated bond.
PCT/JP2007/066028 2006-11-27 2007-08-17 Optical semiconductor device and transparent optical member WO2008065786A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-319018 2006-11-27
JP2006-319019 2006-11-27
JP2006319019A JP5204394B2 (en) 2006-02-20 2006-11-27 Semiconductor optical device and transparent optical member
JP2006319018A JP5204393B2 (en) 2006-02-20 2006-11-27 Semiconductor optical device and transparent optical member

Publications (1)

Publication Number Publication Date
WO2008065786A1 true WO2008065786A1 (en) 2008-06-05

Family

ID=39467584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066028 WO2008065786A1 (en) 2006-11-27 2007-08-17 Optical semiconductor device and transparent optical member

Country Status (1)

Country Link
WO (1) WO2008065786A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246880A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor light device and transparent optical member
JP2008201832A (en) * 2007-02-16 2008-09-04 Shin Etsu Chem Co Ltd Siloxane polymer, method for producing the same, coating liquid for forming porous film containing the polymer, porous film and semiconductor apparatus using the porous film
WO2011125463A1 (en) * 2010-03-31 2011-10-13 積水化学工業株式会社 Sealant for optical semiconductors and optical semiconductor device
JP2012067160A (en) * 2010-09-22 2012-04-05 Kaneka Corp Polyhedral-structure polysiloxane-modified body, and composition obtained therefrom
WO2012144480A1 (en) * 2011-04-20 2012-10-26 セントラル硝子株式会社 Siloxane compound and cured product thereof
JP2013010807A (en) * 2011-06-02 2013-01-17 Nitto Denko Corp Silicone resin composition, silicone resin sheet, optical semiconductor element device, and production method of silicone resin sheet
JP2019505603A (en) * 2015-12-18 2019-02-28 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Siloxane resin composition

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267290A (en) * 1988-06-29 1990-03-07 Akad Wissenschaften Ddr Oleophilic bicyclic silicic acid derivative having birdcage-shaped structure and its production and use
JPH06329687A (en) * 1993-05-13 1994-11-29 Wacker Chemie Gmbh Organosilicon compound and its preparation
JPH1171462A (en) * 1997-08-29 1999-03-16 Toshiba Silicone Co Ltd Novel silicon-containing polymer
JP2000154252A (en) * 1998-11-18 2000-06-06 Agency Of Ind Science & Technol Novel silsequioxane-containing polymer and its production
JP2000198930A (en) * 1998-12-28 2000-07-18 Shin Etsu Chem Co Ltd Addition curable silicone composition
JP2000285066A (en) * 1999-03-29 2000-10-13 Ricoh Co Ltd Management system for peripheral device management information
JP2004186168A (en) * 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd Silicone resin composition for light emitting diode element
JP2004359933A (en) * 2003-05-14 2004-12-24 Nagase Chemtex Corp Sealing material for optical element
JP2005290352A (en) * 2004-03-12 2005-10-20 Asahi Kasei Corp Compound having basket-shaped silsesquioxane structure
JP2006022207A (en) * 2004-07-08 2006-01-26 Chisso Corp Silicon compound
WO2006077667A1 (en) * 2005-01-24 2006-07-27 Momentive Performance Materials Japan Llc. Silicone composition for encapsulating luminescent element and luminescent device
JP2006299149A (en) * 2005-04-22 2006-11-02 Asahi Kasei Corp Composition for sealant and optical device
JP2006299150A (en) * 2005-04-22 2006-11-02 Asahi Kasei Corp Composition for sealant and optical device
JP2007031619A (en) * 2005-07-28 2007-02-08 Nagase Chemtex Corp Resin composition for optical element sealing use
JP2007251121A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor optical device and transparent optical member
JP2007251122A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor optical device and transparent optical member

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267290A (en) * 1988-06-29 1990-03-07 Akad Wissenschaften Ddr Oleophilic bicyclic silicic acid derivative having birdcage-shaped structure and its production and use
JPH06329687A (en) * 1993-05-13 1994-11-29 Wacker Chemie Gmbh Organosilicon compound and its preparation
JPH1171462A (en) * 1997-08-29 1999-03-16 Toshiba Silicone Co Ltd Novel silicon-containing polymer
JP2000154252A (en) * 1998-11-18 2000-06-06 Agency Of Ind Science & Technol Novel silsequioxane-containing polymer and its production
JP2000198930A (en) * 1998-12-28 2000-07-18 Shin Etsu Chem Co Ltd Addition curable silicone composition
JP2000285066A (en) * 1999-03-29 2000-10-13 Ricoh Co Ltd Management system for peripheral device management information
JP2004186168A (en) * 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd Silicone resin composition for light emitting diode element
JP2004359933A (en) * 2003-05-14 2004-12-24 Nagase Chemtex Corp Sealing material for optical element
JP2005290352A (en) * 2004-03-12 2005-10-20 Asahi Kasei Corp Compound having basket-shaped silsesquioxane structure
JP2006022207A (en) * 2004-07-08 2006-01-26 Chisso Corp Silicon compound
WO2006077667A1 (en) * 2005-01-24 2006-07-27 Momentive Performance Materials Japan Llc. Silicone composition for encapsulating luminescent element and luminescent device
JP2006299149A (en) * 2005-04-22 2006-11-02 Asahi Kasei Corp Composition for sealant and optical device
JP2006299150A (en) * 2005-04-22 2006-11-02 Asahi Kasei Corp Composition for sealant and optical device
JP2007031619A (en) * 2005-07-28 2007-02-08 Nagase Chemtex Corp Resin composition for optical element sealing use
JP2007251121A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor optical device and transparent optical member
JP2007251122A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor optical device and transparent optical member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246880A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor light device and transparent optical member
JP2008201832A (en) * 2007-02-16 2008-09-04 Shin Etsu Chem Co Ltd Siloxane polymer, method for producing the same, coating liquid for forming porous film containing the polymer, porous film and semiconductor apparatus using the porous film
WO2011125463A1 (en) * 2010-03-31 2011-10-13 積水化学工業株式会社 Sealant for optical semiconductors and optical semiconductor device
JP5060654B2 (en) * 2010-03-31 2012-10-31 積水化学工業株式会社 Sealant for optical semiconductor device and optical semiconductor device
JP2012067160A (en) * 2010-09-22 2012-04-05 Kaneka Corp Polyhedral-structure polysiloxane-modified body, and composition obtained therefrom
WO2012144480A1 (en) * 2011-04-20 2012-10-26 セントラル硝子株式会社 Siloxane compound and cured product thereof
JP2012233174A (en) * 2011-04-20 2012-11-29 Central Glass Co Ltd Siloxane compound and cured product thereof
JP2013010807A (en) * 2011-06-02 2013-01-17 Nitto Denko Corp Silicone resin composition, silicone resin sheet, optical semiconductor element device, and production method of silicone resin sheet
JP2019505603A (en) * 2015-12-18 2019-02-28 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Siloxane resin composition

Similar Documents

Publication Publication Date Title
JP5204393B2 (en) Semiconductor optical device and transparent optical member
JP5204394B2 (en) Semiconductor optical device and transparent optical member
JP2007246880A (en) Semiconductor light device and transparent optical member
CN108276778B (en) Curable silicon composition, cured product thereof, and optical semiconductor device
CN101466795B (en) Curable organopolysiloxane composition and semiconductor device
TWI631185B (en) Curable silicone composition, cured product thereof, and optical semiconductor device
RU2401846C2 (en) Functional polyorganosiloxanes and curable composition based on said polyorganosiloxanes
JP4636242B2 (en) Optical semiconductor element sealing material and optical semiconductor element
KR101836962B1 (en) New organosilicon compound, thermosetting resin composition containing the organosilicon compound, hardening resin and encapsulation material for optical semiconductor
WO2008065786A1 (en) Optical semiconductor device and transparent optical member
EP2128201A1 (en) Silicone resin composition for encapsulating luminescent element and process for producing optical-semiconductor electronic part with the same through potting
JP5211059B2 (en) Semiconductor optical device and transparent optical member
JP2006519896A (en) High refractive index polysiloxane with optical transparency and high temperature resistance
CN113214651A (en) Curable silicone composition, cured product thereof, and optical semiconductor device
TW200936716A (en) Silicone resin for protecting a light transmitting surface of an optoelectronic device
JP5210881B2 (en) Semiconductor optical device and transparent optical member
CN103509347A (en) Silicone resin composition, semi-cured material sheet, producing method of silicone cured material, light emitting diode device, and producing method thereof
EP1801163A1 (en) Siloxane Encapsulants
JP2016211003A (en) Two-pack type curable polyorganosiloxane composition for semiconductor light emitting device, polyorganosiloxane-cured article obtained by curing the composition and production method therefor
KR20150022763A (en) Optoelectronic component and method for producing it
KR20200019827A (en) Curable composition, cured product of said composition, and semiconductor device using said cured product
JP2008084986A (en) Sealant for optical semiconductor, and semiconductor optical device
JP5204395B2 (en) Semiconductor optical device and transparent optical member
JP4991162B2 (en) Semiconductor optical device and transparent optical member
WO2008065787A1 (en) Optical semiconductor device and transparent optical member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07792644

Country of ref document: EP

Kind code of ref document: A1