JP2007251123A - Semiconductor optical device and transparent optical member - Google Patents

Semiconductor optical device and transparent optical member Download PDF

Info

Publication number
JP2007251123A
JP2007251123A JP2006319051A JP2006319051A JP2007251123A JP 2007251123 A JP2007251123 A JP 2007251123A JP 2006319051 A JP2006319051 A JP 2006319051A JP 2006319051 A JP2006319051 A JP 2006319051A JP 2007251123 A JP2007251123 A JP 2007251123A
Authority
JP
Japan
Prior art keywords
group
formula
compound
cage
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006319051A
Other languages
Japanese (ja)
Other versions
JP5204395B2 (en
Inventor
Kenichi Shinoya
賢一 篠谷
Takao Hayashi
隆夫 林
Shunpei Fujii
俊平 藤井
Norihiro Takamura
徳宏 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006319051A priority Critical patent/JP5204395B2/en
Priority to PCT/JP2007/066029 priority patent/WO2008065787A1/en
Publication of JP2007251123A publication Critical patent/JP2007251123A/en
Application granted granted Critical
Publication of JP5204395B2 publication Critical patent/JP5204395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor optical device in which a semiconductor light-emitting element or a semiconductor light-receiving element is sealed with a sealing material, and in which the sealing material is hardly deteriorated and a water absorbing rate is low. <P>SOLUTION: The semiconductor optical device is formed in such a way that the semiconductor light-emitting element or the semiconductor light-receiving element is sealed with a silicon compound containing a cage type silsesquioxane compound represented by a formula: (AR<SP>1</SP>R<SP>2</SP>SiOSiO<SB>1.5</SB>)<SB>n</SB>(BR<SP>3</SP>R<SP>4</SP>SiOSiO<SB>1.5</SB>)<SB>s</SB>(HOSiO<SB>1.5</SB>)<SB>m-n-s</SB>and (R<SP>5</SP>R<SP>6</SP>HSiOSiO<SB>1.5</SB>)<SB>q</SB>(ER<SP>7</SP>R<SP>8</SP>SiOSiO<SB>1.5</SB>)<SB>r</SB>(HOSiO<SB>1.5</SB>)<SB>p-q-r</SB>or a partial compound in which these compounds perform partial addition reaction. In this case, in the formula, A denotes a chain-like hydrocarbon group having carbon-carbon unsaturated linkage, B and E denote a saturated alkyl group or a hydroxyl group, R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>, R<SP>4</SP>, R<SP>5</SP>, R<SP>6</SP>, R<SP>7</SP>, R<SP>8</SP>each denote a methyl group or a phenyl group and the like, m and q each denote a number selected from among 6, 8, 10, 12, n denotes an integer 2 to m, q denotes an integer 2 to p, r denotes an integer 0 to p-q, and s denotes an integer 0 to m-n. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シルセスキオキサン化合物を封止材として用いた半導体光装置、及びシルセスキオキサン化合物を成形材として用いた透明光学部材に関するものである。   The present invention relates to a semiconductor optical device using a silsesquioxane compound as a sealing material, and a transparent optical member using a silsesquioxane compound as a molding material.

近年、発光ダイオード、レーザーダイオード、半導体レーザー等の半導体発光素子が発光光源として利用されている。特に発光ダイオードは長寿命な小型光源としてサイン光源用途やディスプレイ光源用途として幅広く利用されている。   In recent years, semiconductor light emitting devices such as light emitting diodes, laser diodes, and semiconductor lasers have been used as light emitting sources. In particular, light-emitting diodes are widely used as sign light sources and display light sources as long-life compact light sources.

また、半導体発光素子は白色LEDユニットを組み込んだ照明用器具としての開発も進められており、今後ますます広く普及していくことが予想されている。白色LEDユニットに用いられる白色LEDの光源には青・近紫外域LEDが用いられ、照明用器具としての要求を満足させるために高出力・高輝度化を達成するための開発が進められている。   In addition, semiconductor light-emitting elements are being developed as lighting fixtures incorporating white LED units, and are expected to become increasingly widespread in the future. Blue and near-ultraviolet LEDs are used as the white LED light source used in the white LED unit, and development is being carried out to achieve high output and high brightness in order to satisfy the requirements of lighting equipment. .

そしてこのように高出力・高輝度化された半導体発光素子からは高い熱エネルギー及び光エネルギーが発せられるために、このような半導体発光素子を基板上に実装して封止した場合には、一般に用いられているエポキシ系の封止材の場合、封止材が急速に劣化してしまい、比較的低寿命になるという問題があった。   And since high heat energy and light energy are emitted from the semiconductor light emitting device with high output and high brightness in this way, when such a semiconductor light emitting device is mounted on a substrate and sealed, generally, In the case of the epoxy-based sealing material used, there is a problem that the sealing material deteriorates rapidly and the life becomes relatively short.

前記問題を解決するために、耐熱・耐候性に優れた封止材、例えばシロキサン化合物のような金属酸化物や低融点ガラス等を用いた封止材が検討されている。例えば、特許文献1では耐熱・耐光性に優れた材料として、ゾル−ゲル法により得られる金属酸化物であるメタロキサンを用いて半導体発光素子を封止することにより得られる半導体装置が開示されている。   In order to solve the above problems, a sealing material excellent in heat resistance and weather resistance, for example, a sealing material using a metal oxide such as a siloxane compound, low melting point glass, or the like has been studied. For example, Patent Document 1 discloses a semiconductor device obtained by sealing a semiconductor light-emitting element using a metalloxane, which is a metal oxide obtained by a sol-gel method, as a material having excellent heat resistance and light resistance. .

しかし、ゾル−ゲル法で得られる金属酸化物であるメタロキサンは、多孔質構造となってしまうため吸水率が高く、使用時に吸湿してクラック等が生じる恐れがあるという問題があった。   However, metalloxane, which is a metal oxide obtained by a sol-gel method, has a porous structure and thus has a high water absorption rate, and has a problem that it may absorb moisture during use and cause cracks.

また、情報の記録として、樹脂ディスクに光を照射して記録する例えばDVD装置等が用いられており、近年の高容量化の要望に対応するため、青・近紫外域の光を照射して記録・読み出しする装置が検討されている。そして樹脂ディスクに記録された情報を読み取る場合には、青・近紫外域のレーザー光を樹脂ディスクの記録面に照射して、記録面で反射した光を半導体受光素子で受光することにより、情報の読み出しが行われている。このような半導体受光素子も、一般に封止材で封止されて保護されており、従来の赤色レーザー光を用いたものと比較して高出力のレーザー光が照射されるため、エポキシ系の封止材を用いた場合、封止材が劣化しやすいという問題があった。   For recording information, for example, a DVD device that records light by irradiating a resin disk is used. In order to meet the recent demand for high capacity, light in the blue / near ultraviolet region is irradiated. Devices for recording / reading are being studied. When reading the information recorded on the resin disk, the laser light in the blue / near ultraviolet region is irradiated onto the recording surface of the resin disk, and the light reflected by the recording surface is received by the semiconductor light receiving element. Is being read. Such a semiconductor light receiving element is generally sealed and protected by a sealing material, and is irradiated with a high-power laser beam as compared with a conventional one using a red laser beam. When the stop material is used, there is a problem that the sealing material is easily deteriorated.

さらにDVD装置では、記録スピードの向上も要望されている。ディスクの回転スピードアップにより記録速度向上が図られるが、回転スピードが速いと、遅いときと比較して一定時間中にディスクに照射されるレーザー光量(パワー密度)が減少する。この減少分を補完する目的でレーザーパワーの増大が進行しており、この点でもエポキシ系の封止材を用いた場合、封止材が劣化しやすいという問題があった。   Furthermore, DVD devices are also required to improve recording speed. The recording speed can be improved by increasing the rotational speed of the disk. However, if the rotational speed is high, the amount of laser light (power density) irradiated on the disk during a certain time is reduced compared to when the rotational speed is low. In order to compensate for this decrease, the increase in laser power has progressed. In this respect as well, there has been a problem that when an epoxy-based sealing material is used, the sealing material tends to deteriorate.

また、上記青・近紫外域のレーザー光を樹脂ディスクの記録面に照射して、記録面で反射した光を半導体受光素子で受光するに際し、レーザー光の径を絞ったり、光路を曲げることが行われており、この場合に用いられるレンズやプリズム等の透明光学部材も、比較的高出力のレーザー光が照射されるため、エポキシ系の樹脂を用いて製造した場合、劣化し易いという問題があった。
特許第3412152号公報
Also, when the laser light in the blue / near ultraviolet region is irradiated onto the recording surface of the resin disk and the light reflected by the recording surface is received by the semiconductor light receiving element, the diameter of the laser light may be reduced or the optical path may be bent. Since transparent optical members such as lenses and prisms used in this case are also irradiated with relatively high output laser light, there is a problem that they are easily deteriorated when manufactured using an epoxy resin. there were.
Japanese Patent No. 3412152

本発明は上記の点に鑑みてなされたものであり、半導体発光素子または半導体受光素子を封止材で封止した半導体光装置において、封止材が劣化し難く寿命に優れた半導体光装置を提供することを目的とするものであり、また青・近紫外域の光が照射される部分に使用される透明光学部材において、劣化し難く寿命に優れた透明光学部材を提供することを目的とするものである。   The present invention has been made in view of the above points, and in a semiconductor optical device in which a semiconductor light-emitting element or a semiconductor light-receiving element is sealed with a sealing material, a semiconductor optical device having an excellent life span in which the sealing material is hardly deteriorated. An object of the present invention is to provide a transparent optical member that is difficult to deteriorate and has a long life in a transparent optical member that is intended to be provided and is used in a portion irradiated with light in the blue / near ultraviolet region. To do.

本発明の請求項1に係る半導体光装置は、下記式(1)で表されるかご型シルセスキオキサン化合物、又はこの化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物と、下記式(2)で表されるかご型シルセスキオキサン化合物、又はこの化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物とを含有するケイ素化合物で、半導体発光素子又は半導体受光素子を封止して成ることを特徴とするものである。   A semiconductor optical device according to claim 1 of the present invention includes a cage silsesquioxane compound represented by the following formula (1), or a cage silsesquioxane compound partial polymer obtained by partial addition reaction of this compound, A silicon compound containing a cage silsesquioxane compound represented by the following formula (2) or a cage silsesquioxane compound partial polymer obtained by partial addition reaction of the compound, a semiconductor light emitting device or a semiconductor light receiving device It is characterized by comprising sealing.

(ARSiOSiO1.5(BRSiOSiO1.5(HOSiO1.5m−n−s …(1)
(式(1)中、Aは炭素−炭素不飽和結合を有する鎖状炭化水素基、Bは置換又は非置換の飽和アルキル基もしくは水酸基、R,R,R,Rは各々独立に低級アルキル基、フェニル基、低級アリールアルキル基から選ばれる官能基を表し、mは6,8,10,12から選ばれた数、nは2〜mの整数、sは0〜m−nの整数を表す)
(RHSiOSiO1.5(ERSiOSiO1.5(HOSiO1.5p−q−r …(2)
(式(2)中、Eは置換又は非置換の飽和アルキル基もしくは水酸基、R,R,R,Rは各々独立に低級アルキル基、フェニル基、低級アリールアルキル基から選ばれる官能基を表し、pは6,8,10,12から選ばれた数、qは2〜pの整数、rは0〜p−qの整数を表す)
また本発明の請求項2に係る透明光学部材は、下記式(1)で表されるかご型シルセスキオキサン化合物、又はこの化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物と、下記式(2)で表されるかご型シルセスキオキサン化合物、又はこの化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物とを含有するケイ素化合物を、重合して成ることを特徴とするものである。
(AR 1 R 2 SiOSiO 1.5 ) n (BR 3 R 4 SiOSiO 1.5 ) s (HOSiO 1.5 ) m- ns (1)
(In Formula (1), A is a chain hydrocarbon group having a carbon-carbon unsaturated bond, B is a substituted or unsubstituted saturated alkyl group or hydroxyl group, and R 1 , R 2 , R 3 , and R 4 are each independently Represents a functional group selected from a lower alkyl group, a phenyl group, and a lower arylalkyl group, m is a number selected from 6, 8, 10, and 12, n is an integer of 2 to m, and s is 0 to mn. Represents an integer)
(R 5 R 6 HSiOSiO 1.5 ) q (ER 7 R 8 SiOSiO 1.5 ) r (HOSiO 1.5 ) p-qr (2)
(In formula (2), E is a substituted or unsubstituted saturated alkyl group or hydroxyl group, and R 5 , R 6 , R 7 , and R 8 are each independently a function selected from a lower alkyl group, a phenyl group, and a lower arylalkyl group. Represents a group, p is a number selected from 6, 8, 10, and 12, q is an integer of 2 to p, and r is an integer of 0 to p-q)
The transparent optical member according to claim 2 of the present invention includes a cage silsesquioxane compound represented by the following formula (1), or a cage silsesquioxane compound partial polymer obtained by partial addition reaction of this compound. A silicon compound containing a cage silsesquioxane compound represented by the following formula (2), or a cage silsesquioxane compound partial polymer obtained by partial addition reaction of this compound. It is a feature.

(ARSiOSiO1.5(BRSiOSiO1.5(HOSiO1.5m−n−s …(1)
(式(1)中、Aは炭素−炭素不飽和結合を有する鎖状炭化水素基、Bは置換又は非置換の飽和アルキル基もしくは水酸基、R,R,R,Rは各々独立にメチル基又はフェニル基を表し、mは6,8,10,12から選ばれた数、nは2〜mの整数、sは0〜m−nの整数を表す)
(RHSiOSiO1.5(ERSiOSiO1.5(HOSiO1.5p−q−r …(2)
(式(2)中、Eは置換又は非置換の飽和アルキル基もしくは水酸基、R,R,R,Rは各々独立にメチル基又はフェニル基を表し、pは6,8,10,12から選ばれた数、qは2〜pの整数、rは0〜p−qの整数を表す)
(AR 1 R 2 SiOSiO 1.5 ) n (BR 3 R 4 SiOSiO 1.5 ) s (HOSiO 1.5 ) m- ns (1)
(In Formula (1), A is a chain hydrocarbon group having a carbon-carbon unsaturated bond, B is a substituted or unsubstituted saturated alkyl group or hydroxyl group, and R 1 , R 2 , R 3 , and R 4 are each independently Represents a methyl group or a phenyl group, m is a number selected from 6, 8, 10, and 12, n is an integer of 2 to m, and s is an integer of 0 to mn)
(R 5 R 6 HSiOSiO 1.5 ) q (ER 7 R 8 SiOSiO 1.5 ) r (HOSiO 1.5 ) p-qr (2)
(In the formula (2), E represents a substituted or unsubstituted saturated alkyl group or hydroxyl group, R 5 , R 6 , R 7 , and R 8 each independently represent a methyl group or a phenyl group, and p represents 6,8,10. , 12 is selected, q is an integer of 2 to p, r is an integer of 0 to pq)

式(1)のかご型シルセスキオキサン化合物はシリコン原子と酸素原子で形成された多面体構造のシリコン原子にシロキサン結合を介して結合した炭素−炭素不飽和結合を有する鎖状炭化水素基を、式(2)のかご型シルセスキオキサン化合物はシリコン原子と酸素原子で形成された多面体構造のシリコン原子にシロキサン結合を介して結合した水素原子を、それぞれ有しているため、炭素−炭素不飽和結合を有する鎖状炭化水素基と水素原子とがヒドロシリル化反応して、付加重合することにより架橋して硬化し、シリカのナノサイズかご型構造を有機のセグメントでつなぎ合わせたような三次元架橋構造を形成するものであり、ガラスライクな機能を発現し、青・近紫外域の光が照射された状態で使用されても劣化し難く、かつ吸水率が低い硬化物となる。しかも、式(1)のシルセスキオキサン化合物の炭素−炭素不飽和結合を有する鎖状炭化水素基は、環状の炭化水素基よりも立体障害が小さく、ヒドロシリル化反応による架橋反応が効率よく進行し、硬化物中の未反応残基が少なくなって、ブルーレイ照射耐性などが向上するものである。   The cage silsesquioxane compound of the formula (1) is a chain hydrocarbon group having a carbon-carbon unsaturated bond bonded via a siloxane bond to a silicon atom having a polyhedral structure formed of a silicon atom and an oxygen atom. Since the cage-type silsesquioxane compound of the formula (2) has a hydrogen atom bonded to a silicon atom having a polyhedral structure formed of silicon atoms and oxygen atoms via a siloxane bond, respectively, a carbon-carbon defect is generated. A three-dimensional structure in which a chain-like hydrocarbon group having a saturated bond and a hydrogen atom undergo a hydrosilylation reaction, are crosslinked by addition polymerization and cured, and the silica nano-sized cage structure is connected by organic segments. It forms a cross-linked structure, expresses a glass-like function, is hardly deteriorated even when used in the state of being irradiated with light in the blue / near ultraviolet region, and has a water absorption rate. The have cured product. In addition, the chain hydrocarbon group having a carbon-carbon unsaturated bond of the silsesquioxane compound of formula (1) has less steric hindrance than the cyclic hydrocarbon group, and the crosslinking reaction by hydrosilylation proceeds efficiently. However, unreacted residues in the cured product are reduced, and the Blu-ray irradiation resistance and the like are improved.

このため、劣化し難く寿命に優れた封止材で封止した半導体光装置を得ることができるものであり、また劣化し難く寿命に優れた材料で透明光学部材を得ることができるものである。   For this reason, it is possible to obtain a semiconductor optical device sealed with a sealing material that does not easily deteriorate and has an excellent lifetime, and it is possible to obtain a transparent optical member with a material that does not easily deteriorate and has an excellent lifetime. .

また、式(1)及び式(2)のかご型シルセスキオキサン化合物に水酸基を導入することによって、表面が水酸基で覆われるTiOやZrO等の重金属ゾルとの親和性を高めることができ、式(1)及び式(2)のかご型シルセスキオキサン化合物と重金属ゾルとの分散性を高めて、重金属ゾルの導入によって屈折率を均一に高めた硬化物を得ることができるものである。   Moreover, by introducing a hydroxyl group into the cage silsesquioxane compound of the formula (1) and the formula (2), the affinity with a heavy metal sol such as TiO or ZrO whose surface is covered with the hydroxyl group can be increased, The dispersibility of the cage silsesquioxane compound of the formula (1) and the formula (2) and the heavy metal sol can be improved, and a cured product having a uniform refractive index can be obtained by introducing the heavy metal sol. .

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は半導体光装置の一例を示すものであり、基板1の表面に半導体発光素子2を実装し、半導体発光素子2の全体と基板1の表面の一部が封止材3により封止してある。この封止材3の表面には蛍光体の層4が形成してある。また基板1上には電子回路5が形成してあって、図1の実施の形態ではボンディングワイヤ6で半導体発光素子2と電気的に接続してある。   FIG. 1 shows an example of a semiconductor optical device. A semiconductor light emitting element 2 is mounted on the surface of a substrate 1, and the entire semiconductor light emitting element 2 and a part of the surface of the substrate 1 are sealed with a sealing material 3. It is. A phosphor layer 4 is formed on the surface of the sealing material 3. Further, an electronic circuit 5 is formed on the substrate 1 and is electrically connected to the semiconductor light emitting element 2 by a bonding wire 6 in the embodiment of FIG.

上記の半導体発光素子2としては、公知の半導体発光素子2を使用することができるが、450nm以下の青色や近紫外域の波長の光を出力する素子を用いる場合、得られる半導体光装置の照度を高めたり、演色性を高めることができるために好ましい。半導体発光素子2の具体例としては、例えば半導体基材上にGaAlN、ZnS、ZnSe、SiC、GaP、GaAlAs、AlInGaP、InGaN、GaN、AlInGaN等の半導体を発光層として形成させたものを用いることができる。この半導体発光素子2の実装は、基板1の半導体発光素子2を実装する部分に半導体発光素子2を載置し、ワイヤボンディング実装やフリップチップ実装等することにより行なうことができる。   As the semiconductor light emitting element 2, a known semiconductor light emitting element 2 can be used. When an element that outputs light having a wavelength of 450 nm or less in blue or near-ultraviolet region is used, the illuminance of the obtained semiconductor optical device This is preferable because the color rendering properties can be improved. As a specific example of the semiconductor light emitting element 2, for example, a semiconductor substrate made of GaAlN, ZnS, ZnSe, SiC, GaP, GaAlAs, AlInGaP, InGaN, GaN, AlInGaN or the like as a light emitting layer is used. it can. The semiconductor light emitting element 2 can be mounted by mounting the semiconductor light emitting element 2 on a portion of the substrate 1 where the semiconductor light emitting element 2 is mounted, and performing wire bonding mounting, flip chip mounting, or the like.

また上記の基板1は、セラミックス材料、熱可塑性樹脂・熱硬化性樹脂等の樹脂材料を各種成形法により所望の形状に成形して得ることができるものであり、その形状は特に限定されない。基板1に用いることのできるセラミックス材料としては、アルミナ、窒化アルミニウム、ジルコニア、炭化ケイ素等を挙げることができ、これらは公知の圧縮成形や射出成形(CIM)等により成形し、焼結することによって基板1として形成することができる。セラミックス材料は熱伝導性に優れているために半導体発光素子2の発熱による熱を基板1の全体に拡散させ、効率的に放熱できる点から好ましく用いることができるものである。また、樹脂材料としては、ポリフェニレンサルファイド(PPS)、ポリフタルイミド(PPA)或いは液晶ポリマー(LCP)等の熱可塑性樹脂や、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂を使用することができる。この樹脂材料にガラス、シリカ、アルミナ等の充填材を配合することによって、基板1の熱伝導性や耐熱性を向上させることができるものである。   Moreover, said board | substrate 1 can be obtained by shape | molding resin materials, such as a ceramic material and a thermoplastic resin and a thermosetting resin, in a desired shape by various shaping | molding methods, The shape is not specifically limited. Examples of the ceramic material that can be used for the substrate 1 include alumina, aluminum nitride, zirconia, and silicon carbide. These are formed by known compression molding, injection molding (CIM), or the like and sintered. The substrate 1 can be formed. Since the ceramic material is excellent in thermal conductivity, it can be preferably used from the viewpoint that the heat generated by the semiconductor light emitting element 2 can be diffused throughout the substrate 1 to efficiently dissipate heat. As the resin material, thermoplastic resins such as polyphenylene sulfide (PPS), polyphthalimide (PPA), or liquid crystal polymer (LCP), and thermosetting resins such as epoxy resin and phenol resin can be used. By adding a filler such as glass, silica, alumina or the like to the resin material, the thermal conductivity and heat resistance of the substrate 1 can be improved.

さらに基板1の表面には、上記のように半導体発光素子2と接続する所定パターンの電気回路5が形成してあるが、この形成方法は特に限定されず公知の方法を用いることができるものである。   Further, the electric circuit 5 having a predetermined pattern connected to the semiconductor light emitting element 2 is formed on the surface of the substrate 1 as described above. However, the formation method is not particularly limited, and a known method can be used. is there.

尚、図1の実施の形態では、本発明に係る半導体光装置を、半導体発光素子2を封止材3で封止した半導体発光装置で説明したが、半導体受光素子を封止材で封止した半導体受光装置であってもよいのはいうまでもない。   In the embodiment of FIG. 1, the semiconductor optical device according to the present invention has been described with a semiconductor light emitting device in which the semiconductor light emitting element 2 is sealed with the sealing material 3. However, the semiconductor light receiving element is sealed with the sealing material. Needless to say, the semiconductor light receiving device may be used.

本発明において、上記の封止材3は、下記の式(1)で表されるかご型シルセスキオキサン化合物、またはこの化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物と、下記の式(2)で表されるかご型シルセスキオキサン化合物、またはこの化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物とを含有するケイ素化合物を、架橋して形成されるものである。   In the present invention, the sealing material 3 includes a cage silsesquioxane compound represented by the following formula (1), or a cage silsesquioxane compound partial polymer obtained by partial addition reaction of this compound, and It is formed by crosslinking a silicon compound containing a cage silsesquioxane compound represented by the following formula (2) or a cage silsesquioxane compound partial polymer obtained by partial addition reaction of this compound. Is.

(ARSiOSiO1.5(BRSiOSiO1.5(HOSiO1.5m−n−s …(1)
(RHSiOSiO1.5(ERSiOSiO1.5(HOSiO1.5p−q−r …(2)
上記の式(1)において、Aは炭素−炭素不飽和結合を有する鎖状炭化水素基を表すものであり、炭素−炭素二重結合または炭素−炭素三重結合を基の一部に含むものであれば特に限定はされない。例えば、アルケニル基、アルキニル基を含むものを挙げることができるものであり、アルケニル基またはアルキニル基を含む基としては、例えばビニル基、アリル基等の炭素−炭素二重結合を有する基や、エチニル基、プロピニル基等の炭素−炭素三重結合を有する基を挙げることができる。また炭素−炭素二重結合または炭素−炭素三重結合を有する基と、不飽和基を有しない2価の基が結合した基を挙げることもできる。尚、これらの炭素−炭素不飽和結合を有する鎖状炭化水素基の炭素−炭素不飽和結合の位置は、加水分解時の立体障害を減らす点から、末端に有することが好ましい。
(AR 1 R 2 SiOSiO 1.5 ) n (BR 3 R 4 SiOSiO 1.5 ) s (HOSiO 1.5 ) m- ns (1)
(R 5 R 6 HSiOSiO 1.5 ) q (ER 7 R 8 SiOSiO 1.5 ) r (HOSiO 1.5 ) p-qr (2)
In the above formula (1), A represents a chain hydrocarbon group having a carbon-carbon unsaturated bond, and includes a carbon-carbon double bond or a carbon-carbon triple bond as part of the group. If there is no particular limitation. Examples thereof include those containing an alkenyl group and an alkynyl group. Examples of the group containing an alkenyl group or alkynyl group include a group having a carbon-carbon double bond such as a vinyl group and an allyl group, and ethynyl. And groups having a carbon-carbon triple bond such as a group and a propynyl group. Moreover, the group which the group which has a carbon-carbon double bond or a carbon-carbon triple bond, and the bivalent group which does not have an unsaturated group couple | bonded can also be mentioned. In addition, it is preferable to have the position of the carbon-carbon unsaturated bond of the chain hydrocarbon group which has these carbon-carbon unsaturated bonds in the terminal from the point of reducing the steric hindrance at the time of hydrolysis.

また上記の式(1)のB、式(2)のEは、それぞれ置換または非置換の飽和アルキル基もしくは水酸基を表すものである。置換または非置換の飽和アルキル基としては、例えば、置換または非置換で炭素数1〜8の1価の飽和炭化水素基を挙げることができる。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;メトキシ基、エトキシ基等のアルコキシ基;2−フェニルエチル基、2−フェニルプロピル基、3−フェニルプロピル基等のアラルキル基;クロロメチル基、γ−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン置換炭化水素基等を例示することができる。これらの中でも、反応時の立体障害を減らす点から炭素数1〜4のアルキル基が好ましく、メチル基が特に好ましい。尚、式(1)のB基と式(2)のE基は同じであっても、異なっていても、いずれでもよい。また、式(1)の一つの分子内に複数のB基を有する場合、すなわちs≧2の場合、それぞれのB基は同じであってもよく、異なっていてもよい。さらに式(2)の一つの分子内に複数のE基を有する場合、すなわちr≧2の場合、それぞれのE基は同じであってもよく、異なっていてもよい。   Further, B in the above formula (1) and E in the formula (2) each represent a substituted or unsubstituted saturated alkyl group or hydroxyl group. Examples of the substituted or unsubstituted saturated alkyl group include substituted or unsubstituted monovalent saturated hydrocarbon groups having 1 to 8 carbon atoms. Specifically, alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group; cycloalkyl groups such as cyclopentyl group, cyclohexyl group; methoxy group, ethoxy group, etc. Alkoxy groups; aralkyl groups such as 2-phenylethyl group, 2-phenylpropyl group and 3-phenylpropyl group; halogen substitution such as chloromethyl group, γ-chloropropyl group and 3,3,3-trifluoropropyl group A hydrocarbon group etc. can be illustrated. Among these, an alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of reducing steric hindrance during the reaction, and a methyl group is particularly preferable. The B group in the formula (1) and the E group in the formula (2) may be the same or different. Moreover, when it has several B group in one molecule | numerator of Formula (1), ie, when s> = 2, each B group may be the same and may differ. Furthermore, when it has several E group in one molecule | numerator of Formula (2), ie, when r> = 2, each E group may be the same and may differ.

また上記の式(1)のR,R,R,R、式(2)のR,R,R,Rは、各々独立して、低級アルキル基、フェニル基、低級アリールアルキル基から選ばれた一つの官能基を表すものであり、メチル基、エチル基、プロピル基等の炭素数が1〜4のアルキル基や、フェニル基や、ベンジル基、フェネチル基等の炭素数7〜10のアリールアルキル基を例示することができる。これらの中でも、加水分解時の立体障害を減らす点からメチル基が好ましく、屈折率を高める点からフェニルが好ましい。 In addition, R 1 , R 2 , R 3 , R 4 in the above formula (1) and R 5 , R 6 , R 7 , R 8 in the formula (2) are each independently a lower alkyl group, a phenyl group, It represents one functional group selected from lower arylalkyl groups, such as alkyl groups having 1 to 4 carbon atoms such as methyl group, ethyl group, propyl group, phenyl group, benzyl group, phenethyl group, etc. An arylalkyl group having 7 to 10 carbon atoms can be exemplified. Among these, a methyl group is preferable from the viewpoint of reducing steric hindrance during hydrolysis, and phenyl is preferable from the viewpoint of increasing the refractive index.

さらに上記の式(1)において、mは6,8,10,12から選ばれた数を表し、nは2〜mの整数を表し、sは0〜m−nの整数を表すものであり、式(2)において、pは6,8,10,12から選ばれた数を表し、qは2〜pの整数を表し、rは0〜p−qの整数を表すものである。   Further, in the above formula (1), m represents a number selected from 6, 8, 10, and 12, n represents an integer of 2 to m, and s represents an integer of 0 to mn. In the formula (2), p represents a number selected from 6, 8, 10, and 12, q represents an integer of 2 to p, and r represents an integer of 0 to pq.

上記の式(1)のかご型シルセスキオキサン化合物としては、例えば次の式(3)で表されるものを挙げることができる。   Examples of the cage silsesquioxane compound of the above formula (1) include those represented by the following formula (3).

式(3)の化合物は、上記の式(1)において、m=8、n=4、s=4、B及びR,R,R,Rがメチル基(Me)の化合物であり、シリコン原子と酸素原子で形成された略6面体構造を構成する8つのシリコン原子のうち、4つのシリコン原子にシロキサン結合(−O−Si−)を介して基Aが結合し、他の4つのシリコン原子にシロキサン結合(−O−Si−)を介してBのメチル基が結合した構造を有するものである。尚、式(3)の構造式は、略6面体構造を構成する8つのシリコン原子のうち4つのシリコン原子に(−O−SiMe−A)が一つずつ結合し、他の4つのシリコン原子に(−O−SiMe)が一つずつ結合していることを簡略化して表現している。 The compound of the formula (3) is a compound in which m = 8, n = 4, s = 4, B and R 1 , R 2 , R 3 , R 4 are methyl groups (Me) in the above formula (1). A group A is bonded to four silicon atoms through a siloxane bond (—O—Si—) out of eight silicon atoms constituting a substantially hexahedral structure formed of silicon atoms and oxygen atoms; It has a structure in which a methyl group of B is bonded to four silicon atoms via a siloxane bond (—O—Si—). In addition, the structural formula of the formula (3) is that (—O—SiMe 2 —A) is bonded to four silicon atoms one by one among the eight silicon atoms constituting the substantially hexahedral structure, and the other four silicon atoms. The fact that (—O—SiMe 3 ) is bonded to an atom one by one is expressed in a simplified manner.

Figure 2007251123
Figure 2007251123

また上記の式(2)のかご型シルセスキオキサン化合物としては、例えば次の式(4)で表されるものを挙げることができる。   Examples of the cage silsesquioxane compound of the above formula (2) include those represented by the following formula (4).

式(4)の化合物は、上記の式(2)において、p=8、q=4、r=4、E及びR,R,R,Rがメチル基(Me)の化合物であり、シリコン原子と酸素原子で形成された略6面体構造を構成する8つのシリコン原子のうち、4つのシリコン原子にシロキサン結合(−O−Si−)を介して水素原子が結合し、他の4つのシリコン原子にシロキサン結合(−O−Si−)を介してEのメチル基が結合した構造を有するものである。尚、式(4)の構造式は、略6面体構造を構成する8つのシリコン原子のうち、4つのシリコン原子に(−O−SiMeH)が一つずつ結合し、他の4つのシリコン原子に(−O−SiMe)が一つずつ結合していることを簡略化して表現している。 The compound of the formula (4) is a compound in which p = 8, q = 4, r = 4, E and R 5 , R 6 , R 7 and R 8 are methyl groups (Me) in the above formula (2). Yes, among eight silicon atoms constituting a substantially hexahedral structure formed of silicon atoms and oxygen atoms, hydrogen atoms are bonded to four silicon atoms via siloxane bonds (—O—Si—), It has a structure in which the methyl group of E is bonded to four silicon atoms via a siloxane bond (—O—Si—). In addition, the structural formula of the formula (4) indicates that (—O—SiMe 2 H) is bonded to four silicon atoms one by one among the eight silicon atoms constituting the substantially hexahedral structure, and the other four silicon atoms. The fact that (—O—SiMe 3 ) is bonded to an atom one by one is expressed in a simplified manner.

Figure 2007251123
Figure 2007251123

次に、上記のかご型シルセスキオキサン化合物の合成方法の一例を説明する。まず、略6面体構造を有するオクタアニオン(Si12 8−)と、クロロヒドリドジメチルシランのような反応性ハロゲンとを反応させ、オクタアニオンの8つのシリコン原子にヒドリドジメチルシロキシ基を結合させて、式(2)においてp=8、q=8、r=0、R,Rがメチル基のかご型シルセスキオキサン化合物である、オクタキス[ヒドリドジメチルシロキシ]シルセスキオキサン(OHSS)を調製する。 Next, an example of a method for synthesizing the above cage silsesquioxane compound will be described. First, an octaanion (Si 8 O 12 8− ) having a substantially hexahedral structure is reacted with a reactive halogen such as chlorohydridodimethylsilane to bond a hydridodimethylsiloxy group to the eight silicon atoms of the octaanion. Then, in formula (2), p = 8, q = 8, r = 0, R 5 , R 6 is a cage silsesquioxane compound having a methyl group, octakis [hydridodimethylsiloxy] silsesquioxane (OHSS) ) Is prepared.

そしてこのOHSSを用いて、1−ヘキセニル等の炭素−炭素不飽和基を分子中に有する化合物を、全てのヒドリドジメチルシロキシ基にこの化合物が付加反応するように反応させることによって、シリコン原子と酸素原子で形成された略6面体構造を構成する8つのシリコン原子に炭素−炭素不飽和結合を有する炭素−炭素不飽和結合を有する鎖状炭化水素基Aが結合した、式(1)においてm=8、n=8、s=0、R,Rがメチル基のかご型シルセスキオキサン化合物を調製することができる。尚、上記オクタアニオンは、水酸化テトラメチルアンモニウムとテトラエトキシシランを反応させることにより得ることが可能である。 Then, by using this OHSS, a compound having a carbon-carbon unsaturated group such as 1-hexenyl in the molecule is reacted so that this compound is added to all hydridodimethylsiloxy groups, whereby silicon atoms and oxygen In formula (1), when a chain hydrocarbon group A having a carbon-carbon unsaturated bond is bonded to eight silicon atoms constituting an approximately hexahedral structure formed of atoms, m = 8, n = 8, s = 0, and a cage silsesquioxane compound in which R 1 and R 2 are methyl groups can be prepared. The octaanion can be obtained by reacting tetramethylammonium hydroxide with tetraethoxysilane.

また上記のクロロヒドリドジメチルシランをオクタアニオンと反応させるときに、クロロトリメチルシランのような不飽和基や活性水素を有さない反応性ハロゲンをも混合して反応させることにより、略6面体構造を構成する8つのシリコン原子の一部にトリメチルシロキシ基が結合したかご型シルセスキオキサン化合物を調製することができる。   In addition, when the chlorohydridodimethylsilane is reacted with the octaanion, an approximately hexahedral structure is obtained by mixing and reacting an unsaturated group such as chlorotrimethylsilane or a reactive halogen having no active hydrogen. A cage-type silsesquioxane compound in which a trimethylsiloxy group is bonded to a part of the eight silicon atoms constituting it can be prepared.

さらに、ジメチルビニルクロロシラン、ジメチルアリルクロロシラン、クロロシクロアルケニルジメチルシラン等の炭素−炭素不飽和基を有する反応性ハロゲンとクロロトリメチルシランとの混合物をオクタアニオンと反応させることにより、シリコン原子と酸素原子で形成された略6面体構造を構成する8つのシリコン原子の一部に炭素−炭素不飽和結合を有する基が結合し、他のシリコン原子にトリメチルシロキシ基が結合したかご型シルセスキオキサン化合物を調製することができる。   Further, by reacting a mixture of a reactive halogen having a carbon-carbon unsaturated group such as dimethylvinylchlorosilane, dimethylallylchlorosilane, chlorocycloalkenyldimethylsilane and chlorotrimethylsilane with an octaanion, a silicon atom and an oxygen atom are reacted. A cage-type silsesquioxane compound in which a group having a carbon-carbon unsaturated bond is bonded to a part of eight silicon atoms constituting the formed hexahedral structure and a trimethylsiloxy group is bonded to another silicon atom. Can be prepared.

上記のようにして得られる式(1)のかご型シルセスキオキサン化合物は、シリコン原子と酸素原子で形成された多面体構造のシリコン原子にシロキサン結合を介して結合した炭素−炭素不飽和結合を有する鎖状炭化水素基を有するものである。また式(2)のかご型シルセスキオキサン化合物はシリコン原子と酸素原子で形成された多面体構造のシリコン原子にシロキサン結合を介して結合した水素原子を有している。このため、式(1)の化合物の炭素−炭素不飽和結合を有する基と、式(2)の化合物の水素原子とがヒドロシリル化反応して、付加重合することにより架橋して硬化し、三次元架橋構造を形成するものである。   The cage silsesquioxane compound of the formula (1) obtained as described above has a carbon-carbon unsaturated bond bonded via a siloxane bond to a silicon atom having a polyhedral structure formed by silicon atoms and oxygen atoms. It has a chain hydrocarbon group. Further, the cage silsesquioxane compound of the formula (2) has hydrogen atoms bonded to silicon atoms having a polyhedral structure formed of silicon atoms and oxygen atoms via siloxane bonds. For this reason, the group having a carbon-carbon unsaturated bond of the compound of formula (1) and the hydrogen atom of the compound of formula (2) undergo a hydrosilylation reaction, and are crosslinked and cured by addition polymerization, resulting in tertiary It forms the original cross-linked structure.

図2にシリコン原子と酸素原子で形成された略6面体構造(符号7)が架橋結合された三次元架橋構造を模式的に示す。また[化3]に、式(1)のシルセスキオキサン化合物が、式(1)のAがヘキセニル基、R,Rがメチル基、m=8、n=8、s=0のオクタキス[ヘキセニルジメチルシロキシ]シルセスキオキサンであり、式(2)のシルセスキオキサン化合物が、式(2)においてR,Rがメチル基、p=8、q=8、r=0のオクタキス[ヒドリドジメチルシロキシ]シルセスキオキサンである場合の、三次元架橋構造の架橋反応を示す。式(1)のかご型シルセスキオキサンは、略6面体構造の8つのシリコン原子に、シロキサン結合を介して8個のヘキセニル基が結合しているものであり、また式(2)のかご型シルセスキオキサンは、略6面体構造の8つのシリコン原子に、シロキサン結合を介して8個の水素原子が結合しているものであり、水素原子とヘキセニルの不飽和基とがヒドロシリル化反応して架橋するものである。この三次元架橋構造は、シリカ(ガラス)のナノサイズかご型構造を有機のセグメントでつなぎ合わせたような構造を有しているものであり、ガラスライクな機能を発現させることができるものである。 FIG. 2 schematically shows a three-dimensional crosslinked structure in which a substantially hexahedral structure (symbol 7) formed of silicon atoms and oxygen atoms is crosslinked. Further, in [Chemical Formula 3], a silsesquioxane compound of the formula (1) is obtained, wherein A of the formula (1) is a hexenyl group, R 1 and R 2 are methyl groups, m = 8, n = 8, and s = 0. Octakis [hexenyldimethylsiloxy] silsesquioxane, a silsesquioxane compound of formula (2), wherein R 5 and R 6 are methyl groups in formula (2), p = 8, q = 8, r = 0 The cross-linking reaction of a three-dimensional cross-linking structure in the case of octakis [hydridodimethylsiloxy] silsesquioxane is shown. The cage silsesquioxane of the formula (1) has eight hexenyl groups bonded to eight silicon atoms having a substantially hexahedral structure through a siloxane bond, and the cage of the formula (2) Type silsesquioxane is a structure in which eight hydrogen atoms are bonded to eight silicon atoms having a substantially hexahedral structure through a siloxane bond, and the hydrogen atom and the unsaturated group of hexenyl are hydrosilylated. To crosslink. This three-dimensional crosslinked structure has a structure in which silica (glass) nano-sized squirrel-type structures are connected by organic segments, and can exhibit a glass-like function. .

Figure 2007251123
Figure 2007251123

ここで、上記のように式(1)のかご型シルセスキオキサン化合物と式(2)かご型シルセスキオキサン化合物を水素原子と不飽和基とのヒドロシリル化反応で架橋させるにあたって、本発明者等は従前に、Aの炭素−炭素不飽和結合を有する基として環状ビニルなどの環状炭化水素基を導入したかご型シルセスキオキサン化合物を検討してきた。[化4]において、式(1)に対応するかご型シルセスキオキサン化合物として、式(1)のAがシクロヘキセニル基であり、m=8、n=8、s=0、R,Rがメチル基であるシルセスキオキサンを示すものであり、略6面体構造の8つのシリコン原子に、シロキサン結合を介してシクロヘキセニル基が結合している。そしてこの式(1)に対応するかご型シルセスキオキサン化合物のシクロヘキセニルと、式(2)のかご型シルセスキオキサン化合物の水素原子とをヒドロシリル化反応させることによって、かご型シルセスキオキサン化合物を架橋・硬化させることができるものである。 Here, when the cage silsesquioxane compound of the formula (1) and the cage silsesquioxane compound of the formula (2) are crosslinked by a hydrosilylation reaction between a hydrogen atom and an unsaturated group as described above, In the past, the inventors have studied a cage silsesquioxane compound in which a cyclic hydrocarbon group such as cyclic vinyl is introduced as a group having a carbon-carbon unsaturated bond of A. [Chemical Formula 4] In the cage silsesquioxane compound corresponding to the formula (1), A in the formula (1) is a cyclohexenyl group, and m = 8, n = 8, s = 0, R 1 , R 2 represents a silsesquioxane in which a methyl group is present, and a cyclohexenyl group is bonded to eight silicon atoms having a substantially hexahedral structure through a siloxane bond. Then, the cage silsesquioxane of the cage silsesquioxane compound corresponding to the formula (1) is hydrosilylated with the hydrogen atom of the cage silsesquioxane compound of the formula (2). The sun compound can be crosslinked and cured.

Figure 2007251123
Figure 2007251123

しかし、環状炭化水素は立体障害が大きく、シクロヘキセニルの炭素−炭素不飽和結合と水素原子(−C=C/−SiH)の間の架橋反応が進行し難く、かご型シルセスキオキサン化合物を架橋した硬化物中に未反応基が残基として残り易い。このように未反応基が硬化物中に残ると、硬化物のブルーレイ照射耐性などの耐久性に問題が生じるおそれがある。   However, the cyclic hydrocarbon has a large steric hindrance, and the cross-linking reaction between the carbon-carbon unsaturated bond of cyclohexenyl and the hydrogen atom (-C = C / -SiH) is difficult to proceed. Unreacted groups are likely to remain as residues in the crosslinked cured product. If unreacted groups remain in the cured product in this way, there is a risk that problems such as resistance to Blu-ray irradiation of the cured product may occur.

一方、本発明のように、式(1)のかご型シルセスキオキサン化合物においてAの炭素−炭素不飽和結合を有する基として鎖状ビニルなどの鎖状炭化水素基を用いることによって、立体障害が起き難くなり、水素原子と炭素−炭素不飽和結合の間の架橋反応が著しく促進され、硬化物中の未反応残基の量も低減されるものである。この結果、未反応残基に起因する信頼性低下を防ぐことが可能になるものであり、ブルーレイ照射耐性などの耐久性が高い硬化物を得ることができるものである。   On the other hand, by using a chain hydrocarbon group such as a chain vinyl as a group having a carbon-carbon unsaturated bond of A in the cage-type silsesquioxane compound of the formula (1) as in the present invention, steric hindrance is achieved. The cross-linking reaction between a hydrogen atom and a carbon-carbon unsaturated bond is remarkably promoted, and the amount of unreacted residues in the cured product is also reduced. As a result, it is possible to prevent a decrease in reliability due to unreacted residues, and a cured product having high durability such as Blu-ray irradiation resistance can be obtained.

そして、半導体発光素子2等を封止する封止材3として、従来から使用されている光透過性エポキシ樹脂、ポリエステル、ポリアクリレート、オルガノポリシロキサン等を用いると、これらに含まれる架橋結合と吸収基の存在のために、必要とされるスペクトル領域に不要な吸収ピークが出現しやすいが、本発明のかご型シルセスキオキサン化合物の硬化物を用いると、このような吸収ピークが少なく、良好な青色光や紫外線光の透過性を有する封止材3となるものである。   Then, when a conventionally used light-transmitting epoxy resin, polyester, polyacrylate, organopolysiloxane, or the like is used as the sealing material 3 for sealing the semiconductor light emitting element 2 or the like, the cross-linking bond and absorption contained in these are used. Due to the presence of groups, unnecessary absorption peaks are likely to appear in the required spectral region, but when the cured product of the cage silsesquioxane compound of the present invention is used, such absorption peaks are few and good. It becomes the sealing material 3 which has the transmittance | permeability of blue light and ultraviolet light.

尚、本発明の上記式(1)で表されるかご型シルセスキオキサン化合物と、本発明の上記式(2)で表されるかご型シルセスキオキサン化合物の配合量は、式(1)で表されるかご型シルセスキオキサン化合物が有する炭素−炭素不飽和結合を有する鎖状炭化水素基の数と、式(2)で表されるかご型シルセスキオキサン化合物が有するシリコン原子と酸素原子で形成された多面体構造のシリコン原子にシロキサン結合を介して結合した水素原子の数とが、混合した液全体で見て同じであることが好ましいが、硬化物の望ましい光学および物理的特性が維持される限りにおいて多少異なっていても良い。   In addition, the compounding quantity of the cage silsesquioxane compound represented by the above formula (1) of the present invention and the cage silsesquioxane compound represented by the above formula (2) of the present invention is the formula (1). ) And the number of chain hydrocarbon groups having a carbon-carbon unsaturated bond in the cage silsesquioxane compound represented by formula (2) and the silicon atom in the cage silsesquioxane compound represented by formula (2). And the number of hydrogen atoms bonded to the polyhedral silicon atoms formed by oxygen atoms via siloxane bonds are preferably the same in the entire mixed liquid, but the desired optical and physical properties of the cured product It may be slightly different as long as the characteristics are maintained.

本発明のかご型シルセスキオキサン化合物を用いて半導体発光素子2等を封止するにあたっては、かご型シルセスキオキサン化合物の重合・架橋が進む条件であれば、特に限定されることなく任意の方法を採用することができるものであり、必要に応じて白金、パレジウム等の付加反応触媒を用いて反応させるようにしても良い。ここで、本発明に係るかご型シルセスキオキサン化合物は、架橋させるまでは、室温で液状ないしは比較的低温で溶融する固形であるため、半導体発光素子2等の封止を容易に行なうことが可能となるものである。   In sealing the semiconductor light emitting device 2 and the like using the cage silsesquioxane compound of the present invention, any conditions can be used without particular limitation as long as the polymerization and crosslinking of the cage silsesquioxane compound proceed. This method can be employed, and the reaction may be carried out using an addition reaction catalyst such as platinum or palladium as needed. Here, the cage-type silsesquioxane compound according to the present invention is liquid at room temperature or solid that melts at a relatively low temperature until it is cross-linked, so that the semiconductor light emitting device 2 and the like can be easily sealed. It is possible.

また、本発明の上記式(1)で表されるかご型シルセスキオキサン化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物は、式(1)で表されるかご型シルセスキオキサン化合物が2〜10個程度重合したオリゴマーであり、半導体発光素子2等を封止することが可能な流動性を持つものである。また本発明の上記式(2)で表されるかご型シルセスキオキサン化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物は、式(2)で表されるかご型シルセスキオキサン化合物が2〜10個程度重合したオリゴマーであり、半導体発光素子2等を封止することが可能な流動性を持つものである。従ってこの部分重合物を用いた場合も、他のかご型シルセスキオキサン化合物またはその部分重合物と重合することにより架橋し、例えば図2に示すような三次元架橋構造を形成するものである。そしてこの場合も同様に、青・近紫外域の光が照射された状態で使用されても、劣化し難く、かつ吸水率が低い硬化物で封止材3を形成することができるものである。   Moreover, the cage silsesquioxane compound partial polymer obtained by partial addition reaction of the cage silsesquioxane compound represented by the above formula (1) of the present invention is a cage silsesquioxane compound represented by the formula (1). It is an oligomer in which about 2 to 10 oxan compounds are polymerized, and has fluidity capable of sealing the semiconductor light emitting element 2 and the like. The cage silsesquioxane compound partial polymer obtained by partial addition reaction of the cage silsesquioxane compound represented by the above formula (2) of the present invention is a cage silsesquioxane represented by the formula (2). It is an oligomer in which about 2 to 10 sun compounds are polymerized, and has fluidity capable of sealing the semiconductor light emitting element 2 and the like. Accordingly, even when this partially polymerized product is used, it is crosslinked by polymerizing with another cage-type silsesquioxane compound or a partially polymerized product thereof to form, for example, a three-dimensional crosslinked structure as shown in FIG. . In this case as well, the sealing material 3 can be formed of a cured product that is hardly deteriorated and has a low water absorption even when used in a state of being irradiated with light in the blue / near ultraviolet region. .

尚、半導体発光素子2を封止する封止材3には、上記式(1)及び(2)で表されるかご型シルセスキオキサン化合物またはこの化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物に加えて、付加反応性を有するケイ素化合物を、硬化物の望ましい光学および物理的特性が維持される限りにおいて含有しても良い。   The encapsulant 3 for encapsulating the semiconductor light emitting device 2 includes a cage silsesquioxane compound represented by the above formulas (1) and (2) or a cage silsesquioxane obtained by partial addition reaction of this compound. In addition to the sun compound partial polymer, a silicon compound having addition reactivity may be contained as long as desirable optical and physical properties of the cured product are maintained.

上記の説明では、上記式(1)のかご型シルセスキオキサン化合物をm=8の場合で、上記式(2)のかご型シルセスキオキサン化合物をp=8の場合で説明したが、mやpが6,10,12の場合も、同様に反応させることにより、かご型シルセスキオキサン化合物やかご型シルセスキオキサン化合物部分重合物を得ることができる。そして、これらの化合物を用いた場合も、他のかご型シルセスキオキサン化合物等と重合することにより架橋し、シリコン原子と酸素原子で形成された多面体構造を骨格に有する三次元架橋構造を形成するものである。そしてこの場合も同様に、青・近紫外域の光が照射された状態で使用されても、劣化しにくく、かつ吸水率が低い硬化物となるものである。   In the above description, the cage silsesquioxane compound of the above formula (1) is described in the case of m = 8, and the cage silsesquioxane compound of the above formula (2) is described in the case of p = 8. When m and p are 6, 10, and 12, a cage-type silsesquioxane compound or a cage-type silsesquioxane compound partial polymer can be obtained by reacting in the same manner. Even when these compounds are used, they are cross-linked by polymerizing with other cage-type silsesquioxane compounds, etc. to form a three-dimensional cross-linked structure with a polyhedral structure formed of silicon atoms and oxygen atoms in the skeleton. To do. Also in this case, similarly, even when used in a state of being irradiated with light in the blue / near ultraviolet region, it becomes a cured product that is hardly deteriorated and has a low water absorption rate.

尚、上記の式(1)で表されるかご型シルセスキオキサン化合物が、Bの置換または非置換のアルキル基がアルコキシ基であり、かつ(s≧2)である場合、また上記の式(2)で表されるかご型シルセスキオキサン化合物が、Eの置換または非置換のアルキル基がアルコキシ基であり、かつ(r≧2)である場合、上記した炭素−炭素不飽和結合を有する基と水素原子との結合に加えて、このアルコキシ基どうしの加水分解・重縮合の結合でも架橋することが可能となり、利用の汎用性が高まると共に硬化の汎用性が高まり好ましい。このとき、炭素−炭素不飽和結合を有する基と水素原子との結合が主な架橋構造になると、硬化物の厚膜化が比較的容易になって好ましく、また、アルコキシ基どうしの加水分解・重縮合の結合が主な架橋構造になると、比較的透明性が高くなって好ましい。   In the cage silsesquioxane compound represented by the above formula (1), when the substituted or unsubstituted alkyl group of B is an alkoxy group and (s ≧ 2), the above formula In the cage silsesquioxane compound represented by (2), when the substituted or unsubstituted alkyl group of E is an alkoxy group and (r ≧ 2), the above carbon-carbon unsaturated bond is In addition to the bond between the group and the hydrogen atom, the alkoxy group can be cross-linked by a hydrolysis / polycondensation bond. This increases the versatility of use and increases the versatility of curing. At this time, when the bond between a group having a carbon-carbon unsaturated bond and a hydrogen atom is a main cross-linked structure, it is preferable because the thickness of the cured product becomes relatively easy, and hydrolysis of alkoxy groups is preferable. It is preferable that the polycondensation bond has a main cross-linked structure because of relatively high transparency.

また、上記の実施の形態では、式(1)及び式(2)のかご型シルセスキオキサン化合物、又はこの化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物で半導体発光素子又は半導体受光素子を封止した半導体光装置を説明したが、式(1)及び式(2)のかご型シルセスキオキサン化合物、又はこの化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物を成形材として用い、これを成形して重合・硬化させることによって、レンズやプリズム等の透明光学部材を作製することができるものである。また光学ディスクの表面に塗布して重合させることにより、ブルーレイディスクの保護層等の透明光学部材に利用できるものである。   Moreover, in said embodiment, it is a semiconductor light emitting element or a cage silsesquioxane compound of Formula (1) and Formula (2), or a cage silsesquioxane compound partial polymer obtained by partial addition reaction of this compound. Although the semiconductor optical device in which the semiconductor light receiving element is sealed has been described, the cage-type silsesquioxane compound of the formulas (1) and (2), or the cage-type silsesquioxane compound partial polymerization in which this compound is partially added and reacted. A transparent optical member such as a lens or a prism can be produced by using an article as a molding material, molding it, and polymerizing / curing it. In addition, it can be used for a transparent optical member such as a protective layer of a Blu-ray disc by being applied and polymerized on the surface of the optical disc.

ここで、かご型シルセスキオキサン化合物の硬化体をLED白色照明用の透明封止材等の光学用途に応用する場合、屈折率を向上することが必要であり、かご型シルセスキオキサン化合物の硬化体を高屈折率に形成するために、かご型シルセスキオキサン化合物にTiOやZrO等の重金属ゾルを混合し、この重金属ゾルをかご型シルセスキオキサン化合物の硬化物中に導入することが行なわれる。このとき、かご型シルセスキオキサン化合物は一般にTiOやZrO等の重金属ゾルと相溶性が悪く、重金属ゾルを均一に分散させることが難しい。これは例えば[化5]のように、式(1)においてAがアリル基、R,Rがメチル基、m=8、n=8、s=0のかご型シルセスキオキサン化合物であるオクタキス[アリルジメチルシロキシ]シルセスキオキサンと、式(2)においてR,Rがメチル基、p=8、q=8、r=0のかご型シルセスキオキサン化合物であるオクタキス[ヒドリドジメチルシロキシ]シルセスキオキサンとを架橋反応させる系では、重金属ゾルの表面を被覆する−OHと親和性のある官能基が存在しないからである。 Here, when applying the cured product of the cage silsesquioxane compound to an optical application such as a transparent encapsulant for LED white illumination, it is necessary to improve the refractive index. In order to form a cured product having a high refractive index, a heavy metal sol such as TiO or ZrO is mixed with a cage silsesquioxane compound, and the heavy metal sol is introduced into a cured product of the cage silsesquioxane compound. Is done. At this time, the cage silsesquioxane compound is generally not compatible with heavy metal sols such as TiO and ZrO, and it is difficult to uniformly disperse the heavy metal sol. This is a cage silsesquioxane compound of the formula (1) in which A is an allyl group, R 1 and R 2 are methyl groups, m = 8, n = 8, and s = 0, as shown in [Chemical Formula 5]. A certain octakis [allyldimethylsiloxy] silsesquioxane, and an octakis [] which is a cage silsesquioxane compound in which R 5 and R 6 are methyl groups, p = 8, q = 8, and r = 0 in the formula (2) This is because there is no functional group having an affinity for —OH covering the surface of the heavy metal sol in the system in which the hydridodimethylsiloxy] silsesquioxane is cross-linked.

Figure 2007251123
Figure 2007251123

そこでこの場合には、式(1)においてm−n−sが1以上である、−OH基を導入したシルセスキオキサン化合物と、式(2)においてp−q−rが1以上である、−OH基を導入したシルセスキオキサン化合物を用いるようにする。次の[化6]に示すように、式(1)及び式(2)のシルセスキオキサン化合物の−OH基と重金属ゾルを覆う−OH基との親和性によって、重金属ゾルの分散性を高めることができるものであり、かご型シルセスキオキサン化合物と重金属ゾルを均一に分散させて、均一な高屈折率を有するかご型シルセスキオキサン化合物の硬化物を得ることができるものである。   Therefore, in this case, in the formula (1), mn-s is 1 or more, a silsesquioxane compound into which an —OH group is introduced, and in formula (2), pqr is 1 or more. , A silsesquioxane compound into which an —OH group is introduced is used. As shown in the following [Chemical Formula 6], the dispersibility of the heavy metal sol is controlled by the affinity between the —OH group of the silsesquioxane compound of the formulas (1) and (2) and the —OH group covering the heavy metal sol. The cage-type silsesquioxane compound and the heavy metal sol can be uniformly dispersed to obtain a cured product of the cage-type silsesquioxane compound having a uniform high refractive index. .

Figure 2007251123
Figure 2007251123

[化6]に示す式(1)のかご型シルセスキオキサン化合物は、式(1)においてAがアリル基、R,Rがメチル基、m=8、n=6、s=0の化合物であり、シリコン原子と酸素原子で形成された略6面体構造を構成する8つのシリコン原子のうち、6つのシリコン原子にシロキサン結合(−O−Si−)を介してアリル基が結合し、2つのシリコン原子に水酸基が結合した構造を有するものである。また式(2)のかご型シルセスキオキサン化合物は、式(2)においてR,Rがメチル基、p=8、q=6、r=0の化合物であり、シリコン原子と酸素原子で形成された略6面体構造を構成する8つのシリコン原子のうち、6つのシリコン原子にシロキサン結合(−O−Si−)を介して水素原子が結合し、2つのシリコン原子に水酸基が結合した構造を有するものである。 The cage silsesquioxane compound of the formula (1) shown in [Chemical Formula 6] has the formula (1) wherein A is an allyl group, R 1 and R 2 are methyl groups, m = 8, n = 6, s = 0 Of the eight silicon atoms constituting a substantially hexahedral structure formed by silicon atoms and oxygen atoms, allyl groups are bonded to six silicon atoms through siloxane bonds (—O—Si—). It has a structure in which a hydroxyl group is bonded to two silicon atoms. Further, the cage silsesquioxane compound of the formula (2) is a compound in which R 5 and R 6 are methyl groups, p = 8, q = 6, r = 0 in the formula (2), and a silicon atom and an oxygen atom Among the eight silicon atoms constituting the substantially hexahedral structure formed by hydrogen atoms, hydrogen atoms are bonded to six silicon atoms via siloxane bonds (—O—Si—), and hydroxyl groups are bonded to two silicon atoms. It has a structure.

このような、略6面体構造を構成する8つのシリコン原子の一部に水酸基が結合したかご型シルセスキオキオキサンは、次のようにして製造することができる。   Such a cage-type silsesquioxane in which a hydroxyl group is bonded to a part of eight silicon atoms constituting a substantially hexahedral structure can be produced as follows.

[化5]のオクタキス[アリルジメチルシロキシ]シルセスキオキサンは、次の[化7]に示すように、オクタアニオンにアリルジメチルクロルシランを反応させることによって調製することができるが、オクタアニオンの8つの反応サイトの全てにアリルジメチルクロルシランを置換させるためには、アリルジメチルクロルシランの配合量はオクタアニオンに対して大過剰(30倍当量以上)に設定する必要がある。従って、オクタアニオンに対するアリルジメチルクロルシランの過剰度合いが少ない場合、オクタアニオンの8つの反応サイトの一部が置換されなくなり、非置換サイトが加水分解されて−OH基になるものであり、[化6]のような略6面体構造を構成する一部のシリコン原子にOH基を導入したアリルジメチルシロキシシルセスキオキサンを調製することができるものである。またこの過剰度合いを調整することによって、かご型シルセスキオキサンへの−OH基の導入数を制御することができるものである。例えば、オクタアニオン1モルに対するアリルジメチルクロルシランの配合モル数を30モルに調整して、30倍モルで反応させたとき、−OH基の導入数は、かご型シルセスキオキサン化合物1分子に対して0.02個となり、同様に25倍モルで反応させたときの−OH基の導入数は0.7個、15倍モルで反応させたときの−OH基の導入数は0.9個、8倍モルで反応させたときの−OH基の導入数は2.0個となる。   The octakis [allyldimethylsiloxy] silsesquioxane of [Chemical Formula 5] can be prepared by reacting the octaanion with allyldimethylchlorosilane as shown in [Chemical Formula 7] below. In order to substitute allyldimethylchlorosilane for all eight reaction sites, the compounding amount of allyldimethylchlorosilane must be set to a large excess (more than 30 times equivalent) with respect to the octaanion. Accordingly, when the degree of excess of allyldimethylchlorosilane relative to the octaanion is small, a part of the eight reaction sites of the octaanion is not substituted, and the unsubstituted site is hydrolyzed to become —OH group. 6], allyldimethylsiloxysilsesquioxane in which OH groups are introduced into some silicon atoms constituting a substantially hexahedral structure can be prepared. Further, by adjusting the excess degree, the number of —OH groups introduced into the cage silsesquioxane can be controlled. For example, when the number of moles of allyldimethylchlorosilane to 1 mole of octaanion is adjusted to 30 moles and reacted at 30 times mole, the number of —OH groups introduced is one molecule of cage silsesquioxane compound. Similarly, the number of introduction of —OH groups when reacted at 25-fold moles was 0.7, and the number of introduction of —OH groups when reacted at 15-fold moles was 0.9. The number of —OH groups introduced is 2.0 when the reaction is carried out at a mole of 8 times.

Figure 2007251123
Figure 2007251123

また、[化5]のオクタキス[ヒドリドジメチルシロキシ]シルセスキオキサンは、次の[化8]に示すように、オクタアニオンにジメチルクロルシランを反応させることによって調製することができるが、オクタアニオンの8つの反応サイトの全てにジメチルシクロルシランを置換させるためには、ジメチルクロルシランの配合量はオクタアニオンに対して大過剰に設定する必要がある。従って、オクタアニオンに対するジメチルクロルシランの過剰度合いが少ない場合、オクタアニオンの8つの反応サイトの一部が置換されなくなり、非置換サイトが−OH基になるものであり、[化6]のような略6面体構造を構成する一部のシリコン原子にOH基を導入したヒドリドジメチルシロキシシルセスキオキサンを調製することができるものである。またこの過剰度合いを調整することによって、かご型シルセスキオキサンへの−OH基の導入数を制御することができるものである。   [Chemical Formula 5] octakis [hydridodimethylsiloxy] silsesquioxane can be prepared by reacting an octaanion with dimethylchlorosilane as shown in [Chemical Formula 8] below. In order to substitute dimethylcyclosilane at all of the eight reaction sites, the amount of dimethylchlorosilane must be set in a large excess relative to the octaanion. Therefore, when the excess of dimethylchlorosilane relative to the octaanion is small, some of the eight reaction sites of the octaanion are not substituted, and the unsubstituted site becomes an —OH group. It is possible to prepare hydridodimethylsiloxysilsesquioxane in which OH groups are introduced into some silicon atoms constituting a substantially hexahedral structure. Further, by adjusting the excess degree, the number of —OH groups introduced into the cage silsesquioxane can be controlled.

Figure 2007251123
Figure 2007251123

次に、本発明を実施例によって具体的に説明する。   Next, the present invention will be specifically described with reference to examples.

(実施例1)
三口フラスコに滴下ロート、温度計、試薬注入弁を取り付けた器具を組み、三口フラスコにヘキサン188ml、アリルジメチルクロルシラン28.35mlを投入した。次に三口フラスコ内の系全体を5℃以下になるように氷浴で冷却し、系内の温度が5℃以下になったことを確認した後、窒素気流下で滴下ロートからオクタアニオン50mlを1〜2滴/秒の速さで滴下した。このとき、オクタアニオンの8つの反応サイトの全てにアリルジメチルシクロルシランを置換させるために、アリルジメチルクロルシランの配合量はオクタアニオンに対して大過剰(30倍当量以上)に設定する必要がある。
Example 1
An apparatus equipped with a dropping funnel, thermometer, and reagent injection valve was assembled in a three-necked flask, and 188 ml of hexane and 28.35 ml of allyldimethylchlorosilane were charged into the three-necked flask. Next, the whole system in the three-necked flask was cooled with an ice bath so that the temperature was 5 ° C. or lower, and after confirming that the temperature in the system was 5 ° C. or lower, 50 ml of octaanion was added from the dropping funnel under a nitrogen stream. The solution was dropped at a rate of 1 to 2 drops / second. At this time, in order to replace allyldimethylcyclosilane in all eight reaction sites of the octaanion, it is necessary to set the compounding amount of allyldimethylchlorosilane to a large excess (more than 30 times equivalent) with respect to the octaanion. is there.

滴下完了後、氷浴を外し、室温で6時間攪拌して上記の[化7]に示すようにオクタアニオンとアリルジメチルクロルシランを反応させた([化7]においてMeはメチル基を示す)。得られた反応溶液をヘキサン50mlで3回抽出し、ヘキサン層を乾燥剤(硫酸ナトリウム)で乾燥した後、吸引濾過した。得られたろ液をエバポレーターを用いてヘキサンを留去し、さらにヘキサンを除去して得られた反応性生物から未反応原料を真空ポンプで65℃で加熱しながら除去することによって、オクタキス[アリルジメチルスロキシ]シルセスキオキサンを得た。   After completion of the dropwise addition, the ice bath was removed and the mixture was stirred at room temperature for 6 hours to react the octaanion and allyldimethylchlorosilane as shown in the above [Chemical 7] (In [Chemical 7], Me represents a methyl group). . The obtained reaction solution was extracted three times with 50 ml of hexane, and the hexane layer was dried with a desiccant (sodium sulfate) and then filtered with suction. Hexane was distilled off from the obtained filtrate using an evaporator, and unreacted raw materials were removed from the reaction product obtained by removing hexane while heating at 65 ° C. with a vacuum pump. [Sloxy] silsesquioxane was obtained.

また、三口フラスコに滴下ロート、温度計、試薬注入弁を取り付けた器具を組み、三口フラスコにヘキサン895ml、ジメチルクロルシラン69.7mlを投入した。次に三口フラスコ内の系全体を5℃以下になるように氷浴で冷却し、系内の温度が5℃以下になったことを確認した後、窒素気流下で滴下ロートからオクタアニオン334mlを1〜2滴/秒の速さで滴下した。このとき、オクタアニオンの8つの反応サイトの全てにジメチルクロルシランを置換させるために、ジメチルクロルシランの配合量はオクタアニオンに対して大過剰に設定する必要がある。   In addition, a three-necked flask was equipped with a dropping funnel, a thermometer, and a reagent injection valve, and 895 ml of hexane and 69.7 ml of dimethylchlorosilane were charged into the three-necked flask. Next, the whole system in the three-necked flask was cooled with an ice bath so as to be 5 ° C. or less, and after confirming that the temperature in the system became 5 ° C. or less, 334 ml of octaanion was added from the dropping funnel under a nitrogen stream. The solution was dropped at a rate of 1 to 2 drops / second. At this time, in order to substitute dimethylchlorosilane for all eight reaction sites of the octaanion, it is necessary to set the blending amount of dimethylchlorosilane to a large excess with respect to the octaanion.

滴下完了後、氷浴を外し、室温で6時間攪拌して上記の[化8]に示すようにオクタアニオンとジメチルクロルシランを反応させた([化8]においてMeはメチル基を示す)。得られた反応溶液をヘキサン100mlで3回抽出し、ヘキサン層を乾燥剤(硫酸ナトリウム)で乾燥した後、吸引濾過した。このろ液をエバポレーターを用いてヘキサンを留去し、得られた結晶をアセトニトリルで洗浄して乾燥することによって、オクタキス[ヒドリドジメチルシロキシ]シルセスキオキサンを得た。   After completion of the dropwise addition, the ice bath was removed, and the mixture was stirred at room temperature for 6 hours to react the octaanion and dimethylchlorosilane as shown in the above [Chemical 8] (In [Chemical 8], Me represents a methyl group). The obtained reaction solution was extracted three times with 100 ml of hexane, and the hexane layer was dried with a desiccant (sodium sulfate) and then filtered with suction. Hexane was distilled off from the filtrate using an evaporator, and the resulting crystals were washed with acetonitrile and dried to obtain octakis [hydridodimethylsiloxy] silsesquioxane.

そして上記のようにして得たオクタキス[アリルジメチルスロキシ]シルセスキオキサン1gと、オクタキス[ヒドリドジメチルシロキシ]シルセスキオキサン0.5gとを混合し、これをテフロン(登録商標)製の型に流し込み、85℃で2時間脱気した。次いで脱気後、オーブンに窒素を流しながら温度を30C/hの割合で200Cまで上げ、その温度で10時間保持して硬化させることによって、無色透明の樹脂板を得た。 Then, 1 g of octakis [allyldimethylthroxy] silsesquioxane obtained as described above and 0.5 g of octakis [hydridodimethylsiloxy] silsesquioxane were mixed, and this was mixed with a mold made of Teflon (registered trademark). And degassed at 85 ° C. for 2 hours. Next, after deaeration, the temperature was increased to 200 ° C. at a rate of 30 ° C./h while flowing nitrogen in the oven, and the temperature was kept at that temperature for 10 hours to cure to obtain a colorless and transparent resin plate.

(実施例2)
三口フラスコに滴下ロート、温度計、試薬注入弁を取り付け、三口フラスコにヘキサン188ml、アリルジメチルクロルシラン10.6mlを投入した(オクタアニオンに対してアリルジメチルクロルシランは8倍当量)。次に系内全体を5℃以下になるように氷浴で冷却し、系内の温度が5℃以下になった時点で、滴下ロートからオクタアニオン70mlを1〜2滴/秒の速さで滴下した。
(Example 2)
A dropping funnel, a thermometer, and a reagent injection valve were attached to the three-necked flask, and 188 ml of hexane and 10.6 ml of allyldimethylchlorosilane were added to the three-necked flask (allyldimethylchlorosilane was 8 times equivalent to the octaanion). Next, the whole system is cooled in an ice bath so that the temperature is 5 ° C. or less. When the temperature in the system becomes 5 ° C. or less, 70 ml of octaanion is added at a rate of 1 to 2 drops / second from the dropping funnel. It was dripped.

滴下完了後、氷浴を外し、室温で6時間攪拌して反応させた。得られた反応溶液をヘキサン40mlで3回抽出し、ヘキサン層を乾燥剤(硫酸ナトリウム)で乾燥した後、吸引濾過した。得られたろ液をエバポレーションしてヘキサンを留去し、さらにヘキサンを除去して得られた反応性生物から未反応原料を真空ポンプで65℃で加熱しながら除去して、精製することによって、[化6]に示す、−OH基を2個持つアリルジメチルシロキシシルセスキオキサンを得た。   After completion of the dropwise addition, the ice bath was removed and the reaction was allowed to stir at room temperature for 6 hours. The obtained reaction solution was extracted three times with 40 ml of hexane, and the hexane layer was dried with a desiccant (sodium sulfate) and then filtered with suction. By evaporating the obtained filtrate to distill off hexane, and further removing hexane from the reaction product obtained by removing unreacted raw materials while heating at 65 ° C. with a vacuum pump, purification is performed. Allyldimethylsiloxysilsesquioxane having two —OH groups shown in [Chemical Formula 6] was obtained.

また、三口フラスコに滴下ロート、温度計、試薬注入弁を取り付け、三口フラスコにヘキサン895ml、ジメチルクロルシラン55.8mlを投入した。次に系内全体を5℃以下になるように氷浴で冷却し、系内の温度が5℃以下になった時点で、滴下ロートからオクタアニオン334mlを1〜2滴/秒の速さで滴下した。   A dropping funnel, a thermometer, and a reagent injection valve were attached to the three-necked flask, and 895 ml of hexane and 55.8 ml of dimethylchlorosilane were added to the three-necked flask. Next, the whole system is cooled in an ice bath so that the temperature is 5 ° C. or less. When the temperature in the system is 5 ° C. or less, 334 ml of octaanion is added at a rate of 1 to 2 drops / second from the dropping funnel. It was dripped.

滴下完了後、氷浴を外し、室温で6時間攪拌して反応させた。得られた反応溶液をヘキサン40mlで3回抽出し、ヘキサン層を乾燥剤(硫酸ナトリウム)で乾燥した後、吸引濾過した。このろ液をエバポレーションしてヘキサンを留去し、得られた結晶をアセトニトリルで洗浄することによって、[化6]に示す、−OH基を2個持つヒドリドジメチルシロキシシルセスキオキサンを得た。   After completion of the dropwise addition, the ice bath was removed and the reaction was allowed to stir at room temperature for 6 hours. The obtained reaction solution was extracted three times with 40 ml of hexane, and the hexane layer was dried with a desiccant (sodium sulfate) and then filtered with suction. The filtrate was evaporated to remove hexane, and the resulting crystals were washed with acetonitrile to obtain hydridodimethylsiloxysilsesquioxane having two —OH groups as shown in [Chem. 6]. .

そして上記のようにして得た、それぞれ分子中に−OH基を2個持つ、アリルジメチルシロキシシルセスキオキサン1gと、ヒドリドジメチルシロキシシルセスキオキサン0.5gとを混合し、これをテフロン(登録商標)製の型に流し込み、85℃で2時間脱気した。次いで脱気後、オーブンに窒素を流しながら温度を30C/hの割合で200Cまで上げ、その温度で10時間保持して硬化させることによって、無色透明の樹脂板を得た。 Then, 1 g of allyldimethylsiloxysilsesquioxane, each having two —OH groups in the molecule, and 0.5 g of hydridodimethylsiloxysilsesquioxane, each obtained as described above, were mixed and mixed with Teflon ( The mixture was poured into a mold made of (registered trademark) and deaerated at 85 ° C. for 2 hours. Next, after deaeration, the temperature was increased to 200 ° C. at a rate of 30 ° C./h while flowing nitrogen in the oven, and the temperature was kept at that temperature for 10 hours to cure to obtain a colorless and transparent resin plate.

本発明の半導体光装置の実施の形態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of embodiment of the semiconductor optical device of this invention. 本発明のかご型シルセスキオキサン化合物が架橋した三次元架橋構造ポリマーを模式的に示す図である。It is a figure which shows typically the three-dimensional crosslinked structure polymer which the cage-type silsesquioxane compound of this invention bridge | crosslinked.

符号の説明Explanation of symbols

2 半導体発光素子
3 封止材
2 Semiconductor light emitting device 3 Sealing material

Claims (2)

下記式(1)で表されるかご型シルセスキオキサン化合物、又はこの化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物と、下記式(2)で表されるかご型シルセスキオキサン化合物、又はこの化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物とを含有するケイ素化合物で、半導体発光素子又は半導体受光素子を封止して成ることを特徴とする半導体光装置。
(ARSiOSiO1.5(BRSiOSiO1.5(HOSiO1.5m−n−s …(1)
(式(1)中、Aは炭素−炭素不飽和結合を有する鎖状炭化水素基、Bは置換又は非置換の飽和アルキル基もしくは水酸基、R,R,R,Rは各々独立に低級アルキル基、フェニル基、低級アリールアルキル基から選ばれる官能基を表し、mは6,8,10,12から選ばれた数、nは2〜mの整数、sは0〜m−nの整数を表す)
(RHSiOSiO1.5(ERSiOSiO1.5(HOSiO1.5p−q−r …(2)
(式(2)中、Eは置換又は非置換の飽和アルキル基もしくは水酸基、R,R,R,Rは各々独立に低級アルキル基、フェニル基、低級アリールアルキル基から選ばれる官能基を表し、pは6,8,10,12から選ばれた数、qは2〜pの整数、rは0〜p−qの整数を表す)
A cage-type silsesquioxane compound represented by the following formula (1), or a cage-type silsesquioxane compound partial polymer obtained by partial addition reaction of this compound, and a cage-type silsesquioxane represented by the following formula (2) A semiconductor light comprising a silicon compound containing an oxan compound or a cage silsesquioxane compound partial polymer obtained by partial addition reaction of this compound, wherein the semiconductor light emitting device or the semiconductor light receiving device is sealed. apparatus.
(AR 1 R 2 SiOSiO 1.5 ) n (BR 3 R 4 SiOSiO 1.5 ) s (HOSiO 1.5 ) m- ns (1)
(In Formula (1), A is a chain hydrocarbon group having a carbon-carbon unsaturated bond, B is a substituted or unsubstituted saturated alkyl group or hydroxyl group, and R 1 , R 2 , R 3 , and R 4 are each independently Represents a functional group selected from a lower alkyl group, a phenyl group, and a lower arylalkyl group, m is a number selected from 6, 8, 10, and 12, n is an integer of 2 to m, and s is 0 to mn. Represents an integer)
(R 5 R 6 HSiOSiO 1.5 ) q (ER 7 R 8 SiOSiO 1.5 ) r (HOSiO 1.5 ) p-qr (2)
(In formula (2), E is a substituted or unsubstituted saturated alkyl group or hydroxyl group, and R 5 , R 6 , R 7 , and R 8 are each independently a function selected from a lower alkyl group, a phenyl group, and a lower arylalkyl group. Represents a group, p is a number selected from 6, 8, 10, and 12, q is an integer of 2 to p, and r is an integer of 0 to p-q)
下記式(1)で表されるかご型シルセスキオキサン化合物、又はこの化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物と、下記式(2)で表されるかご型シルセスキオキサン化合物、又はこの化合物が部分付加反応したかご型シルセスキオキサン化合物部分重合物とを含有するケイ素化合物を、重合して成ることを特徴とする透明光学部材。
(ARSiOSiO1.5(BRSiOSiO1.5(HOSiO1.5m−n−s …(1)
(式(1)中、Aは炭素−炭素不飽和結合を有する鎖状炭化水素基、Bは置換又は非置換の飽和アルキル基もしくは水酸基、R,R,R,Rは各々独立に低級アルキル基、フェニル基、低級アリールアルキル基から選ばれる官能基を表し、mは6,8,10,12から選ばれた数、nは2〜mの整数、sは0〜m−nの整数を表す)
(RHSiOSiO1.5(ERSiOSiO1.5(HOSiO1.5p−q−r …(2)
(式(2)中、Eは置換又は非置換の飽和アルキル基もしくは水酸基、R,R,R,Rは各々独立に低級アルキル基、フェニル基、低級アリールアルキル基から選ばれる官能基を表し、pは6,8,10,12から選ばれた数、qは2〜pの整数、rは0〜p−qの整数を表す)
A cage-type silsesquioxane compound represented by the following formula (1), or a cage-type silsesquioxane compound partial polymer obtained by partial addition reaction of this compound, and a cage-type silsesquioxane represented by the following formula (2) A transparent optical member obtained by polymerizing a silicon compound containing an oxan compound or a cage silsesquioxane compound partial polymer obtained by partial addition reaction of this compound.
(AR 1 R 2 SiOSiO 1.5 ) n (BR 3 R 4 SiOSiO 1.5 ) s (HOSiO 1.5 ) m- ns (1)
(In Formula (1), A is a chain hydrocarbon group having a carbon-carbon unsaturated bond, B is a substituted or unsubstituted saturated alkyl group or hydroxyl group, and R 1 , R 2 , R 3 , and R 4 are each independently Represents a functional group selected from a lower alkyl group, a phenyl group, and a lower arylalkyl group, m is a number selected from 6, 8, 10, and 12, n is an integer of 2 to m, and s is 0 to mn. Represents an integer)
(R 5 R 6 HSiOSiO 1.5 ) q (ER 7 R 8 SiOSiO 1.5 ) r (HOSiO 1.5 ) p-qr (2)
(In formula (2), E is a substituted or unsubstituted saturated alkyl group or hydroxyl group, and R 5 , R 6 , R 7 , and R 8 are each independently a function selected from a lower alkyl group, a phenyl group, and a lower arylalkyl group. Represents a group, p is a number selected from 6, 8, 10, and 12, q is an integer of 2 to p, and r is an integer of 0 to p-q)
JP2006319051A 2006-02-20 2006-11-27 Semiconductor optical device and transparent optical member Expired - Fee Related JP5204395B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006319051A JP5204395B2 (en) 2006-02-20 2006-11-27 Semiconductor optical device and transparent optical member
PCT/JP2007/066029 WO2008065787A1 (en) 2006-11-27 2007-08-17 Optical semiconductor device and transparent optical member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006042979 2006-02-20
JP2006042979 2006-02-20
JP2006319051A JP5204395B2 (en) 2006-02-20 2006-11-27 Semiconductor optical device and transparent optical member

Publications (2)

Publication Number Publication Date
JP2007251123A true JP2007251123A (en) 2007-09-27
JP5204395B2 JP5204395B2 (en) 2013-06-05

Family

ID=38595045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319051A Expired - Fee Related JP5204395B2 (en) 2006-02-20 2006-11-27 Semiconductor optical device and transparent optical member

Country Status (1)

Country Link
JP (1) JP5204395B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246880A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor light device and transparent optical member
WO2008065787A1 (en) * 2006-11-27 2008-06-05 Panasonic Electric Works Co., Ltd. Optical semiconductor device and transparent optical member
JP2008201832A (en) * 2007-02-16 2008-09-04 Shin Etsu Chem Co Ltd Siloxane polymer, method for producing the same, coating liquid for forming porous film containing the polymer, porous film and semiconductor apparatus using the porous film
JP2012031375A (en) * 2010-08-02 2012-02-16 Samsung Electro-Mechanics Co Ltd Nano-composite material and light-emitting element package containing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359933A (en) * 2003-05-14 2004-12-24 Nagase Chemtex Corp Sealing material for optical element
JP2006299150A (en) * 2005-04-22 2006-11-02 Asahi Kasei Corp Composition for sealant and optical device
JP2007031619A (en) * 2005-07-28 2007-02-08 Nagase Chemtex Corp Resin composition for optical element sealing use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359933A (en) * 2003-05-14 2004-12-24 Nagase Chemtex Corp Sealing material for optical element
JP2006299150A (en) * 2005-04-22 2006-11-02 Asahi Kasei Corp Composition for sealant and optical device
JP2007031619A (en) * 2005-07-28 2007-02-08 Nagase Chemtex Corp Resin composition for optical element sealing use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246880A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor light device and transparent optical member
WO2008065787A1 (en) * 2006-11-27 2008-06-05 Panasonic Electric Works Co., Ltd. Optical semiconductor device and transparent optical member
JP2008201832A (en) * 2007-02-16 2008-09-04 Shin Etsu Chem Co Ltd Siloxane polymer, method for producing the same, coating liquid for forming porous film containing the polymer, porous film and semiconductor apparatus using the porous film
JP2012031375A (en) * 2010-08-02 2012-02-16 Samsung Electro-Mechanics Co Ltd Nano-composite material and light-emitting element package containing the same

Also Published As

Publication number Publication date
JP5204395B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5204393B2 (en) Semiconductor optical device and transparent optical member
JP5204394B2 (en) Semiconductor optical device and transparent optical member
JP2007246880A (en) Semiconductor light device and transparent optical member
JP5211059B2 (en) Semiconductor optical device and transparent optical member
KR101939408B1 (en) Heat curable silicone resin composition for reflector of led, and reflector for led and optical semiconductor device using the same
TWI666263B (en) Curable silicone composition, cured product thereof, and optical semiconductor device
KR101762348B1 (en) Silicon-containing curable composition, cured product of the silicon-containing curable composition and lead frame substrate formed of the silicon-containing curable composition
JP4322949B2 (en) Thermosetting resin composition and optical semiconductor sealing material
JP5210881B2 (en) Semiconductor optical device and transparent optical member
KR101706077B1 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
KR102120623B1 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
KR101948327B1 (en) Heat curable resin composition for reflector of led, and reflector for led and optical semiconductor device using the same
JP2006519896A (en) High refractive index polysiloxane with optical transparency and high temperature resistance
JP2013135084A (en) Light-emitting diode device manufacturing method
KR20130029348A (en) Encapsulating sheet, producing method thereof, light emitting diode device, and producing method thereof
JP2007019459A (en) Member for semiconductor light emitting device, and its manufacturing method, and semiconductor light emitting device using it
WO2008065786A1 (en) Optical semiconductor device and transparent optical member
JP2013159776A (en) Silicon-containing curable white resin composition, cured product thereof, and optical semiconductor package and reflecting material using the cured product
JP5204395B2 (en) Semiconductor optical device and transparent optical member
JP2008084986A (en) Sealant for optical semiconductor, and semiconductor optical device
JP2008056857A (en) Thermosetting composition for optical semiconductor, sealant for optical semiconductor element, die bond material for optical semiconductor element, underfill material for optical semiconductor element and optical semiconductor device
JP4835199B2 (en) SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME
JP2008063565A (en) Thermosetting composition for optical semiconductor, sealant for optical semiconductor element, die bonding material for optical semiconductor element, underfill material for optical semiconductor element, and optical semiconductor element
JP4991162B2 (en) Semiconductor optical device and transparent optical member
JP5210880B2 (en) Semiconductor optical device and transparent optical member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090722

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100831

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees