JP2004347416A - 非破壊検査方法および非破壊検査装置 - Google Patents

非破壊検査方法および非破壊検査装置 Download PDF

Info

Publication number
JP2004347416A
JP2004347416A JP2003143573A JP2003143573A JP2004347416A JP 2004347416 A JP2004347416 A JP 2004347416A JP 2003143573 A JP2003143573 A JP 2003143573A JP 2003143573 A JP2003143573 A JP 2003143573A JP 2004347416 A JP2004347416 A JP 2004347416A
Authority
JP
Japan
Prior art keywords
ray
inspection
radiation
generator
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003143573A
Other languages
English (en)
Other versions
JP4080377B2 (ja
Inventor
Akihiro Ono
晃弘 小野
Zenji Matsumura
善治 松村
Shunei Kawabe
俊英 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CXR KK
Cosmo Oil Co Ltd
Cosmo Engineering Co Ltd
Original Assignee
CXR KK
Cosmo Oil Co Ltd
Cosmo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CXR KK, Cosmo Oil Co Ltd, Cosmo Engineering Co Ltd filed Critical CXR KK
Priority to JP2003143573A priority Critical patent/JP4080377B2/ja
Publication of JP2004347416A publication Critical patent/JP2004347416A/ja
Application granted granted Critical
Publication of JP4080377B2 publication Critical patent/JP4080377B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】保温材が設けられている状態でも、大型の被検査対象物に対して効率よく検査することのできる非破壊検査方法および非破壊検査装置を提供する。
【解決手段】エックス線を照射するエックス線発生装置30と、検査対象物20を透過してきたエックス線を検出するエックス線検知センサ40とを、検査対象物20を挟んで独立に配置する。あるいは放射線を照射する放射線発生装置と、検査対象物を透過してきた放射線を検出する放射線検出装置とを、検査対象物を挟んで独立に配置する。そして、第1の移動機構34によりエックス線発生装置30あるいは放射線発生装置を移動させると共に、これらと同期して第2の移動機構42、45によりエックス線検知センサ40あるいは放射線検出装置を移動させながら検査対象物20の検査を行う。この際、検査対象物20の表面が保温材22等で覆われていても、剥がすことなくそのまま検査を行うことができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、非破壊検査方法および非破壊検査装置に関するものである。
【0002】
【従来の技術】
製油所には、巨大なタンク等の屋外施設が多数建てられており、設備の老朽化に伴って様々な経年劣化が発生することがある。また、タンクの場合には、タンク内の流体の温度を一定に保つ目的からタンクの外側に保温材が設けられている場合があり、タンクの劣化現象を外部から確認できない場合がある。
これらの対象物の最も確実な検査方法は、保温材の解体等、大規模な付帯工事を実施して直接対象物を検査する方法である。このため、従来、保温材が施されたタンクの検査では、その付近に足場を設置して、保温材を剥がしながら目視で腐食の状況を検査している。
【0003】
このような目視による検査では、足場の設置、保温材の解体、復旧、足場の移動等を繰り返すため、検査の為の準備に時間がかかるばかりでなく、多額の保守点検費用が必要となる。このため、タンクに対する非破壊検査方法が開示されている(例えば、特許文献1参照。)。
【0004】
図7に示す非破壊検査装置はタンクの底板を超音波を用いて検査する非破壊検査装置で、この非破壊検査装置100では、走行レール101をタンク102の側板102aの周囲に設置して、装置本体103を移動手段を介して走行レール101の開始点に設置する。このとき、タイヤ型超音波探触子104を配置する。装置本体103の設置が完了したら、走行を開始して、探傷を開始する。制御手段(図示省略)は、超音波探傷器から送信される反射エコーの有無および大きさ、反射に要する時間、位置等から腐食部と思われる減肉部を検出する。
【0005】
【特許文献1】
特開2001−74713号公報(第3、4頁、第1図)
【0006】
【発明が解決しようとする課題】
しかしながら、前述の非破壊検査装置は、超音波によりタンクの底板を検査する装置であり、このような超音波を用いた非破壊検査装置100では、超音波探傷器を当てる箇所の保温材を一部剥がす必要がある。また、超音波を用いた非破壊検査では、長い距離を検査することが困難であり、大容量、または超音波探傷検査を行う面積が膨大であるタンクのような大きな構造物には適さないという問題がある。
【0007】
本発明の目的は、保温材が設けられている状態でも、大型の被検査対象物に対して効率よく検査することのできる非破壊検査方法および非破壊検査装置を提供することにある。
【0008】
【課題を解決するための手段】
前述した目的を達成するために、本発明にかかる非破壊検査方法は、エックス線または放射線を検査対象物に照射して検査対象物の状態を検査する非破壊検査方法であって、それぞれが独立して移動可能なエックス線発生装置または放射線発生装置と、エックス線検出装置または放射線検出装置とを検査対象物を挟んで配置し、前記エックス線発生装置または前記放射線発生装置と前記エックス線検出装置または前記放射線検出装置とを共に互いに同期させて移動させて前記検査対象物の状態を検査して行くことを特徴としている。
【0009】
このように構成された非破壊検査方法においては、エックス線を照射するエックス線発生装置と、検査対象物を透過してきたエックス線を検出するエックス線検出装置とを、検査対象物を挟んで独立に配置する。あるいは放射線を照射する放射線発生装置と、検査対象物を透過してきた放射線を検出する放射線検出装置とを、検査対象物を挟んで独立に配置する。そして、エックス線発生装置とエックス線検出装置とを、あるいは放射線発生装置と放射線検出装置とを同期させて移動させながらエックス線あるいは放射線を検出する。このため、検査対象物が大きな壁であっても、検査対象物を挟んで発生側と検出側を配置することができ、連続して長い距離の検査を行うことができる。この際、検査対象物の表面が保温材等で覆われていても、剥がすことなくそのまま検査を行うことができる。
【0010】
また、本発明にかかる非破壊検査方法は、検査位置と該検査位置における検査結果を記憶手段に記憶させることを特徴としている。
【0011】
このように構成された非破壊検査方法においては、検査を行いながら、検査対象物の状態および検査位置を記憶するので、腐食の状態を示す腐食マップを作成することができる。これにより、検査対象物の全体の状態を一目で明らかに把握することができる。
【0012】
また、本発明にかかる非破壊検査方法および非破壊検査装置は、前記検査対象物として塔槽類または熱交換器類を検査することを特徴としている。
【0013】
このように構成された非破壊検査方法においては、蒸留塔・反応塔、受槽、熱交換器等の塔槽類・熱交換器類のみならずタンクのような大型の検査対象物であっても効率よく検査を行うことができる。
【0014】
また、本発明にかかる非破壊検査装置は、エックス線または放射線を検査対象物に照射して検査対象物の状態を検査する非破壊検査装置であって、それぞれが独立して移動可能なエックス線発生装置または放射線発生装置と、検査対象物を挟んで前記エックス線発生装置からのエックス線を検出するエックス線検出装置または前記放射線発生装置からの放射線を検出する放射線検出装置と、前記エックス線発生装置または前記放射線発生装置を移動させる第1の移動機構と、前記エックス線発生装置または前記放射線発生装置と同期して前記エックス線検出装置または前記放射線検出装置を移動させる第2の移動機構と、を備えてなることを特徴としている。
【0015】
このように構成された非破壊検査装置においては、エックス線を照射するエックス線発生装置と、検査対象物を透過してきたエックス線を検出するエックス線検出装置とを、検査対象物を挟んで独立に配置する。あるいは放射線を照射する放射線発生装置と、検査対象物を透過してきた放射線を検出する放射線検出装置とを、検査対象物を挟んで独立に配置する。そして、第1の移動機構によりエックス線発生装置あるいは放射線発生装置を移動させると共に、これらと同期して第2の移動機構によりエックス線検出装置あるいは放射線検出装置を移動させながら検査対象物の検査を行う。このため、検査対象物が大きな壁であっても、検査対象物を挟んで発生側と検出側を配置することができ、連続して長い距離の検査を行うことができる。この際、検査対象物の表面が保温材等で覆われていても、剥がすことなくそのまま検査を行うことができる。
【0016】
【発明の実施の形態】
以下、本発明に係る非破壊検査方法および非破壊検査装置の実施の形態を図面に基づいて詳細に説明する。図1は本発明の第1実施形態に係る非破壊検査装置の構成図、図2は図1中II−II位置の断面図、図3は制御系統図である。
【0017】
図1および図2に示すように、本発明に係る非破壊検査装置10は、エックス線または放射線を検査対象物であるタンク20の側板21に照射してタンク20の状態を検査するものである。タンク20の側板21の外側には、保温材22が設けられており、タンクを保温している。なお、以下においてはエックス線XRを用いる場合を例として説明する。
【0018】
タンク20の外側にはエックス線発生装置30が移動可能に設けられており、タンク20の内側には保温材22およびタンク20の側板21を挟んでエックス線検出装置であるエックス線検知センサ40が配置されている。
【0019】
エックス線発生装置30は、制御装置50(図3参照)からのエックス線発生制御信号S1により検査対象物であるタンク20の側板21に向かってエックス線XRを発するものであり、エックス線発生装置保持部31に組み込まれている。エックス線発生装置保持部31には車輪32が設けられており、この車輪32によってタンク20の側板21の外側に設けられている保温材22の外面に沿って上下移動可能となっている。
エックス線発生装置保持部31には位置検出器33が設けられており、移動方向(ここでは上下方向)に対するエックス線発生装置30の位置を常に検出している。位置検出器33は制御装置50に接続されており、検出した位置信号S2を制御装置50に伝達するようになっている。
【0020】
エックス線発生装置保持部31は、第1の移動機構34により上下移動する。すなわち、エックス線発生装置保持部31には外部駆動ケーブル35が接続されており、外部駆動ケーブル35は外部駆動装置36により捲き上げおよび捲き下ろし可能になっている。これにより、エックス線発生装置保持部31は、タンク20の側板21あるいは保温材22に沿って、上下移動することになる。
また、外部駆動装置36はタンク20の天井板23の上に設けられており、外部駆動ケーブル35はタンク20の天井板23の上端に設けられている滑車37により、移動自在に支持されている。
【0021】
なお、車輪32は、脚32aの先端に回転自在に設けられており、エックス線発生装置30を側板21から一定の距離だけ離すようにしている。これに伴い、外部ケーブル35の先端に締結されているエックス線発生装置保持部31は、その重さにより保温材22に押し付けられて、はなれずに移動することになる。
【0022】
一方、タンク20内部に配置されたエックス線検知センサ40は内部駆動装置41に取り付けられており、内部駆動装置41は第2の移動機構42により上下移動する。エックス線検知センサ40には、例えば図2に示すようなアレーセンサを用いることができる。
【0023】
アレーセンサ40とは、検査対象領域に応じて、受光可能な分割チップ40Aを複数枚(0チャンネル〜nチャンネル)並べた放射線検知部であり、放射線発生部38から出射した放射線が、検査対象物を透過し、その透過した放射線を検知するものである。アレーセンサ40はアルミニウムと鉛からなる材料の箱体40Bに収納されており、その一端部で信号取り出しコネクタ40Cが備えられている。検知した放射線の強度は、電気信号に変換され、コネクタ40Cから制御部40Dを介して信号処理収録部53へ転送(有線)している。
【0024】
内部駆動装置41は例えば磁気吸着式のものであり、タンク20の側板21の内面に磁力で吸着するとともに、第2の移動機構42であるモータ43により車輪44を回転させて、自走式で上下方向へ移動自在となっている。モータ43は制御装置50からの速度位置制御信号S3により制御される。また、エックス線検知センサ40は制御装置50に接続されており、検査対象物であるタンク20の側板21を透過してきたエックス線XRを検出してセンサ検知信号S4を制御装置50に伝達する。
【0025】
図3には、制御系統図が示されている。制御装置50は、エックス線発生制御部51、エックス線検知センサ制御部52、信号処理収録部53、内部駆動装置制御部54を有している。
エックス線発生制御部51はエックス線発生装置30を制御するものであり、エックス線発生制御信号S1をエックス線発生装置30に送って、エックス線XRをタンク20の側板21に向けて照射させる。同時に、エックス線パルス信号S5をエックス線検知センサ制御部52に発する。
【0026】
エックス線検知センサ制御部52は、エックス線発生装置保持部31の位置検出器33から送られてきた位置信号S2およびエックス線検知センサ40から送られてきたセンサ検知信号S4を受信し、これらセンサ検知信号S4および位置信号S2を信号処理収録部53に送る。信号処理収録部53は、センサ検知信号S4および位置信号S2を記憶する。
【0027】
また、内部駆動装置制御部54は、エックス線発生装置保持部31に設けられている位置検出器33からの位置信号S2を受けて、速度位置制御信号を第2の移動機構42に発して、内部駆動装置41がエックス線発生装置保持部31の移動と同期して移動するように制御する。これにより、エックス線検知センサ40は常にエックス線発生装置30から発せられてタンク20の側板21を透過してくるエックス線XRを検出することができる。
【0028】
次に、本発明に係る非破壊検査方法について説明する。
まず、エックス線発生装置30とエックス線検知センサ40とを、検査対象物であるタンク20の側板21を挟んで配置する。エックス線発生装置保持部31を検査方向(ここでは上方)へ移動させながら、制御装置50のエックス線発生制御部51からのエックス線発生制御信号S1により、エックス線発生装置30はタンク20の側板21にエックス線XRを照射する。同時にエックス線発生制御部51からエックス線検知センサ制御部52にエックス線パルス信号S5が発せられる。
【0029】
エックス線発生装置保持部31の位置は位置検出器33により検出されて、内部駆動装置制御部54に送られる。内部駆動装置制御部54は、内部駆動装置41の第2の移動機構42に速度位置制御信号S3を発して内部駆動装置41を移動させ、エックス線検知センサ40が常にエックス線発生装置30と同期して移動するようにする。
【0030】
従って、側板21を透過してきたエックス線XRは常にエックス線検知センサ40により検知され、センサ検知信号S4はエックス線検知センサ制御部52を介して信号処理収録部53へ伝達されて記憶される。このとき、同時に検査位置すなわち位置検出器33により検出されるエックス線発生装置30の位置信号S2がエックス線検知センサ制御部52へ伝達され、さらに信号処理収録部53へ伝達されてセンサ検知信号S4に対応して記憶される。又、信号処理記録部53の信号は映像部(CRT)53Aに送信され、CRT上で腐食の状況を表示することができ、作業員等が目視により確認することができる。
【0031】
(実施例1)
実施例1として、厚さ12mmの平板(SS材)に種々の大きさの人工腐食を設けた試験体の検査結果を図4に示す。なお、この試験体には保温材は設けられていない。また、エックス線発生装置30とエックス線検知センサ40との距離は500mm、スキャン長さは450mm、エックス線検知センサ40と試験体内側表面との距離は80mmである。
【0032】
人工腐食の大きさは、図4(A)の像において、上から順に皿形状でa:φ10*1.2d(10%t)、b:φ15*2.4d(20%t)、c:φ15*4.8d(40%t)、d:φ15*7.2d(60%t)の4種類とした。ここで、例えばφ10*1.2d(10%t)とは、直径が10mmで、深さが1.2mmすなわち板厚の10%であることを示している。
【0033】
図4は、CRTに映された映像結果を示しており、1つの試験体を別々の角度から検査した3つの画像やグラフが表示されている。図4(A)には試験体を上部から検査した検査部投影画像が表示され、図4(B)には試験体を側面(横方向)から検査した横方向カーソル部の放射線強度の分布グラフが表示され、図4(C)には試験体を上下(縦方向)から検査した縦方向カーソル部の放射線強度の分布グラフが表示される。
【0034】
図4(A)に示す表示部では、腐食箇所a〜dは腐食してない部分eと比べ色の濃く表示されるので、腐食箇所を容易に特定することができる。すなわち、図4(A)に示す表示部では、非腐食部分eはオレンジ色で示されるが、腐食箇所a〜dはエックス線の透過量が非腐食部分eと比べ多いため、黒色(濃いオレンジ色)で示される。従って、非腐食部分eより色が黒くなっているところが、腐食範囲である。また、表示部に示される腐食箇所の色の濃さから腐食深さが分かる。腐食深さ(減肉深さ)が大きければ、大きいほど色が濃くなり、図4の場合、a<b<c<dの順で濃くなっている。
検査の結果、図4(B)に示すように、腐食箇所では、エックス線の透過量が非腐食部分と比べ多くなるため、腐食箇所の深さのピークが現れる。
【0035】
表示部(CRT)上では、十字カーソルK、Kを自由に移動させる事が出来、そのカーソルの位置にある試験体の上下、左右方向の腐食情報が図4(A)、(B)、(C)のように表示され、これらの情報から腐食深さを測定することができる。
【0036】
例えば、図4(C)においては、図4(A)における十字のカーソルK、Kがφ10*10%tの腐食箇所に位置決めされていることから、φ10*10%tの腐食箇所を通る断面に対応した検査結果が示されている。ここでは、受光放射線強度が−80の値を示しており、この−80の値が1.2mmに対応する。これにより、腐食箇所の位置において大きく減少しているのがわかる。受光放射線強度は、放射線検知センサ40が検知した放射線強度を数値化したものである。もし、他の箇所を検査して、腐食箇所で、−40の数値が示されれば、1.2(mm)×(−40/−80)=0.6mmの腐食深さを求めることができる。従って、図4(B)および(C)から、腐食箇所の位置および腐食の深さを検知することができる。つまり、腐食深さがわかっている試験体で、腐食深さと数値の相関関係を作成した後、検査対象物の検査を行う。
【0037】
(実施例2)
実施例2として、図5には、M12のボルト付きの例が示されている。図5(A)には試験体を上部から検査した検査部投影画像が表示され、図5(B)には試験体を側面(横方向)から検査した横方向カーソル部の放射線強度の分布グラフが表示され、図5(C)には試験体を上下(縦方向)から検査した縦方向カーソル部の放射線強度の分布グラフが表示される。図5(A)に示す表示部では、M12ボルト部分は、エックス線の透過量が小さくなるため、非腐食部分eよりも、色が薄くなっており白色(薄いオレンジ色)となって表示されている。CRT上に示されるボルトの形状やX線の透過量が腐食部に比べ小さくなるために見られる白色の存在により、検査対象部にボルトが存在する場合は、CRT上でボルトの存在が認識でき、また、腐食部のみを評価する事が可能である。また、CRTの画像だけで判断するのではなく、ボルトの形状が一定であれば、ボルトの放射線の吸収量を事前に算出し、ボルトの放射線吸収量情報を省いた形で、データ表示・取得する事も可能である。
【0038】
図4(A)、(B)、(C)や図5(A)、(B)、(C)に示す表示部の表示データは、記憶装置に記憶させることができ、例えば、タンクの円周方向の位置とタンクの高さ位置との情報とを連結させることで、タンクの側壁全周の腐食マップ作成することができる。腐食マップは、タンクのどの場所にどのような腐食が存在しているのかわかるので、次回の検査の際には、腐食が進行していた部分(減肉が顕著な部分)を重点的に検査でき、検査を効率的に行うことができる。また、腐食マップは、更新させて、最新の腐食マップを作成することもできる。
【0039】
以上、前述した非破壊検査方法および非破壊検査装置10によれば、エックス線を照射するエックス線発生装置30と、検査対象物であるタンク20の側板21を透過してきたエックス線XRを検出するエックス線検知センサ40とを、側板21を挟んで独立に配置する。そして、エックス線発生装置30とエックス線検知センサ40とを、同期させて移動させながらエックス線XRを検出する。このため、側板21が大きくても、連続して長い距離の検査を行うことができるので、大きなタンク20の側板21の検査を連続して容易に行うことができる。この際、側板21の表面が保温材22等で覆われていても、剥がすことなくそのまま検査を行うことができるので、付帯工事を減少させることができ、検査費用を削減することができると共に、検査時間の短縮を図ることができる。
【0040】
ここで、上述した非破壊検査方法によって、約2104平方メートルの側板21に付いて検査を行う場合に要する検査日数に付いて比較する。本発明に係る非破壊検査方法および非破壊検査装置10では、1日当たりの検査効率を35平方メートル程度とすると、約60日を要する。一方、同じ検査を従来の非破壊検査方法によって行うと、足場組、保温材の解体、目視検査で157日を要する。これより、検査時間の大幅な短縮化を図ることができる。
【0041】
また、検査を行いながら、側板21の状態および検査位置を記憶するので、腐食の状態を示す腐食マップを作成することができる。これにより、検査対象物の全体の状態を一目で明らかに把握することができ、未然に腐食減肉箇所を検出する事が出来、経年的な腐食履歴を資料として残すことが可能となる。
【0042】
次に、本発明に係る非破壊検査方法および非破壊検査装置の第2実施形態について説明する。なお、前述した第1実施形態と共通する部位には同じ符号を付して、重複する説明を省略することとする。図6は本発明の第2実施形態に係る非破壊検査装置の構成図である。
【0043】
図6に示すように、この非破壊検査装置11は、前述した第1実施形態に係る非破壊検査装置10のエックス線検知センサ40を移動させる第1の移動機構34としての自走式の内部駆動装置41に代わって、第2の移動機構45が設けられている。
この第2の移動機構45では、内部駆動装置41の上(図6においては右側)にモータ46およびこのモータ46によって回転駆動される巻取リール47が設けられている。さらに、巻取リール47に巻きつけられているケーブル48の先端(図6において下端)にエックス線検知センサ40が連結されている。
【0044】
従って、磁気吸着式の内部駆動装置41を側板21の内面の所望の位置に吸着させ、モータ46によりケーブル48を捲き上げあるいは捲き下げてエックス線発生装置30を移動させて検査を行う。
なお、モータ46には、制御装置50の内部駆動装置制御部54から速度位置制御信号S3が送られており、エックス線検知センサ40がエックス線発生装置30と同期して移動するようになっている。また、エックス線検知センサ40は制御装置50のエックス線検知センサ制御部52にセンサ検知信号S4を伝達するようになっている。
【0045】
以上のように構成しても、前述した第1実施形態の場合と同様の作用および効果を得ることができる。
【0046】
なお、本発明の非破壊検査方法および非破壊検査装置は、前述した各実施形態に限定されるものでなく、適宜な変形、改良等が可能である。
例えば、前述した各実施形態では、エックス線XRを用いる場合について説明したが、その他放射線を用いることもできる。
【0047】
また、エックス線発生装置30によりエックス線XRを照射しながらエックス線発生装置保持部31を移動させて検査を行うことができるが、移動時にはエックス線XRを照射しないようにして、停止してからエックス線XRを照射するようにしても良い。
また、上述した実施形態においては、検査対象物としてタンク20の側板21を例示したが、この他、蒸留塔・反応塔、熱交換器等の塔槽・熱交類の他、煙突等も検査対象とすることができる。
【0048】
更に、X線発生装置30を固定し、センサーのみを単独で昇降させることも可能であり、センサーのみを昇降させることで斜め角度の検査も可能となる。例えば、X線発生装置が階段等の障害物で昇降できないような場所でも、センサーのみを昇降させることで、階段等の溶接部付近の検査も可能となる。
【0049】
【発明の効果】
以上、説明したように、本発明にかかる非破壊検査方法および非破壊検査装置によれば、エックス線を照射するエックス線発生装置と、検査対象物を透過してきたエックス線を検出するエックス線検出装置とを、検査対象物を挟んで独立に配置する。あるいは放射線を照射する放射線発生装置と、検査対象物を透過してきた放射線を検出する放射線検出装置とを、検査対象物を挟んで独立に配置する。そして、第1の移動機構によりエックス線発生装置あるいは放射線発生装置を移動させると共に、これらと同期して第2の移動機構によりエックス線検出装置あるいは放射線検出装置を移動させながら検査対象物の検査を行う。このため、検査対象物が大きな壁であっても、検査対象物を挟んで発生側と検出側を配置することができ、連続して長い距離の検査を行うことができる。この際、検査対象物の表面が保温材等で覆われていても、剥がすことなくそのまま検査を行うことができる。
【図面の簡単な説明】
【図1】本発明に係る非破壊検査装置の第1実施形態を示す構成図である。
【図2】図1中II−II位置の断面図である。
【図3】制御系統図である。
【図4】(A)〜(C)は、検査結果を示すグラフ等である。
【図5】(A)〜(C)は、検査結果を示すグラフ等である。
【図6】本発明に係る非破壊検査装置の第2実施形態を示す構成図である。
【図7】従来の非破壊検査装置を示す構成図である。
【符号の説明】
10、11 非破壊検査装置
20 タンク(検査対象物、塔槽類)
30 エックス線発生装置
34 第1の移動機構
40 エックス線検知センサ(エックス線検出装置)
42、45 第2の移動機構
XR エックス線

Claims (4)

  1. エックス線または放射線を検査対象物に照射して検査対象物の状態を検査する非破壊検査方法であって、
    それぞれが独立して移動可能なエックス線発生装置または放射線発生装置と、エックス線検出装置または放射線検出装置とを検査対象物を挟んで配置し、前記エックス線発生装置または前記放射線発生装置と前記エックス線検出装置または前記放射線検出装置とを共に互いに同期させて移動させて前記検査対象物の状態を検査して行くことを特徴とする非破壊検査方法。
  2. 検査位置と該検査位置における検査結果を記憶手段に記憶させることを特徴とする請求項1に記載した非破壊検査方法。
  3. 前記検査対象物として塔槽類または熱交換器類を検査することを特徴とする請求項1または2に記載した非破壊検査方法。
  4. エックス線または放射線を検査対象物に照射して検査対象物の状態を検査する非破壊検査装置であって、
    それぞれが独立して移動可能なエックス線発生装置または放射線発生装置と、検査対象物を挟んで前記エックス線発生装置からのエックス線を検出するエックス線検出装置または前記放射線発生装置からの放射線を検出する放射線検出装置と、前記エックス線発生装置または前記放射線発生装置を移動させる第1の移動機構と、前記エックス線発生装置または前記放射線発生装置と同期して前記エックス線検出装置または前記放射線検出装置を移動させる第2の移動機構と、を備えていることを特徴とする非破壊検査装置。
JP2003143573A 2003-05-21 2003-05-21 非破壊検査方法および非破壊検査装置 Expired - Fee Related JP4080377B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143573A JP4080377B2 (ja) 2003-05-21 2003-05-21 非破壊検査方法および非破壊検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143573A JP4080377B2 (ja) 2003-05-21 2003-05-21 非破壊検査方法および非破壊検査装置

Publications (2)

Publication Number Publication Date
JP2004347416A true JP2004347416A (ja) 2004-12-09
JP4080377B2 JP4080377B2 (ja) 2008-04-23

Family

ID=33531327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143573A Expired - Fee Related JP4080377B2 (ja) 2003-05-21 2003-05-21 非破壊検査方法および非破壊検査装置

Country Status (1)

Country Link
JP (1) JP4080377B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051659A (ja) * 2006-08-24 2008-03-06 Mitsubishi Heavy Ind Ltd 寿命評価方法
KR20160117849A (ko) * 2015-03-31 2016-10-11 전주대학교 산학협력단 금속감지장치
WO2017187818A1 (ja) * 2016-04-27 2017-11-02 東レ株式会社 高圧タンク用部材の検査方法、高圧タンク用部材の製造方法、高圧タンクの製造方法および高圧タンク用部材の検査装置
CN113399315A (zh) * 2020-03-16 2021-09-17 东芝It·控制系统株式会社 非破坏检查装置

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249246A (ja) * 1985-08-28 1987-03-03 Idemitsu Petrochem Co Ltd 化学プラントにおける塔類の内部状態検知方法
JPH03120452A (ja) * 1989-10-04 1991-05-22 Mitsubishi Heavy Ind Ltd 熱交換器伝熱管支持板腐食検出方法
JPH0458146A (ja) * 1990-06-26 1992-02-25 Shigeru Horinouchi 構造物壁面の剥離箇所探索体、並びに構造物壁面の剥離箇所検出装置
JPH0642200Y2 (ja) * 1988-05-12 1994-11-02 三菱重工業株式会社 放射線検査装置
JPH0744388Y2 (ja) * 1993-03-01 1995-10-11 川崎重工業株式会社 溶接継手部のx線自動検査装置
JPH07113628B2 (ja) * 1986-09-30 1995-12-06 三菱重工業株式会社 壁面固定補助具付タンク探傷・点検用走行体
JPH09133660A (ja) * 1995-11-08 1997-05-20 Yokohama Rubber Co Ltd:The 水中音響透過材料の透過損失計測方法及びその装置
JPH11118735A (ja) * 1997-10-14 1999-04-30 Hitachi Eng & Service Co Ltd 配管等減肉状態評価方法及びその評価装置
JP2983103B2 (ja) * 1991-12-27 1999-11-29 東京瓦斯株式会社 溶接ビードセンサを有する移動ロボットの制御方法
JP2997764B2 (ja) * 1997-07-30 2000-01-11 建設省土木研究所長 樹木腐朽の非破壊検査装置
JP2000088823A (ja) * 1998-09-11 2000-03-31 Hitachi Ltd 非破壊検査機器
JP3075952B2 (ja) * 1995-03-01 2000-08-14 株式会社東芝 シュラウド検査装置
JP2001074713A (ja) * 1999-09-08 2001-03-23 Nkk Corp タンク検査装置
JP2001225058A (ja) * 2000-02-17 2001-08-21 Kaijo Corp 液体処理槽内のセンサ保持装置
JP3288924B2 (ja) * 1996-05-20 2002-06-04 株式会社日立製作所 原子炉の炉内検査装置
JP2002168808A (ja) * 2000-09-12 2002-06-14 General Electric Co <Ge> 航空機の機体を検査するための放射線撮影システム及び方法
JP2002523740A (ja) * 1998-08-18 2002-07-30 ロッキード、マーティン、コーパレイシャン 放射線透過式デジタル型溶接部検査システム
JP2002228602A (ja) * 2001-01-31 2002-08-14 Tokyo Gas Co Ltd プラスチック樹脂管検出装置
JP2002365241A (ja) * 2001-03-30 2002-12-18 General Electric Co <Ge> 航空機胴体の放射線検査のための方法及びシステム

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249246A (ja) * 1985-08-28 1987-03-03 Idemitsu Petrochem Co Ltd 化学プラントにおける塔類の内部状態検知方法
JPH07113628B2 (ja) * 1986-09-30 1995-12-06 三菱重工業株式会社 壁面固定補助具付タンク探傷・点検用走行体
JPH0642200Y2 (ja) * 1988-05-12 1994-11-02 三菱重工業株式会社 放射線検査装置
JPH03120452A (ja) * 1989-10-04 1991-05-22 Mitsubishi Heavy Ind Ltd 熱交換器伝熱管支持板腐食検出方法
JPH0458146A (ja) * 1990-06-26 1992-02-25 Shigeru Horinouchi 構造物壁面の剥離箇所探索体、並びに構造物壁面の剥離箇所検出装置
JP2983103B2 (ja) * 1991-12-27 1999-11-29 東京瓦斯株式会社 溶接ビードセンサを有する移動ロボットの制御方法
JPH0744388Y2 (ja) * 1993-03-01 1995-10-11 川崎重工業株式会社 溶接継手部のx線自動検査装置
JP3075952B2 (ja) * 1995-03-01 2000-08-14 株式会社東芝 シュラウド検査装置
JPH09133660A (ja) * 1995-11-08 1997-05-20 Yokohama Rubber Co Ltd:The 水中音響透過材料の透過損失計測方法及びその装置
JP3288924B2 (ja) * 1996-05-20 2002-06-04 株式会社日立製作所 原子炉の炉内検査装置
JP2997764B2 (ja) * 1997-07-30 2000-01-11 建設省土木研究所長 樹木腐朽の非破壊検査装置
JPH11118735A (ja) * 1997-10-14 1999-04-30 Hitachi Eng & Service Co Ltd 配管等減肉状態評価方法及びその評価装置
JP2002523740A (ja) * 1998-08-18 2002-07-30 ロッキード、マーティン、コーパレイシャン 放射線透過式デジタル型溶接部検査システム
JP2000088823A (ja) * 1998-09-11 2000-03-31 Hitachi Ltd 非破壊検査機器
JP2001074713A (ja) * 1999-09-08 2001-03-23 Nkk Corp タンク検査装置
JP2001225058A (ja) * 2000-02-17 2001-08-21 Kaijo Corp 液体処理槽内のセンサ保持装置
JP2002168808A (ja) * 2000-09-12 2002-06-14 General Electric Co <Ge> 航空機の機体を検査するための放射線撮影システム及び方法
JP2002228602A (ja) * 2001-01-31 2002-08-14 Tokyo Gas Co Ltd プラスチック樹脂管検出装置
JP2002365241A (ja) * 2001-03-30 2002-12-18 General Electric Co <Ge> 航空機胴体の放射線検査のための方法及びシステム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051659A (ja) * 2006-08-24 2008-03-06 Mitsubishi Heavy Ind Ltd 寿命評価方法
KR20160117849A (ko) * 2015-03-31 2016-10-11 전주대학교 산학협력단 금속감지장치
KR101684775B1 (ko) * 2015-03-31 2016-12-09 전주대학교 산학협력단 금속감지장치
WO2017187818A1 (ja) * 2016-04-27 2017-11-02 東レ株式会社 高圧タンク用部材の検査方法、高圧タンク用部材の製造方法、高圧タンクの製造方法および高圧タンク用部材の検査装置
JPWO2017187818A1 (ja) * 2016-04-27 2019-02-28 東レ株式会社 高圧タンク用部材の検査方法、高圧タンク用部材の製造方法、高圧タンクの製造方法および高圧タンク用部材の検査装置
CN113399315A (zh) * 2020-03-16 2021-09-17 东芝It·控制系统株式会社 非破坏检查装置

Also Published As

Publication number Publication date
JP4080377B2 (ja) 2008-04-23

Similar Documents

Publication Publication Date Title
US6925145B2 (en) High speed digital radiographic inspection of piping
US7656997B1 (en) Method and apparatus for automated, digital, radiographic inspection of piping
US6459760B1 (en) Apparatuses and methods for non-destructive inspection
US6856662B2 (en) Remote examination of reactor nozzle J-groove welds
KR101736641B1 (ko) 균열 측정 장치 및 방법
TW200414229A (en) Method and system for nondestructive inspection of components
EP2749879A2 (en) Optical encoded nondestructive inspection
JP4080377B2 (ja) 非破壊検査方法および非破壊検査装置
KR101408466B1 (ko) 원자로 스터드 자동 초음파검사 장치 및 방법
JP5010944B2 (ja) 超音波探傷装置
JPH04231899A (ja) 原子炉の保守方法
JP2000206098A (ja) 建築物の壁構造検査装置
JP3650063B2 (ja) 伝熱管検査装置
JP4357265B2 (ja) 超音波探傷装置並びに超音波探傷方法
Koji Underwater inspection robot—AIRIS 21®
US20140184750A1 (en) Stereo Vision Encoded Ultrasonic Inspection
JP2000249783A (ja) 炉内配管溶接部の位置検出方法およびその装置
CN1376909A (zh) γ射线在役管网检测方法和装置
RU2496106C1 (ru) Способ неразрушающего рентгеновского контроля трубопроводов и устройство для его реализации
JP4669134B2 (ja) オープンラック型気化装置の探傷方法
JP5454861B2 (ja) 非破壊検査システム
US6665364B2 (en) Inspection method and apparatus for piping
RU2149393C1 (ru) Способ ультразвукового контроля цилиндрических изделий
CN103439350A (zh) 管材两端管口x射线探伤系统装置和基于该系统装置的检测方法
KR20190007344A (ko) 방사선원장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4080377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees