JP2004342258A - セルリークモニタ回路及びモニタ方法 - Google Patents

セルリークモニタ回路及びモニタ方法 Download PDF

Info

Publication number
JP2004342258A
JP2004342258A JP2003139241A JP2003139241A JP2004342258A JP 2004342258 A JP2004342258 A JP 2004342258A JP 2003139241 A JP2003139241 A JP 2003139241A JP 2003139241 A JP2003139241 A JP 2003139241A JP 2004342258 A JP2004342258 A JP 2004342258A
Authority
JP
Japan
Prior art keywords
leak
signal
cell
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003139241A
Other languages
English (en)
Other versions
JP4199591B2 (ja
Inventor
Yutaka Ito
伊藤  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2003139241A priority Critical patent/JP4199591B2/ja
Priority to US10/842,468 priority patent/US6992942B2/en
Publication of JP2004342258A publication Critical patent/JP2004342258A/ja
Application granted granted Critical
Publication of JP4199591B2 publication Critical patent/JP4199591B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40615Internal triggering or timing of refresh, e.g. hidden refresh, self refresh, pseudo-SRAMs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/406Refreshing of dynamic cells
    • G11C2211/4068Voltage or leakage in refresh operations

Abstract

【課題】温度補償、周期調整を容易化するセルリークモニタの提供。
【解決手段】DRAMのメモリセルと同等の擬似セルのノード電圧を基準値と電圧比較し、リーク電流により前記擬似セルのノード電圧が基準値にまで減少したときにリフレッシュ信号OSCを出力する回路1を備え、リーク電流として、pチャネル型のMOSFETのGIDL(Gate Induced Drain Leakage Current)が用いられ、リーク源のMOSFETのゲート電圧を選択的に設定する手段(3、4、2)を備え、ノード電圧に付加するキャパシタの容量値を選択する手段(5、4)を備えている。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は、ダイナミック型の半導体記憶装置に関し、特にセルのリークモニタ回路及び方法に関する。
【0002】
【従来の技術】
ダイナミックRAM(DRAM)においては、メモリセル内の情報蓄積用キャパシタの電荷が徐々にリークするためにリフレッシュ動作が必要とされる。リフレッシュ動作は、通常、製造された多数のメモリの実力(キャパシタのリーク速度)を評価した上で、メモリセルの情報が失われないように余裕を持った周期を決定して行なうようにされている。しかしながら、余裕を持った周期でリフレッシュを行なうと、必要以上にリフレッシュサイクル数が多くなり、このメモリを用いたシステムのスループットが低下し、データ保持時における消費電力も大きくなる。そこで、メモリセルアレイを有する半導体メモリ内に、該メモリセルアレイのセルと同等のメモリセル(「擬似セル」という)を備え、リーク源のリーク電流による該擬似セルの蓄積電荷量の低下を電圧の低下としてセンスするセルリークモニタ回路を設け、メモリセルに最適なサイクルでリフレッシュを行うようにしたメモリが開発されている。セルリークモニタ回路として、リーク源に接合リークを利用したものが知られている(例えば特許文献1参照)。
【0003】
上記特許文献1等に記載されている、セルリークモニタ回路の構成は、おおむね図32に示したようなものとなる。図32を参照すると、PN接合素子300を備えた擬似セルリーク源301と、差動増幅器よりなり、擬似セルリーク源301のノードSNの電圧と基準電圧VREFとを差動入力して比較し、比較結果を出力する電圧比較器303と、電圧比較器303の出力AOUTをインバータ307で反転した信号ACTBを遅延させる遅延回路(偶数段のインバータ列からなる)306と、リフレッシュ制御回路(不図示)から出力される信号STARTと、遅延回路306から出力されるACTBの遅延信号を入力とするNAND回路308と、NAND回路308の出力に接続された2段のインバータ列とを備え、2段のインバータ列の出力は、信号CLRB(クリア信号CLRの相補信号)として、ソースが電圧VCELLに接続されたpチャネルMOSFET(電界効果トランジスタ、「pMOSFET」という)310のゲートに接続される。また信号CLRBをインバータ307で反転した信号がOSC(「リフレッシュ信号」ともいう)として出力される。pMOSFET310のドレインは、nチャネルMOSFET(「nMOSFET」という)311のドレインに接続され、nMOSFET311のソースは電源VSSに接続されている。また信号STARTは、3段のインバータ列に入力されて反転出力され、信号RESET(リセット)として、nMOSFET311のゲートに入力されている。信号STARTがロウ(LOW)レベルのとき、信号RESETはハイ(HIGH)レベルとされ、nMOSFET311がオンし、ノードSNを放電しグランド電位とする。
【0004】
pMOSFET310とnMOSFET311のドレインの接続点ノードは、周期調整用容量304(寄生容量305の影響をうけない程度に大きい容量のMOSキャパシタ)が付加され、ノードSNに接続されている。
【0005】
リーク源301のキャパシタC305の蓄積ノードであるノードSNには、PN接合素子300が複数並列に接続されている。リーク源のPN接合素子300のアノード(P側)は、メモリセルアレイの基板電位VBBとされ、カソード(N側)は、擬似セルのキャパシタC305の蓄積ノードSNに共通に接続されている。
【0006】
図33は、図32の動作の一例を示す信号波形図である。信号STARTがロウレベルのとき、信号RESETがハイレベルとされ、リーク源301のノードSNの電圧はグランド電位にリセットされる。ノードSNの電圧が基準電圧VREFより低いため、電圧比較器303の出力AOUTはロウレベルとなる。ロウレベルの信号AOUTを反転するインバータ307の出力ACTB(ハイレベル)が、遅延回路306で遅延され、遅延回路306の出力と信号STARTのハイレベルを受けてNAND回路308の出力信号はロウレベルとなり、pMOSFET310のゲートにはロウレベルが伝達され(信号OSCはハイレベルとなる)、オン状態のpMOSFET310を介してキャパシタC305を電圧VCELLで充電する。この結果、電圧比較器303の出力AOUTはハイレベルとなり、その反転信号ACTBを遅延させた信号を受けるNAND回路307の出力はハイレベルとなり、信号OSCはハイレベルからロウレベルに立ち下がる。またpMOSFET310がオフする。このため、キャパシタ305の蓄積ノードSNは、フローティング状態となり、電荷保持状態となる。この電荷は、PN接合素子300のリーク電流によって放電される。そして、リーク電流により、キャパシタ305の蓄積電荷が減少し、ノードSNの電圧が基準電圧VREFにまで下がるたびに、パルス信号OSCが出力され、リフレッシュタイマーとして機能する。
【0007】
なお、上記特許文献1のモニタ回路においては、接合リーク源をメモリサイズで構成し、10ビット以上を並列に接続した構成が開示されており、周期調整は、電圧VCELL、基準電圧VREF、接続するセル数、寄生させる容量等によって調整される。
【0008】
またMOS抵抗リークを利用したものも知られている(例えば特許文献2参照)。この構成によれば、大きなリーク電流がとれることから、大面積が不要になる。
【0009】
なお、後述されるポーズリフレッシュ特性については、例えば以下の特許文献2、3等が参照される。また、後述される電源オフモードについては、例えば以下の特許文献4等が参照される。
【0010】
【特許文献1】
特開2002−56671号公報(第14頁、第32図)
【特許文献2】
特開平10−289573号公報(第8頁、第1図)
【特許文献3】
特開2002−110944号公報(第9頁、第10図)
【特許文献4】
特開2003−77273号公報(第1図、第2図)
【0011】
【発明が解決しようとする課題】
ところで、通常のPN接合リーク(SGI(基板分離領域)端モード)は、微小リークであることから、セルリークモニタのリーク源として、大面積が必要とされる。
【0012】
また、PN接合リークは、バイアスによる温度依存性の変化量が乏しく、温特調整は困難である。
【0013】
そして、DRAMにおいて、落ちこぼれビット(tail−bit)の出現確率は、0.01%以下のため、ポーズリフレッシュ特性に合わせることも困難である。
【0014】
さらに、PN接合のリークは、温度依存性が小さく、有効な温度補償が困難である。
【0015】
また、リーク電流は、ゲート電圧の微小変化に依存するため、その調整は困難である。
【0016】
したがって、本発明は、上記問題点に鑑みて創案されたものであって、その主たる目的は、温度補償、周期調整を容易化するセルリークモニタ回路及び方法を提供することにある。
【0017】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意研究した結果、微細化プロセスにともない、PN接合部での高電界、MOSの接合リーク・ゲート端モード(≒GIDL)が顕在化していることに着目し、pMOS接合リーク電流が、ゲート電圧により桁で変化するという知見に基づき、本発明を完成させるにいたった。
【0018】
本発明は、ダイナミック型のメモリセルと同等の擬似セルの蓄積電荷量をモニタし、リーク源のリーク電流により前記擬似セルの蓄積電荷量が所定のレベルにまで減少したことを検出したときにリフレッシュ信号を出力する回路を備え、前記リーク源が、MOSFETの接合リーク・ゲート端モード(GIDL(Gate Induced Drain Leakage Current))で構成され、前記MOSFETのゲート電圧を可変に設定する手段を備えている。前記リーク電流としてpチャネルMOSFETのGIDLが用いられ、前記pチャネルMOSFETのゲートに供給する電圧として昇圧電圧を選択的に設定する回路を備えている。
【0019】
さらに、本発明においては、好ましくは、前記ノードに付加されるキャパシタの容量値を可変に設定する回路を備えている。
【0020】
【発明の実施の形態】
本発明の実施形態について説明する。まず、本発明の原理について説明し、つづいて各種実施例を説明する。本発明においては、接合リーク・ゲート端モード(≒GIDL(Gate Induced Drain Leakage))により、擬似セルリーク源を構成している。
【0021】
本実施形態において、周波数(周期)調整のため容量選択回路を備え、温度依存性調整のためリーク源電圧発生回路(昇圧回路)を備えている。
【0022】
pMOSFETのゲート電圧を制御することにより、周波数(周期)調整だけでなく、温度依存性制御を可能としている。
【0023】
本実施形態において、リフレッシュ制御回路からの信号STARTにより、セルリークモニタ回路の発振回路は、リフレッシュ信号の動作・停止を行う構成とされる。
【0024】
本実施形態において、周波数(周期)調整の容量選択、温度依存性調整のゲート電圧の選択は、イニシャルシーケンスで行う。
【0025】
本実施形態において、選択回路は、カウンタ、デコーダで構成され、テストモードやレーザーフューズによる選択動作が可能とされている。
【0026】
本実施例において、電源オフモード(セルフリフレッシュ中、メモリ動作しない期間、内部電源を停止し、データ保持電流低減)に対応し、内部電源の立ち上がりを確認してから、発振動作(リフレッシュ動作)を継続するという安全制御を具備している。
【0027】
本実施形態において、リフレッシュ周期(リーク源流)を、桁で調整しながら、温度依存性も、調整が可能であり、実デバイスに適応したセルリークモニタを実現可能としている。さらに、周囲温度に対して、連続的な温度補償を可能とした理想的セルフリフレッシュタイマーを実現可能としている。
【0028】
【実施例】
本発明の実施例について図面を参照して以下に説明する。図1は、本発明の一実施例の構成を示す図である。図1を参照すると、リーク源のpMOSFETを有し、セルリークモニタの本体回路をなす発振回路(「本体回路」ともいう)1を備えている。本体回路1から出力される信号OSCの発振周波数は、リーク源(pMOSFETのGIDL(Gate Induced Drain Leakage))に依存する。
【0029】
図1に示すように、本実施例においては、リーク源(pMOSFETのGIDL)を所望の特性とするため、本体回路1内のリーク源のpMOSFETのゲート電圧を選択的に設定するために選択回路として、カウンタ回路6と、デコーダ回路3及び3’と、デコーダ回路4’及び4”と、リーク源電圧発生回路(昇圧回路)2、2’とを備えている。
【0030】
また、リーク源の発振周期を調整するキャパシタの容量値を選択する容量選択回路として、カウンタ5とデコーダ4を備えている。
【0031】
カウンタ5は、3ビットカウンタであり、3ビットのヒューズ信号AFUSE(0)〜AFUSE(2)を入力し、リセット信号RSTをCLR端子に入力し、DRAMのTFREQ端子に入力されるクロック信号を、クロック端子CLKに入力して計数する。なお、ヒューズ信号AFUSEについては後に説明される。
【0032】
3ビット入力8出力デコーダ回路4は、3ビットカウンタ5のカウント値をデコードし、その出力端子O[1:7]は、本体回路(発振回路)1のCSET(0)〜CSET(7)に接続されている。
【0033】
カウンタ6は、12ビットカウンタであり、制御信号として、12ビットのヒューズ信号AFUSE(3)〜AFUSE(14)を入力し、リセット信号RSTをCLR端子に入力し、TEA端子に入力される信号をクロック端子CLKに入力して計数する。
【0034】
3ビット入力7出力デコーダ3及び3’は、12ビットカウンタ6のそれぞれの3ビット出力(0−11ビット出力のうちの3−5ビットと9−11ビット)を入力してデコードする。
【0035】
3ビット入力8出力デコーダ4’、4”は、12ビットカウンタ6のそれぞれの3ビット出力(0−11ビット出力のうちの0−2ビットと6−8ビット)を入力してデコードする。
【0036】
第1群の8つのリーク源電圧発生回路2のそれぞれは、入力端子IN[0:7]、入力端子SETB、入力端子PUMPBと、1つの出力端子とを備え、3ビット入力7出力デコーダ3の7ビット出力O[1:7]に入力端子IN[0:7]が接続され、3ビット入力8出力デコーダ4’からのデコード結果を端子SETBに入力し、本体回路1からの昇圧制御信号PUMPBを端子PUMPBに入力し、出力端子から電圧を出力する。それぞれの出力信号であるLSET(0)−LSET(7)は、本体回路1の入力端子LSET(0)−LSET(7)にそれぞれ接続される。
【0037】
第2群の7つのリーク源電圧発生回路2’も同様にして、それぞれが、入力端子IN[0:7]、入力端子SETB、入力端子PUMPBと、1つの出力端子を備え、3ビット入力7出力デコーダ3’の7ビット出力O[1:7]に入力端子IN[0:7]が接続され、3ビット入力8出力デコーダ4”からのデコード結果信号を端子SETBに入力し、本体1からの昇圧制御信号PUMPBを端子PUMPBに入力し、出力信号LSET2(0)〜LSET2(7)は、本体回路1の入力端子LSET2(0)〜LSET2(7)にそれぞれ接続される。
【0038】
セルリークモニタの本体回路1には、スタート信号START、クロック信号CLK、電源VSS、信号GSTATE、容量値選択用の信号CSET(0)〜CSET(7)、第1系統のリーク源のpMOSFETのゲート電極に与える電圧信号LSET(0)〜LSET(7)、及び、第2系統のリーク源のpMOSFETのゲート電極に与える信号LSET2(0)〜LSET2(7)が入力され、ロウレベルでアクティブとされる昇圧制御信号PUMPBと、互いに相補のリフレッシュパルス信号OSC及びOSCB(OSCBはOSCの反転信号)が出力される。
【0039】
次に、図1に示した本実施例の回路の動作について説明する。周期調整テストモードにより、所望の回数、信号TFREQをパルス駆動する。信号TFREQを受ける3ビットカウンタ5が当該パルスを計数してカウントアップし、カウンタ5の3ビット出力は、3ビットデコーダ4へ入力され、8ビット信号にデコードされる。8ビット信号CSET(0)〜CSET(7)は、リークモニタ本体回路1に入力され、リーク源ノード(SN)に付加される容量(周期調整用の容量)の容量値を選択する。すなわち、信号CSET(0)〜CSET(7)は、本体回路1内において、リークノード(SN)と8つの容量素子(図16の104B)間にそれぞれ接続されている8個のスイッチ(図16の104A)の制御端子に接続され、信号CSET(n)(n=0〜7)がロウレベルのとき、対応するスイッチ(n)がオンし対応する容量素子(n)がリーク源ノード(SN)に付加され、リーク源ノード(図19のSN)の電圧変化を遅くする。すなわち、本体回路1の発振周波数を下げる(信号OSCの発振周期を長くする)。信号CSET(n)(n=0〜7)がハイレベルのとき、スイッチ(n)がオフし、該スイッチに接続される容量素子(n)はリークノード(SN)に接続されない。なお、セルリークモニタ本体回路1の構成は、後に図19を参照して説明される。
【0040】
リークノード(SN)に付加する容量値が決定すると、所望のCSET(0)〜CSET(7)を得るための信号AFUSE(0)〜AFUSE(2)(3ビット信号)となるように、ヒューズROM(図1では図示されない)が切断される。なお、ヒューズROM出力信号AFUSE(0)〜AFUSE(2)は、3ビットカウンタ5の出力マスク信号として機能し、AFUSE(n)(n=0、1、2)がロウレベルのとき、カウンタ5の出力のnビット目は、固定値(例えばハイレベル)とされる。これにより、ヒューズ切断後のパワーオンによるDRAMの起動後、信号CSET(0)〜CSET(7)について所望の値が、本体回路1に入力され、リークノード(SN)に付加される容量値の選択が行われる。
【0041】
また、温度調整テストモードにおいて、所望の回数だけ、信号TEAをパルス駆動する。信号TEAを受ける12ビットカウンタ6は、信号TEAのパルスを計数してカウントアップし、その12ビット出力は、下位6ビット(0−5ビット)と上位6ビット(6−11ビット)の2つの系統に分けられ、第1系統のデコーダ回路3、4’と、第2系統のデコーダ回路3’、4”に入力される。
【0042】
第1系統の6ビット入力について説明する。12ビットカウンタ6の下位3ビット(0−2)は、3ビットデコーダ4’に入力され、そのデコード結果である8ビット出力は、第1群の8つのリーク源電圧発生回路2に信号SETBとして入力され、それぞれの第1群のリーク源電圧発生回路2で発生した昇圧電圧を、本体回路1へ供給するか否かが決定される。ハイレベルの信号SETBが端子SETBに入力されるリーク源電圧発生回路2は非選択とされ、当該リーク源電圧発生回路2で発生した昇圧電圧は、本体回路1に供給されない。すなわち、当該リーク源電圧発生回路2の出力信号LSET(n)(nは0〜7)はロウレベル(グランド電位)とされる。このとき、本体回路1において、リーク源のpMOSFETのゲート電圧はロウレベルとなり、GIDLは顕在化しない。そして、リーク電流は、TATを主とする接合リーク電流となり、温度依存性は大きくなる(図24参照)。
【0043】
一方、信号SETBがロウレベルのとき、当該リーク源電圧発生回路2の出力端子に接続されるLSET(n)(nは0〜7)には、昇圧電圧が出力され、該昇圧電圧は、セルリークモニタ本体回路1に供給され、本体回路1のリーク源(pMOSFET)101のゲート電圧とされ、GIDLが顕在化する。この場合、リーク電流は、BBT(band to band tunneling)とTATを合成した接合リーク電流となり、その温度依存性は小さくなる。pMOSFETのゲート電圧(Vgs)が高いほど、BBTが顕在化し、温度依存性(活性化エネルギー)は小さくなる。
【0044】
次に、第2系統の6ビット入力について説明する。12ビットカウンタ6の上位3ビット(9−11ビット)は3ビットデコーダ3’へ入力され、3ビットデコーダ3’の7ビット出力は、第2群のリーク源電圧発生回路2’の出力電圧を決定する。
【0045】
12ビットカウンタ6の上位3ビットにつづく3ビット(6−8ビット)は、3ビットデコーダ4”に入力され、そのデコード出力は、第2群の8つのリーク源電圧発生回路2’に信号SETBとして入力され、それぞれの第2群のリーク源電圧発生回路2で発生した昇圧電圧を、本体回路1へ供給するか否かが決定される。ハイレベルの信号SETBが端子SETBに入力されるリーク源電圧発生回路2は非選択とされ、リーク源電圧発生回路2’で発生した昇圧電圧は、本体回路1に供給されない。当該リーク源電圧発生回路2’の出力信号LSET2(n)(nは0〜7)はロウレベルとされる。信号SETBがロウレベルのとき、当該リーク源電圧発生回路2’の出力端子の出力信号LSET2(n)(nは0〜7)には昇圧電圧が出力され、該昇圧電圧は、本体回路1に供給され、本体回路1のリーク源(pMOSFET)101’のゲート電圧となる。
【0046】
リーク源電圧発生回路2、2’は、いずれも、7ビット入力信号(IN(1)〜IN(7))がすべてロウレベルの場合、最も高電圧(2×VDD)とされ、入力(IN(1)〜IN(7))がすべてハイレベルの場合、昇圧は行われず、最も低い電圧(VDD−Vth)とされる。
【0047】
第1、第2群のリーク源電圧発生回路2、2’において、入力端子IN[1−7]に入力される、3ビットデコーダ3、3’の出力信号により、7種の昇圧電圧を設定可能としている。
【0048】
そして、第1、第2群のリーク源電圧発生回路2、2’において、それぞれ、何個のリーク源(pMOSFET)に昇圧電圧を供給するか(12ビットカウンタ6の12ビット出力の0−2、6−8ビット)、昇圧電圧を何ボルトとするか(12ビットカウンタ6の12ビット出力の3−5、9−11ビット)が決まったら、これらの信号を得るための制御信号AFUSE(3)〜AFUSE(8)を出力するヒューズROM(図示されない)を切断する。
【0049】
かかる構成の本実施例によれば、ヒューズを切断した後、DRAMに電源が投入されて起動されると、所望の数のpMOSFET(リーク源)のゲート電極に、所望の昇圧電圧が供給されることになる。
【0050】
本実施例においては、リーク源電圧発生回路(2、2’)、リーク源を選択する回路(4’、4”)、リーク源(図19の101、101’)を2系統備えたことにより、リーク源の特性(温度依存性)を、2つの温度依存性の合成とすることができる。
【0051】
例えば第1系統のリーク源の温度依存性を低く設定しておき、第2系統のリーク源の温度依存性を高く設定した場合、低温領域では、温度依存性が小さなリーク源が顕在化し、高温領域では、温度依存性が大きなリーク源が顕在化することになる。そして、この特性は、実際のポーズリフレッシュ特性(図21参照)そのものであり、有効である。
【0052】
DRAMのポーズリフレッシュ特性は、ビット個々の温度特性の集合でもあるため、低温領域では、温度依存性が小さいビットが顕在化し、高温領域では、温度依存性が大きなビットが顕在化する。
【0053】
以下に、図1に示した回路の各要素の構成例及びその動作について説明しておく。
【0054】
図2は、3ビットカウンタ5の構成を示す図である。正転出力と反転出力のうち、反転出力をデータ入力端子に帰還入力し分周回路を構成する3段のD型フリップフロップ51〜51を備え、各段のフリップフロップと、ヒューズ信号AFUSE(0)〜AFUSE(2)とをそれぞれ入力するNAND回路52〜52を備え、NAND回路52〜52の出力をそれぞれOUT(0)〜OUT(2)としている。
【0055】
図3は、12ビットカウンタ6の構成を示す図である。図2の3ビットカウンタと基本的に同様の構成とされている。12段のD型フリップフロップ51〜5112で構成し、AFUSE(3)〜AFUSE(14)とのNAND回路52〜5212での演算結果をOUT(0)〜OUT(12)としている。
【0056】
図4は、図2のカウンタ回路の動作例を示す図である。信号CLKの立ち下がりカウントアップが行われ、クリアCLRがハイレベルのときに、強制リセットが行われ、カウンタ出力はロウレベルとされる。
【0057】
図5は、図2、図3に示したD型のフリップフロップ51の構成の一例を示す図である。フリップフロップ51は、クリア端子付のエッジトリガー型のフリップフロップよりなる。図6は、図5に示したフリップフロップの動作を示すタイミング図である。図6において、クリア信号CLKRがハイレベルのとき、NAND回路502は、インバータとして機能する。相補のクロック信号CLK及びCLKBがハイレベル及びロウレベルのとき、CMOSトランスファゲート501、501はオンし、CMOSトランスファゲート501、501はオフし、スレーブ側のフリップフロップで記憶する値(インバータ501の出力)が出力端子OUTに出力される。相補のクロック信号CLK及びCLKBがロウレベル及びハイレベルのとき、CMOSトランスファゲート501、501がオフ、CMOSトランスファゲート501、501がオンし、マスタ側のフリップフロップ(502、503)は入力端子INと切り離され、クロックCLKがロウレベルとなる直前の入力端子INの信号値を記憶保持し、インバータ503の出力はCMOSトランスファゲート501を介して、スレーブ側のフリップフロップを構成するNAND回路501に入力され、インバータ503の出力がOUTから出力される。信号CLRBがロウレベルのとき、フリップフロップ51の出力はリセットされる。
【0058】
図7(A)は、図1の3入力8出力のデコーダ回路4の構成を示す図であり、図7(B)は、図7(A)のデコーダ回路の真理値表である。
【0059】
図8(A)は、図1の3入力7出力のデコーダ回路3の構成を示す図であり、図8(B)は、図8(A)のデコーダ回路の真理値表である。
【0060】
図9は、図1のリーク源電圧発生回路(昇圧回路)2、2’の構成を示す図である。なお、リーク源電圧発生回路(昇圧回路)2、2’は同一構成とされている。図9を参照すると、リーク源電圧発生回路2は、選択信号SETBと昇圧制御信号PUMPBとを入力するNOR回路26と、NOR回路26の出力を反転するインバータ27と、それぞれが、IN(0)〜IN(7)のうちの一つとインバータ27の出力とを入力とする7個のNOR回路22〜22と、それぞれのNOR回路の出力にソース及びドレインが接続され、ゲートが共通接続された昇圧容量(MOSキャパシタ)21〜21と、信号SETBをnMOSFETとpMOSFETのゲートに入力するインバータ24と、電源VCCにドレインが接続され、ソースがインバータ24のpMOSFETのソースに接続され、ゲートに電源電圧VCCが供給されるnMOSFET23とを備え、nMOSFET23のソースは、昇圧容量(MOSキャパシタ)21〜21の共通ゲートに接続されている。また、インバータ24のnMOSFETと出力端子OUT間に、ゲートに電源電圧VCCが印加されるnMOSFET25(nMOSFET24の耐圧を緩和する)を備えている。
【0061】
信号SETBがハイレベルのとき、インバータ24の出力OUTはロウレベルとなり、昇圧電圧は出力されない。信号SETBがロウレベルであって、昇圧制御信号PUMPBがアクティブ(ロウレベル)のとき、NOR回路26の出力はハイレベルとなり、インバータ27の出力はロウレベルとなる。この場合、すべてのIN(1)〜IN(7)がロウレベルのとき、NOR回路22〜22の出力はいずれもハイレベルとなり、昇圧容量(MOSキャパシタ)21〜21はブーストアップされ、出力OUTには、電源電圧VCCの2倍の電圧(VCC−Vth;VthはnMOSFETのしきい値電圧)が供給される。すべてのIN(1)〜IN(7)がハイレベルレベルのとき、NOR回路22〜22の出力はロウレベルとなり、昇圧容量(MOSキャパシタ)21〜21のブーストアップは行われず、出力OUTには電源電圧VCC(VCC−Vth;VthはnMOSFETのしきい値電圧)が供給される。
【0062】
図11は、図9の回路の動作を説明するための信号波形図である。信号SETBがロウレベルで信号PUMPBがロウレベルのとき、IN(0)〜IN(7)の値に応じて、2VCC−Vthから、VCC−Vthの電圧が出力端子OUTから出力される(OUTの(a)〜(c)参照)。信号PUMPBがハイレベルのとき、VCC−Vthの電圧が出力端子OUTから出力される。信号SETBがハイレベルのとき、OUTにはロウレベル(グランド電位)が出力される。
【0063】
リーク源電圧発生回路(昇圧回路)2としては、図10の構成としてもよい。図10を参照すると、昇圧容量をなすMOSキャパシタ21〜21のゲートが共通接続され、該共通接続線の一端がインバータ24と、nMOSFET23のソースの接続点に接続され、該共通接続線の他端は、ドレインが電源VCCに接続されたnMOSFET28のソースに接続され、nMOSFET28のゲートは、ドレインとゲートが電源VCCに接続されているnMOSFET29のソースに接続されている。NOR回路26の出力と、NOR回路26の出力を、2段のインバータ27で遅延させた信号とを入力するNOR回路22を備え、NOR回路22の出力は、MOS容量21を介して、nMOSFET28のゲートに接続されている。信号SETBがロウレベルで、信号PUMPBがロウレベルの期間、NOR回路26はハイレベルを出力し、NOR回路22は、信号PUMPBのロウレベル期間+2段のインバータ27の遅延時間分、ロウレベルとされ、昇圧容量21でのブーストアップは行われず、それ以外の期間は、昇圧容量(MOSキャパシタ)21でブーストアップが行われ、その電圧をゲートに受けるnMOSFET28により、MOSキャパシタ21〜21のゲートの共通接続線が昇圧される。なお、信号PUMPBのロウレベル期間では、入力信号IN(n)(n=0〜7)がロウレベルの昇圧容量21でのブーストアップが行われる。
【0064】
図12は、ヒューズ信号AFUSEを出力する回路において、ヒューズROMの切断前の構成を示す図である。本実施例において、この回路は、好ましくは、セルリークモニタ回路とともに、メモリにオンチップで設けられる。
【0065】
図12に示すように、リセット信号RSTとパワーアップ信号PUPBとを入力とするNOR回路131と、インバータ132、132と、インバータ132の出力をゲートに受け、ソースが接地され、ドレインがヒューズ135の一端に接続されたnMOSFET134と、インバータ132の出力をゲートに受け、ソースが電源に接続され、ドレインがヒューズ135の他端に接続されたpMOSFET133と、pMOSFET133のドレイン電圧を入力し、出力信号AFUSEを出力するフリップフロップ(互いの入力と出力同士が接続されたインバータ132とインバータ132)とを備えている。
【0066】
図12において、リセット信号RSTとパワーアップ信号PUPBがともにロウレベルのとき、NOR131の出力はハイレベル、インバータ132、132の出力はロウレベル、ハイレベルとなり、pMOSFET133、nMOSFET134はオフする。パワーアップ信号PUPB又はリセット信号RSTがハイレベルのとき、NOR131の出力はロウレベル、インバータ132、132の出力はハイレベル、ロウレベルとなり、pMOSFET133とnMOSFET134はともにオンし(pMOSFET133のドレイン電圧は、例えば、電源電圧VCCを、pMOSFET133のオン抵抗と、ヒューズ135抵抗及びnMOSFET134のオン抵抗の和で分圧した電圧とされる)、この例では、フリップフロップの出力AFUSEはハイレベルとされる。
【0067】
図13は、ヒューズROMの切断後の構成を示す図である。図13において、リセット信号RSTとパワーアップ信号PUPBがともにロウレベルのとき、NOR131の出力はハイレベル、インバータ132の出力はハイレベルとなり、pMOSFET133はオフする。パワーアップ信号PUPB信号又はRSTがハイレベルのとき、NOR131の出力はロウレベル、インバータ132の出力はロウレベルとなり、pMOSFET133はオンし、pMOSFET133のドレインノードは電源電圧VCCとなり、フリップフロップの出力AFUSEはロウレベルとされる。信号RSTがハイレベルのとき、NOR回路131の出力はロウレベル、インバータ131の出力はロウレベルであり、pMOSFET133はオンし、フリップフロップは信号AFUSEとしてロウレベルを出力する。
【0068】
図14は、図12のパワーアップ信号PUPBとPUPを出力するパワーアップ検出回路の構成の一例を示す図である。図14に示すパワーアップ検出回路は、電源オン時、電源電圧VCCが、所定電圧の上昇にしたとき、PUPBとして、図15に示すような信号波形を出力する。図15は、電源(VCC)投入時、内部リセット(RST)により状態確定する場合における、PUMPBとAFUSEの信号波形を示す図である。図15において、図12の回路から出力される信号AFUSEは実線(AFUSE(a))で、図13の回路から出力される信号AFUSEは破線(AFUSE(b))で示されている。
【0069】
図14において、電源端子VCCとメモリアレイ基板電圧VBB間には、2段縦積みとされ、ゲートとドレインが接続された(ダイオード接続された)pMOSFET141、141と、ゲートに低位側の電源電圧(グランド電位)VSSが共通に印加されているpMOSFET141及びnMOSFET142とが、直列形態に接続されている。pMOSFET141及びnMOSFET142のドレインは共通接続されて、インバータ列143〜143のバッファ列に入力され、インバータ143の出力から信号PUPが出力され、インバータ143の出力から反転信号PUPBが出力される。さらに、インバータ141の出力とVSS間に接続されたnMOSFET142が設けられており、インバータ143の出力は、nMOSFET142のゲートに入力されている。
【0070】
図14及び図15を参照すると、電源投入時、電源電圧VCCの0Vが上昇を開始した時点では、pMOSFET141、141はオフとされる。メモリアレイ基板電圧VBBは0から負電圧に下降し、nMOSFET142のゲート・ソース間電圧が閾値電圧以上となると、nMOSFET142がオンとなり、インバータ143の入力電圧はロウレベルとされ、インバータ143の出力がわずかに立ち上がり、信号PUMPは一旦立ち上がりを開始する。電源電圧VCCがさらに上昇すると、pMOSFET141、141、141がオンし、インバータ143の入力電圧は、例えば電源電圧VCCを、pMOSFET141、141、141のオン抵抗と、nMOSFET142のオン抵抗で分圧した電圧とされ、例えば、インバータ143の出力は立ち下がり、信号PUPBも立ち下がる。
【0071】
また図12のヒューズROMにおいて、パワーアップ時の電源電圧VCCの上昇時にともない、信号AFUSEは、図15の実線のような波形となる。信号RSTがロウレベルで、信号PUPBの立ち上がり変化でNOR131の出力はロウレベルとなり、インバータ132の出力はハイレベル、インバータ132の出力はロウレベルとなり、インバータ132の入力電圧は、電源電圧VCCを、例えばpMOSFET133、ヒューズ135の抵抗及びnMOSFET134のオン抵抗の和とで分圧した値とされ、パワーアップ信号PUPBの立ち下がり変化で、NOR131の出力はハイレベルとなり、インバータ132の出力はロウレベル、インバータ132の出力はハイレベルとなり、pMOSFET133、nMOSFET134はともにオフとされ、出力信号AFUSEは、インバータ132の電源電圧VCCの上昇に追従して上昇する。その後、電源オフの後(VCC=0V)、電源がオンとされた場合、インバータ132の出力信号AFUSEはロウレベルのままとされ、メモリ(SDRAM)に入力されるモードレジスタ設定コマンド(MRS)によってリセットパルス信号RSTが出力され、信号AFUSEはハイレベルに設定される(図15の実線(a)参照)。
【0072】
一方、図13のヒューズROMにおいて、パワーアップ時の電源電圧VCCの上昇時にともない、信号AFUSEは、図15の破線のような波形となる。信号RSTがロウレベルで、信号PUPBの立ち上がり変化でNOR131の出力はロウレベルとなり、インバータ132の出力はハイレベル、インバータ132の出力はロウレベルとなり、pMOSFET133はオンし、インバータ132の出力信号AFUSEは、ロウレベルを出力する。信号PUPBの立ち下がり変化で、NOR131の出力はハイレベルとなり、インバータ132の出力はロウレベル、インバータ132の出力はハイレベルとなり、pMOSFET133はオフとされ、信号AFUSEはロウレベルとされる。電源オフ(瞬停)後に電源がオンとされた場合、インバータ132の出力信号AFUSEはハイレベルとなる。本実施例のメモリを構成するSDRAM(synchronous DRAM)へのモードレジスタ設定コマンド(MRS)の入力によって、リセットパルス信号RSTが出力され、信号AFUSEはロウレベルに設定される(図15の破線(b)参照)。
【0073】
図16は、図1の本体回路1の構成の一例を示す図である。図16を参照すると、ソースが共通接続され、CSET(0)〜CSET(7)をゲート入力とするpMOSFET104Aと、pMOSFET104AのドレインとVSS間に接続されるMOSキャパシタは周期調整用容量104Bを構成している。
【0074】
LSET(0)〜LSET(7)をゲートに入力し、ソース・ドレインが接続されて接地電位とされ、バックゲートが共通接続されたpMOSFET素子100は、リーク源101を構成し、LSET2(0)〜LSET2(7)をゲートに入力し、ソース・ドレインが接続されて接地電位とされ、バックゲートが共通接続されたpMOSFET100’は、リーク源101’を構成し、リーク源101、101’のpMOSFET100、100’のバックゲートと、周期調整用のスイッチであるpMOSFET104のソースは、ノードSNに共通接続されている。また105は、寄生容量、102はリーク電流である。
【0075】
基準電圧発生回路124は、電源VCCとVSS間に2段縦積みに、ダイオード接続されたpMOSFETと、2段縦積みのpMOSFETの接続点ノードにゲートが接続されたpMOSキャパシタ及びnMOSキャパシタを備えている。
【0076】
電圧比較器103は、ソースが共通接続されたpMOSFET差動対と、差動対を駆動する定電流源と、差動対の能動負荷をなすnMOSFETカレントミラーからなる差動増幅器によって構成されており、ノードSNの電圧と、基準電圧発生回路124の出力VCC/2(電源電圧VCCの1/2)とを差動入力して、比較結果をAOUTとして出力する。
【0077】
電圧比較器103の出力AOUTは、反転遅延回路106で反転され、インバータ111と、2つのインバータ114、115を介して、リフレッシュ信号OSC(遅延回路6の出力ACTの反転信号)として出力される。さらに、遅延回路6の出力ACTと信号STARTとを入力するNAND回路112の出力の反転信号(遅延回路6の出力ACTの正転信号)がOSCBとして出力される。
【0078】
NAND回路112の出力信号と、信号GSTATEとのAND演算結果(NAND回路113とインバータ117)は、クリア信号CLRとともに、NOR回路119に入力される。NOR回路119の出力は、ソースが電源VCCに接続されたpMOSFET122のゲートに入力され、NOR回路119の出力信号をインバータ118で反転した信号が昇圧制御信号PUMPBとして、図1のリーク源電圧発生回路2及び2’に出力される。信号SETと信号STARTのAND演算結果(NAND120とインバータ121)は、ソースが接地されたnMOSFET123のゲートに入力され、pMOSFET122とnMOSFET123のドレインの接続点がノードSNに接続されている。
【0079】
次に、図16に示したセルリークモニタ本体回路1の回路動作について説明する。信号STRATがハイレベルのとき、ノードSNの電圧が基準電圧VREFよりも低い場合、電圧比較器103は、出力信号AOUTとして、ハイレベルを出力し、反転遅延回路106の出力ACTはロウレベルとなり、インバータ111、114、115を介して信号OSCはハイレベルに遷移する。またロウレベルの信号ACTと、ハイレベルの信号STARTを入力するNAND回路112はハイレベルを出力し、信号OSCBはロウレベルとなる。
【0080】
NAND回路112のハイレベル出力とロウレベルの信号GSTATEを入力するNAND回路113はハイレベルを出力し、インバータ117の出力はロウレベルとされ、信号CLRがロウレベルのとき、NOR回路119の出力はハイレベルとなり、pMOSFET122がオンし、ノードSNを電圧(VCELL)で充電する。このため、ノードSNの電圧が基準電圧VREFよりも高くなり、電圧比較器103は出力信号AOUTとしてロウレベルを出力し、反転遅延回路106の出力ACTはハイレベルとなり、インバータ111、114、115を介して信号OSCはハイレベルからロウレベルに遷移する(すなわち、ワンショットパルスOSCが出力される)。また信号OSCBは、ロウレベルからハイレベルとなる。
【0081】
NAND回路112のロウレベル出力と、信号GSTATEを入力するNAND回路113はハイレベルを出力し、インバータ117の出力はロウレベルとされ、信号CLRがロウレベルのとき(信号CLRは非活性状態)、NOR回路119の出力はハイレベルとなり、pMOSFET122がオフし、ノードSNをフローティング状態とする。pMOSFET122がオフのとき(ノードSNがフローティング状態のとき)、昇圧制御信号PUMPBはロウレベルとされる。
【0082】
そして、リーク源101のリーク電流によりノードSNの電荷蓄積量が減少し、ノードSNの電圧が基準電圧VREFにまで下がったとき、再び、信号OSCがハイレベルとされ、pMOSFET122によりノードSNが充電される。信号CLRがハイレベルにとき、ノードSNが充電される。
【0083】
また、信号START及び信号SETがハイレベルにとき、nMOSFET123がオンして、ノードSNは放電される。
【0084】
次に、図1のリーク源101のpMOSFETのGIDL(Gate Induced Drain Leakage Current)について説明する。図17を参照すると、171はゲート、172は拡散層、173は基板分離領域(SGI)、174は基板、175は空乏層、Aは、接合リークゲート端成分、Bは、接合リークSGI(基板分離領域)端成分、Cは接合リーク面成分である。GIDL成分は、ゲート電位の影響をうけるゲート表層のエッジ(図17のA)に流れるリーク電流と考えられる。一方、通常支配的なのは、欠陥密度の高い界面、図17のCを流れるリーク電流と考えられる。
【0085】
図18は、電源投入時、及び、電源オフモードにおける、信号GSTATEとPOFF、各種内部電源電圧波形の推移を示す図である。VCCは電源電圧、VPPは高電圧(ワード線昇厚電圧)、VBBはメモリセルアレイ領域の基板電位、VDLはビット線の電位(メモリセルの書き込み電圧)、VBRLはビット線プリチャージ電位でありVDL/2、VPLTはプレート電位であり、VDL/2である。信号POFFがハイレベルとされる電源オフモードにおいて(電源VCCの電圧は保たれている)、高電圧VPPはVCC−thに下がり、VDL、VPLT、VBLR、VBBは0Vとされ、内部電源電圧の変化に基づき、信号GSTATEはロウレベルとされる(IPOFF)。内部電源電圧の復帰により信号GSTATEはハイレベルとされる(IPON)。電源オフモードについては後に説明される。
【0086】
図19は、図16のセルリークモニタ本体回路1の発振動作(リフレッシュ信号OSCのパルス出力動作)を示す信号波形である。ノードSNの電位低下を、電圧比較器103で検知しACTがロウレベルとなると、信号OSCがハイレベルとなり、ノードSNを充電し、信号OSCがロウレベルに立ち下がる(SNの立ち上がりのタイミングから遅延されて出力される)という処理が繰り返され、パルス信号OSCは周期的に出力される(周期T)。昇圧制御信号PUMPBがアクティブ期間(ロウレベル)のとき、リーク源電圧発生回路2、2’からの電圧(昇電圧2VCC−Vth、昇電圧1.5VCC−Vth)LSET(0)〜LSET(7)、LSET2(0)〜LSET2(7)が出力される。昇圧制御信号PUMPBのハイレベルへの立ち上がりをうけて、リーク源電圧発生回路2、2’は、LSET(0)〜LSET(7)、LSET2(0)〜LSET2(7)をグランド電位とされる。GSTATEのハイレベル期間、セルフリフレッシュによりメモリセルの再書き込みが行われる。
【0087】
図20は、図16のセルリークモニタ本体回路1の発振動作の別の動作例を説明するための図である。リフレッシュパルス信号OSCの周期が長すぎた場合(電圧比較器103の出力ACTがハイレベルとされ、OSCのパルス信号が出力されない場合)、クリア信号CLRをハイレベルとし、nMOSFET123をオンとして、ノードSNを充電する。
【0088】
図21は、ポーズリフレッシュ特性の温度依存性を示す図である。図21において、横軸はポーズ時間(PAUSE−TIME)、縦軸は正規化した累積フェイルビット数(データ保持不良を示したビット数/被試験全ビット数)を表している。図21に示すように、ノーマルビット(Normal−bit)と呼ばれ主要な分布と、落ちこぼれビット(tail−bit)と呼ばれるマイナー分布が存在する。1/256Mは、メモリ容量256MビットのDRAMの場合、1/256Mのワーストの1ビットを意味し、1−(1/256M)はベストの1ビットを意味する。
【0089】
図21からもわかるとおり、ポーズリフレッシュ特性には大きな温度依存性があり、低温になると桁で実力は向上する。温度依存性(活性化エネルギー)が、落ちこぼれビット(tail−bit)とノーマルビット(normal−bit)とでは2倍ほど違うため、低温になるほどその実力差は広がる。つまり、セルフリフレッシュ時のリフレッシュ周期を温度特性に適合させるために、図1に示した前記実施例が適用される。
【0090】
図22は、累積ビットエラーと活性化エネルギーの関係を示す図である。矩形領域1は通常リフレッシュ、矩形領域2はスーパーセルフリフレッシュの対応している。
【0091】
図23は、リーク電流のゲート電圧Vgs依存性を表したグラフである。Vgsが高電圧となると、接合リーク電流Isubは増大する。
【0092】
図24は、リーク電流・温特(活性化エネルギー)のゲート電圧依存のグラフである。ゲート端モード(A)が支配的であり、その電流はゲート電位を上げることにより桁で増加する。活性化エネルギーはリニアに低下し、0.1eV程度まで低下する(ゲート端の強電界によりBBT(バンド間トンネル)電流が現れている)。このリーク特性により、リフレッシュ周期(リーク電流の逆数)と温度依存性を自在に設定することが可能となる。
【0093】
次に、本発明の第2の実施例について説明する。図25は、本発明の第2の実施例の構成を示す図である。本実施例において、セルモニタ回路は、固定周期以上は、リフレッシュパルスの周期が長くならないための制御を行っている。固定周期の制御は、発振回路207とカウンタ回路208からなるタイマーで行っている。
【0094】
図25を参照すると、本実施例は、リーク源として、PN接合素子を用いたセルリークモニタ回路(図32参照)に、電圧比較器203の出力AOUTがハイベルのときに、所定の周波数で発振する発振回路207と、発振回路207の発振出力をクロックとして入力し計数するカウンタであって、予め定められたカウント数計数したときCOUTを出力するカウンタ208とを備えている。スタート信号STARTがハイレベルで、カウンタ208の出力COUTがロウレベルのとき、信号RESETはロウレベルとされている。一方、カウンタ208が、発振回路207の発振出力信号を計数し、その出力COUTをハイレベルとすると、nMOSFET213がオンし、ノードSNの電荷を放電させる。これにより、電圧比較器203の出力AOUTがロウレベルとなり、ACTBはハイレベルとなり、遅延回路206で遅延され、信号OSCをハイレベルとする。そして、信号ACTはロウレベルとなり、発振回路207は発振を停止する。また信号CLRBがロウレベルとなり、pMOSFET212がオンし、ノードSNを充電し、電圧比較器203の出力AOUTがハイレベルとなり、OSCはロウレベルに立ち下がる。
【0095】
図26は、本発明の第3の実施例の構成を示す図である。図26を参照すると、図25の構成に、内部電源回路209が追加されており、内部電源回路209は、カウンタ208からの信号POFF(電源オフモード制御信号)を受け、メモリセルアレイ等の電源電圧である、高電圧VPP、ビット線電位VDL、ビット線プリチャージ電位VBLR、プレート電位VPLT、基板電位VBBの各種内部電源電圧の制御(電源オフモード制御)を行い(このとき、電源電圧VCCは例えば2.5Vのままとされる)、内部電源電圧の復帰確認後、信号GSTATEを出力する制御を行う(図18参照)。内部電源回路209からの信号GSTATEと、ACTBの遅延信号(遅延回路206の出力)のAND演算結果((NAN回路210とインバータ211での演算出力)と、リフレッシュ制御回路(不図示)からの信号STARTとを入力とするNAND回路210、2段のインバータ211を介して信号CLRBとしてpMOSFET212のゲートに入力され、その反転信号がOSCとして出力される。これ以外の構成、すなわち、発振回路207とカウンタ208によりタイムアウト制御等は、図25に示した前記第2の実施例と同様とされる。
【0096】
図27は、図25及び図26の発振回路207の構成を示す図である。この発振回路207(「RC遅延発振回路」ともいう)は、信号ACTがロウレベルのときに発振が停止され、信号ACTがハイレベルのとき、活性されるリングオシレータとして構成され、付加されるMOSキャパシタの容量値、バイアス電圧VPとVNの電圧値に応じて、発振周波数が規定され、信号ACTがハイレベルのとき、実質的にインバータ5段構成のリングオシレータが発振動作し、信号ACTがロウレベルのとき発振は停止する。
【0097】
図27を参照すると、CMOSインバータ(PN1、N11)と電源VCC及びグランド間に、バイアス電圧VP、VNをそれぞれゲートに入力する電流源トランジスタ(P12、N12)を備え、インバータの出力ノードにMOSキャパシタ(P13、N13)を備えた構成が、1段目から3段目のインバータのそれぞれを構成している。4段目のインバータ(P41、N41)と電源VCC間には、バイアス電圧VPをゲートに入力する電流源トランジスタ(P42)を備え、4段目のインバータ(P51、N51)とグランド(VSS)間には、バイアス電圧VNをゲートに入力する電流源トランジスタ(N52)を備えている。そして3段目のインバータ(P31、N31)の出力端は、4段目のインバータ(P41、N41)の入力端と、4段目のインバータ(P54、N53)の入力端に共通に接続され、4段目のインバータの2つの出力端は、5段目のCMOSインバータ(ドライバ回路)(P81、N81)の入力端に接続され、5段目のCMOSインバータ(P81、N81)の出力端は、1段目のインバータ(P11、N11)の入力端に接続されている。3段目のインバータ(P31、N31)の出力端と電源VCC間には、信号ACTをゲートに入力するpMOSFET91が挿入され、5段目のインバータ(P81、N81)の出力端と電源VCC間には、信号ACTをゲートに入力するpMOSFET92が挿入されている。信号ACTがロウレベルのときに、pMOSFET91、92がオンし、4段目のインバータ(P41とN41、P51とN51)の入力をハイレベルとし、出力OSC2をハイレベル固定とし、発振が停止される。このリング型のオシレータにおいて、バイアス電圧VPとVNの値を可変させることで、出力信号OSC2の発振周期が可変に設定される。なお、発振停止時、出力信号OSC2をロウレベルとしてもよいことは勿論である。
【0098】
図28は、図27のバイアス電圧VP、VNを発生させるバイアス電圧発生回路の構成を示す図である。図28に示すように、直列抵抗回路の各抵抗を短絡させるスイッチQ10〜Q17、Q20〜Q27を設け、トリミング信号TRM1(0〜7)、TRM2(0〜7)により、スイッチ制御が行われる。上記トリミング信号TRM1(0〜7)、TRM2(0〜7)は、特に制限されないが、レーザー光線等を用いたヒューズの切断により形成される。
【0099】
図29は、図25の構成の動作を示す信号波形図である。リフレッシュパルスOSCは周期T(ただし、Tは、発振回路207とカウンタ208で規定される固定周期よりも短い周期)で周期的に出力されている。
【0100】
図30は、図25の構成の動作を示す信号波形図である。ノードSNの電圧がVREF以上のとき、電圧比較器203の出力AOUTはハイレベルとされ、信号ACTがハイレベルとされ、カウンタ208が発振回路207の発振出力OSC2を計数する。カウンタ208がOSC2をn回計数して、その15ビットがハイレベルとなったとき(時間nT2を計時したとき)、カウンタ208の出力COUTがハイレベルとなり、リセット信号RESETがハイレベルとなってnMOSFETがオンし、ノードSNは放電されグランド電位とされる。ノードSNがVREF以下となり、電圧比較器203の出力AOUTがロウレベルとなると、信号ACTはロウレベルとされ、発振回路207は発振を停止する。またCCLRはハイレベルとされカウンタ208がリセットされる。信号OSCは、遅延回路206の遅延時間をへて、ハイレベルとなり、pMOSFET212がオンし、ノードSNの充電が行われ、電圧比較器203の出力AOUTがハイレベルとなり、信号OSCはロウレベルに立ち下がる。以上の処理が繰り返され、リフレッシュパルスOSCは周期Tで出力される。
【0101】
図31は、図26の動作の一例を示す図である。カウンタ208が発振回路207の発振出力を計数し、信号POFFをハイレベルとすると、電源制御回路209は、VPP、VDL、VPLT、VBLR、VBBの電圧を制御し、信号GSTATEをロウレベルとする。
【0102】
ノードSNの電圧がVREF以上のとき、電圧比較器203の出力AOUTはハイレベルとされ、信号ACTがハイレベルとされ、カウンタ208が発振回路207の発振出力OSC2を計数する。カウンタ208がOSC2を所定回計数して、その13ビットがハイレベルとなったとき、カウンタ208の出力POFFがハイレベルとなり、電源制御回路209は電源電圧を制御し(図18参照)、信号GSTATEをロウレベルとする。
【0103】
以下に、信号POFF、GSTATEについて概説しておく。これらの制御信号は、内部電源オフモードで発生される信号であり、信号POFFは、DRAMのリフレッシュ制御回路から内部電源停止命令として内部電源回路に出力され、ハイレベルで内部電源停止、ロウレベルで、内部電源起動命令を表している。また、信号GSTATEは、内部電源回路の状態をモニタし、その状態を各種制御回路へフィードバックさせる制御信号であり、ハイレベルのとき、内部電源すべてが正常に立ち上がっていることを表し、ロウレベルのとき、立ち上がっていない状態を表している。電源オフモードは、信号POFF、GSTATEにより、内部電源を停止するスタンバイ状態の一種である。電源オフモードについては上記特許文献4等が参照される。電源オフモードの制御動作は以下のようなものとされる。
【0104】
(a)セルフリフレッシュモードにエントリする。
【0105】
(b)全ビットリフレッシュする(図31のSelf−Refresh)。セルリークモニタ回路では、リーク源ノードSNが充電され、信号ACTがハイレベルとされ、発振回路207が発振信号OSC2を出力する。
【0106】
(c)電源オフモードにエントリする。
【0107】
(d)ノードSNの電位がリークによりVREFより低下したとき、セルリークモニタがOSCによりリフレッシュを通知する。
【0108】
(e)信号POFFをハイレベルとし、内部電源等が停止され、その後、信号GSTATEがハイレベルに遷移する(内部電源復帰を確認)。
【0109】
(f)(b)〜(e)を繰り返す。
【0110】
(g)セルフリフレッシュ復帰コマンドを投入すると、上記サイクルから抜け、通常状態へ復帰する。
【0111】
なお、発振回路207の出力OSC2を分散リフレッシュの周期としても利用するようにしてもよい。
【0112】
以上本発明を上記実施例に即して説明したが、本発明は、上記実施例の構成にのみ限定されるものでなく、本発明の原理の範囲内で当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
【0113】
【発明の効果】
以上説明したように、本発明によれば、接合リーク・ゲート端モードは、ゲート電圧により、温度依存性、リーク電流を桁で調整することができるため、実デバイスに対応した最適のセルリークモニタを実現可能としている。
【0114】
また本発明によれば、電源オフモードに対応し、内部電源の立ち上がりを確認してから、発振動作(リフレッシュ動作)を継続することで、安全性、信頼性を向上している。
【0115】
また本発明によれば、タイマーカウンタを備え、リフレッシュパルスが固定周期を超えて出力されない場合、リーク源ノードをリセットし、リフレッシュパルスを出力する構成としたことにより、メモリセルアレイのリフレッシュの抜けの発生を回避し、信頼性を保障している。
【0116】
さらに、本発明によれば、タイマーカウンタを備え、タイマーカウンタで所定時間計時後、電源オフモードに入り、データ保持電流の低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例のセルリークモニタの全体の回路構成を示す図である。
【図2】図1の3ビットカウンタ回路の構成の一例を示す図である。
【図3】図1の12ビットカウンタ回路の構成の一例を示す図である。
【図4】カウンタ回路の動作の例を示す図である。
【図5】図2、図3のカウンタのフリップフロップの構成の一例を示す図である。
【図6】図5のフリップフロップの動作の一例を示す図である。
【図7】図1の8出力デコーダ回路の構成の一例を示す図である。
【図8】図1の7出力デコーダ回路の構成の一例を示す図である。
【図9】図1のリーク源ゲート電位発生回路の一例の構成を示す図である。
【図10】図1のリーク源ゲート電位発生回路の別の構成例を示す図である。
【図11】図9の回路の動作波形の一例を示す図である。
【図12】フューズROM回路(切断前)の構成の一例を示す図である。
【図13】フューズROM回路(切断後)の構成を示す図である。
【図14】図12、図13の信号PUPBを生成するPUP回路の構成の一例を示す図である。
【図15】フューズROM回路の動作波形(電源投入時、あるいは内部リセットにより状態確定)の一例を示す図である。
【図16】図1のセルリークモニタ本体回路の構成の一例を示す図である。
【図17】リーク源(pMOSFET)の断面を模式的に示す図である。
【図18】内部電源の動作波形(電源投入、電源オフモード)を示す図である。
【図19】図1のセルリークモニタの発振動作波形の一例を示す図である。
【図20】図1のセルリークモニタの発振動作波形の他の例を示す図である。
【図21】ポーズリフレッシュ特性の温度依存性を示す図である。
【図22】ビットエラー率BERと活性化エネルギーの相関を示すグラフである。
【図23】図17のリーク電流のゲート電圧依存を示す図である。
【図24】図17のリーク電流・温特のゲート電圧依存を示す図である。
【図25】本発明の第2の実施例のセルリークモニタ回路の構成例を示す図である。
【図26】本発明の第3の実施例のセルリークモニタ回路の構成例を示す図である。
【図27】図25、図26の発振回路の構成の一例を示す図である。
【図28】図27の発振回路のバイアス電位を発生する回路の構成の一例を示す図である。
【図29】図25のセルリークモニタ回路の動作波形の一例を示す図である。
【図30】図25のセルリークモニタ回路の動作波形の第2の例を示す図である。
【図31】図26のセルリークモニタ回路の動作波形の一例を示す図である。
【図32】セルリークモニタ回路の基本構成を説明するための図である。
【図33】図32のセルリークモニタの基本動作波形の一例を示す図である。
【符号の説明】
1 リークモニタ本体回路
2 リーク源電圧発生回路
3 3ビット入力7出力デコーダ
4 3ビット入力8出力デコーダ
5 3ビットカウンタ
6 12ビットカウンタ
21 MOSキャパシタ
22、26 NOR
23、25、28、29 nMOSFET
24 インバータ
27 インバータ
51 フリップフロップ
52 NAND
53 インバータ
71 3入力NOR
72 2入力NOR
73 インバータ
74 2入力NAND
75 3入力NAND
100 pMOSFET
101 リーク源
103 電圧比較器
104 容量
105 寄生容量
106 反転遅延回路
111 CMOSインバータ
114、115、116、117、121、118 インバータ
112、113、120 NAND
119 NOR
120 NAND
121 インバータ
122 pMOSFET
123 nMOSFET
124 基準電圧発生回路
131 NOR
132 インバータ
133 pMOSFET
134 nMOSFET
135 ヒューズ
141 pMOSFET
142 nMOSFET
143 インバータ
171 ゲート電極
172 拡散領域(P+)
173 基板分離領域(SGI)
174 基板(n−)
175 空乏層
200 pMOSFET
201 リーク源
202 リーク電流
203 電圧比較器
204 周期調整用容量
205 寄生容量
206 遅延回路
207 発振回路
208 カウンタ
209 内部電源電圧回路
210 NAND
211 インバータ
212 pMOSFET
213 nMOSFET
301 リーク源
302 リーク電流
303 電圧比較器
304 周期調整用容量
305 寄生容量
306 遅延回路
307 インバータ
308 NAND
310 pMOSFET
311 nMOSFET
501 CMOSトランスファゲート
502 NAND
503 インバータ

Claims (27)

  1. ダイナミック型のメモリセルと同等の擬似セルの蓄積電荷量をモニタし、リーク源のリーク電流により前記擬似セルの蓄積電荷量が所定のレベルにまで減少したことを検出したとき、リフレッシュ信号を出力する手段を備え、
    前記リーク源は、MOSFETの接合リーク・ゲート端モードで構成され、
    前記MOSFETのゲート電圧を可変に設定する手段を備えている、ことを特徴とするセルリークモニタ回路。
  2. リーク電流として、pチャネルMOSFETのGIDL(Gate Induced Drain Leakage Current)が用いられ、
    前記pチャネルMOSFETのゲート電極に供給する電圧として、昇圧電圧、又は通常電圧を選択的に設定する手段を備えている、ことを特徴とする請求項1記載のセルリークモニタ回路。
  3. 前記擬似セルの電荷蓄積ノードに付加されるキャパシタの容量値を可変に設定する手段を備えている、ことを特徴とする請求項1又は2記載のセルリークモニタ回路。
  4. ダイナミック型のメモリセルと同等の擬似セルのキャパシタのノードに接続されたリーク源と、
    前記ノードの電圧と予め定められた基準電圧とを比較し比較結果信号を出力する電圧比較器と、
    前記電圧比較器からの比較結果信号を受け該比較結果信号を遅延させて出力する遅延回路と、
    前記ノードの電圧が前記基準電圧以下の場合、前記遅延回路の出力信号に基づき、前記キャパシタを所定電圧で充電し、前記ノード電圧が前記基準電圧を越えている場合、前記リーク源の前記ノードをフローティング状態とさせる切替制御を行うスイッチ回路と、
    前記電圧比較器からの前記比較結果信号に基づき、ダイナミックランダムアクセスメモリのリフレッシュ周期を規定するリフレッシュ信号を出力する回路と、
    を備え、
    前記擬似セルのリーク源は、pチャネルMOSFETの接合リーク・ゲート端モードにより構成されており、
    前記リーク源の前記pチャネルMOSFETのゲート電圧を可変に設定する手段を備えている、ことを特徴とするセルリークモニタ回路。
  5. 前記リーク源が、前記キャパシタノードに並列接続されるpMOSFETを複数備え、
    複数の前記pMOSFETのそれぞれのゲート電極に供給するゲート電圧を可変に設定するリーク源電圧発生回路を備えている、ことを特徴とする請求項4記載のセルリークモニタ回路。
  6. 前記リーク源電圧発生回路が、前記複数のpチャネルMOSFETに対応して、前記pチャネルMOSFETのゲート電圧をそれぞれ発生する複数のゲート電圧回路を備え、
    前記リーク源電圧発生回路の前記複数のゲート電圧回路のうち、いずれのゲート電圧回路を用いて、前記リーク源にゲート電圧を供給するかを選択するための制御信号を生成する選択回路を備えている、ことを特徴とする請求項5記載のセルリークモニタ回路。
  7. 前記ノードに並列接続される複数のpチャネルMOSFETよりなるリーク源を複数系統備え、
    複数系統のリーク源のそれぞれに対応して、前記リーク源の前記pチャネルMOSFETのゲート電極に供給するゲート電圧を可変に設定する、複数系統のリーク源電圧発生回路を備えている、ことを特徴とする請求項4記載のセルリークモニタ回路。
  8. 前記複数系統のリーク源電圧発生回路のそれぞれに対して、前記リーク源電圧発生回路で発生するゲート電圧を決定する制御信号を生成する、選択回路を備えている、ことを特徴とする請求項7記載のセルリークモニタ回路。
  9. 前記ノードに付加されるキャパシタの容量値を選択する制御信号を出力する選択回路を備えている、ことを特徴とする請求項4記載のセルリークモニタ回路。
  10. 前記選択回路が、入力されるパルス信号を計数し、計数結果と入力される出力制御信号との論理演算結果に基づき、出力値が設定されるカウンタと、
    前記カウンタの出力をデコードし、前記リーク源のpチャネルMOSFETに対してゲート電圧を供給するゲート電圧回路を選択するための制御信号を生成するデコーダと、
    を備えている、ことを特徴とする請求項6記載のセルリークモニタ回路。
  11. 前記選択回路が、入力されるパルス信号を計数し、計数結果と入力される出力制御信号との論理演算結果に基づき、出力値が設定されるカウンタと、
    前記カウンタの出力をデコードし、前記リーク源電圧発生回路で発生する電圧を決定するための信号を生成するデコーダと、
    を備えている、ことを特徴とする請求項8記載のセルリークモニタ回路。
  12. 前記選択回路が、入力されるパルス信号を計数し、計数結果と入力される出力制御信号との論理演算結果に基づき、出力値が設定されるカウンタと、
    前記カウンタの出力をデコードし、前記リーク源の前記ノードとキャパシタとの間に接続されるスイッチ素子のオン・オフを選択するための制御信号を生成するデコーダと、
    を備えている、ことを特徴とする請求項9記載のセルリークモニタ回路。
  13. 前記カウンタに入力される出力制御信号は、ヒューズ回路における対応するヒューズの切断の有無で値が設定される、ことを特徴とする請求項10乃至12のいずれか一に記載のセルリークモニタ回路。
  14. 前記ヒューズ回路は、電源電圧を監視する回路から出力される電源オンを示す信号に基づき、ヒューズの切断の有無に応じて規定される出力信号の出力する手段を備えている、ことを特徴とする請求項13記載のセルリークモニタ回路。
  15. 前記電圧比較器の比較結果信号と、リフレッシュ制御回路から出力されるスタート信号とに基づき、前記リフレッシュ信号の周期的な出力、及び停止を制御する回路を備えている、ことを特徴とする請求項4記載のリークモニタ回路。
  16. 前記ゲート電圧の選択が、電源投入時のパワーアップシーケンスで行われるように制御する手段を備えている、ことを特徴とする請求項6記載のリークモニタ回路。
  17. 前記ノードに付加される容量値の選択が、電源投入時のパワーアップシーケンスで行われるように制御する手段を備えている、ことを特徴とする請求項9記載のリークモニタ回路。
  18. 前記スイッチ回路をオフさせて前記リーク源の前記ノードをフローティング状態とする制御信号の値に基づき、前記リーク源電圧発生回路は、前記ゲート電圧を生成して出力する、ことを特徴とする請求項9記載のリークモニタ回路。
  19. 電源オフモードに対応し、内部電源の立ち上がりを確認してから、前記リフレッシュ信号の発振動作を継続するように制御する手段を備えている、ことを特徴とする請求項4記載のセルリークモニタ回路。
  20. ダイナミック型のメモリセルと同等の擬似セルの蓄積電荷量をモニタし、リーク源のリーク電流により前記擬似セルの蓄積電荷量が所定の基準レベルにまで減少したことを検出したときにリフレッシュ信号を出力する検出手段と、
    タイマーカウンタと、
    を備え、
    前記タイマーカウンタは、前記検出手段での検出結果に基づき、前記擬似セルの蓄積電荷量が前記所定の基準レベルを越えている場合に計時を行い、計時開始後、予め定められた所定の期間、前記擬似セルの蓄積電荷量が前記所定の基準レベルにまで減少しない場合にタイムアウト通知信号を出力し、
    前記タイマーカウンタからのタイムアウト通知信号を受けて、前記擬似セルの蓄積電荷を放電するためのリセット信号を出力する手段を備えている、ことを特徴とするセルリークモニタ回路。
  21. 前記擬似セルの蓄積電荷が前記所定の基準レベルにまで減少したことが検出されたとき、前記タイマーカウンタへの計時用クロックの供給を停止するとともに、前記タイマーカウンタをリセットする手段を備えている、ことを特徴とする請求項20記載のセルリークモニタ回路。
  22. 前記タイマーカウンタが、所定の期間を計時した時点で、電源オフを制御する信号を、電源を制御する電源電圧回路に出力する手段を備えている、ことを特徴とする請求項20記載のセルリークモニタ回路。
  23. 前記リーク源としてPN接合素子を有する、ことを特徴とする請求項20乃至22のいずれか一に記載のセルリークモニタ回路。
  24. ダイナミック型のメモリセルと同等の擬似セルの電荷蓄積ノードの蓄積電荷量をモニタし、リーク源のリーク電流により前記蓄積電荷量が所定のレベルにまで減少したとき、リフレッシュ信号を出力する、セルリークモニタ方法において、前記リーク電流としてpチャネルMOSFETのGIDL(Gate Induced Drain Leakage Current)を用い、
    前記MOSFETのゲート電圧、及び/又は、前記擬似セルの電荷蓄積ノードに付加される容量値を可変に設定するステップを含む、ことを特徴とするセルリークモニタ方法。
  25. ダイナミック型のメモリセルと同等の擬似セルの蓄積電荷量をモニタし、リーク源のリーク電流により前記擬似セルの蓄積電荷量が所定の基準レベルにまで減少したことを検出したときにリフレッシュ信号を出力するステップと、
    タイマーカウンタで、前記擬似セルの蓄積電荷量が前記所定の基準レベルを越えた場合に計時を行い、計時開始後、予め定められた所定の期間、前記擬似セルの蓄積電荷量が前記所定の基準レベルにまで減少しない場合に、タイムアウト通知を出力するステップと、
    前記タイマーカウンタからのタイムアウト通知出力を受けて、前記擬似セルの蓄積電荷を放電するためのリセット信号を出力するステップと、
    を含む、ことを特徴とするセルリークモニタ方法。
  26. 前記擬似セルの蓄積電荷が前記所定の基準レベルにまで減少したことが検出されたとき、前記タイマーカウンタへの計時用クロックの供給を停止するとともに、前記タイマーカウンタをリセットするステップを含む、ことを特徴とする請求項25記載のセルリークモニタ方法。
  27. 前記タイマーカウンタが所定の期間を計時した時点で、電源オフを制御する信号を、メモリセルアレイ用の内部電源電圧を制御する電源電圧回路に出力するステップと、
    前記電源電圧回路が前記内部電源電圧の制御を行い、前記内部電源電圧の復帰後に出力される信号に基づき、前記リフレッシュ信号の出力を制御するステップと、
    を有する、ことを特徴とする請求項25記載のセルリークモニタ方法。
JP2003139241A 2003-05-16 2003-05-16 セルリークモニタ回路及びモニタ方法 Expired - Fee Related JP4199591B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003139241A JP4199591B2 (ja) 2003-05-16 2003-05-16 セルリークモニタ回路及びモニタ方法
US10/842,468 US6992942B2 (en) 2003-05-16 2004-05-11 Cell leakage monitoring circuit and monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139241A JP4199591B2 (ja) 2003-05-16 2003-05-16 セルリークモニタ回路及びモニタ方法

Publications (2)

Publication Number Publication Date
JP2004342258A true JP2004342258A (ja) 2004-12-02
JP4199591B2 JP4199591B2 (ja) 2008-12-17

Family

ID=33410830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139241A Expired - Fee Related JP4199591B2 (ja) 2003-05-16 2003-05-16 セルリークモニタ回路及びモニタ方法

Country Status (2)

Country Link
US (1) US6992942B2 (ja)
JP (1) JP4199591B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898897B2 (en) 2008-06-30 2011-03-01 Hynix Semiconductor Inc. Circuit and method for generating word line off voltage

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564274B2 (en) * 2005-02-24 2009-07-21 Icera, Inc. Detecting excess current leakage of a CMOS device
KR100586556B1 (ko) * 2005-04-01 2006-06-08 주식회사 하이닉스반도체 반도체 장치의 프리차지 전압공급회로
JP4808995B2 (ja) * 2005-05-24 2011-11-02 ルネサスエレクトロニクス株式会社 半導体回路装置
US7187599B2 (en) * 2005-05-25 2007-03-06 Infineon Technologies North America Corp. Integrated circuit chip having a first delay circuit trimmed via a second delay circuit
US7474579B2 (en) * 2006-12-20 2009-01-06 Spansion Llc Use of periodic refresh in medium retention memory arrays
US8005995B2 (en) 2007-08-16 2011-08-23 Micron Technology, Inc. Command interface systems and methods
US20090080276A1 (en) * 2007-09-23 2009-03-26 Jin Cai Temperature Dependent Bias for Minimal Stand-by Power in CMOS Circuits
JP5190767B2 (ja) * 2008-02-12 2013-04-24 日本電気株式会社 モニタ回路およびリソース制御方法
KR100930410B1 (ko) * 2008-03-12 2009-12-08 주식회사 하이닉스반도체 반도체 집적회로의 퓨즈 회로 및 그 제어 방법
TWI445007B (zh) * 2010-04-16 2014-07-11 Realtek Semiconductor Corp 電壓啟動系統及方法
KR101802448B1 (ko) 2010-10-12 2017-11-28 삼성전자주식회사 상변화 메모리 장치 및 상변화 메모리 장치의 리라이트 동작 방법
CN102468744B (zh) * 2010-11-18 2015-04-22 瑞昱半导体股份有限公司 电压启动系统
US10181358B2 (en) 2016-10-26 2019-01-15 Mediatek Inc. Sense amplifier
US10431281B1 (en) 2018-08-17 2019-10-01 Micron Technology, Inc. Access schemes for section-based data protection in a memory device
US10991411B2 (en) 2018-08-17 2021-04-27 Micron Technology, Inc. Method and apparatuses for performing a voltage adjustment operation on a section of memory cells based on a quantity of access operations
TWI739695B (zh) * 2020-06-14 2021-09-11 力旺電子股份有限公司 轉壓器
US11894041B2 (en) * 2020-12-01 2024-02-06 SK Hynix Inc. Electronic devices executing refresh operation based on adjusted internal voltage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW301750B (ja) * 1995-02-08 1997-04-01 Matsushita Electric Ind Co Ltd
JPH08227598A (ja) * 1995-02-21 1996-09-03 Mitsubishi Electric Corp 半導体記憶装置およびそのワード線選択方法
JP3535963B2 (ja) 1997-02-17 2004-06-07 シャープ株式会社 半導体記憶装置
JP2002056671A (ja) 2000-08-14 2002-02-22 Hitachi Ltd ダイナミック型ramのデータ保持方法と半導体集積回路装置
JP2002110944A (ja) 2000-09-28 2002-04-12 Hitachi Ltd 半導体記憶装置及びその評価方法並びにその評価方法を用いた半導体記憶装置の開発方法
JP4152094B2 (ja) 2001-09-03 2008-09-17 エルピーダメモリ株式会社 半導体記憶装置の制御方法及び半導体記憶装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898897B2 (en) 2008-06-30 2011-03-01 Hynix Semiconductor Inc. Circuit and method for generating word line off voltage

Also Published As

Publication number Publication date
US20040228183A1 (en) 2004-11-18
US6992942B2 (en) 2006-01-31
JP4199591B2 (ja) 2008-12-17

Similar Documents

Publication Publication Date Title
JP4199591B2 (ja) セルリークモニタ回路及びモニタ方法
KR100236816B1 (ko) 누설 전류가 저감된 반도체 기억 장치
KR100549621B1 (ko) 셀프 리프래쉬용 오실레이터
US7626883B2 (en) Semiconductor memory device
KR100842744B1 (ko) 클럭조절회로 및 이를 이용한 전압펌핑장치
US7477562B2 (en) Semiconductor memory device and a refresh clock signal generator thereof
US6097658A (en) DRAM with reduced electric power consumption
US6856566B2 (en) Timer circuit and semiconductor memory incorporating the timer circuit
KR100657171B1 (ko) 리프레쉬 제어회로 및 리프레쉬 제어방법
US7109775B2 (en) Delay circuit having reduced power supply voltage dependency
US7120549B2 (en) Temperature compensated self-refresh (TCSR) circuit having a temperature sensor limiter
JP4211922B2 (ja) 半導体装置
US6298000B1 (en) Dynamic type semiconductor memory device operable in self refresh operation mode and self refresh method thereof
KR20050044627A (ko) 온도에 비례하는 1티 메모리를 리프레시하는 방법 및 구조
US7113440B2 (en) Semiconductor memory device saving power during self refresh operation
US9378802B2 (en) Oscillator and memory device including the same
US7173501B1 (en) Dual slope temperature dependent oscillator
JP2005222574A (ja) 半導体記憶装置
JP3242132B2 (ja) 半導体メモリと半導体メモリ装置
JP2008004249A (ja) 半導体集積回路装置
JP2013118769A (ja) 半導体装置
JP3415248B2 (ja) セルフリフレッシュ回路、半導体記憶装置及びセルフリフレッシュ方法
KR100668739B1 (ko) 오실레이터 회로
JPH0822693A (ja) 半導体記憶装置
KR20160138616A (ko) 셀프 리프레쉬 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees