JP2004335127A - 有機el用保護膜の成膜装置、製造方法および有機el素子 - Google Patents

有機el用保護膜の成膜装置、製造方法および有機el素子 Download PDF

Info

Publication number
JP2004335127A
JP2004335127A JP2003125056A JP2003125056A JP2004335127A JP 2004335127 A JP2004335127 A JP 2004335127A JP 2003125056 A JP2003125056 A JP 2003125056A JP 2003125056 A JP2003125056 A JP 2003125056A JP 2004335127 A JP2004335127 A JP 2004335127A
Authority
JP
Japan
Prior art keywords
gas
film
substrate
organic
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003125056A
Other languages
English (en)
Other versions
JP4179041B2 (ja
Inventor
Masayasu Suzuki
正康 鈴木
Tetsuya Saruwatari
哲也 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003125056A priority Critical patent/JP4179041B2/ja
Priority to TW093111919A priority patent/TWI242604B/zh
Priority to KR1020040029458A priority patent/KR100628811B1/ko
Priority to US10/833,675 priority patent/US20040238104A1/en
Priority to CNB2004100420964A priority patent/CN100442574C/zh
Publication of JP2004335127A publication Critical patent/JP2004335127A/ja
Priority to US12/199,285 priority patent/US20090004887A1/en
Application granted granted Critical
Publication of JP4179041B2 publication Critical patent/JP4179041B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • C23C16/466Cooling of the substrate using thermal contact gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】SiNx膜を、有機EL素子に熱ダメージを与えることなく形成することができる成膜装置の提供。
【解決手段】SWP−CVDにより成膜を行う成膜装置において、基板9が載置される基板ホルダ8に冷却手段を設け、成膜中の基板9の温度上昇を抑えるようにした。基板ホルダ8には冷却水通路81が形成されており、チラー4からの冷却水を冷却水通路81に循環させることにより基板ホルダ8が冷却される。さらに、冷却ホルダの基板載置面に溝82が形成されており、この溝82にHeガスを流すことで、基板9がHeガスにより冷却される。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、表面波励起プラズマ(Surface Wave Plasma)−CVDにより有機EL素子用保護膜を成膜する成膜装置、製造方法および有機EL素子に関する。
【0002】
【従来の技術】
近年、有機化合物を用いて電界発光により表示させる自発光型の表示素子、いわゆる有機エレクトロルミネセンス(以後有機ELと呼ぶ)を利用した表示素子が活発に検討されている。有機EL表示素子は、従来の液晶表示素子と比べるといくつかの点で優れている。有機EL表示素子は自発光型素子であるため、液晶表示素子のようにバックライトを用いなくても表示が可能である。また、極めて構造が簡単なため、薄く、小型で、軽量な表示装置が可能である。さらに、表示に要する消費電力が小さく、携帯電話などの小型情報機器の表示装置に適している。
【0003】
有機EL素子の概略構成は、ITO(Indium−Tin−Oxide)による透明電極が形成された透明ガラス基板上に有機EL層を形成し、さらに、有機EL層の上に金属電極層を形成したものである。有機EL層には有機化合物であるトリフェニルジアミンなどが用いられるが、これらの有機化合物は水分や酸素と非常に反応しやすく、その反応によって表示不良が発生して有機EL素子の寿命を短縮させるという問題があった。
【0004】
そのため、有機EL層を防湿性高分子フィルムで被覆したり、有機EL層上にシリコンの酸化膜(SiOx)や窒化膜(SiNx)を形成したりして有機EL層を封止する構成がとられている。水分や酸素に対する保護膜としてはシリコン窒化膜が適しており、特に、シリコン窒化膜中のSiの割合が高いほど膜が緻密になり保護膜として優れている。このシリコン窒化膜の成膜にはRFプラズマCVDやECR−CVDが用いられている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平10−261487号公報
【0006】
【発明が解決しようとする課題】
ところで、Siの割合が高い高密度で緻密なシリコン窒化膜をRFプラズマCVDにより形成しようとすると、基板温度を300℃以上に上昇させて成膜する必要がある。しかしながら、有機EL層への熱的ダメージを考慮すると成膜を低温(約80℃以下)で行わなければならず、このような低温ではRFプラズマCVDで上述したような緻密なシリコン窒化膜を形成することはできない。一方、ECR−CVDを用いた場合には、プラズマ密度がRFプラズマよりも高密度となるため高密度シリコン窒化膜を比較的低い温度で成膜できるが、基板がプラズマに対向しているため基板温度が上昇しやすいという欠点がある。
【0007】
また、高密度シリコン窒化膜は内部応力が高いという欠点を有している。上述したように有機EL層上には金属電極層が形成されているが、有機EL層が機械的に強固な膜ではないため、イメージ的には有機EL層上に金属電極層が浮いているような不安定な構造となっている。そのため、内部応力の高いシリコン窒化膜を形成すると、内部応力のために金属電極層が浮いた状態になったり、シリコン窒化膜自体が内部応力により剥離したりするという問題があった。
【0008】
本発明は、SiNx膜を、有機EL素子に熱ダメージを与えることなく形成することができる成膜装置および製造方法を提供するものである。
【0009】
【課題を解決するための手段】
請求項1の発明による成膜装置は、マイクロ波発生手段と、誘電体窓を有するプロセス室と、マイクロ波発生手段により発生したマイクロ波を誘電体窓へと導いてプロセス室内へと放射するマイクロ波伝達手段と、有機EL素子が形成された基板を冷却する冷却手段とを備え、基板を前記冷却手段で冷却しながら、マイクロ波の前記プロセス室内への放射により発生する表面波励起プラズマを用いて成膜ガスを分離・励起し、有機EL素子に対してシリコン窒化膜の保護膜をSWP(Surface Wave Plasma)−CVDにより形成することを特徴とする。
請求項2の発明は、請求項1に記載の成膜装置において、成膜ガスは、少なくとも窒素を含みプラズマ中でラジカルを生成する第1のガスと、シランガスを含む第2のガスとからなり、ガス供給手段は、第1のガスをプロセス室内に供給する第1供給部と、第2のガスを第1のガスよりも基板に近い側に供給する第2供給部とを備えるものである。
請求項3の発明は、請求項2に記載の成膜装置による有機EL用保護膜の製造方法であって、成膜ガス中の窒素ガス濃度を第1の所定濃度に設定して成膜される圧縮応力を有するシリコン窒化膜と、成膜ガス中の窒素ガス濃度を第2の所定濃度に設定して成膜される引っ張り応力を有するシリコン窒化膜とを交互に積層して、保護膜を形成することを特徴とする。
【0010】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態を説明する。図1は本発明による成膜装置の一実施の形態を示す図であり、SWP(表面波励起プラズマ)−CVDによりSiNx膜(シリコン窒化膜)を形成するSWP−CVD装置の概略構成を示したものである。SWP−CVD装置は、CVDが行われるプロセス室3と、2.45GHzのマイクロ波を発生するマイクロ波発生部1と、そのマイクロ波をプロセス室3に伝達する導波管2とを備えている。
【0011】
マイクロ波発生部1に設けられたマイクロ波発信器11には、マイクロ波電源12から電力が供給される。マイクロ波発信器11と導波管2との間にはアイソレータ13、方向性結合器14およびチューナー15が設けられており、マイクロ波発信器11で発生されたマイクロ波MWは、これらを介して導波管2に送出される。プロセス室3は真空チャンバを構成しており、その隔壁の一部は石英等の誘電体で形成されたマイクロ波導入窓3aになっている。
【0012】
マイクロ波導入窓3aの形状は矩形でも円形でも良い。上記導波管2はマイクロ波導入窓3aの上部に設けられている。導波管2のマイクロ波導入窓3aと対向する面には、すなわち、導波管2の底面にはマイクロ波MWをプロセス室3へと放射するスロットアンテナ2aが複数形成されている。
【0013】
プロセス室3には基板ホルダ8が設けられていて、基板ホルダ8上には有機EL層が形成された基板9が載置される。本実施の形態の場合、基板9は透明ガラス基板から成り、その基板9上に有機EL層が形成されている。基板9は、プロセス室3のマイクロ波導入窓3aに対向するように配置されている。なお、基板ホルダ8は図示上下方向に昇降することができる。
【0014】
基板ホルダ8の内部には、冷却液を循環させるための冷却液通路81が形成されており、冷却液通路81内にはチラー4で冷却された冷却液が供給される。また、基板ホルダ8の基板載置面には渦巻き状の溝82が形成されており、その溝82にはガス管路83を介してヘリウム(He)ガスが供給される。5はHeガスを供給するヘリウムガス源であり、供給されるHeガスの流量はマスフローコントローラ6により制御される。
【0015】
冷却液通路81を流れる冷却液は基板ホルダ8を冷却し、さらに基板ホルダ8は溝82内を流れるHeガスを冷却する。その冷却されたHeガスが基板ホルダ8に載置された基板9の裏面に直接接触することにより、基板9が冷却される。すなわち、基板9の熱は、Heガスおよび基板ホルダ8を介して冷却液通路81内の冷却液へと伝達される。このように、Heガスを介して基板9が冷却されるため、成膜中の基板温度をより低温に保つことができる。
【0016】
プロセス室3には、窒素ガス(N)、水素ガス(H)、アルゴンガス(Ar)をプロセス室3内に供給するガス供給管16と、シランガス(SiH)を供給するガス供給管17とが独立して設けられている。ガス供給管16には、ガス供給源22からマスフローコントローラ18,19,20を介してNガス、Hガス、Arガスが供給される。ガス供給管17には、ガス供給源22からマスフローコントローラ21を介してSiHガスが供給される。
【0017】
ガス供給管16,17の各々は、プロセス室3内に形成されるプラズマPを囲むようにリング状になっている。ガス供給管16からはNガス、Hガス、Arガスの混合ガスが,ガス供給管17からはSiHガスがそれぞれプラズマ領域に均一に吹き出される。リング状ガス供給管16,17の直径D1,D2はマイクロ波導入窓3aの径よりも大きく設定され、また、D2≧D1のように設定される。
【0018】
プロセス室3内はTMP(ターボ分子ポンプ)23により真空排気される。プロセス室3とTMP23との間には可変コンダクタンスバルブ25およびメインバルブ26が設けられている。可変コンダクタンスバルブによりTMP23とプロセス室3との間のコンダクタンスを変えることにより、プロセス室3に対する排気速度を変えることができる。24はTMP23のバックポンプであり、油回転ポンプRPやドライポンプDrPなどが用いられる。
【0019】
導波管2のスロットアンテナ2aから放射されるマイクロ波を、マイクロ波導入窓3aを介してプロセス室3内に導入すると、プロセス室3内のガスがマイクロ波によって電離・解離されてプラズマが生成される。プラズマPの電子密度がマイクロ波カットオフ密度を越えると、マイクロ波は表面波となってプラズマPとマイクロ波導入窓3aとの境界面に沿って伝搬し、マイクロ波導入窓3aの全面に拡がる。その結果、表面波によって励起されるプラズマPは、マイクロ波導入窓3aの近傍で密度が高くなっている。
【0020】
ガス供給管16から供給されたNガス、HガスおよびArガスは、プラズマPにより分解・励起されてラジカルが形成される。プラズマPの下流域でガス供給管17から吹き出されるSiHガスはこれらのラジカルにより分解・励起され、SiとNとが結合してシリコン窒化膜(SiNx膜)が基板9上に形成される。
【0021】
SiNx膜の成膜速度は、成膜ガス(SiHガスやNガスなど)の供給量、および導入されるマイクロ波パワーに依存している。マイクロ波パワーは供給した成膜ガスのすべてを分解できる量だけ供給されるが、マイクロ波パワーの供給に限度がある場合には、マイクロ波パワーに応じた成膜ガスを供給するようにする。
【0022】
また、成膜時のプロセス圧力には最適圧力範囲があるので、供給される成膜ガス量に応じてプロセス圧力が最適となるように排気系の排気速度、すなわち、可変コンダクタンスバルブ25のコンダクタンスを調整する。成膜時にはプロセス室3内の圧力をモニタして、プロセス圧力が常に最適圧力となるように可変コンダクタンスバルブ25を調整することにより、安定して高密度SiNx膜を成膜することができる。
【0023】
基板9上にSiNx膜が最適条件で成膜されるためには、上述した条件に加えて、マイクロ波導入窓3aからガス供給管16,17までの距離S1,S2や、マイクロ波導入窓3aから基板9までの距離Lを最適化する必要がある。距離S1,S2については、プラズマ中で生成されたラジカルを利用してSiHガスの分解を促進するようにしているので、ガス供給管16をガス供給管17よりも開口4aに近い位置(S1<S2)に配設するのが好ましい。図1に示したSWP−CVD装置では、距離S1を30mm〜100mmに設定するのが好ましい。
【0024】
図2はガス導入形態の他の例を示す図である。図2は成膜装置を導波管2のマイクロ波進行方向、すなわち図1の図示右側からから見た図である。導波管2は、プロセス室3のフランジ31に形成された開口31aに挿入されるように設けられている。マイクロ波導入窓30は、上下2つの誘電体部材30a,30bで構成されており、ガス流路32,33,34を有している。図2に示す装置では、上述したガス供給管16はフランジ31に設けられており、誘電体部材30aに形成されたガス流路32と連通している。供給されたNガス、HガスおよびArガスはガス流路32,33,34の順に流れて、誘電体部材30bの下面からプロセス室3内に吹き出される。
【0025】
図3は誘電体部材30a,30bの詳細を示す斜視図である。誘電体部材30aにおいて、ガス流路32は誘電体部材30aを上下に貫通する孔であって、誘電体部材30aの下面側に形成された溝33Aに連通している。一方、誘電体部材30bの上面側には溝33Bが形成されており、溝33Bから誘電体部材30bの下面側に貫通する孔がガス流路34として複数形成されている。マイクロ波導入窓30は、誘電体部材30aの下面と誘電体部材30bの上面とが密着するように積層したものである。溝33Aと溝33Bとは互いに対向するように形成されており、誘電体部材30aおよび30bを積層すると溝33Aと溝33Bとによってガス流路33が形成される。
【0026】
表面波励起プラズマPはマイクロ波導入窓30の下面のほぼ全域に対向するように形成されるので、ガス吹き出し口であるガス流路34は、図3に示すように誘電体部材30bの下面全域にわたって均一に形成するようにする。その結果、基板9上に均一な膜を形成することができる。
【0027】
SWP−CVDでは、RFプラズマCVD等に比べてより高密度なプラズマが得られることが知られている。SWP−CVDにおける基板近辺での電子密度は5×10〜1012(cm)となり、電子温度は5〜20(eV)程度である。そのため、基板9をヒータで加熱する等しなくても高密度SiNx膜を成膜することができる。高密度SiNx膜とはSiの割合が高いシリコン窒化膜のことであり、Siの割合が高いほど緻密で透明度の高いシリコン窒化膜となる。その結果、防湿性に優れた保護膜を形成することができる。ただし、基板9は高密度プラズマに対向していて温度が上昇しやすいので、本実施の形態では基板9をHeガスを用いて冷却することにより、基板9の温度が確実に低温に保たれるようにした。
【0028】
《基板9の冷却について》
本実施の形態において、基板ホルダ8の基板載置面に溝82を形成し、そこに熱伝達用ガスとしてHeガスを流しているのは、基板9の冷却効果向上のためである。例えば、基板ホルダ8の基板載置面を単なる平面とした場合、載置された基板9の裏面と載置面とは面接触しているように見えるが実際には点接触であって、基板ホルダ8を冷却しても基板9は十分に冷却されない。一方、本実施の形態では熱伝達効率の高いガスであるHeガスを溝82に流すことにより、基板ホルダ8と基板9との間の熱伝達性能を向上させることができる。
【0029】
例えば、Heガスの流量を1(sccm)程度とすれば溝82の中は粘性流の圧力範囲となり、Heガスを熱伝達用の冷媒ガスとして用いることができる。溝82の中心部分に供給されたHeガスは渦巻き状の溝82を外周方向へと流れ、図1の矢印で示すようにプロセス室3内に排出される。そのため、Heガス流量は成膜プロセスに影響を与えないような値とされるが、上述したように1(sccm)程度であれば問題ない。
【0030】
なお、Heガスが溝82内で粘性流となるか否かはHeガス流量だけでなく溝断面積にも依存しているので、成膜プロセスに影響を与えないようにHeガス流量を設定し、そのHeガス流量で粘性流となるように溝82の断面積を設定すれば良い。
【0031】
《SiNx膜の応力について》
ところで、SWP−CVDでSiNx膜を成膜する場合、成膜中のNガス濃度を変えることによって、SiNx膜中のSiの割合を制御することができる。すなわち、成膜材料ガス中の窒素ガス濃度を高くするとSiの割合の高い高密度SiNx膜が形成され、逆に、Nガス濃度を低くするとSiの割合の低い低密度SiNx膜が形成される。
【0032】
図4は、成膜時のNガス流量と成膜されたSiNx膜の内部応力との関係を示す図である。図4の縦軸は内部応力であり、単位は(dyn/cm)である。内部応力はプラス符号の場合には引っ張り応力を、マイナス符号の場合には圧縮応力を表している。横軸はNガス流量を表しており、単位は(sccm)である。Nガス流量を変えて種々のNガス濃度におけるSiNx膜を形成すると、図2に示すように形成されたSiNx膜の応力がNガス濃度によって異なり、Nガス流量を下げて行くと、所定Nガス流量(所定Nガス濃度)を境にSiNx膜の応力が圧縮応力から引っ張り応力に変化することが解った。
【0033】
図4に示したデータは、膜厚が0.5(μm)のSiNx膜に関するものであり、Nガス流量以外の成膜条件は、SiHガス流量=75(sccm)、Hガス流量=52(sccm)、成膜時の圧力=50(mTorr)、マイクロ波パワー=1.3kWである。図4に示す例では、Nガス流量を170(sccm)から減少させると圧縮応力も減少し、155(sccm)付近で圧縮応力から引っ張り応力へと変化しているのが分かる。
【0034】
このことは、Nガスの流量比を調整することにより、SiNx膜の内部応力を調整することができることを意味している。すなわち、Nガスの流量比を最適化することにより、内部応力の小さなSiNx膜を成膜することが可能となる。図5は、本実施の形態の成膜装置を用いて保護膜を形成した有機EL素子の一例を示す図であり、有機EL素子の概略構成を示す断面図である。透明ガラス基板で形成された基板9には、正孔の供給源としての陽極を構成する透明電極42が所定のパターンで形成されている。通常、透明電極42には、ITO(Indium−Tin−Oxide)と呼ばれるインジウムとスズの酸化物が用いられる。
【0035】
透明電極42上には有機EL層43が設けら、その有機EL層43上には陰極を構成する金属電極44が形成されている。さらに、金属電極44および有機EL層43を覆うように保護膜45が形成される。なお、金属電極44の引き出し部44aは保護膜45から露出している。金属電極34はマグネシウムと銀などとの合金やアルミニウムなどにより形成され、陰極として電子の供給源となる。
【0036】
電極42,44間に電圧を印加すると、透明電極42から有機EL層43へと正孔(ホール)が注入され、また、金属電極44からは電子が注入される。注入された正孔と電子とは有機EL層43内で再結合し、再結合時に有機材料を励起する。そして、有機材料が励起状態から基底状態に戻るときに蛍光が発生する。一般的には、上記反応が生じやすいように、有機EL層43は正孔注入輸送層、発光層、電子注入輸送層から構成されている。
【0037】
従来は、保護膜45の透明度が不十分なことから、発生した光を透明ガラス基板9側から取り出すタイプが一般的であった。しかし、本実施の形態では、SWP−CVDを用いることにより、透明度の高い高密度SiNx膜を保護膜45とすることができる。そのため、図5の破線で示すように保護膜45側から光を取り出す、トップエミッションタイプの有機EL素子が可能となり、有機EL素子の輝度向上を図ることができる。
【0038】
図6は本実施の形態のSWP−CVD装置により成膜された高密度SiNx膜の透過率測定結果を示す図である。図6において縦軸は透過率(%)を、横軸は光の波長(nm)をそれぞれ表している。曲線L1は高密度SiNx膜を成膜する前のガラス基板の透過率を示したものであり、曲線L2,L3は高密度SiNx膜を成膜したものの透過率を示している。曲線L2と曲線L3とはNガス流量が異なっている。図6から分かるように、ガラス基板と比較して遜色のない透過率が得られている。また、波長による透過率が大きく変化しないので、保護膜35が色付いて見えることもほとんどない。
【0039】
図5に示す例では保護膜45を一層構造としたが、図7に示すように3層構造としても良い。図7は保護膜45の断面の拡大図であり、有機EL層側から順に形成された3つの層、すなわち引っ張り応力を有するSiNx膜451、圧縮応力を有するSiNx膜452および引っ張り応力を有するSiNx膜453で構成されている。
【0040】
SiNx膜452は図4のNガス流量が155(sccm)よりも大きい条件で成膜し、SiNx膜451,453はNガス流量が155(sccm)よりも小さい条件で成膜する。すなわち、SiNx膜452を成膜する際には図1のマスフローコントローラ18の流量設定を155(sccm)よりも大きく設定し、SiNx膜451,453を成膜する際には、マスフローコントローラ18の流量設定を155(sccm)よりも小さく設定する。なお、ここでは図4を参照して説明しているので、圧縮応力から引っ張り応力に変わる流量を155(sccm)としたが、この値は他のガスの流量に応じて変化する。
【0041】
本実施の形態の成膜装置では、Nガスの流量比を調整することにより、圧縮応力を有するSiNx膜と引っ張り応力を有するSiNx膜とを選択的に容易に成膜することができる。そのため、圧縮応力を有するSiNx膜と引っ張り応力を有するSiNx膜とを交互に積層することにより、残留応力の小さな保護膜(SiNx膜)を有機EL素子上に形成することができる。
【0042】
なお、上述した説明では、同一プロセス室3内でNガス流量を変えることによりSiNx膜451〜453を順に成膜するようにしたが、例えば、Nガス流量が155(sccm)よりも大きく設定された第1のSWP−CVD装置と、Nガス流量が155(sccm)よりも小さく設定された第2のSWP−CVD装置とを用いて3層構造の保護膜45を形成するようにしても良い。すなわち、SiNx膜452を成膜する場合には、第1のSWP−CVD装置に基板9を搬入して成膜を行い、SiNx膜451,453を成膜する場合には、第2のSWP−CVD装置に基板9を搬入して成膜を行う。
【0043】
このように、本実施の形態では、引っ張り応力を有するSiNx膜と圧縮応力を有するSiNx膜とを交互に形成して保護膜45とすることにより、保護膜45の残留応力を小さくするようにした。その結果、金属電極44が浮いたようになったり、保護膜45が剥離したりするのを防止することができる。
【0044】
なお、図7に示した例では3層の交互層を例に説明したが、保護膜45は圧縮応力を有するSiNx膜と引っ張り応力を有するSiNx膜とを交互に積層した多層構造であれば良い。例えば、図7のSiNx膜453を省略して、保護膜45をSiNx膜451およびSiNx膜452で構成しても良い。また、有機EL層43側から順にSiNx膜452、SiNx膜451を形成しても良い。
【0045】
図8は有機EL素子の第2の例を示す図である。なお、図8では図5と同一部分には同一符号を付し、以下では異なる部分を中心に説明する。図5に示した有機EL素子では基板9としてガラス基板を用いたが、第2の例ではガラス基板9の代わりに透明プラスチック基板50を用いている。透明プラスチック基板50に有機EL素子を形成する場合には、まず、透明プラスチック基板50上に図1の成膜装置を用いて高密度SiNx膜51を形成する。そして、その高密度SiNx膜51上に有機EL素子の構成要素(透明電極42,有機EL層43,金属電極44)を形成し、有機EL層43が封止されるように高密度SiNx膜による保護膜45を形成する。
【0046】
透明プラスチック基板50の場合にはガラス基板9と比べて透湿性に劣っているので、透明プラスチック基板50の透湿性を補う意味で高密度SiNx膜51を設けている。高密度SiNx膜51は透明度が高いので、透明プラスチック基板50側からの光の取り出しに影響を与えることがない。また、透明プラスチック基板50はガラス基板9と比べて耐熱性に劣り、高密度SiNx膜51を形成する際の温度上昇により変質するおそれがる。
【0047】
しかし、本実施の形態の成膜装置では冷却された基板ホルダ8の溝82にHeガスを流すことにより、透明プラスチック基板50がHeガスにより冷却され、透明プラスチック基板50の温度上昇を抑えることができる。そのため、熱的に劣る透明プラスチック基板50にも有機EL素子を形成することが可能となる。
【0048】
以上説明した実施の形態と特許請求の範囲の要素との対応において、マイクロ波発生部1はマイクロ波発生手段を、導波管2はマイクロ波伝達手段を、冷却ホルダ8,チラー4およびヘリウムガス源5は冷却手段を、ガス供給管16は第1供給部を、ガス供給管17は第2供給部を、ガス供給管16から供給されるガスは第1のガスを、ガス供給管17から供給されるガスは第2のガスを構成する。さらに、図4の155(sccm)より大きなNガス流量に対応する窒素ガス濃度が第1の所定濃度であり、図4の155(sccm)より小さなNガス流量に対応する窒素ガス濃度が第2の所定濃度である。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。
【0049】
【発明の効果】
以上説明したように、本発明によれば、SWP−CVDによる成膜装置において基板を冷却する冷却手段を設けたので、基板上の有機EL素子に熱ダメージを与えることなく高密度SiNx膜を保護膜として形成することができる。
【図面の簡単な説明】
【図1】本発明による成膜装置の一実施の形態を示す図であり、SWP−CVD装置の概略構成を示したものである。
【図2】ガス導入形態の他の例を示す図である。
【図3】誘電体部材30a,30bの詳細を示す斜視図である。
【図4】成膜時のNガス流量と成膜されたSiNx膜の内部応力との関係を示す図である。
【図5】有機EL素子の概略構成を示す断面図である。
【図6】本実施の形態のSWP−CVD装置により成膜された高密度SiNx膜の透過率測定結果を示す図である。
【図7】保護膜45の他の例を示す断面図である。
【図8】有機EL素子の第2の例を示す図である。
【符号の説明】
1 マイクロ波発生部
2 導波管
2a スロットアンテナ
3 プロセス室
3a,30 マイクロ波導入窓
4 チラー
5 ヘリウムガス源
8 基板ホルダ
9 基板
11 マイクロ波発信器
30a,30b 誘電体部材
32〜34 ガス流路
16,17 ガス供給管
6,18〜21 マスフローコントローラ
22 ガス供給源
43 有機EL層
45 保護膜
50 透明プラスチック基板
51,451〜453 SiNx膜
81 冷却水通路
82,33A,33B 溝
83 ガス通路

Claims (3)

  1. マイクロ波発生手段と、
    誘電体窓を有するプロセス室と、
    前記マイクロ波発生手段により発生したマイクロ波を前記誘電体窓へと導いて前記プロセス室内へと放射するマイクロ波伝達手段と、
    有機EL素子が形成された基板を冷却する冷却手段とを備え、
    前記基板を前記冷却手段で冷却しながら、前記マイクロ波の前記プロセス室内への放射により発生する表面波励起プラズマを用いて成膜ガスを分離・励起し、前記有機EL素子に対してシリコン窒化膜の保護膜をSWP(Surface Wave Plasma)−CVDにより形成することを特徴とする成膜装置。
  2. 請求項1に記載の成膜装置において、
    前記成膜ガスは、少なくとも窒素を含みプラズマ中でラジカルを生成する第1のガスと、シランガスを含む第2のガスとからなり、
    前記ガス供給手段は、前記第1のガスを前記プロセス室内に供給する第1供給部と、前記第2のガスを前記第1のガスよりも前記基板に近い側に供給する第2供給部とを備えることを特徴とする成膜装置。
  3. 請求項2に記載の成膜装置による有機EL用保護膜の製造方法であって、
    成膜ガス中の窒素ガス濃度を第1の所定濃度に設定して成膜される圧縮応力を有するシリコン窒化膜と、成膜ガス中の窒素ガス濃度を第2の所定濃度に設定して成膜される引っ張り応力を有するシリコン窒化膜とを交互に積層して、前記保護膜を形成することを特徴とする製造方法。
JP2003125056A 2003-04-30 2003-04-30 有機el用保護膜の成膜装置、製造方法および有機el素子 Expired - Fee Related JP4179041B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003125056A JP4179041B2 (ja) 2003-04-30 2003-04-30 有機el用保護膜の成膜装置、製造方法および有機el素子
TW093111919A TWI242604B (en) 2003-04-30 2004-04-28 Apparatus and method for deposition of protective film for organic electroluminescence
KR1020040029458A KR100628811B1 (ko) 2003-04-30 2004-04-28 유기 전기 루미네선스를 위한 보호막의 증착을 위한 장치및 방법
US10/833,675 US20040238104A1 (en) 2003-04-30 2004-04-28 Apparatus and method for deposition of protective film for organic electroluminescence
CNB2004100420964A CN100442574C (zh) 2003-04-30 2004-04-30 沉积用于有机电致发光的保护薄膜的设备和方法
US12/199,285 US20090004887A1 (en) 2003-04-30 2008-08-27 Apparatus and method for deposition of protective film for organic electroluminescence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125056A JP4179041B2 (ja) 2003-04-30 2003-04-30 有機el用保護膜の成膜装置、製造方法および有機el素子

Publications (2)

Publication Number Publication Date
JP2004335127A true JP2004335127A (ja) 2004-11-25
JP4179041B2 JP4179041B2 (ja) 2008-11-12

Family

ID=33447097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125056A Expired - Fee Related JP4179041B2 (ja) 2003-04-30 2003-04-30 有機el用保護膜の成膜装置、製造方法および有機el素子

Country Status (5)

Country Link
US (2) US20040238104A1 (ja)
JP (1) JP4179041B2 (ja)
KR (1) KR100628811B1 (ja)
CN (1) CN100442574C (ja)
TW (1) TWI242604B (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169588A (ja) * 2004-12-16 2006-06-29 Shimadzu Corp 表面波励起プラズマcvd装置
JP2007123174A (ja) * 2005-10-31 2007-05-17 Canon Inc 有機エレクトロルミネッセンス素子
WO2007139140A1 (ja) * 2006-05-31 2007-12-06 Tokyo Electron Limited プラズマcvd方法、窒化珪素膜の形成方法および半導体装置の製造方法
KR100786583B1 (ko) * 2007-02-15 2007-12-21 유정호 챔버의 척 냉각장치
JP2008016699A (ja) * 2006-07-07 2008-01-24 Hitachi Displays Ltd 有機el表示装置
WO2010010622A1 (ja) * 2008-07-24 2010-01-28 富士電機ホールディングス株式会社 有機elデバイスおよびその製造方法
WO2010023987A1 (ja) * 2008-08-26 2010-03-04 富士電機ホールディングス株式会社 有機elデバイスおよびその製造方法
JP2013127977A (ja) * 2007-06-01 2013-06-27 Semiconductor Energy Lab Co Ltd 発光装置の作製方法及び発光装置
WO2014147789A1 (ja) * 2013-03-21 2014-09-25 株式会社島津製作所 有機エレクトロルミネセンス装置、有機エレクトロルミネセンス装置の製造方法及び成膜方法
WO2016204018A1 (ja) * 2015-06-16 2016-12-22 株式会社神戸製鋼所 表示装置向け低反射電極およびスパッタリングターゲット

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273932B2 (ja) * 2003-11-07 2009-06-03 株式会社島津製作所 表面波励起プラズマcvd装置
JP4393402B2 (ja) * 2004-04-22 2010-01-06 キヤノン株式会社 有機電子素子の製造方法および製造装置
US7584714B2 (en) * 2004-09-30 2009-09-08 Tokyo Electron Limited Method and system for improving coupling between a surface wave plasma source and a plasma space
KR100646942B1 (ko) * 2005-01-05 2006-11-23 삼성에스디아이 주식회사 기판 냉각 척 플레이트 조립체
ITMI20050962A1 (it) * 2005-05-25 2006-11-26 Lpe Spa Dispositivo per introurre gas di reazione in una camera di reazione e reattore epitassiale che lo utilizza
JP4905934B2 (ja) * 2005-12-27 2012-03-28 サムコ株式会社 プラズマ処理方法及びプラズマ装置
JP2008270172A (ja) * 2007-03-26 2008-11-06 Fuji Electric Holdings Co Ltd 有機el素子の製造方法
JP5520455B2 (ja) * 2008-06-11 2014-06-11 東京エレクトロン株式会社 プラズマ処理装置
US8569183B2 (en) 2010-03-01 2013-10-29 Fairchild Semiconductor Corporation Low temperature dielectric flow using microwaves
JP5375732B2 (ja) * 2010-04-26 2013-12-25 株式会社島津製作所 バリヤ膜を形成する方法およびバリヤ膜を形成するために用いるcvd装置
CN101812676B (zh) * 2010-05-05 2012-07-25 江苏综艺光伏有限公司 用于半导体太阳能镀膜的工艺腔室
US20120027956A1 (en) * 2010-07-29 2012-02-02 International Business Machines Corporation Modification of nitride top layer
JP5563522B2 (ja) * 2011-05-23 2014-07-30 東京エレクトロン株式会社 プラズマ処理装置
JP6016339B2 (ja) * 2011-08-12 2016-10-26 東京エレクトロン株式会社 カーボンナノチューブの加工方法及び加工装置
JP5901917B2 (ja) * 2011-09-15 2016-04-13 株式会社日立国際電気 基板処理装置および半導体装置の製造方法
WO2013122954A1 (en) * 2012-02-13 2013-08-22 Applied Materials, Inc. Linear pecvd apparatus
DE102012205616B4 (de) * 2012-04-04 2016-07-14 Siltronic Ag Vorrichtung zum Abscheiden einer Schicht auf einer Halbleiterscheibe mittels Gasphasenabscheidung
JP2014060378A (ja) * 2012-08-23 2014-04-03 Tokyo Electron Ltd シリコン窒化膜の成膜方法、有機電子デバイスの製造方法及びシリコン窒化膜の成膜装置
US20150118416A1 (en) * 2013-10-31 2015-04-30 Semes Co., Ltd. Substrate treating apparatus and method
CN105088334B (zh) * 2014-04-28 2018-01-09 北京北方华创微电子装备有限公司 顶盖装置及工艺设备
KR20160021958A (ko) * 2014-08-18 2016-02-29 삼성전자주식회사 플라즈마 처리 장치 및 기판 처리 방법
CN105575871B (zh) * 2014-10-27 2019-04-23 北京北方华创微电子装备有限公司 承载装置和反应腔室
CN107190245B (zh) * 2017-05-23 2019-04-02 京东方科技集团股份有限公司 用于蒸镀装置的载板及其蒸镀装置
CN114783939A (zh) * 2022-04-27 2022-07-22 颀中科技(苏州)有限公司 一种用于薄膜覆晶封装的基板承载台

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1159012A (en) * 1980-05-02 1983-12-20 Seitaro Matsuo Plasma deposition apparatus
US6004618A (en) * 1994-04-26 1999-12-21 Nippondenso., Ltd. Method and apparatus for fabricating electroluminescent device
TW283250B (en) * 1995-07-10 1996-08-11 Watkins Johnson Co Plasma enhanced chemical processing reactor and method
US6089182A (en) * 1995-08-17 2000-07-18 Tokyo Electron Limited Plasma processing apparatus
JP3524711B2 (ja) 1997-03-18 2004-05-10 三洋電機株式会社 有機エレクトロルミネッセンス素子及びその製造方法
US6086679A (en) * 1997-10-24 2000-07-11 Quester Technology, Inc. Deposition systems and processes for transport polymerization and chemical vapor deposition
US6337102B1 (en) * 1997-11-17 2002-01-08 The Trustees Of Princeton University Low pressure vapor phase deposition of organic thin films
US20020011215A1 (en) * 1997-12-12 2002-01-31 Goushu Tei Plasma treatment apparatus and method of manufacturing optical parts using the same
US6870123B2 (en) * 1998-10-29 2005-03-22 Canon Kabushiki Kaisha Microwave applicator, plasma processing apparatus having same, and plasma processing method
ID30404A (id) * 1999-04-28 2001-11-29 Du Pont Perangkat elektronik organik yang fleksibel dengan daya tahan terhadap penguraian oksigen dan air yang lebih baik
JP3384795B2 (ja) * 1999-05-26 2003-03-10 忠弘 大見 プラズマプロセス装置
US6318384B1 (en) * 1999-09-24 2001-11-20 Applied Materials, Inc. Self cleaning method of forming deep trenches in silicon substrates
US6391146B1 (en) * 2000-04-11 2002-05-21 Applied Materials, Inc. Erosion resistant gas energizer
JP3689354B2 (ja) * 2001-08-06 2005-08-31 シャープ株式会社 プラズマプロセス装置
US20030045098A1 (en) * 2001-08-31 2003-03-06 Applied Materials, Inc. Method and apparatus for processing a wafer
JP2003158127A (ja) * 2001-09-07 2003-05-30 Arieesu Gijutsu Kenkyu Kk 成膜方法、成膜装置、及び半導体装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169588A (ja) * 2004-12-16 2006-06-29 Shimadzu Corp 表面波励起プラズマcvd装置
JP2007123174A (ja) * 2005-10-31 2007-05-17 Canon Inc 有機エレクトロルミネッセンス素子
US8138103B2 (en) 2006-05-31 2012-03-20 Tokyo Electron Limited Plasma CVD method, method for forming silicon nitride film and method for manufacturing semiconductor device
WO2007139140A1 (ja) * 2006-05-31 2007-12-06 Tokyo Electron Limited プラズマcvd方法、窒化珪素膜の形成方法および半導体装置の製造方法
US8569186B2 (en) 2006-05-31 2013-10-29 Tokyo Electron Limited Plasma CVD method, method for forming silicon nitride film and method for manufacturing semiconductor device
JP5276437B2 (ja) * 2006-05-31 2013-08-28 東京エレクトロン株式会社 窒化珪素膜の形成方法、半導体装置の製造方法、およびプラズマcvd装置
US8329596B2 (en) 2006-05-31 2012-12-11 Tokyo Electron Limited Plasma CVD method, method for forming silicon nitride film and method for manufacturing semiconductor device
JP2008016699A (ja) * 2006-07-07 2008-01-24 Hitachi Displays Ltd 有機el表示装置
KR100786583B1 (ko) * 2007-02-15 2007-12-21 유정호 챔버의 척 냉각장치
JP2013127977A (ja) * 2007-06-01 2013-06-27 Semiconductor Energy Lab Co Ltd 発光装置の作製方法及び発光装置
JPWO2010010622A1 (ja) * 2008-07-24 2012-01-05 富士電機株式会社 有機elデバイスおよびその製造方法
US8497524B2 (en) 2008-07-24 2013-07-30 Sharp Kabushiki Kaisha Organic el device and method for manufacturing the same
WO2010010622A1 (ja) * 2008-07-24 2010-01-28 富士電機ホールディングス株式会社 有機elデバイスおよびその製造方法
WO2010023987A1 (ja) * 2008-08-26 2010-03-04 富士電機ホールディングス株式会社 有機elデバイスおよびその製造方法
JP5172961B2 (ja) * 2008-08-26 2013-03-27 シャープ株式会社 有機elデバイスおよびその製造方法
US8492751B2 (en) 2008-08-26 2013-07-23 Sharp Kabushiki Kaisha Organic EL device and process for manufacturing same
WO2014147789A1 (ja) * 2013-03-21 2014-09-25 株式会社島津製作所 有機エレクトロルミネセンス装置、有機エレクトロルミネセンス装置の製造方法及び成膜方法
WO2016204018A1 (ja) * 2015-06-16 2016-12-22 株式会社神戸製鋼所 表示装置向け低反射電極およびスパッタリングターゲット
JP2017005233A (ja) * 2015-06-16 2017-01-05 株式会社神戸製鋼所 平面ディスプレイ又は曲面ディスプレイ向け低反射電極

Also Published As

Publication number Publication date
US20040238104A1 (en) 2004-12-02
KR100628811B1 (ko) 2006-09-26
KR20040094333A (ko) 2004-11-09
TW200427857A (en) 2004-12-16
CN1543272A (zh) 2004-11-03
TWI242604B (en) 2005-11-01
CN100442574C (zh) 2008-12-10
JP4179041B2 (ja) 2008-11-12
US20090004887A1 (en) 2009-01-01

Similar Documents

Publication Publication Date Title
JP4179041B2 (ja) 有機el用保護膜の成膜装置、製造方法および有機el素子
JP4690041B2 (ja) 傾斜組成を有する拡散障壁コーティング及びそれを含むデバイス
JP3948365B2 (ja) 保護膜製造方法および有機el素子
US8709540B2 (en) Light-emitting device, film-forming method and manufacturing apparatus thereof, and cleaning method of the manufacturing apparatus
US20040113542A1 (en) Low temperature process for passivation applications
JP2005222778A (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP6267449B2 (ja) 有機デバイスの製造方法及び有機デバイスの製造装置
JP5907701B2 (ja) フィルム部材の製造方法
JP4337567B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2005339828A (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP4543691B2 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP2004335126A (ja) 有機el用保護膜の成膜装置、製造方法および有機el素子
KR101068883B1 (ko) 유기 전자 디바이스, 유기 전자 디바이스의 제조 방법 및 유기 전자 디바이스의 제조 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Ref document number: 4179041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees