JP2004298932A - 圧延機の板クラウン算出方法および圧延機の板厚・板クラウン制御方法ならびに算出用プログラム - Google Patents

圧延機の板クラウン算出方法および圧延機の板厚・板クラウン制御方法ならびに算出用プログラム Download PDF

Info

Publication number
JP2004298932A
JP2004298932A JP2003095545A JP2003095545A JP2004298932A JP 2004298932 A JP2004298932 A JP 2004298932A JP 2003095545 A JP2003095545 A JP 2003095545A JP 2003095545 A JP2003095545 A JP 2003095545A JP 2004298932 A JP2004298932 A JP 2004298932A
Authority
JP
Japan
Prior art keywords
rolling
roll
crown
change
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003095545A
Other languages
English (en)
Other versions
JP3686899B2 (ja
Inventor
Osamu Habatake
修 羽畑
種浩 ▲吉▼川
Tanehiro Yoshikawa
Tomomasa Takebe
智全 武部
Tomoyoshi Ide
知良 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2003095545A priority Critical patent/JP3686899B2/ja
Publication of JP2004298932A publication Critical patent/JP2004298932A/ja
Application granted granted Critical
Publication of JP3686899B2 publication Critical patent/JP3686899B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

【課題】出側の板クラウンの変化量を検出するためのセンサを用いず、低コストで出側板厚および出側板クラウンを修正することができる圧延機の板クラウン算出方法、制御方法およびこれらの算出および制御に用いるプログラムを提供する。
【解決手段】圧延材Sを圧下する第一ロール11と、第一ロール11を支持する第二ロール12と、第一および第二ロール11,12を圧下する圧下手段15a,15b;16a,16bと、圧延材Sの出側板厚および出側板クラウンが目標値に等しくなるように各圧下手段による第一および第二ロール11,12への圧下力を制御する制御手段3とを備える。この制御手段3は第一および第二ロール11,12の圧延荷重に基づいて、圧延材Sの出側板厚および出側板クラウンが互いに干渉することなく目標値に追従するように、各圧下手段15a,15b;16a,16bの圧下力を制御する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、鋼帯および鋼板などによって代表される板状または帯状の圧延材の板厚および板クラウンの目標値に対する変動を、板厚修正および板クラウン修正が相互に干渉することなしに制御することができる圧延機の板クラウン算出方法および板厚・板クラウン制御方法ならびに算出用プログラムに関する。
【0002】
【従来の技術】
板クラウンを制御する圧延機には、ペアクロスミル、CVCミル、HC/VCミルなどが利用されており、これらのミルの板クラウンの制御量はいずれもプリセットで設定されることが多いために、高速応答性を有していない。この問題を解決するために、従来の技術では、圧延材の一方側にたわみやすい第一ロールと、第一ロールを支持する第二ロールとが設けられ、圧延材の他方側には剛性の高い圧延ロールが設けられ、第一および第二ロールには、圧下手段によって圧延荷重が与えられ、この圧下手段による第一および第二ロールの圧延荷重は、荷重検出手段によって検出される。
【0003】
出側板クラウン変化の修正は、荷重検出手段によって検出された圧延荷重の変化に基づいて、出側板クラウンを目標値に近づけるために必要な圧下位置変化量を求めて第一および第二ロールの圧下位置を修正し、出側板厚変化の修正は、出側板厚を目標値に近づけるために必要な圧下位置変化量を求めて第一および第二ロールの圧下位置を修正するという制御によって達成している(たとえば、特許文献1参照)。
【0004】
【特許文献1】
特開2000−210506号公報
【0005】
【発明が解決しようとする課題】
出側板クラウンは、圧延荷重の和だけでなく、第一ロールと第二ロールとの圧延荷重の比によっても変化する。従来の技術では、圧延荷重の和として検出された値が変化した場合、その圧延荷重和の変化量に基づいて出側板クラウンを修正することができるが、第一ロールと第二ロールとの圧延荷重比が変化しただけで、圧延荷重和が変化しない場合は、前記のような出側板クラウンを修正することができない。したがって、出側板クラウンの変化量を検出するために新たにクラウン検出器などのセンサを設ける必要があり、センサおよびその検出結果を反映するための制御装置などにより、コストが増加してしまうという問題がある。また、センサを設けて出側板クラウンの変化を検出できたとしても、センサの設置箇所が圧延機出側後方となり、ダイナミック制御を行うべく検出された出側板クラウンをフィードバックしても検出時間の遅れにより、充分な効果が得られないという問題がある。
【0006】
本発明の目的は、圧延荷重の和が変わらなくても出側板クラウンの変化量を検出するためのセンサを用いずに、出側板厚および出側板クラウンを修正することができるようにした圧延機の板クラウン算出方法、圧延機の板厚・板クラウン制御方法および圧延機の板厚・板クラウン算出用プログラムを提供することである。
【0007】
【課題を解決するための手段】
請求項1記載の本発明は、圧延材を圧下する第一ロールと、第一ロールを支持する第二ロールと、第一および第二ロールを圧下する圧下手段とを備える圧延機の板クラウン算出方法において、
第一ロールの圧延荷重および第二ロールの圧延荷重に基づいて、圧延材の出側板クラウンの変化量を算出することを特徴とする圧延機の板クラウン算出方法である。
【0008】
本発明に従えば、第一ロールの圧延荷重と第二ロールの圧延荷重とに基づいて、圧延材の出側板クラウンの各変化量が算出されるので、第一ロールと第二ロールとの圧延荷重比が変化しただけで、圧延荷重和が変化しない場合でも、前記従来のように、出側板クラウンの変化量を検出するためのセンサを、圧延機に設置する必要がなく、これによってコストを増加させずに前記第一および第二ロールの各圧延荷重から板クラウンを求めることができる。
【0009】
請求項2記載の本発明は、圧延材を圧下する第一ロールと、第一ロールを支持する第二ロールと、第一および第二ロールを圧下する圧下手段と、圧延材の出側板厚および出側板クラウンが目標値に等しくなるように、前記圧下手段による第一および第二ロールへの圧下力を制御する制御手段とを備え、
前記制御手段は、第一ロールの圧延荷重および第二ロールの圧延荷重に基づいて、圧延材の出側板厚および出側板クラウンが目標値に追従するように、前記圧下手段の圧下力を制御することを特徴とする圧延機の板厚・板クラウン制御方法である。
【0010】
本発明に従えば、圧延材を圧下する第一ロールと、第一ロールを支持する第二ロールと、第一および第二ロールを圧下する圧下手段と、圧延材の出側板厚および出側板クラウンが目標値に等しくなるように、前記圧下手段による第一および第二ロールへの圧下力を制御する制御手段とを備える。
【0011】
前記制御手段は、第一ロールの圧延荷重および第二ロールの圧延荷重に基づいて、圧延材の出側板厚および出側板クラウンが目標値に追従するように、前記圧下手段の圧下力を制御するので、別途に出側で板クラウンの変化量を検出するクラウン検出器などのセンサを圧延機に設置する必要がなく、これによってコストを増加させずに、圧下手段による第一および第二ロールへの圧下力を変化させて圧延材に作用する圧延荷重を制御し、出側板厚および出側板クラウンを目標値に修正することができる。
【0012】
請求項3記載の本発明は、前記制御手段は、圧延材の出側板厚および出側板クラウンを、相互に非干渉で目標値に追従させることを特徴とする。
【0013】
本発明に従えば、前記制御手段は、圧延材の出側板厚および出側板クラウンを、相互に非干渉で目標値に追従させるので、板厚を制御したときの板クラウンへの影響および板クラウンを制御したときの板厚への影響が生じることを防止し、板厚目標値の変化および板クラウン目標値の変化の修正に対する応答性が向上される。
【0014】
請求項4記載の本発明は、前記制御手段は、入側板厚変化、材料温度変化、材料変形抵抗変化、摩擦係数変化、および材料張力変化のうち少なくとも1つの外乱の入力に対して、圧延材の出側板厚および出側板クラウンを、相互に非干渉で目標値に追従させることを特徴とする。
【0015】
本発明に従えば、前記制御手段は、入側板厚変化、材料温度変化、材料変形抵抗変化、摩擦係数変化、および材料張力変化のうち少なくとも1つの外乱の入力に対して、圧延材の出側板厚および出側板クラウンを、相互に非干渉で目標値に追従させるので、前記入側板厚変化、材料温度変化、材料変形抵抗変化、摩擦係数変化、および材料張力変化のうちの1または複数が外乱として制御手段に入力されても、出側板厚の修正量および出側板クラウンの修正量が相互に干渉することが防がれ、外乱による応答性の低下が防がれる。
【0016】
請求項5記載の本発明は、前記制御手段は、出側板厚および出側板クラウンの目標とする応答波形が指定されることを特徴とする。
【0017】
本発明に従えば、前記制御手段は、出側板厚および出側板クラウンの目標とする応答波形を指定することができるので、設計の結果として応答が決定するのではなく、所望の応答を得るための設計ができるので、制御系の設計が容易となる。
【0018】
請求項6記載の本発明は、コンピュータを、圧延材を圧下する第一ロールの圧延荷重および第一ロールを支持する第二ロールの圧延荷重を検出する手段、および前記圧延荷重検出手段によって検出された第一および第二ロールの各圧延荷重に基づいて、出側板厚および出側板クラウンの各変化量を算出する演算手段として機能させることを特徴とする圧延機の板厚・板クラウン算出用プログラムである。
【0019】
本発明に従えば、コンピュータによってプログラムを実行することによって、圧延荷重検出手段は、第一ロールの圧延荷重および第二ロールの圧延荷重を検出し、演算手段は、前記圧延荷重検出手段によって検出された各圧延荷重に基づいて、出側板厚および出側板クラウンの各変化量を算出する。このようにして演算手段によって出側板厚および出側板クラウンの各変化量を求めるコンピュータは、圧延機を圧延材の出側板厚および出側板クラウンが目標値に追従するように圧下力を制御する制御装置として実現することによって、別途に出側で板クラウンの変化量を検出するクラウン検出器などのセンサを圧延機に設置する必要がなく、これによってコストを増加させずに、圧下手段による第一および第二ロールへの圧下力を変化させて、圧延材に作用する圧延荷重を制御し、出側板厚および出側板クラウンを目標値に修正することができる。
【0020】
【発明の実施の形態】
図1は、本発明の実施の一形態の圧延機の板厚・板クラウン制御方法が適用される圧延設備1の正面図である。本実施の形態の圧延設備1は、圧延機2と、この圧延機2を制御する制御手段3とを含む。前記制御手段3は、後述するように、ソフトウエアプログラムを実行することによって、前記圧延機2を制御するコンピュータによって実現される。
【0021】
圧延機2は、たとえば鋼帯などの帯状の圧延材Sのパスラインに関して上側に、第一ロール11と第二ロール12とが設けられ、前記通板経路に関して下側に、第一および第二ロール11,12に比べて大径の圧延ロール21が設けられる3段圧延機である。
【0022】
第一ロール11は、圧延材Sを直接圧下するワークロールであり、そのロール軸の軸線方向両端部は、軸受部13a,13bによってパスラインに垂直な水平軸線まわりに回転自在に軸支される。第二ロール12は、その胴長L1が前記第一ロール11の胴長L2の約65%と短くした短胴ロールであり、そのロール軸の軸線方向両端部は、軸受部14a,14bによってパスラインに垂直な水平軸線まわりに回転自在に軸支される。各一対の軸受部13a,13b;14a,14b上には、圧下手段15a,15b;16a,16bがそれぞれ設けられる。
【0023】
前記圧延ロール21は、圧延材Sを下方から直接接触して圧下するワークロールであるとともに、その直径は第一ロール11の約2倍程度とされ、第一ロール11の約10倍の剛性によって大きな強度で圧延材Sを支持する支持ロールでもある。圧延ロール21のロール軸は、その軸線方向両端部が軸受部22a,22bによって軸支され、各軸受部22a,22bは高さ調整手段23a,23bによって支持されている。この高さ調整手段23a,23bは、各軸受部22a,22bを下から支持する左右各2つの楔部材24a1,24a2;24b1,24b2と、下側に配置される各楔部材24a2,24b2を相互に連結する連結部材25とを有する。上側に配置される各楔部材24a1,24b1には、前述の軸受部22a,22bがそれぞれ固定される。連結部材25は、たとえばねじ棒によって実現され、図示しないハンドルなどの操作具をその軸線まわりに回動操作することによって、一方向に回動されたときには各軸受部22a,22bを上昇させ、他方向に回動されたときには各軸受部22a,22bを下降されて、パスラインの高さを調整することができる。
【0024】
第一ロール11の各軸受部13a,13bと圧延ロール21の各軸受部22a,22bとの間には、第一および第二ロール11,12の重量を支えるためのバランスシリンダ26a,26bが介在される。
【0025】
第一ロール11の各圧下手段15a,15bおよび第二ロール12の各圧下手段16a,16bは、各ロール11,12の軸線方向の内側に隣接して配置され、各基部は圧延機ハウジング27の左右のハウジングウィンドウ28a,28bの上部下面によって上方から支持される。各ハウジングウィンドウ28a,28bの上部下面と各圧下手段15a,15b;16a,16bとの間には、圧延荷重を検出するための圧下力検出器30a,30b;31a,31bがそれぞれ介在される。これらの圧下力検出器30a,30b;31a,31bは、たとえばロードセルによって実現される。
【0026】
各ハウジングウィンドウ28a,28bは、各上部がビーム29によって連結される。前記圧下手段15a,15bは、前記ビーム29ではなく、ビーム29よりも格段に剛性の高い各ハウジングウィンドウ28a,28b自体に取付けられ、各圧下手段15a,15b;16a,16bの圧下力に対して大きな反力で抗することができる。
【0027】
圧延機2のハウジング27は、圧延荷重に対して充分に高い剛性を有していないため、圧延中に圧延機2の入側において圧延材Sの板厚変動などがあれば、ハウジング27が歪みを生じたり、第一ロール11がたわみを生じ、ロールギャップGが変化する。
【0028】
そこで、本実施の形態の圧延機2では、第一ロール11および第二ロール12の各圧下手段15a,15b;16a,16bによる圧下量を最適に制御することによって、上記のようなロールギャップGの変化を修正し、圧延機2の出側における圧延材Sの板厚および板クラウンを、板厚修正と板クラウン修正とが互いに干渉することなしに制御され、パススケジュールで設定した目標値に速やかに追従させることが可能となる。
【0029】
図2は、圧延機2に備えられる圧下手段15aを示す断面図である。前述の第一および第二ロール11,12に圧下力を与える圧下手段15a,15b;16a,16bのうち、代表的に、第一ロール11のロール軸の軸線方向一端部に設けられる一方の圧下手段15aについて述べ、残余の圧下手段15b;16a,16bについては同様に構成されるため、重複を避けて説明は省略する。前記圧下手段15aは、複動油圧シリンダ(以下、単にシリンダと略記する)50と、このシリンダ50に制御手段3からの駆動信号によって作動油を供給する油圧調整手段51とを含む。
【0030】
シリンダ50は、シリンダ本体52と、シリンダ本体52に挿入されて伸長および縮退するピストン53とを有する。シリンダ本体52は、有底筒状のシリンダチューブ54と、シリンダチューブ54の開口部に気密に固定される端板55とを有し、内部には前記ピストン53が収容されるピストン室56が形成される。
【0031】
前記ピストン53は、シリンダ本体52のピストン室56を2つの圧力室57a,57bに仕切り、その中央には軸部58が同軸にかつ一体的に設けられる。軸部58は、前記端板55の軸孔59を挿通し、端面にはピストンロッド60が同軸に固定される。シリンダチューブ54の底部は、前述の圧下力検出器30aを介して、ハウジングウィンドウ28aの上部下面によって支持される。前記シリンダ本体52には、一方の圧力室57aに連通する第1ポート48と、他方の圧力室57bに連通する第2ポート49とが形成される。
【0032】
このようなシリンダ50には、シリンダ本体52に対するピストン53の伸長および縮退の変位量、したがって圧下手段15aによる第一ロール11の軸線方向一端部側の圧下量を検出するための圧下量検出手段63が設けられる。この圧下量検出手段63は、シリンダ本体52の底部から開口部に向けて同軸に突出する中空軸64と、前記ピストン53に同軸に形成される凹所65内に配置され、この凹所65の臨む底面66に突設される直円柱状の鉄心67と、中空軸64に内蔵される環状の電磁コイル68とを含む。
【0033】
電磁コイル68は、中空軸64の前記鉄心67が挿入される挿入孔に臨む環状凹溝69に装着され、鉄心67の軸線方向に移動によって誘起電圧を発生する。この誘起電圧は、前記第一ロール11の軸線方向一端部側の圧下量を示す圧下量検出信号として、制御手段3に入力される。
【0034】
前記油圧調整手段51は、制御手段3からの指令によって動作するサーボ弁70と、サーボ弁70に作動油を供給するポンプ71と、このポンプ71を駆動するモータ72と、作動油が貯留されるタンク73とを有する。
【0035】
制御手段3は、前記サーボ弁70への指令として、電流を電磁ソレノイドを励磁してプランジャを駆動し、このプランジャに接続されたスプール74を変位させて、ポンプ71から供給される作動油を、シリンダ50の第1および第2ポート48,49のいずれか一方に供給し、かつ第1および第2ポート48,49のいずれか他方をタンク73に連通させる。
【0036】
このようにして制御手段3は、シリンダ50のピストン53を伸長させ、あるいは縮退させて、圧下力を制御する。前記圧下力検出器30aおよび圧下量検出手段63から出力される各検出信号は、制御手段3に入力される。
【0037】
次に、板厚修正および板クラウン修正に対する制御手段3の具体的構成について述べる。
【0038】
図3は、制御手段3が制御対象とする圧延機2を示す図であり、図3(1)は第一および第二ロール11,12と圧延材Sの平衡状態を示し、図3(2)は第一および第二ロール11,12が圧延材Sを図3(1)の平衡状態からさらに圧下した状態を示す。圧延機2において、第一ロール11および第二ロール12は、前述した圧下手段15a,15b;16a,16bがそれぞれ設けられる。
【0039】
なお、図1および図2の圧延設備1の実機の構成に用いた参照符は、説明の便宜上、以下の制御手段3のシステムの同定についても、対応する部分には同一の参照符を付す。
【0040】
まず、第一および第二ロール11,12のロールギャップGと圧延荷重Pとの関係において、第二ロール12のシリンダストロークは、第一ロール11の位置以上に伸ばすことができず、第一ロール11のシリンダストロークは、第二ロール12の位置以上に縮めることができない。すなわち、第一ロール11の位置および第二ロール12の位置は、互いに一方が他方の干渉を受ける。各ロール11,12の互いの干渉を考慮して、ロールギャップGと圧延荷重Pとの関係を、以下のようにして求める。
【0041】
第一および第二ロール11,12を図3(1)に示す平衡状態から、図3(2)に示すように、第一ロール11をΔGw、第二ロール12をΔGb(ΔGw<ΔGb)だけ動かそうとする。このとき、実際に動いたロールギャップ変化量をΔGmとすると、第一ロール11および第二ロール12の各圧下手段15a,15b;16a,16bにそれぞれ設けられるシリンダ50の各圧力室57a,57bの差圧から求められる力は、圧延材Sからの圧延荷重と等しくなり、次式1が成立する。
Jw・(ΔGw−ΔGm)+Jb・(ΔGb−ΔGm)={K・m/(K+m)}・ΔGm …(1)
ここに、Jw:第一ロール11の圧下手段15a,15bのシリンダの圧縮性を表す係数
Jb:第二ロール12の圧下手段16a,16bのシリンダの圧縮性を表す係数
K:圧延機2の剛性
m:圧延材Sの材料塑性定数
【0042】
また、板クラウンについても、板クラウンモデルを決定する。この板クラウンモデルは、第一ロール11と第二ロール12とに作用する圧延荷重Pw,Pbから求める方法を用いる。
【0043】
まず、第一ロール11および第二ロール12のそれぞれに対して、パススケジュールを元に、通板中に入側板厚変化、材料温度変化、材料変形抵抗変化、摩擦係数変化、および材料張力変化の外乱によって、変動すると考えられる第一ロール圧延荷重Pw、第二ロール圧延荷重Pbの範囲を決定する。
【0044】
次に、前記第一ロール圧延荷重Pwおよび第二ロール圧延荷重Pbの範囲内で、第一ロール圧延荷重Pwと第二ロール圧延荷重Pbとの組合せを適当数、抽出し、その組合せ毎にFEM解析などによって出側板クラウンQを求める。
【0045】
こうして求めた第一ロール圧延荷重Pw、第二ロール圧延荷重Pb、板クラウンQの複数の組合せから、最小2乗法を用いて下記の式2に示す回帰式、すなわち第一ロール11の圧延荷重Pwと第二ロール12の圧延荷重Pbとから出側板クラウンQを求める式2を決定する。
Q=α・Pw+β・Pb+γ …(2)
ここに、α:出側板クラウン算出時の第一ロール圧延荷重係数
β:出側板クラウン算出時の第二ロール圧延荷重係数
γ:出側板クラウン算出時の定数項
Q:出側板クラウン
Pw:第一ロール圧延荷重
Pb:第二ロール圧延荷重
【0046】
図4は、出側板クラウンQの算出例を示す図である。板幅1650mmの圧延材Sに対して、第一ロール圧延荷重、第二ロール圧延荷重および出側板クラウンの関係は、図4に示される空間内の平面PLによって表される。これによって、第一ロール圧延荷重および第二ロール圧延荷重の2つの変数Pw,Pbを平面PL上に拘束し、これらの2変数から出側板クラウンQを求めることができる。
【0047】
このようにして求めた関係を使い、出側板クラウンQの変化量ΔQと、第一ロール圧延荷重Pwの変化量ΔPw、第二ロール圧延荷重Pbの変化量ΔPbの関係は、
ΔQ=α・ΔPw+β・ΔPb …(3)
となる。
【0048】
また、板厚についても板厚モデルを決定する。
図5は、圧延機2による板厚修正に関する入側板厚H、出側板厚hと圧延荷重Pとの関係およびロールギャップGと圧延荷重Pとの関係を示すグラフである。ロールギャップGをG0に設定した初期状態においては、圧延材Sの入側板厚がH0であれば、出側板厚hは、初期値h0であり、そのときの圧延荷重はP0であり、点Aで平衡している。
【0049】
この状態から入側板厚HがΔHだけ増加してH1に変化すると、ロールギャップGが元のG0のままであれば出側板厚hがΔhだけ増加してh1になり、平衡点が点Aから点Bへ移る。しかし、第一ロール11の圧下量を増加させることによって、ロールギャップGをΔGだけ小さくしてGnにすれば、圧延荷重がΔPだけ増加してPnになるとともに、出側板厚hをΔhだけ小さくして元のh0に戻し、平衡点を点Zに移すことができる。
【0050】
このようにして入側板厚HのH0からH1への変化ΔHは、圧延荷重PをP0からPnにすることによって、出側板厚hをh1に変化させずに、元の板厚h0に修正することができる。
【0051】
図5において、ロールギャップG0やG1を通るラインの傾きKは、圧延機2の剛性(ミル剛性ともいう)に相当し、入側板厚H0,H1を通るラインの傾きmは、圧延材Sの材料塑性定数に相当する。ロールギャップGの変化量ΔGと圧延荷重Pの変化量ΔPとの関係は、
ΔG=−ΔP/K …(4)
となる。このような関係に従う板厚の修正方法は、ゲージメータAGC(Automatic Gauge Control)と呼ばれる。
【0052】
入側板厚Hが変化したとき、出側板厚hを初期値h0に戻すだけのロールギャップ変化量ΔGを最適に決定できるように、前述のように圧延荷重Pを圧下力検出器30a,30b,31a,31bによって検出しながら、その圧延荷重Pの変化量ΔPからみて出側板厚hを初期値h0に近づけると見込まれる微小な変化量ΔGだけ、ロールギャップGを変化させ、それによる圧延荷重Pの変化を逐次的に検出し、それに基づいて同様に微少な変化量ΔGだけロールギャップGを変化させるという操作を繰り返す。
【0053】
具体的に述べると、入側板厚HがH0からΔHだけ変化したことによって、出側の板厚hがh0からΔhだけ変化し、圧延荷重PがP0からΔP1だけ変化してP1となり、平衡点が点Aから点Bに移ったとき、まず、その圧延荷重Pの変化量ΔP1を圧下力検出器30a,30b,31a,31bによって検出する。検出した圧延荷重Pの変化量ΔPに基づいて、出側板厚hを初期値h0に近づけると見込まれるロールギャップGの微少変化量ΔG1は、
ΔG1=−α・ΔP1/K …(5)
によって求められ、この変化量ΔGだけロールギャップGを変化させる。ここに、αは制御ゲインであり、制御の安定化のために、0<α<1.0に選ばれる。
【0054】
前述のロールギャップGの変化量ΔGによって圧延荷重PはさらにΔP2だけ変化し、平衡点が点Cに移るが、その変化量ΔP2を、圧下力検出器30a,30b,31a,31bによって検出する。検出した圧延荷重Pの変化量ΔP2(=P2−P1)に基づいて、出側板厚hを初期値h0に近づけると見込まれる式6で求められる微少な変化量ΔG2、
ΔG2=−α・ΔP2/K …(6)
を変化させる。
【0055】
また、同様に、圧延荷重Pの変化量ΔPnを検出し、ロールギャップGを、
ΔGn=−α・ΔPn/K …(7)
なる微少量だけ変化させる、という手順を繰り返す。このロールギャップGの変化量ΔGnが負の値である場合には、ロールギャップGを減少させる方向に制御する。
【0056】
このような手順を繰り返し行うことによって、圧延荷重Pが徐々に変化して、平衡点が点Cから点Dへ移動し、最終的には点Zに到達して平衡する。制御手段3の制御周期を10〜20Hz程度に設定して、上記の手順を極めて短時間に繰り返すことが可能であるので、新たな平衡点への移行はほとんど一瞬に行われる。
【0057】
平衡点Zでは、平衡点Aにおける条件と比べて、ロールギャップGがΔGだけ変化し、圧延荷重PがΔPだけ変化したことになるが、出側板厚hは初期値に等しいh0である。
【0058】
なお、ここでは、外乱として入側板厚Hが変化した場合を想定して説明したが、入側板厚ではなく、材料の温度、変形抵抗、摩擦抵抗、張力などが変化する外乱があった場合であっても、上記と同様に、圧延荷重Pの変化に基づいて、板厚修正に対する制御を実施することができる。
【0059】
図6は、圧延機2の機械モデルの状態方程式を示す図である。圧延機2の制御手段3に対して、以下の機械モデルを構築する。圧延機2の機械モデルは、状態x、入力u、出力yの関係を、
【0060】
【数1】
Figure 2004298932
とし、状態方程式によって表すと、
【0061】
【数2】
Figure 2004298932
のようになる。ただし、A,B,C,W,Wは、下記の行列である。
【0062】
【数3】
Figure 2004298932
【0063】
ここに、K:圧延機2の剛性
m:圧延材Sの材料塑性定数
α:出側板クラウン算出時の第一ロール圧延荷重係数
β:出側板クラウン算出時の第二ロール圧延荷重係数
:第一ロール重量
HW:第一ロール油圧サーボ時定数
:第一ロールシリンダ15a,15bの圧縮性を表す係数
:第一ロールシリンダ15a,15bの有効面積
AW:第一ロールサーボアンプのゲイン
:第二ロール重量
HB:第二ロール油圧サーボ時定数
:第二ロールシリンダ16a,16bの圧縮性を表す係数
:第二ロールシリンダ16a,16bの有効面積
AB:第二ロールサーボアンプのゲイン
【0064】
図7(1)は圧延機2の機械モデルに非干渉制御系を構築した図であり、図7(2)は非干渉制御系の伝達関数を示す図である。板厚を制御したときは板クラウンの変化量に、また板クラウンを制御したときは板厚の変化量に影響が出るという干渉問題を解決するために、本実施の形態の制御手段3は、次のように構築される。すなわち、前述の圧延機2の機械モデルに対して、系を安定化し、目標値から出力値までの伝達関数を互いに干渉のない伝達関数に分割し、さらに伝達関数の全ての極が設定可能になるように非干渉制御系を構成するフィードバックu=Fx+Gνを求める。
【0065】
図7(1)に示すように構成した非干渉制御系は、図7(2)に示すように、目標値から出力値までの伝達関数に書き直すと、対角成分のみとなり、非干渉化が行われていることがわかる。このとき、フィードバックゲインF,Gは、式18〜22によって表される。ただし、ν=[Δν Δνで、Δνは板クラウン目標値の変化量、Δνは板厚目標値の変化量、Mは非干渉化を行うのに必要な変換行列、f ̄11,f ̄12,f ̄23,f ̄24,f ̄25,f ̄26は、非干渉化によってできたサブシステムの極を任意の位置に設定することができるように適当なものを選択する。
【0066】
【数4】
Figure 2004298932
【0067】
図8は、圧延機2の機械モデルにロバストサーボ系を構築した図である。圧延機2の機械モデルに対して、入側板厚変化、材料温度変化、材料変形抵抗変化、摩擦係数変化および材料張力変化の外乱が入力されても、出力値が目標値から変化しないロバストサーボ系を構築する。このとき、フィードバックゲインK,Kを以下のように求める。
積分器I/sの出力に状態zを割り当てた次式の拡大系を考える。
【数5】
Figure 2004298932
【0068】
この拡大系において、安定化するような適当な極を指定し、その極を満たすように、フィードバックゲインK,Kを決定する。このとき、指定する極によっては、板厚、板クラウンの非干渉化が可能となり、以下では、そのような極を指定した。
【0069】
図9は、制御手段3に構築したロバストサーボ系に対する第1のシミュレーション結果を示す図であり、図9(1)は板クラウン目標値の設定状態の変化を示し、図9(2)は出側板クラウンの変化を示し、図9(3)は出側板厚の変化を示す。このシミュレーションは、図9(1)に示されるように、制御開始から0.2sec後に板クラウン目標値の変化量を0.02mmに変更した例である。
【0070】
その結果、制御手段3により、図9に示されるように、出側板クラウンについては応答するものの、図9(3)に示されるように、出側板厚についてはほとんど応答しないことが判る。
【0071】
図10は、制御手段3に構築したロバストサーボ系に対する第2のシミュレーション結果を示す図であり、図10(1)は板厚目標値の設定状態の変化を示し、図10(2)は出側板クラウンの変化を示し、図10(3)は出側板厚の変化を示す。このシミュレーションは、図10(1)に示されるように、制御開始から0.2sec後に板厚目標値の変化量を0.1mmに変更した例である。
【0072】
その結果、制御手段3により、図10(2)に示されるように、出側板クラウンについてはほとんど応答がなく、図10(3)に示されるように、出側板厚については応答することが判る。
【0073】
図11は、制御手段3に構築したロバストサーボ系に対する第3のシミュレーション結果を示す図であり、図11(1)は外乱入力として入側板厚の変化を示し、図11(2)は出側板クラウンの変化を示し、図11(3)は出側板厚の変化を示す。このシミュレーションは、図11(1)に示されるように、制御開始から0.2sec後に外乱入力として入側板厚の変化量を0.2mmに変更した例である。
【0074】
その結果、制御手段3により、図11(2)、図11(3)に示されるように、出側板クラウンおよび出側板厚の双方がほとんど応答しないことが判る。
【0075】
図12は、圧延機2の機械モデルにILQ(Inverse Linear Quadratic)制御系を適用した図である。圧延機2の機械モデルに対して、入側板厚変化、材料温度変化、材料変形抵抗変化、摩擦係数変化、および材料張力変化の外乱が入力されても、出力値が目標値から変化せず、また、非干渉化された形で目標とする出力応答波形を指定できるように、制御系を構築する。
このとき、フィードバックゲインK,Kを以下のように求める。
【0076】
【数6】
Figure 2004298932
【0077】
ただし、φ=(s+α,φ=(s+αで、これらは板クラウン制御系の閉ループ系応答をα /(s+α、板厚制御系の閉ループ系応答をα /(s+αとすることに相当する。また、σ,σは、応答波形を指定するパラメータを調整するものであり、操作量と制御量間のトレードオフによって決定される。その際、σ,σを大きくすると出力は指定した応答波形に漸近するが、操作量uが一般に大きくなる。そこで、シミュレーションによって両者の妥協を計りながらσ,σの適切な値を決定する。この際、サーボ系の最適性は、σ,σをある下限値よりも大きく設定することで保証される。
【0078】
図13は、制御手段3に構築したILQ制御系に対する第1のシミュレーション結果を示す図であり、図13(1)は板クラウン目標値の設定状態の変化を示し、図13(2)は出側板クラウンの変化を示し、図13(3)は出側板厚の変化を示す。このシミュレーションでは、制御開始から0.2sec後に板クラウン目標値の変化量を0.02mmに変更した例である。
【0079】
その結果、制御手段3により、図13(2)に示されるように、出側板クラウンについては応答するものの、図13(3)に示されるように、出側板厚については殆ど応答しないことが判る。
【0080】
図14は、制御手段3に構築したILQ制御系に対する第2のシミュレーション結果を示す図であり、図14(1)は板厚目標値の設定状態の変化を示し、図14(2)は出側板クラウンの変化を示し、図14(3)は出側板厚の変化を示す。このシミュレーションでは、図14(1)に示されるように、制御開始から0.2sec後に板厚目標値の変化量を0.1mmに変更した例である。
【0081】
その結果、制御手段3により、図14(2)に示されるように、出側板クラウンについては殆ど応答がなく、図14(3)に示されるように、出側板厚については応答することが判る。
【0082】
図15は、制御手段3に構築したILQ制御系に対する第3のシミュレーション結果を示す図であり、図15(1)は外乱入力として入側板厚の変化を示し、図15(2)は出側板クラウンの変化を示し、図15(3)は出側板厚の変化を示す。このシミュレーションでは、制御開始から0.2sec後に入側板厚の変化量を0.2mmに変更した例である。
【0083】
その結果、制御手段3により、図15(2)、図15(3)に示されるように、出側板クラウンおよび出側板厚の双方がほとんど応答していないことが判る。
【0084】
図16は、制御手段3で、非干渉制御系、ロバストサーボ系、ILQ制御系のいずれかを構築した板厚・板クラウン制御を実機に適用する際のシーケンスを示す図である。制御手段3には、待機モードm1、噛込モードm2、圧延モードm3、および尻抜モードm4の4つのモードが設定される。これらのモードm1〜m4においては、第一ロール零荷重制御、第一ロール定荷重制御、第二ロール定位置制御、および板厚・板クラウン制御の4つの制御に1または複数が適用される。ここで、第一ロール零荷重制御は、第一ロール圧延荷重を設定値0tに従って行う制御であり、第一ロール定荷重制御は、第一ロール圧延荷重を圧延材情報を元に与えられる設定値に従って行う制御であり、第二ロール定位置制御は、ロールギャップ値を圧延材情報を元に与えられる設定値に従って行う制御である。
【0085】
前記待機モードm1は、先行する圧延材Sの後端が圧延機2を抜けたとき、これを圧延機2に設けられるロードリレー検出器(図示せず)が検出してから、次の圧延材Sの圧延制御が開始されるまでの期間に適用される。この待機モードm1が適用される期間は、第一ロール零荷重制御と第二ロール定位置制御とが実行される。
【0086】
前記噛込モードm2は、圧延材Sが圧延機2のロードリレー検出器によって検出されてから所定時間Tsec後までの期間に適用される。この噛込モードm2が適用される期間は、第一ロール定荷重制御と第二ロール定位置制御とが実行される。
【0087】
前記圧延モードm3は、圧延材Sが圧延機2のロードリレー検出器によって検出されてから所定時間Tsec後から、圧延材Sが圧延機2のロードリレー検出器がオフされるAmm手前までの期間に適用される。この圧延モードm3が適用される期間は、板厚・板クラウン制御が実行される。
【0088】
前記尻抜モードm4は、圧延材Sが圧延機2のロードリレー検出器がオフされるAmm手前から圧延材Sが圧延機2のロードリレー検出器がオフされるまでの期間に適用される。この尻抜モードm4が適用される期間は、第一ロール零荷重制御と第二ロール定位置制御とが実行される。
【0089】
図17は、制御手段3の具体的機能分担を示す図である。前述した制御手段3は、設定値情報および圧延材情報を出力するプロセスコンピュータ(略称プロコン)などである上位制御装置Con1と、上位制御装置Con1から設定値情報および圧延材情報を入力し、これらの情報に基づいて前述した第一ロール零荷重制御、第一ロール定荷重制御、第二ロール定位置制御および板厚・板クラウン制御の各目標値および開始指令を出力するプログラマブルロジックコントローラ(PLC)などの中位制御装置Con2と、中位制御装置Con2から入力した前記第一ロール零荷重制御、第一ロール定荷重制御、第二ロール定位置制御および板厚・板クラウン制御の各目標値および開始指令に基づいて、各圧下手段15a,15b;16a,16bを制御するボードコンピュータなどである下位制御装置Con3とを含む。
【0090】
前記上位制御装置Con1から中位制御装置Con2に出力される設定値情報は、ロールギャップ値、第一ロール圧延荷重、第二ロール圧延荷重および板厚・板クラウン制御ゲインである。また圧延材情報は、板厚目標値および板クラウン目標値である。
【0091】
図18は、制御手段3の動作を説明するためのタイミングチャートであり、図18(1)は上位制御装置Con1の設定値情報、圧延材情報の送信タイミングを示し、図18(2)は中位制御装置Con2の制御動作を示し、図18(3)は下位制御装置Con3の第一ロール零荷重制御および第一ロール定荷重制御に関する制御動作を示し、図18(4)は下位制御装置Con3の第二ロール定位置制御に関する制御動作を示し、図18(5)は圧延機2のロードリレー検出器の検出動作を示す。
【0092】
まず、圧延機2に先行圧延材Sが通板された状態では、図18(1)に示されるように、時刻t1で入力された当該圧延材Sの設定値情報および圧延材情報が、図18(2)、図18(3)、図18(4)に示されるように、中位制御装置Con2、下位制御装置Con3に与えられる。
【0093】
図18(5)に示されるように、時刻t3でロードリレー検出器がオン状態からオフ状態に変化し、先行圧延材Sの後端が圧延機2から抜けたことが検出され、下位制御装置Con3は、上位制御装置Con1からの当該圧延材Sの設定値情報および圧延材情報に基づいて第二ロール定位置制御を実行し、ロールギャップを制御する。
【0094】
時刻t4で次の当該圧延材Sの始端が圧延機2に供給されると、ロードリレー検出器がそれを検出してオフ状態からオン状態に変化し、下位制御装置Con3は入力した前記設定値情報および圧延材情報に基づいて、第一ロール定荷重制御を実行し、圧延荷重を制御する。
【0095】
前記ロードリレー検出器がオン状態になると、中位制御装置Con2は、図18(2)に示されるように、時刻t4から計時動作を開始し、所定時間Tsecを経過した時刻t5でオフ状態からオン状態に変化し、板厚・板クラウン制御を実行する。この中位制御装置Con2からの指令によって、下位制御装置Con3は、図18(3)に示されるように、第一ロール定荷重制御を停止するとともに、図18(4)に示されるように、第二ロール定位置制御を停止する。
【0096】
図18(2)に示されるように、当該圧延材Sについて、圧延機2のロードリレー検出器がオフされるAmm手前である時刻t6で、中位制御装置Con2の板厚・板クラウン制御が終了してオン状態からオフ状態に変化すると、下位制御装置Con3は、図18(3)に示されるように、第一ロール零荷重制御を開始するとともに、図18(4)に示されるように、第二ロール定位置制御を開始する。
【0097】
図18(5)に示されるように、ロードリレー検出器が時刻t9でオン状態からオフ状態に変化することによって、当該圧延材Sの圧延が終了する。
【0098】
本発明は、前述の実施の形態で述べた3段単純ロール積重ね方式のロールベンディングミルだけでなく、4段圧延機や6段圧延機、片テーパクラウンロールシフト圧延機(略称K−WRSミル)、S字クラウンロールシフト圧延機(略称CVCミル)、cigar−shapedクラウンロールシフト圧延機(略称UPCミル)および中間ロールシフト圧延機などのロールシフト圧延機、ならびにバックアップロールクロス圧延機、ワークロールクロス圧延機およびペアロールクロス圧延機などのロールクロス圧延機に好適に実施することができる。
【0099】
【発明の効果】
請求項1記載の本発明によれば、第一ロールの圧延荷重と第二ロールの圧延荷重とに基づいて、圧延材の出側板クラウンの変化量が算出されるので、第一ロールと第二ロールとの圧延荷重比が変化しただけで、圧延荷重和が変化しない場合でも前記従来のように、出側板クラウンの変化量を検出するためのセンサを圧延機に設置する必要がなく、これによってコストを増加させずに、前記第一および第二ロールの各圧延荷重から板クラウンを求めることができる。
【0100】
請求項2記載の本発明によれば、制御手段によって、第一ロールの圧延荷重および第二ロールの圧延荷重に基づいて、圧延材の出側板厚および出側板クラウンが目標値に追従するように、圧下手段の圧下力を制御するので、別途に出側で板クラウンの変化量を検出するクラウン検出器などのセンサを圧延機に設置する必要がなく、これによってコストを増加させずに、圧下手段による第一および第二ロールへの圧下力を変化させて圧延材に作用する圧延荷重を制御し、出側板厚および出側板クラウンを目標値に追従させて修正することができる。
【0101】
請求項3記載の本発明によれば、制御手段は、圧延材の出側板厚および出側板クラウンを、相互に非干渉で目標値に追従させるので、板厚を制御したときの板クラウンへの影響および板クラウンを制御したときの板厚への影響が生じることを防止し、板厚変化および板クラウン変化の修正に対する応答性を向上することができる。
【0102】
請求項4記載の本発明によれば、制御手段は、入側板厚変化、材料温度変化、材料変形抵抗変化、摩擦係数変化、および材料張力変化のうち少なくとも1つの外乱の入力に対して、圧延材の出側板厚および出側板クラウンの各変化量を、相互に非干渉で目標値に追従させるので、入側板厚変化、材料温度変化、材料変形抵抗変化、摩擦係数変化、および材料張力変化のうちの1または複数が外乱として制御手段に入力されても、出側板厚の修正量および出側板クラウンの修正量が相互に干渉することが防がれ、外乱による応答性の低下を防止することができる。
【0103】
請求項5記載の本発明によれば、制御手段によって出側板厚および出側板クラウンの目標とする応答波形を指定することができるので、設計の結果として応答が決定するのではなく、所望の応答を得るための設計ができるので、設計が容易となる。
【0104】
請求項6記載の本発明によれば、コンピュータによってプログラムを実行することによって、検出された各圧延荷重に基づいて、出側板厚および出側板クラウンの各変化量を算出する。またコンピュータは、圧延機を圧延材の出側板厚および出側板クラウンが目標値に追従するように圧下力を制御する制御装置として実現することができるので、別途に出側で板クラウンの変化量を検出するクラウン検出器などのセンサを圧延機に設置する必要がなく、これによってコストを増加させずに、圧下手段による第一および第二ロールへの圧下力を変化させて、圧延材に作用する圧延荷重を制御し、出側板厚および出側板クラウンを目標値に修正することができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態の圧延機の板厚・板クラウン制御方法が適用される圧延設備1の正面図である。
【図2】圧延機2に備えられる圧下手段15aを示す断面図である。
【図3】制御手段3が制御対象とする圧延機2を示す図であり、図3(1)は第一および第二ロール11,12と圧延材Sの平衡状態を示し、図3(2)は第一および第二ロール11,12が圧延材Sを図3(1)の平衡状態からさらに圧下した状態を示す。
【図4】出側板クラウンQの算出例を示す図である。
【図5】圧延機2による板厚修正に関する入側板厚H、出側板厚hと圧延荷重Pとの関係およびロールギャップGと圧延荷重Pとの関係を示すグラフである。
【図6】圧延機2の機械モデルの状態方程式を示す図である。
【図7】図7(1)は圧延機2の機械モデルに非干渉制御系を構築した図であり、図7(2)は非干渉制御系の伝達関数を示す図である。
【図8】圧延機2の機械モデルにロバストサーボ系を構築した図である。
【図9】制御手段3で構築したロバストサーボ系に対する第1のシミュレーション結果を示す図であり、図9(1)は目標板クラウン目標値の設定状態の変化を示し、図9(2)は出側板クラウンの変化を示し、図9(3)は出側板厚の変化を示す。
【図10】制御手段3で構築したロバストサーボ系に対する第2のシミュレーション結果を示す図であり、図10(1)は板厚目標値の設定状態の変化を示し、図10(2)は出側板クラウンの変化を示し、図10(3)は出側板厚の変化を示す。
【図11】制御手段3で構築したロバストサーボ系に対する第3のシミュレーション結果を示す図であり、図11(1)は外乱入力として入側板厚の変化を示し、図11(2)は出側板クラウンの変化を示し、図11(3)は出側板厚の変化を示す。
【図12】圧延機2の機械モデルにILQ制御系を構築した図である。
【図13】制御手段で構築したILQ制御系に対する第1のシミュレーション結果を示す図であり、図13(1)は板クラウン目標値の設定状態の変化を示し、図13(2)は出側板クラウンの変化を示し、図13(3)は出側板厚の変化を示す。
【図14】制御手段3で構築したILQ制御系に対する第2のシミュレーション結果を示す図であり、図14(1)は板厚目標値の設定状態の変化を示し、図14(2)は出側板クラウンの変化を示し、図14(3)は出側板厚の変化を示す。
【図15】制御手段3で構築したILQ制御系に対する第3のシミュレーション結果を示す図であり、図15(1)は外乱入力として入側板厚の変化を示し、図15(2)は出側板クラウンの変化を示し、図15(3)は出側板厚の変化を示す。
【図16】制御手段3で非干渉制御系、ロバストサーボ系、ILQ制御系のいずれかを構築した板厚・板クラウン制御を実機に適用する際のシーケンスを示す図である。
【図17】制御手段3の具体的機能分担を示す図である。
【図18】制御手段3の動作を説明するためのタイミングチャートであり、図18(1)は上位制御装置Con1の設定値情報、圧延材情報の送信タイミングを示し、図18(2)は中位制御装置Con2の制御動作を示し、図18(3)は下位制御装置Con3の第一ロール零荷重制御および第一ロール定荷重制御に関する制御動作を示し、図18(4)は下位制御装置Con3の第二ロール定位置制御に関する制御動作を示し、図18(5)は圧延機2のロードリレー検出器の検出動作を示す。
【符号の説明】
1 圧延設備
2 圧延機
3 制御手段
11 第一ロール
12 第二ロール
21 圧延ロール
13a,13b;14a,14b;22a,22b 軸受部
15a,15b;16a,16b 圧下手段
23a,23b 高さ調整手段
26a,26b バランスシリンダ
27 圧延機ハウジング
28a,28b ハウジングウィンドウ
30a,30b;31a,31b 圧下力検出器
29 ビーム
50 シリンダ
51 油圧調整手段
52 シリンダ本体
53 ピストン
54 シリンダチューブ
56 ピストン室
57a,57b 圧力室
63 圧下量検出手段
70 サーボ弁
71 ポンプ
72 モータ
73 タンク

Claims (6)

  1. 圧延材を圧下する第一ロールと、第一ロールを支持する第二ロールと、第一および第二ロールを圧下する圧下手段とを備える圧延機の板クラウン算出方法において、
    第一ロールの圧延荷重および第二ロールの圧延荷重に基づいて、圧延材の出側板クラウンの変化量を算出することを特徴とする圧延機の板クラウン算出方法。
  2. 圧延材を圧下する第一ロールと、第一ロールを支持する第二ロールと、第一および第二ロールを圧下する圧下手段と、圧延材の出側板厚および出側板クラウンが目標値に等しくなるように、前記圧下手段による第一および第二ロールへの圧下力を制御する制御手段とを備え、
    前記制御手段は、第一ロールの圧延荷重および第二ロールの圧延荷重に基づいて、圧延材の出側板厚および出側板クラウンが目標値に追従するように、前記圧下手段の圧下力を制御することを特徴とする圧延機の板厚・板クラウン制御方法。
  3. 前記制御手段は、圧延材の出側板厚および出側板クラウンを、相互に非干渉で目標値に追従させることを特徴とする請求項2記載の圧延機の板厚・板クラウン制御方法。
  4. 前記制御手段は、入側板厚変化、材料温度変化、材料変形抵抗変化、摩擦係数変化、および材料張力変化のうち少なくとも1つの外乱の入力に対して、圧延材の出側板厚および出側板クラウンを、相互に非干渉で目標値に追従させることを特徴とする請求項2または3記載の圧延機の板厚・板クラウン制御方法。
  5. 前記制御手段は、出側板厚および出側板クラウンの目標とする応答波形が指定されることを特徴とする請求項2〜4のいずれか1つに記載の圧延機の板厚・板クラウン制御方法。
  6. コンピュータを、圧延材を圧下する第一ロールの圧延荷重および第一ロールを支持する第二ロールの圧延荷重を検出する手段、および前記圧延荷重検出手段によって検出された第一および第二ロールの各圧延荷重に基づいて、出側板厚および出側板クラウンの各変化量を算出する演算手段として機能させることを特徴とする圧延機の板厚・板クラウン算出用プログラム。
JP2003095545A 2003-03-31 2003-03-31 圧延機の板クラウン算出方法および圧延機の板厚・板クラウン制御方法ならびに算出用プログラム Expired - Fee Related JP3686899B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095545A JP3686899B2 (ja) 2003-03-31 2003-03-31 圧延機の板クラウン算出方法および圧延機の板厚・板クラウン制御方法ならびに算出用プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095545A JP3686899B2 (ja) 2003-03-31 2003-03-31 圧延機の板クラウン算出方法および圧延機の板厚・板クラウン制御方法ならびに算出用プログラム

Publications (2)

Publication Number Publication Date
JP2004298932A true JP2004298932A (ja) 2004-10-28
JP3686899B2 JP3686899B2 (ja) 2005-08-24

Family

ID=33407854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095545A Expired - Fee Related JP3686899B2 (ja) 2003-03-31 2003-03-31 圧延機の板クラウン算出方法および圧延機の板厚・板クラウン制御方法ならびに算出用プログラム

Country Status (1)

Country Link
JP (1) JP3686899B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112792140A (zh) * 2020-12-17 2021-05-14 太原科技大学 一种基于逆线性二次型的带钢厚度和板凸度控制方法
CN112872049A (zh) * 2021-01-28 2021-06-01 邯郸钢铁集团有限责任公司 一种冷轧超高强专用中间辊辊形的配型方法
CN113814276A (zh) * 2021-11-24 2021-12-21 太原科技大学 一种基于张力-温度控制的板形调控方法
CN113857237A (zh) * 2021-07-29 2021-12-31 北京弥天科技有限公司 一种h型钢多级轧制装置
CN114786832A (zh) * 2019-12-11 2022-07-22 Sms集团有限公司 用于热轧机和用于制造金属扁平产品的热轧机架、热轧机以及用于运行热轧机的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114786832A (zh) * 2019-12-11 2022-07-22 Sms集团有限公司 用于热轧机和用于制造金属扁平产品的热轧机架、热轧机以及用于运行热轧机的方法
CN112792140A (zh) * 2020-12-17 2021-05-14 太原科技大学 一种基于逆线性二次型的带钢厚度和板凸度控制方法
CN112872049A (zh) * 2021-01-28 2021-06-01 邯郸钢铁集团有限责任公司 一种冷轧超高强专用中间辊辊形的配型方法
CN112872049B (zh) * 2021-01-28 2023-02-21 邯郸钢铁集团有限责任公司 一种冷轧超高强钢专用中间辊辊形的配型方法
CN113857237A (zh) * 2021-07-29 2021-12-31 北京弥天科技有限公司 一种h型钢多级轧制装置
CN113857237B (zh) * 2021-07-29 2024-04-16 北京弥天科技有限公司 一种h型钢多级轧制装置
CN113814276A (zh) * 2021-11-24 2021-12-21 太原科技大学 一种基于张力-温度控制的板形调控方法

Also Published As

Publication number Publication date
JP3686899B2 (ja) 2005-08-24

Similar Documents

Publication Publication Date Title
KR101654993B1 (ko) 압연 제어 장치, 압연 제어 방법 및 압연 제어 프로그램
US5479803A (en) Control apparatus for a continuous hot rolling mill
US5495735A (en) System for controlling strip thickness in rolling mills
JPH10192929A (ja) 圧延機の制御方法及び制御装置
CN106029244B (zh) 用以控制串列式轧机中的温度的动态减小转变(dsr)
JP3686899B2 (ja) 圧延機の板クラウン算出方法および圧延機の板厚・板クラウン制御方法ならびに算出用プログラム
JP3132340B2 (ja) 熱間連続式圧延機の制御方法
JP5831386B2 (ja) タンデム圧延機の動作制御方法及び動作制御装置並びに熱延鋼板の製造方法及び製造装置
JP3456526B2 (ja) 圧延機の制御方法
JP3243296B2 (ja) 圧延機用油圧圧下装置
JP5705083B2 (ja) 圧延機の板厚制御方法
JPH0141404B2 (ja)
JPH04351304A (ja) 油圧駆動装置
JP2565600B2 (ja) 圧延機に於ける蛇行制御方法
JPH07100519A (ja) 圧延機制御装置および方法
JPH06122010A (ja) 圧延機のロールベンディング制御装置
JP3396774B2 (ja) 形状制御方法
JPS6142411A (ja) 油圧装置の位置制御装置
JPS6330081B2 (ja)
JPH08257611A (ja) 圧延機の制御方法
JP3003496B2 (ja) 圧延機のプリセット方法
CN116723901A (zh) 在进入时具有最小弯曲力下降的轧制
JP3394837B2 (ja) 圧延機の制御方法
JPH0531517A (ja) タンデム圧延機の板厚制御方法
JP2001225102A (ja) 自動板厚制御システムを備えた圧延機及びそのシステムを使用した圧延方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees