JP2004286032A - 反転インペラを有する軸流ファン用のインペラブレード - Google Patents

反転インペラを有する軸流ファン用のインペラブレード Download PDF

Info

Publication number
JP2004286032A
JP2004286032A JP2004083711A JP2004083711A JP2004286032A JP 2004286032 A JP2004286032 A JP 2004286032A JP 2004083711 A JP2004083711 A JP 2004083711A JP 2004083711 A JP2004083711 A JP 2004083711A JP 2004286032 A JP2004286032 A JP 2004286032A
Authority
JP
Japan
Prior art keywords
impeller
blade
fan
distribution
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004083711A
Other languages
English (en)
Other versions
JP2004286032A5 (ja
JP4526286B2 (ja
Inventor
Phillip James Bradbury
フィリップ・ジェームズ・ブラッドベリ
Phep Xuan Nguyen
フェップ・シュアン・グエン
Chalmers R Jenkins
シャルマース・アール・ジェンキンス
Scott H Frankel
スコット・エイチ・フランケル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Publication of JP2004286032A publication Critical patent/JP2004286032A/ja
Publication of JP2004286032A5 publication Critical patent/JP2004286032A5/ja
Application granted granted Critical
Publication of JP4526286B2 publication Critical patent/JP4526286B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/007Axial-flow pumps multistage fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/024Multi-stage pumps with contrarotating parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】インペラがほぼ同軸的で反転し、性能パラメータが大幅に改善した多重インペラ軸流ファンを提供する。
【解決手段】反転インペラを有する冷却ファン内のブレードのそり曲線及び厚さ分布を決定する方法。各インペラのブレードのそり曲線及び厚さ分布は、ベジェ曲線を使用して決定され、ブレードを横切る空気流の境界層はがれを減少させるように選択される。ベジェ制御点を変更して1組のそり曲線分布及び厚さ分布を生成し、冷却効率を増加させる最も好都合な組を見つける。
【選択図】図8

Description

[発明の詳細な説明]
本発明は、軸流ファンに、特に、逆方向に回転する同軸インペラを有する多重インペラ構造に関する。本発明の多重インペラ反転軸流ファンは、電子部品の冷却に使用するのに特に適している。
[発明の背景]
従来型軸流ファンは一般的に、駆動モータ、駆動モータに取り付けられたモータシャフトに組み付けられた円筒形中央ハブ部分、ハブに取り付けられた複数のブレード、及び、本明細書では同等語句として使用されるファンまたはインペラを収容するハウジングで構成されている。各ブレードは、ファンの中央ハブ部分から半径方向外向きに延出している。モータシャフトは、ハブ部分の中央開口に取り付けられており、したがって、ハブ部分は、駆動モータによってモータシャフトを介して回転させることができる。そのような構造では、ハブ部分がブレードと一緒に、モータによって外側ケーシングの軸を中心にして回転され、それにより、空気流をファンの入口領域から出口領域へ押し進めることができる。ファンのブレードは、ブレードの回転方向と逆の方向の力と、ブレードの回転方向に直交する空気流とをブレードで発生することができるように形作られたエーロフォイル(air foil)である。
本出願の譲受人であるIMC Magnetics Corporation製の型番5920などの、巻線の2つだけが同時にオンする4極モータを用いた単極巻線を使用した軸流ファンが既知である。これらのファンは、起動電流を減少させるためのインダクタ、電力レベルを処理するのに十分な大きさのトランジスタ、及びトランジスタを保護するために必要な大型クランピングダイオードなどの相当な大きさの回路素子を含む回路を用いる。そのような軸流ファンは、57V〜64Vの範囲内の入力電圧を処理することができず、約56Vの最大入力電圧に制限され、より一般的には約48Vの入力電圧で動作する。
型番5920は、使用されるダイオード、インダクタ及びトランジスタの大寸法及び単極巻線に必要な巻数の両方のために、軸方向幅が2インチになる。さらに、型番5920の軸方向幅は、それの5枚のブレードの各々が、ほぼ湾曲平板として記述される対称断面を特徴とすることも原因である。そのため、これらのブレードは空力的に効率的でなく、したがって、性能要件を満たすために大きい翼弦長が必要であり、それにより、型番5920の寸法が2インチの軸方向幅になる。
回路板上の電子部品の密度及び負荷容量が連続的に増加し、それから生じる発熱問題も必然的に増加するため、そのような発熱問題に立ち向かうために軸流ファンの使用が増加している。そのような軸流ファンの設計では、電子部品を冷却するそれらの能力を維持するか、さらには増大させながら、できる限り小さく、かつ高コスト効率で製造することが重要である。特に、そのようなファンの全体寸法をできる限り小さくすることが重要である。たとえば、型番5920の2インチの軸方向幅は、電子部品の冷却用の軸流ファンとして使用するのに最適な寸法より大きい。したがって、それの性能パラメータ及び設計制約(design constraints)を維持しながら、それの寸法を小さくすることが望ましい。
そのようなファンの全体寸法を小さくする1つの方法は、性能パラメータ及び設計制約を維持しながら、大型電子部品をなくすと共に、他の部品の寸法を小さくするものである。たとえば、別体のヒートシンクを不要にすることによってファンの軸方向幅を小さくするために、軸流ファンのハウジングをヒートシンクとして利用してもよい。
また、軸流ファンの全体寸法を小さくするために、狭い翼弦ブレードを使用することが望ましい。しかし、そのような狭い翼弦ブレードを使用する結果、性能が低下し、特にファン圧力及び風量が減少する。これらの性能低下は、設計パラメータの変更によって相殺しなければならない。なかでも、ブレードの翼弦長、そり角、食い違い角及び断面形状が、ファンの性能に影響を与える可能性がある要素である。また、ブレードのスパン(span)に沿った仕事分布(work distribution)を変更することによって、性能パラメータを維持しながら、ブレードスパンに沿った翼弦長を変更することができることがわかっている。
理論的には、一定の迎え角では、そり角が大きいほど、揚力が大きい。しかし、そり角が大きすぎる場合、ブレードが失速し、結果的に性能が低下し、騒音特性(noise signature)が増加する。したがって、そり角を適当な値に設計しなければならない。
さらなる例では、ある半径方向位置における仕事分布の減少により、翼弦長を減少させることができ、結果的に、その半径方向位置でブレードから出る速度が低下する。したがって、軸方向幅に影響することから、ハブ部分(ブレードの根元)で仕事分布を最小にし、ブレードの先端で仕事分布を最大にし、それにより、先端で最大ブレード流出速度を与えることが望ましい。そのような方法が、米国特許第5,320,493号に開示されている。しかし、この方法では、ブレードから流出する先端速度の増加と共に、ブレードの先端から出る乱流空気の増加のために、ファンの騒音特性が許容できないほど増加するであろう。したがって、根元部分及び先端部分間のいずれかの好都合な位置に最大仕事分布を置くことが望ましい。
さらに、ブレードの断面形状が、それの速度分布に影響を与える。NACAシリーズ65エーロフォイルなどの円弧プロファイルは、ブレードの後縁部で負圧面に沿って速度の急低下を生じる速度分布を示す。そのように大きい減速勾配は、境界層をより不安定にし、境界層はがれを促進し、それにより、揚力の損失と共にブレードから出る乱流空気が大きくなる。したがって、エーロフォイル断面(cross-sectional airfoil)の速度分布は、好都合な速度分布が達成されるように設計されなければならない。
この分野では、さまざまな先行の米国特許が開発されている。たとえば、米国特許第4,971,520号、第4,569,631号、第5,244,347号、第5,326,225号、第5,513,951号、第5,320,493号、第5,181,830号、第5,273,400号、第2,811,303号及び第5,730,483号が、軸流ファンを開示している。しかし、これらの特許に開示されたファンは、上記問題を克服するために上記パラメータを効果的に組み合わせていない。特に、いずれの発明も、ファンの軸方向幅を減少させながら、本発明の性能を与える一群のエーロフォイルプロファイルまたはブレードを開示していない。いずれの発明も、多重インペラ反転構造にそのような最適化されたブレードを使用して、各インペラの幅を個別に減少させ、結果的に性能が改善されながら全体寸法が減少したファンをさらに利用することを開示していない。
別の分野の航空機ロータでは、Sudrowの米国特許第3,127,093号に示されているように、多重同軸ロータの使用が既知である。Sudrow特許は、それぞれが揚力を生じるように構成された複数のエーロフォイルを有する2組の同軸ロータを使用する「航空機用のダクト付き持続ロータ」を開示している。これらのロータは、逆方向に旋回することができるモータシャフトに取り付けられる。そのような反転構造を利用して、トルクの減少、軸方向風量の減少、及び振動及び騒音の減少が行われた。
航空機ロータに取り付けられたエーロフォイルとは異なり、ファンロータに取り付けられたエーロフォイルは、空気流を生じるように構成されている。従来理論では、大した下流側流れ抵抗がない自由流れ環境において直列で動作する2つの同一の軸流ファンは、単独で動作する1つの軸流ファンより多くの風量を与えることはないと予想される。従来理論ではまた、大きい下流側流れ抵抗がある流れ制限環境において直列で動作する2つの同一の軸流ファンは、単独で動作する1つのファンの風量の最大で2倍を与え、下流側流れ抵抗が非常に大きくなる時に最大増加に達するだけであることも予想される。従来理論ではさらに、一方の軸流ファンのロータを逆にして、そのロータを他方のファンロータと逆の方向に回転させることによって、他の点では同一のこのような2つの軸流ファンを反転構造に配置することにより、ファンが共回転構造で生じる風量と同一の風量が得られることも予想される。2つのファンを使用することは、単一ファンを使用する場合のコスト及び必要電力が二倍になるので、従来理論は、比較的複雑でかさばる反転構造の使用を支持していない。
Weskeの米国特許第2,313,413号は、散在型固定ブレードを有する多重共回転インペラを使用した軸流ファンを開示している。Van Houten他の米国特許第5,931,640号は、車両エンジン冷却ファンとして使用するための、逆傾斜のブレードを有する2つの反転ファンを用いることを開示している。これらの特許は、そのような構造により、ファンが、低速で動作しながら、必要な風量を生じることができることを開示している。これらの特許は、開示構造が、寄生損失を減少させ、音響的特性を改善することも、教示している。
[発明の概要]
従来技術のいずれの発明も、単一インペラファンと比較して、従来理論で予想されている以上に風量増加が得られる多重インペラ同軸反転ファンを開示していない。従来技術のいずれの発明も、共回転ファンの2倍を超える風量を加圧環境に送り込む反転ファンを開示していない。従来技術のいずれの発明も、全体寸法を本発明のものまで減少させながら、所望の性能を与えるブレードを開発するための要素の組み合わせを開示していない。また、従来技術のいずれの発明も、二重インペラ同軸反転ファンの製造にそのような最適化ブレードを使用することを開示していない。
実験により、ここで記載した改良型ブレード設計を用いた反転インペラを有するファンは、単一インペラを有するファンと比較した時、従来理論で予想された増加よりはるかに大きい風量増加を与えることがわかった。また、ここで記載した改良型ブレード設計を用いた反転インペラを有するファンは、共回転インペラを有すること以外では同一のファンの2倍を超える風量を加圧環境に送り込むこともわかった。したがって、本発明の目的は、インペラがほぼ同軸的で反転し、性能パラメータが大幅に改善した多重インペラ軸流ファンを提供することである。
本発明のさらなる目的は、性能パラメータ及び設計制約を維持しながら、軸流ファンの軸方向幅を減少させることができる一群のエーロフォイル断面を組み込んだブレードを提供することである。
本発明のさらに別の目的は、最大仕事分布をブレードの根元部分及び先端部分の間に置きながら、軸流ファンの軸方向幅を減少させることができる1群のエーロフォイル断面を組み込んだブレードを提供することである。
本発明のさらなる目的は、ブレードの負圧側全体に好都合な速度分布を維持しながら、軸流ファンの全体寸法を減少させることができる1群のエーロフォイル断面を組み込んだブレードを提供することである。
本発明のさらなる目的は、理論モデルを使用して予想されたものよりはるかに大きい軸方向風量の増加を与える反転インペラ構造を提供することである。
本発明のさらに別の目的は、共回転すること以外では同一のインペラ構造の2倍を超える風量を加圧環境に送り込む反転インペラ構造を提供することである。
本発明のさらなる目的は、電子部品の冷却に使用される電気ファンの一定の設計制約の場合に実現可能な軸方向風量の増加を与える多重反転インペラ構造を製造するために使用することによって、軸流ファンの幅を減少させるのに役立てることである。
上記及び他の目的は、少なくとも2つの同軸ロータアセンブリを有する軸流ファン構造であって、ロータアセンブリの各々が、複数のブレードを設けたインペラをさらに有し、上記ロータアセンブリの少なくとも1つが、上記ロータアセンブリの第1のものと逆の方向に回転するように構成され、また、各インペラが空気をその他のインペラと同一の軸方向に押し進めるように各ロータアセンブリのブレードを構成している軸流ファン構造によって実現される。
上記及び他の目的はさらに、根元部分、先端部分、前縁部及び後縁部の特徴を有するブレードであって、ブレードの半径に沿ったいずれの位置でとった断面形状も、最大厚さがほぼ常に翼弦の約19%及び翼弦の約20%間に位置し、最大そりがほぼ常に翼弦の約45%及び翼弦の約46%間に位置することを特徴とするブレードを上記インペラに設けることによって実現される。
二重インペラ反転ファンにおいて、上流側インペラのブレードを下流側インペラのブレードと異なった数にすることによって、その音響的特性を改善することができることが、実験的に確認された。好適な実施形態では、上流側インペラは、円形バンドに連結された13枚の半径方向延出ブレードからなり、下流側インペラは、円形バンドに連結されて円周方向に離隔配置された11枚の半径方向延出ブレードからなる。
さらに、上記多重反転インペラが円錐形ハウジング内に配置される時、風量が最適化されることが確認された。第2インペラの直径は、第1インペラの直径より大きくすることができる。
本発明の上記及び他の目的、特徴及び利点は、以下の詳細な説明及び添付図面からさらに明らかになるであろう。
以下の図面を参照すれば、本発明はさらに容易に理解されるであろう。
[好適な実施形態の詳細な説明]
[軸流ファンの全体構造]
次に、本発明の好適な実施形態を説明する。図面を、特に図1及び図2を参照すると、軸流ファン100が示されており、これは、回転時に空気流を発生するためのインペラ10と、インペラ10内に取り付けられたヨーク20と、ヨーク20に結合されたシャフト30と、ヨーク20内に取り付けられた永久磁石40と、ステータアセンブリ50と、ファンハウジング70と、ステータアセンブリ50内のベースをファンハウジング70から電気絶縁するための絶縁シート60と、ヨーク20及び磁石40を自由回転できるようにし、それによってインペラ10を回転させながら、シャフト30をハウジング70に固定するのに役立つ軸受け及び取り付け金具類80とを備えている。インペラ10は、円形バンド12上に等間隔で円周方向に取り付けられた複数のブレード11を有する。ヨーク20内に取り付けられた永久磁石40は、ステータアセンブリ50と組み合わされた時、電気モータを形成し、これは、ステータアセンブリ50内の印刷回路板上の励磁回路に電圧が印加された時、インペラ10を回転させる。ステータアセンブリ50の構造は、1998年7月20日に出願された「モータ用のステータ取り付け方法及び装置」と題する同時係属中の同一出願人に所有された(co-owned)特許出願第09/119,221号に完全に記載されており、この特許出願は参照により本明細書に援用される。
図7Dに示されているように、好適な実施形態の反転ファンは、単一ハウジング内に収容されている、先行項に記載したような第1の単一インペラ軸流ファンと第2の単一インペラ軸流ファンとで構成されている。第2単一インペラ軸流ファンの入口は、第1単一インペラ軸流ファンの出口につながっている。また、第2単一インペラ軸流ファンは、第1単一インペラ軸流ファン内に収容されているインペラの回転方向と比較して逆の方向に回転するインペラを有し、第2単一インペラ軸流ファンは、第1単一インペラ軸流ファンのブレードと比較して逆のピッチのブレードを有する。
好適な実施形態では、第1インペラは13枚のブレードを有し、第2インペラは11枚のブレードを有する。また、第2インペラは、第1インペラよりわずかに大きく(すなわち、大径に)形成することができ、共通ハウジングは、図7(e)に示されているように、第1インペラの入口から第2インペラの出口に向かって拡がる直径を有する円錐の形にすることができる。
図3は、ベース52と、4本の絶縁ピン54と、ステータコア56と、巻線58とを有するステータアセンブリ50を示している。好適な実施形態では、ベース52は、モータを励磁して動作させるための回路を含む印刷回路板である。
図4に示されているようなベース52は、モータを動作させるための回路を上に取り付けた印刷回路板である。電圧調整器57により、約28V〜64Vの範囲の入力電圧を使用することができ、これは、[発明の背景」と題する上記項で述べた型番5920のファンなどの他のファンの場合より広い範囲である。電圧調整器の入力及び出力電圧は異なる。電圧調整器は、出力部の電圧を、電圧調整器の出力側の集積回路に適するように調整する。電圧調整器の出力部の低電圧をすべての抵抗器、トランジスタ、ダイオード及びコンデンサに供給することによって、小型部品を使用できるようになり、回路の寸法が小さくなって、縮小幅のファンに用いることができる。好適な実施形態では、型番5920の軸流ファンに用いられている日立製の部品番号V03Cなどの大型クランピングダイオードが不要である。高電圧レベルの熱及び電力を処理するために型番5920ファンの回路に用いられている三洋製の部品番号25B1203〜5などの4つの大型トランジスタが、本発明ではなくなっている。好適な実施形態は、電圧調整器の出力部の低電圧レベルで動作するトランジスタスイッチを集積回路61及び62内に用いる。さらに、型番5920軸流ファン内のMinebea製のインデューサ部品番号6308−R8151が、本発明ではなくなっている。したがって、好適な実施形態の完成した回路板は、型番5920用の回路板などの以前の回路板と比較した時、幅が狭い。さらに、幅が狭くなった軸流ファンが得られる。
好適な実施形態は、電圧調整器57を用いることによって、クランピングダイオード及びトランジスタを含めた大型回路部品を必要としない。入力電圧を逓減させるために電圧調整器を使用すると、消散させなければならない熱が電圧調整器全体に発生する。ファンのハウジング70はヒートシンクとして機能する。ハウジング70をヒートシンクとして使用することにより、電圧調整器用のヒートシンクとして使用するための相当に大きい抵抗器が必要なくなる。ハウジング70は、包囲体と共にヒートシンクとして機能するので、熱を電圧調整器57から金属ハウジング70に伝達するために、Loctite(登録商標)熱伝導接着剤3873などの冷熱性熱伝導接着剤である標準的な熱コンパウンド(heat compound)が使用される。変更例として、または追加的に、電圧調整器の集積回路57をハウジングに固定するために、ピンを使用してもよい。このピンは、熱コンパウンドの硬化中に電圧調整器を一時的に固定する働きをする。したがって、縮小幅のファンが得られる。
実際に、後述するブレード設計と組み合わせた時、上記改良を加えることによって、1インチ厚さでありながら、IMC Magnetic Corp.の型番5920の軸流ファン(2インチ厚さ)と同じ風量出力を有する単一インペラ軸流ファンが達成され、また、上記改良を加えることによって、2インチ厚さであるが、本発明の改良空気流特性を有する2インペラ反転軸流ファンが達成される。
[ブレード構造のパラメータ]
図8は、本発明の好適な実施形態のブレード11の1つの断面図であり、本発明のブレード11の断面形状14を部分的に画定するパラメータを示す。各断面は、前縁部16、後縁部18、上面22及び下面24を有する。断面はさらに、食い違い角26、そり角28、翼弦線32、翼弦長34、そり曲線36、及び厚さ(t)38によって画定することができる。
次に図9A及び図9Bを参照すると、好適な実施形態のブレード11は、立体ブレードを形成するために断面14を半径方向及び軸方向に積み重ねてブレンド(blend)することによって構成される。図9Aはブレード11の正面図であり、図9Bはブレード11の側面図である。したがって、図9Bの図は、図9Aの図から90度回転している。ブレードは、根元部分42及び先端部分44を有する。根元部分42は、円形バンド12(図1)の周囲と隣接している。ブレード11の各エーロフォイル断面14は、図9Bに示されているように、円形バンド12の中心から出て半径方向外向きに延びる半径を基準にして特定される。各エーロフォイル断面14の位置は、図示のように、ある特定の断面14の半径方向位置(r)を図9A及び図9Bの先端部分14でのエーロフォイル断面の半径(rtip)で割った比であるr/rtipによって定められる。
円周方向積み重ね軸は、根元部分42に位置する断面14の前縁部16と交差して円周方向に延びる軸によって定められる。円周方向積み重ね距離は、エーロフォイル断面14の前縁部16と円周方向積み重ね軸との間の距離によって定められる。軸方向積み重ね軸は、根元部分42に位置する断面14の前縁部16と交差して軸方向に延びる軸によって定められる。軸方向積み重ね距離は、エーロフォイル断面14の前縁部16と軸方向積み重ね軸との間の距離によって定められる。断面14を積み重ねると、図10に示されているような立体ブレード11が生じる。図11は、本発明のブレード11及び断面形状14を画定するために使用される座標軸を表す無作為選出ブレードの断面を示す定義図である。
本発明のブレードは、以下の方法に従って設計された。単一インペラ軸流ファン100及び付随のブレード11によって満たすべき一連のファン性能パラメータ及び設計制約を設定した。ファン性能パラメータには、1分当たりの立方フィート(ft/m)単位の自由空気状態での体積流量、軸速度(rpm)、及び1立方フィート当たりのポンド(lbs/ft)単位の流入空気密度が含まれる。設計制約には、ファンの寸法(軸方向幅を含む)、ファン重量、モータの入力電力、及び音響的騒音特性(acoustic noise signature)が含まれる。これらの性能パラメータ及び設計制約は、体積流量を240ft/分、軸速度を3400rpm、流入空気密度を0.075lbs/ft、ファン軸方向幅寸法を1インチに設定した。これらは最適要件であるが、225〜255ft/分の体積流量、3200〜3600rpmの軸速度でも満足できる結果が得られるであろう。これらのパラメータ及び制約の中で最も重要なものは、体積流量及びファン軸方向幅寸法である。
空力設計用に、特定のファン性能パラメータを与えて上記設計制約を満たすことができる翼弦長34、そり角28、及び食い違い角26の最適値を決定するために、多重流線形間接方法(multi-streamline, indirect method)を使用した。経験に基づいて、所望の仕事分布を選択した。仕事分布は、インペラ10の出口(断面14の後縁部18)での空気流の角運動量分布として定義される。仕事分布は、翼弦長34の大きさに影響する。最後になるが、経験に基づいて、流量及びファン幅が最適化されるように、インペラブレードの数を選択した。
次のステップは、そり曲線及び厚さ分布を決定することであった。これらの分布は、ベジェ曲線を使用して決定され、そのような使用の一例が、Casey著「A Computational Geometry for the Blades and Internal Flow Channels of Centrifugal Compressors」(遠心コンプレッサのブレード及び内部流路の計算幾何学)ASME 82−GT−155に引用されている。この方法は、次のパラメトリック形式:
Figure 2004286032
でそり曲線及び厚さの分布を決定する。但し、
F(u)は、ベジェ曲線の解(solution)を表し、この場合、それはそり曲線のx及びy座標と共に厚さ分布を決定するために個別に適用され、
Figure 2004286032
uは、0及び1間を直線的に変化するパラメータであり(前縁部16でu=0、後縁部18でu=1)、
は、ベジェ制御点の一次元配列であり、
Figure 2004286032
は、n次のバーンスタイン多項式であり、
n+1は、ベジェ制御点の数であり、
Figure 2004286032
は、CRC標準数表第22版、1974年、627頁に定められた二項係数である。
nに18を選択し、そのため、結果として得られるベジェ方程式は、19個の制御点を生じる18次多項式であった。そのように選択することによって、ブレード11の断面形状14の最適化を、より低次の多項式よりはるかに正確に行うことができる。得られるベジェ曲線の式は次の通りである。
Figure 2004286032
但し、
は、翼弦長によって正規化されたそり曲線のx座標であり、
は、翼弦長によって正規化されたそり曲線のy座標であり、
は、翼弦長によって正規化された厚さ分布であり、
〜A18は、以下の値
Figure 2004286032
に従ったバーンスタイン多項係数であり、
〜x18(以下では「x」と呼ぶ)は、ベジェ制御点の正規化されたx座標であり、
〜y18(以下では「y」と呼ぶ)は、ベジェ制御点の正規化されたy座標であり、
〜t18(以下では「t」と呼ぶ)は、正規化された厚さ制御点である。
経験に基づいて、ベジェ制御点x、y及びtの初期値を選択した。これらの制御点で、そり及び厚さ分布について上記式を解いた。
最適翼弦長34、そり角28及び食い違い角26と共に分布を決定してから、非粘性流分析を使用して、負圧(上)側及び圧力(下)側での表面速度分布をブレード11の仕事分布と共に決定した。仕事分布プロファイルが初期設計選択と合致することを検証すると共に、好適な速度プロファイルが達成されたことを確認するために、設計者が速度分布及び結果としての仕事分布を確かめた。
速度分布が境界層はがれを促進してブレード11の性能を低下させることがない点で好都合である好適な減速勾配を示す典型的な望ましいブレード表面速度分布を求める。図12は、ほぼ本発明に従った設計状態(r/rtip=0.6459)での好都合なブレード表面速度分布を不都合なブレード表面速度分布と比較して示す比較グラフである。好都合な仕事分布は、最大仕事分布が根元部分及び先端部分間のいずれかの点に位置するものである。
初期反復の後、結果としての速度分布及び仕事分布が設計者には好ましくないか、満足できないものであったので、異なったそり及び厚さ分布を得るために、ベジェ制御点を手動で変更した。再度、速度及び仕事分布を分析して、好都合な解が達成されたかどうか判断した。好都合な解が得られるまで、この処理を繰り返した。好適な実施形態では、最適化された正規化ベジェ制御点が、図13A〜図13Cに表形式で示されている。
これらの最適化ベジェ制御点が、エーロフォイル断面14の根元部分42における最適化そり分布及び厚さ分布と共に、図14及び図15にグラフ表示されている。好適な実施形態のエーロフォイル断面14の5つすべての仕事分布が、図16にグラフ表示されている。図16に示されているように、最大仕事分布は、根元部分及び先端部分間に位置している。好適な実施形態のエーロフォイル断面14の5つすべてのそり曲線及び厚さ分布が、r/rtip=0.7908での断面プロファイルの表示と共に、図17及び図18に示されている。
最適化そり曲線及び厚さ分布から、DOVER PUBLICATIONS, INC.が1959年に出版したIRA H. ABBOTT及びALBERT E. VON DOENHOFF著「Theory of wing sections」の111〜13頁に引用されているようなNACA群(families)の翼の選択に使用されているものと同様にして、ブレード表面座標を決定した。
ブレード表面座標は、以下のように翼弦線32、そり曲線36及び正規厚さ分布からわかる。
Figure 2004286032
但し、
UPPER、YUPPER、XLOWER及びYLOWERは、それぞれブレードの上(負圧)面22及び下(圧力)面24の座標であり、
及びYcは、そり曲線36の座標であり、
は、ブレード11の厚さの半分であり、
Tan$は、Tan$=dY/dXの場合のそり曲線36の傾斜である。
好適な実施形態の正規化断面プロファイルが、図19に作図して示されている。図21A〜図21Eは、好適な実施形態の表面座標を無次元値で(non-dimensional values)示す表である。
各半径方向位置での所望断面14がわかれば、各断面14を所定の積み重ね距離だけ根元部分42からずらしながら、5つの断面14の各々を円周方向及び軸方向に積み重ねることによって、立体ブレード11が形成される。5つの断面14を、滑らかに連続するようにブレンドする。結果として得られた5つの断面プロファイルの最適値が、図20に示されている。主要な定義パラメータは、翼弦の約19%〜翼弦の約20%間にほぼ常に位置する最大厚さ、及び翼弦の約45%〜翼弦の約46%間にほぼ常に位置する最大そりである。これらは最適値範囲であるが、性能パラメータ及び設計制約を、最適ではないが満足できるようにほぼ満たす広い値範囲がある。これらの値は、翼弦の約16%〜翼弦の約23%間にほぼ常に位置する最大厚さ、及び翼弦の約40%〜翼弦の約51%間にほぼ常に位置する最大そりである。
図20には、最大厚さ及び最大そり高さ(共にインチ単位及び特定半径方向位置での翼弦長の百分率の両方で表示)、そり角、食い違い角、半径、翼弦長、及び円周方向及び軸方向積み重ね距離などの各断面プロファイルのための他の主要定義パラメータも示されている。各断面プロファイルのインチ単位の最大厚さは、一定値であることが特徴である。翼弦長の百分率としての最大厚さは、根元部分での最大値から、インペラの中心から先端部分まで測定した半径の79%〜約90%にほぼ位置する最小値まで減少した後、ブレードの先端部分まで値が増加するように変化する。最大そり高さは、インチ単位及び特定半径方向位置での翼弦長の百分率の両方で、根元部分での最大そり高さから、ブレードの先端部分での最大そりの高さ値まで連続的に減少するように変化する。
そり角は、根元部分での最大値が、ブレードの先端部分の値まで連続的に減少することを特徴とする。他方、食い違い角は、根元部分での最小値が、ブレードの先端部分の値まで連続的に増加することを特徴とする。さらに、ブレード11の断面プロファイルは、放物線に似た形状である前縁部、凸状上面、及び前縁部近くで凸状かつ後縁部近くで凹状の下面を有する幾何学的形状で記述することができる。
図20の他のパラメータには、アスペクト比及びソリディティが含まれる。アスペクト比は、ブレードの長さを特定断面における翼弦で割った無次元単位の値として定義される。ブレードの長さは、先端部分の半径(rtip)から根元部分の半径(rroot)を引いた値として定義される。ソリディティは、特定半径方向位置での翼弦長をブレード間隔で割った無次元単位の値として定義される。ブレード間隔は、ある半径における隣接ブレード間の距離であって、さらには2Brをブレード数で割ることによって定められる。最後になるが、正規化半径、正規化翼弦、正規化円周方向及び軸方向積み重ね距離が図20に示されており、これらはすべて、特定半径位置におけるパラメータの値をそのパラメータの最大値で割った無次元単位の値として定義される。ここで論じるブレードは、以下に述べる反転インペラに使用することができる。
[反転インペラ]
図20の他のパラメータには、アスペクト比及びソリディティが含まれる。アスペクト比は、ブレードの長さを特定断面における翼弦で割った無次元単位の値として定義される。ブレードの長さは、先端部分の半径(rtip)から根元部分の半径(rroot)を引いた値として定義される。ソリディティは、特定半径方向位置での翼弦長をブレード間隔で割った無次元単位の値として定義される。ブレード間隔は、ある半径における隣接ブレード間の距離であって、さらには2.rをブレード数で割ることによって定められる。最後になるが、正規化半径、正規化翼弦、正規化円周方向及び軸方向積み重ね距離が図20に示されており、これらはすべて、特定半径位置におけるパラメータの値をそのパラメータの最大値で割った無次元単位の値として定義される。ここで論じるブレードは、以下に述べる反転インペラに使用することができる。
ファンによって押し進められる空気がファンの下流側でまったく制限されない時、その状態を自由空気と呼ぶ、すなわち、ファンからの流れに抵抗する静圧がゼロである。空気が制限される時、たとえば、1組の電子部品上を進んで、電子部品を包囲する容器から押し出される時、一定量の静圧が増加するであろう。特定の空気流において静圧がどれだけ増加するかは、冷却すべき電子部品の配置、電子部品を取り囲む容器の寸法、及び容器がどのように大気に通気しているかを含めた多くの物理的パラメータによって決まる。すなわち、非常に複雑な1組の電子部品が小さいボックス内に限定的な換気状態で入っている場合、静圧が比較的高くなる一方、大型で良好な換気状態の容器に簡単な1組の電子部品が入っている場合、同量の空気流に対して静圧が比較的低くなるであろう。
古典的風量理論では、2つのファンを互いに直列に同軸配列すると、結果的に、自由空気の場合、すなわち、ファンの下流側に背圧がほとんどない場合、風量の増加が最小になると予想される。古典的理論では、背圧が増加すると、1組の同軸配列ファンの風量が、単一ファンの場合の2倍まで増加することが予想される。
図6Aは、IMC製で5910シリーズのチューブ軸流ファンと指定されたファンの風量(CFM)対静圧(水柱インチ(inches of H2O))のグラフ表示である。図6Aからわかるように、自由空気状態の場合の風量値が約240CFMであるのに対して、約0.6水柱インチの静圧値では、風量が0CFMである。
IMC5910シリーズの2つの同軸的なチューブ軸流ファンで試験を行った。ファンは、互いに同軸的に隣接配置した。これらのファンが同一方向に回転する場合及び逆(反対方向に)回転する場合について、風量対静圧の測定を行った。これらの試験の結果が、図6Bに示されている。図6Bからわかるように、縦列に並んで回転するファンの場合、古典的風量理論に従う、すなわち、自由空気状態では風量がわずかに増加するだけであり、これは、静圧が増加する時、徐々に増加するだけである。
本発明に従った反転インペラ構造が、図7Dに示されている。第2インペラのピッチが第1インペラのピッチと逆であるので、反転ブレードは空気を同一方向に押し進める。図6Bからわかるように、古典的風量理論では、ある静圧に対する風量を適切に予想することができない。自由空気の場合、風量の増加がやはりごくわずかに過ぎないが、本発明の反転する好適な実施形態の場合、風量の増加がより速やかであると共に顕著である。
この著しい風量効率増加を説明することができる空力的効果は、2つの主要カテゴリ、すなわち形状抗力(profile drag)及び二次流れに分類される。形状抗力は、インペラブレードの形状及び表面仕上げ、インペラによって生じる乱流空気、ブレードによって生じる均一抗力(even drag)からすべてを構成する。インペラによって生じる乱流空気が、図7Aに示されている。二次流れは、主に渦流(半径方向速度)及びファンの内壁による風量損失からなる。渦流の説明が、図7Bに示されている。この流れは、空気とインペラのブレード及びインペラを包囲するチューブの拘束壁との相互作用によって発生する。これらの空力的効果のすべてが、ファンの効率を低下させる。
「理論的には」、すなわち、複雑な空力的要素を考慮しなければ、ファン効率が100%である。すべての空力的要素を考慮に入れると、ファンの効率は50%より相当に低くなる可能性がある。共回転試験の場合、これらの効果が増強される。流入空気は、理論的には層状である(乱流を伴わないで自由に流れる)。空気が第1ファンを離れた後、それが乱流になって、「コルクスクリュー」状に下流へ流れる。ここで、この乱流空気が、同一方向に回転中の別のファンの流入空気になる。最終的な下流空気は、さらに激しい「コルクスクリュー」状になる。これらの望ましくない空力的効果は、ファン効率全体を著しく損なう。
軸流ファンの高効率を維持するために、設計者は、空力的効果をできる限り抑制することを望む。軸流ファンに最良の形状を可能にする設計制約は、ロータブレードに流入する空気の方向を変化させるために予回転ステータ(pre-rotating stators)を使用すること、及び流れをできる限り自由流の流れに戻して調整するために直線化ステータを使用することである。そのような理想形状が、図7Cに示されている。そのような理想構造は、二次流効果を有意に最小限に抑え、それにより、空力的効率(及びファン効率全体)をより高いレベルに維持するであろう。
図7Dに示されているように、本発明の反転インペラを使用することによって、図7Cの理想構造と同一効果が達成される。第1インペラに流入した空気の層流を第1インペラによって「予回転」させ、それにより、下流側で軸方向及び半径方向の両方の(渦)流を増加させる。これらの流れは次に、同軸的で逆方向に回転する第2インペラによって「直線化」される。第2ファンは、軸流をさらに増加させ、そうでなければシステム内で失われる半径方向(渦)流の大部分を取り戻す。第1インペラによって生じた渦流が第2インペラによってほとんど打ち消されてしまうので、空力的効率が向上する。このような効率の向上は、システムの全風量の改善を助ける。
本発明はさらに、ハウジング内に整数N個のほぼ同軸的なインペラを配置すること、少なくとも1つのインペラをそのN個のインペラの第1インペラの回転方向と逆の方向に回転させること、インペラを動作させることであって、それにより空気を同一方向に押し進める、動作させること、及び、ファン出口での静圧がある最低圧力より大きい限り、ハウジング内のN個のインペラから、単一インペラの風量のN倍を超える風量を発生することを含む方法を考えている。静圧は、ファンの寸法を含めた個々のファンの特性によって決まる。たとえば、二重反転インペラを有する6インチ直径のファンの場合、静圧はほぼ0.3水柱インチである。
図6Bは、最適圧力範囲内での動作時に、二重反転インペラの風量が、ある静圧値について同一環境で、すなわち、背圧条件を設定するために同一ハウジング内で動作中の単一の正転インペラの風量の2倍を相当に超えることができることを示している。また、図6Bに示されているように、本発明の反転インペラは、同一方向に回転する2つのインペラによって発生する風量より相当に多い風量を与える。
本発明は、ほぼ同軸的な多重インペラを含むことができる。少なくとも1つのインペラが、逆方向に回転する。このように、整数N個のインペラを設けることができる。Nが偶数である場合、インペラの半分が第1方向に回転し、半分が逆方向に回転するであろう。隣接インペラ間で回転方向が交互するであろう。すべてのインペラが同一でもよく、その場合、ファンの出口での静圧がある最低圧力より大きい限り、全風量は、上記の同一環境で動作中の単一インペラの風量のN倍を相当に超える。インペラが同一でない場合、ファンの出口での静圧がある最低圧力より大きい限り、全風量は、同一環境で動作中のN個のインペラの各インペラの風量の合計を相当に超える。
同軸反転構造の多重インペラは、IMC5910シリーズのものか、または「ブレード構造のパラメータ」と題する項で先に記載したブレードなどのブレードを有することができる。
第1及び第2インペラの各々は、専用の個別モータを有し、モータのステータは、逆方向の回転を生じるために逆に巻線されている。変更例として、それらのモータがシャフトを共有してもよい。
要約すると、本発明は、新規な回路及びハウジングを備えた軸流ファンであって、所望の性能パラメータ及び設計制約を維持しながら、軸流ファンの軸方向幅を小さくすることができる複数のエーロフォイル断面を互いにブレンドして構成された新規なブレードを有する軸流ファンを提供する。本発明はまた、ある静圧値における風量値が、古典的理論に基づいて予想される値よりはるかに大きい複数の同軸反転インペラも開示している。また、電子部品の冷却に使用される電気モータ用の寸法パラメータに関する設計制約にもかかわらず、ブレードは、多数の同軸反転インペラをそれらの可能な最大限の利点まで利用することができるようにする。
さらに、以下の設計改良、すなわち、
正転インペラに取り付けられるブレード数と異なった数のブレードを逆転インペラに取り付けること(これは、ファンの騒音特性を低減させる)、
ファン内におけるインペラの軸方向位置に基づいてそのインペラの直径を決定することであって、それによりファンの出口付近のインペラの直径を、ファンの入口付近のインペラの直径より大きくする、インペラの直径を決定すること(これは、風量を増加させる)、及び、
ファンの入口からファンの出口に向かって増加する円錐断面直径を有する円錐形ハウジング内にインペラを配置すること(図7Eに示されており、これは、風量を増加させる)、
のうちの1つまたは複数を実施することによって、本発明の反転軸流ファンにおいてさらなる風量または音響的利点を達成することができる。
本発明の好適な実施形態を図示して詳細に説明してきたが、それに対するさまざまな変更及び改良が、当該技術分野の専門家には容易に明らかになるであろう。たとえば、開示値からのわずかなずれ及び開示方程式の近似式は、本発明の精神に含まれるものとする。さらに、断面設計のブレンドまたは異なったブレンド方法によるわずかなずれまたは差も、本発明の精神及び範囲内に含まれるものとする。値の違いがわずかである場合、制御点の数に対して違った値を選択すること、断面プロファイルの数に対して違った値を選択すること、ブレード数に対して違った値を選択すること、違った半径方向距離で断面プロファイルを画定すること、または、違った積み重ね距離、食い違い角、そり角または翼弦長を選択するなどの、設計方法のわずかの変更によって、ほぼ同一の性能パラメータ及び設計制約であるか、あるいは性能パラメータ及び設計制約の違いに商業的重要性がほとんどないようにした実行可能な製品を得ることができる。好適な実施形態の図面及び説明は、本発明の範囲を制限するのではなく、例示として与えられており、本発明の精神及び範囲内において、上記のような変化及び変更のすべてを包含するものとする。
単一インペラ軸流ファンの分解斜視図である。 それの組み立て断面図である。 ステータアセンブリの分解斜視図である。 印刷回路板ベース52の上面図である。 ステータコア及び巻線の上面図である。 単一インペラ軸流ファンの流量(ft/分)対静圧(水柱インチ)のグラフである。 (A)正転する正ピッチのブレードを有する単一インペラ軸流ファン、(B)逆転する逆ピッチのブレードを有する単一インペラ軸流ファン、(C)両インペラが正転する正ピッチのブレードを有する二重インペラ共回転軸流ファン、及び(D)本発明に従って、一方のインペラが正転する正ピッチのブレードを有し、他方のインペラが逆転する逆ピッチのブレードを有する二重インペラ反転軸流ファンの4種類の軸流ファンの流量(ft/分)対静圧(水柱インチ)のグラフである。 インペラの回転から生じるブレードの動きによって起きてブレードの表面を通過する空気流を示す標準インペラブレードの断面図である。 ファンによって出力される空気の軸流と共に、インペラの回転によって生じる半径方向(渦)空気流を示す単一インペラ軸流ファンの立体図である。 下流側空気流の半径方向成分を除去するためにステータアセンブリを用いた単一インペラ軸流ファンの理想的な断面図である。 第1インペラによって与えられた半径方向空気流が第2インペラによって除去される、本発明を具現する二重インペラ反転軸流ファンの理想的な断面図である。 円錐形ハウジングを有する二重インペラ反転軸流ファンの理想的な断面図である。 本発明に従ったブレードの断面図である。 本発明に従ったブレードの正面図である。 本発明に従ったブレードの側面図である。 本発明に従ったブレードの立体図である。 本発明によって用いられるブレードの説明に使用される座標系の定義図である。 本発明に従った設計条件に近い好都合なブレード表面速度分布を不都合なブレード表面速度分布と比較した比較グラフである。 本発明に従った好適な実施形態の5つのエーロフォイル断面における最適の正規化ベジェ制御点の表である。 本発明に従った好適な実施形態の5つのエーロフォイル断面における最適の正規化ベジェ制御点の表である。 本発明に従った好適な実施形態の5つのエーロフォイル断面における最適の正規化ベジェ制御点の表である。 本発明に従った好適な実施形態の根元部分でのそり曲線分布、及び関連の最適な正規化ベジェ制御点のグラフである。 本発明に従った好適な実施形態の根元部分での正規厚さ(normal thickness)分布、及び関連の最適な正規化ベジェ制御点のグラフである。 本発明に従った好適な実施形態の正規化仕事分布のグラフである。 本発明に従った好適な実施形態の5つのエーロフォイル断面のそり曲線分布のグラフである。 本発明に従った好適な実施形態の5つのエーロフォイル断面の厚さ分布のグラフである。 本発明に従った好適な実施形態のブレードの5つのエーロフォイル断面の正規化プロファイルのグラフである。 本発明に従った好適な実施形態の5つのエーロフォイル断面を記述する最適値の表である。 本発明に従った好適な実施形態の正規化表面座標の表である。 本発明に従った好適な実施形態の正規化表面座標の表である。 本発明に従った好適な実施形態の正規化表面座標の表である。 本発明に従った好適な実施形態の正規化表面座標の表である。 本発明に従った好適な実施形態の正規化表面座標の表である。

Claims (9)

  1. 第1インペラに使用される第1ブレードの第1最適そり曲線及び厚さ分布と、第2インペラに使用される第2ブレードの第2最適そり曲線及び厚さ分布とを決定する方法であって、
    前記第1インペラ及び前記第2インペラからなる反転ファンの一連の性能パラメータ及び設計制約を決定するステップ、
    前記第1ブレードの翼弦長、そり角及び食い違い角と、前記第2ブレードの翼弦長、そり角及び食い違い角とを決定するステップ、及び、
    ベジェ曲線を使用するステップであって、それにより、前記第1ブレード及び前記第2ブレードの最適そり曲線及び厚さ分布を決定する、使用するステップ、
    を含む方法。
  2. 前記設計制約の1つは、前記反転ファンにおいて、前記第2ブレードが前記第1ブレードと逆のピッチであることを除いて、前記第1ブレードが前記第2ブレードと同一であることである請求項1に記載の方法。
  3. それぞれが根元部分、先端部分、前縁部及び後縁部を有する、第1インペラに使用される第1ブレード及び第2インペラに使用される第2ブレードにおける最適そり曲線及び厚さ分布を決定する方法であって、
    前記第1インペラ及び前記第2インペラからなる反転ファンの一連のファン性能パラメータ及び設計制約を決定するステップ、
    ベジェ曲線を使用するステップであって、それにより、適当なそり曲線及び厚さ分布を式:
    Figure 2004286032
    に従って決定し、
    但し、
    F(u)は、ベジェ曲線の解を表し、
    uは、0及び1の間を直線的に変化するパラメータであり(前縁部でu=0、後縁部でu=1)、
    は、ベジェ制御点の一次元配列であり、
    Figure 2004286032
    は、n次のバーンスタイン多項式であり、
    Figure 2004286032
    n+1は、ベジェ制御点の数であり、
    Figure 2004286032
    は、CRC標準数表第22版、1974年、627頁に定められた二項係数である、使用するステップ、
    ベジェ制御点の初期値を選択するステップ、
    F(u)を個別に適用するステップであって、それにより、そり曲線のx及びy座標を厚さ分布と共に決定する、適用するステップ、
    非粘性流分析を行うステップであって、それにより、結果として得られたそり曲線及び厚さ分布の各々について、表面速度分布及び仕事分布を決定する、行うステップ、及び、
    ベジェ制御点を変更して、異なったそり及び厚さ分布を求め、好都合な解が得られるまで、その処理を繰り返すステップ、
    を含む方法。
  4. 前記ファン性能パラメータは、体積流量、軸速度、及び流入空気密度を含む請求項3に記載の方法。
  5. 前記設計制約は、ファン寸法、ファン重量、モータの入力電力、及び音響的騒音特性を含む請求項3に記載の方法。
  6. 前記ファン性能パラメータは、体積流量、軸速度、及び流入空気密度を含み、
    前記設計制約は、ファン寸法、ファン重量、モータの入力電力、及び音響的騒音特性を含む請求項3に記載の方法。
  7. nに18を選択し、それにより、結果として得られるベジェ方程式は、18次多項式である請求項に記載の方法。
  8. 前記表面速度分布は、境界層はがれを促進しない請求項に記載の方法。
  9. 前記仕事分布は、前記根元部分及び前記先端部分間の点に最大仕事分布を置く請求項3に記載の方法。
JP2004083711A 2003-03-21 2004-03-22 反転インペラを有する軸流ファン用のインペラブレード Expired - Fee Related JP4526286B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/393,868 US6856941B2 (en) 1998-07-20 2003-03-21 Impeller blade for axial flow fan having counter-rotating impellers

Publications (3)

Publication Number Publication Date
JP2004286032A true JP2004286032A (ja) 2004-10-14
JP2004286032A5 JP2004286032A5 (ja) 2006-08-31
JP4526286B2 JP4526286B2 (ja) 2010-08-18

Family

ID=33298242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083711A Expired - Fee Related JP4526286B2 (ja) 2003-03-21 2004-03-22 反転インペラを有する軸流ファン用のインペラブレード

Country Status (4)

Country Link
US (1) US6856941B2 (ja)
JP (1) JP4526286B2 (ja)
CN (2) CN1542288A (ja)
TW (1) TWI370872B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007011355A1 (en) * 2005-07-19 2007-01-25 Honeywell International Inc. Variable nozzle turbocharger
CN100460688C (zh) * 2005-08-23 2009-02-11 海尔集团公司 柜式空调室内机的离心风扇
JP2011243028A (ja) * 2010-05-19 2011-12-01 Ihi Corp ターボ機械の翼形状設計方法およびプログラム
JP2012510018A (ja) * 2008-11-24 2012-04-26 ロールス・ロイス・ピーエルシー 翼の形状および対応する翼を最適化する方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050068729A1 (en) * 2003-09-25 2005-03-31 Lin Jen Cheng Dual-fan heat dissipator
JP2005139917A (ja) * 2003-11-04 2005-06-02 Aisin Seiki Co Ltd 磁力駆動式ポンプ
DE102005005977A1 (de) * 2005-02-09 2006-08-10 Behr Gmbh & Co. Kg Axiallüfter
FR2889308B1 (fr) * 2005-07-28 2007-10-05 Snecma Controle des aubes de turbomachine
US7542272B2 (en) * 2005-09-30 2009-06-02 Dell Products L.P. Rotatable cooling fans and method for use
JP4710613B2 (ja) * 2006-01-05 2011-06-29 株式会社日立プラントテクノロジー 軸流ポンプ
IL179666A0 (en) * 2006-11-28 2007-05-15 Yefim Kereth Torque-balancing differential mechanism
US7819641B2 (en) 2007-03-05 2010-10-26 Xcelaero Corporation Reverse flow cooling for fan motor
CN100485194C (zh) * 2007-07-30 2009-05-06 北京航空航天大学 一种离心叶轮
US20100200201A1 (en) * 2009-02-06 2010-08-12 Yu-Cheng Chen Fan structure
CN102094836B (zh) * 2009-12-14 2014-11-05 国立大学法人东京大学 双重反转式轴流鼓风机
US9309769B2 (en) * 2010-12-28 2016-04-12 Rolls-Royce Corporation Gas turbine engine airfoil shaped component
US8358030B2 (en) 2011-03-17 2013-01-22 Via Verde Limited Wind turbine apparatus
US9476385B2 (en) * 2012-11-12 2016-10-25 The Boeing Company Rotational annular airscrew with integrated acoustic arrester
WO2014089357A1 (en) * 2012-12-05 2014-06-12 JVS Associates, Inc. Axial fan drive and hub assembly for evaporative cooling equipment
KR101664906B1 (ko) * 2014-08-11 2016-10-13 한국생산기술연구원 역회전형 펌프 터빈, 이를 포함하는 자가 발전 시스템 및 역회전형 펌프 터빈의 최적화 설계 방법
WO2017008025A1 (en) 2015-07-09 2017-01-12 Xcelaero Corporation Compact axial fan
FR3042327B1 (fr) * 2015-10-07 2019-08-02 Guillemot Corporation Systeme de refroidissement d'un moteur electrique
CN106059191A (zh) * 2016-06-30 2016-10-26 无锡小天鹅股份有限公司 干衣机的电机组件和具有其的干衣机
DE102018200480A1 (de) * 2018-01-12 2019-07-18 Mahle International Gmbh Steuereinrichtung zum Ansteuern eines E-Motors
CN108457704B (zh) * 2018-05-26 2023-10-27 吉林大学 一种仿生叶片
CN108869358B (zh) * 2018-07-09 2023-09-01 广东美的环境电器制造有限公司 风扇
GB201818683D0 (en) * 2018-11-16 2019-01-02 Rolls Royce Plc Boundary layer ingestion fan system
GB201818684D0 (en) * 2018-11-16 2019-01-02 Rolls Royce Plc Boundary layer ingestion fan system
GB201818680D0 (en) * 2018-11-16 2019-01-02 Rolls Royce Plc Boundary layer ingestion fan system
GB201818681D0 (en) 2018-11-16 2019-01-02 Rolls Royce Plc Boundary layer ingestion fan system
GB201818686D0 (en) 2018-11-16 2019-01-02 Rolls Royce Plc Boundary layer ingestion fan system
GB201818687D0 (en) * 2018-11-16 2019-01-02 Rolls Royce Plc Boundary layer ingestion fan system
GB201818682D0 (en) 2018-11-16 2019-01-02 Rolls Royce Plc Boundary layer ingestion fan system
CN111339609B (zh) * 2018-12-19 2023-07-21 中国航发商用航空发动机有限责任公司 叶片及其厚度分布的构造方法、构造装置以及计算机可读存储介质
CN109779971B (zh) * 2019-01-21 2020-06-09 上海交通大学 基于曲率控制的高负荷压气机叶型径向积叠造型优化方法
CN111911429B (zh) * 2019-05-08 2022-02-11 广东美的环境电器制造有限公司 风扇
CN110147608B (zh) * 2019-05-20 2022-05-17 福建双延兴业传动科技股份有限公司 基于风扇叶片的散热同步带轮设计方法
CN111523220B (zh) * 2020-04-17 2023-03-21 中国空气动力研究与发展中心高速空气动力研究所 一种考虑流动影响的风扇、压气机转静干涉宽频噪声快速预测方法
CN114688049B (zh) * 2020-12-25 2024-02-20 广东美的白色家电技术创新中心有限公司 风机组件和空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834617A (en) * 1987-09-03 1989-05-30 United Technologies Corporation Airfoiled blade
JPH02264200A (ja) * 1989-03-31 1990-10-26 Toshiba Corp 送風装置
US5445105A (en) * 1994-09-30 1995-08-29 The United States Of America As Represented By The Secretary Of The Navy Torque balanced postswirl propulsor unit and method for eliminating torque on a submerged body
JP2002520993A (ja) * 1998-07-20 2002-07-09 エヌエムビー(ユーエスエイ)・インコーポレイテッド 軸流ファン
JP2003056498A (ja) * 2001-08-01 2003-02-26 Taida Electronic Ind Co Ltd ユニット式ファン及びそれを用いる静的ブレードファンフレーム構造

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127093A (en) 1964-03-31 Ducted sustaining rotor for aircraft
US588A (en) 1838-02-01 Steam
US1001956A (en) 1910-10-11 1911-08-29 Albert B Holson Balanced-propeller gear.
US1331997A (en) 1918-06-10 1920-02-24 Russelle E Neal Power device
US1856587A (en) 1929-06-08 1932-05-03 Emerson Electric Mfg Co Fan
US1858911A (en) 1929-10-18 1932-05-17 Fiat Spa Device for coupling two aircraft engines with pulling or tractive screw propellers roating in opposite directions
US1985022A (en) 1931-02-09 1934-12-18 American Machine & Metals Drive for fans and the like
US2313413A (en) 1940-07-02 1943-03-09 John R Weske Axial flow fan
US2811303A (en) 1948-12-28 1957-10-29 Joy Mfg Co Impeller for axial flow fans
US2609055A (en) 1949-11-08 1952-09-02 Hartzell Propeller Fan Company Reversible propeller blade
US2974728A (en) 1957-10-21 1961-03-14 Lennox Ind Inc Fan construction
FR1218500A (fr) 1958-12-12 1960-05-11 Lyonnaise Ventilation Perfectionnements apportés aux ventilateurs hélicoïdes à accélération méridienne
US3169694A (en) 1963-04-08 1965-02-16 Borchers Ariel George Propeller fans and the like
US3574477A (en) 1969-02-19 1971-04-13 Boeing Co Noise attenuating system for rotary engines
US3867062A (en) 1971-09-24 1975-02-18 Theodor H Troller High energy axial flow transfer stage
US4130770A (en) 1974-02-26 1978-12-19 Papst-Motoren Kg Axial flow fan having improved axial length structure
US4046489A (en) 1975-10-08 1977-09-06 Eagle Motive Industries, Inc. Aerodynamic fan blade
FR2427249A1 (fr) 1978-05-29 1979-12-28 Aerospatiale Profil de voilure pour aeronef
US4345161A (en) 1979-02-23 1982-08-17 George Crompton Multi-wheel windmill electro-generator
US4360751A (en) 1980-06-06 1982-11-23 Kollmorgen Technologies Corporation Fan with integral disc-shaped drive
US4431376A (en) 1980-10-27 1984-02-14 United Technologies Corporation Airfoil shape for arrays of airfoils
US4474534A (en) 1982-05-17 1984-10-02 General Dynamics Corp. Axial flow fan
DK149694C (da) 1983-10-07 1987-04-06 Nordisk Ventilator Aksialblaeserhjul
US4569631A (en) 1984-08-06 1986-02-11 Airflow Research And Manufacturing Corp. High strength fan
JP2590514B2 (ja) 1987-03-13 1997-03-12 日本電装株式会社 送風ファン
DK155848C (da) 1987-04-10 1989-10-02 Novenco As Aksialventilatorhjul
FR2626841B1 (fr) 1988-02-05 1995-07-28 Onera (Off Nat Aerospatiale) Profils pour pale d'helice aerienne carenee
US4830574A (en) 1988-02-29 1989-05-16 United Technologies Corporation Airfoiled blade
DK313088D0 (da) 1988-06-09 1988-06-09 Novenco As Loebehjul til en aksialventilator
US4941803A (en) 1989-02-01 1990-07-17 United Technologies Corporation Airfoiled blade
US4971520A (en) 1989-08-11 1990-11-20 Airflow Research And Manufacturing Corporation High efficiency fan
US5433586A (en) 1991-03-27 1995-07-18 Cessna Aircraft Company Tapered propeller blade design
EP0526881B1 (en) * 1991-08-06 2002-02-06 Canon Kabushiki Kaisha Three-dimensional model processing method, and apparatus therefor
US5244347A (en) 1991-10-11 1993-09-14 Siemens Automotive Limited High efficiency, low noise, axial flow fan
US5181830A (en) 1991-11-21 1993-01-26 Chou Rudy S Blade for axial flow fan
US5273400A (en) 1992-02-18 1993-12-28 Carrier Corporation Axial flow fan and fan orifice
DE69328212T2 (de) 1992-05-15 2000-09-07 Siemens Canada Ltd Flacher Axiallüfter
US5320493A (en) 1992-12-16 1994-06-14 Industrial Technology Research Institute Ultra-thin low noise axial flow fan for office automation machines
US5513951A (en) 1993-03-29 1996-05-07 Nippondenso Co., Ltd. Blower device
US5730583A (en) 1994-09-29 1998-03-24 Valeo Thermique Moteur Axial flow fan blade structure
US5439402A (en) * 1994-09-30 1995-08-08 The United States Of America As Represented By The Secretary Of The Navy Design of an integrated inlet duct for efficient fluid transmission
US5616004A (en) 1995-04-19 1997-04-01 Valeo Thermique Moteur Axial flow fan
JP2744772B2 (ja) 1995-05-31 1998-04-28 山洋電気株式会社 送風機及び電子部品冷却用送風機
US5755557A (en) 1995-08-03 1998-05-26 Valeo Thermique Moteur Axial flow fan
US5931640A (en) 1997-10-17 1999-08-03 Robert Bosch Corporation Oppositely skewed counter-rotating fans
US6565334B1 (en) * 1998-07-20 2003-05-20 Phillip James Bradbury Axial flow fan having counter-rotating dual impeller blade arrangement
US6674435B1 (en) * 1998-09-16 2004-01-06 Texas Instruments Incorporated Fast, symmetric, integer bezier curve to polygon conversion
TW488497U (en) 1999-03-02 2002-05-21 Delta Electronics Inc Supercharged fan stator for wind diversion
US6105206A (en) 1999-04-13 2000-08-22 Department Of Water And Power City Of Los Angeles Portable electrically powered blower apparatus
TW472910U (en) * 2000-08-28 2002-01-11 Aopen Inc Flexible storage device structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834617A (en) * 1987-09-03 1989-05-30 United Technologies Corporation Airfoiled blade
JPH02264200A (ja) * 1989-03-31 1990-10-26 Toshiba Corp 送風装置
US5445105A (en) * 1994-09-30 1995-08-29 The United States Of America As Represented By The Secretary Of The Navy Torque balanced postswirl propulsor unit and method for eliminating torque on a submerged body
JP2002520993A (ja) * 1998-07-20 2002-07-09 エヌエムビー(ユーエスエイ)・インコーポレイテッド 軸流ファン
JP2003056498A (ja) * 2001-08-01 2003-02-26 Taida Electronic Ind Co Ltd ユニット式ファン及びそれを用いる静的ブレードファンフレーム構造

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007011355A1 (en) * 2005-07-19 2007-01-25 Honeywell International Inc. Variable nozzle turbocharger
CN100460688C (zh) * 2005-08-23 2009-02-11 海尔集团公司 柜式空调室内机的离心风扇
JP2012510018A (ja) * 2008-11-24 2012-04-26 ロールス・ロイス・ピーエルシー 翼の形状および対応する翼を最適化する方法
JP2011243028A (ja) * 2010-05-19 2011-12-01 Ihi Corp ターボ機械の翼形状設計方法およびプログラム

Also Published As

Publication number Publication date
US6856941B2 (en) 2005-02-15
CN101328906A (zh) 2008-12-24
CN1542288A (zh) 2004-11-03
US20030194327A1 (en) 2003-10-16
JP4526286B2 (ja) 2010-08-18
TWI370872B (en) 2012-08-21
TW200506202A (en) 2005-02-16

Similar Documents

Publication Publication Date Title
JP4526286B2 (ja) 反転インペラを有する軸流ファン用のインペラブレード
US6565334B1 (en) Axial flow fan having counter-rotating dual impeller blade arrangement
JP5002664B2 (ja) インペラ用の羽根、該羽根を用いたインペラ、該インペラを用いた軸流ファン
US7455504B2 (en) High efficiency fluid movers
JP3483447B2 (ja) 送風装置
JP5273475B2 (ja) 直列式軸流ファン
JP2004353496A (ja) 薄型ファンモータ
US20070177349A1 (en) High efficiency fluid mover
EP1616102B1 (en) High performance axial fan
US20080219836A1 (en) Fan with heat dissipating outlet guide vanes
JP5728210B2 (ja) 軸流ファン
US20190226492A1 (en) Serrated fan blade, axial fan, and centrifugal fan
JP4374897B2 (ja) 軸流ファン
WO2003078848A1 (en) Engine-cooling fan assembly with overlapping fans
JP5425192B2 (ja) プロペラファン
JPH07500647A (ja) 軸流ファン
US11136987B2 (en) Series-connected fan
CN101044324B (zh) 风扇定子
JPH11193798A (ja) 送風装置
KR20180031933A (ko) 이동식 고효율 송풍기
JP6931778B2 (ja) 温度調和システムおよび車両
JP2003180051A (ja) 全閉外扇形回転電機の回転羽根
CN116104778A (zh) 一种基于叶片多特征设计的微型散热轴流风扇
US20170234331A1 (en) Fan and air-conditioning apparatus using the same
JPH0233496A (ja) 多翼送風機の羽根車

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4526286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees