JP2004281553A - 発光ダイオード - Google Patents

発光ダイオード Download PDF

Info

Publication number
JP2004281553A
JP2004281553A JP2003068464A JP2003068464A JP2004281553A JP 2004281553 A JP2004281553 A JP 2004281553A JP 2003068464 A JP2003068464 A JP 2003068464A JP 2003068464 A JP2003068464 A JP 2003068464A JP 2004281553 A JP2004281553 A JP 2004281553A
Authority
JP
Japan
Prior art keywords
layer
light emitting
emitting diode
diode according
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003068464A
Other languages
English (en)
Inventor
Toshio Nishida
敏夫 西田
Naoki Kobayashi
小林  直樹
Tomoyuki Ban
知幸 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003068464A priority Critical patent/JP2004281553A/ja
Publication of JP2004281553A publication Critical patent/JP2004281553A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

【課題】基板、バッファ層、発光ダイオード素子構造の透明性を向上することにより、半導体内部で生成された紫外光を効率よく外部に取り出す。
【解決手段】サファイア基板1の上に、アンドープAlGaN層4、Siドープn型AlGaN層5、SiドープAlN格子緩和層6、Siドープn型AlGaN短周期混晶超格子層7、Siドープn型AlGaNブロッキング層8、AlGaN単一量子井戸発光層9、Mgドープp型AlGaNブロッキング層10、Mgドープp型AlGaN短周期混晶超格子層11、p型オーミック電極12、パッド電極13、およびn型オーミック電極14を積層してなる発光ダイオード構造の下層に、低温成長AlN層2、pLPE−AlN層3を有する構成。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、発光ダイオードに係り、特に窒化物半導体を用いた紫外発光ダイオードに関する。
【0002】
【従来の技術】
従来、窒化物半導体、特にアルミニウム(Al)を含む窒化物半導体は、直接遷移型の半導体であり、波長400nm以下の紫外域の発光が可能なことから、従来にない紫外線を発する半導体光源を実現することに興味がもたれている。
また、このような紫外光源は、固体型の蛍光灯やバイオチップの分光分析、光硬化樹脂の硬化用光源、酸化チタン光触媒用の励起光源等の紫外線応用技術への適用範囲が広く、実用的な観点からも大きく期待されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の窒化物半導体結晶の成長においては、特にデバイスに応用する場合、窒化ガリウム(GaN)基板や炭化ケイ素(SiN)基板、シリコン(Si)基板など、紫外線、特に380nmより波長の短い紫外線に対して不透明な基板を用いることが多った。
また、紫外線に対して透過率の高いサファイア(Al)基板を用いる場合や窒化アルミニウム(AlN)基板を用いる場合には、表面に酸化アルミニウムが存在するために、中間層として結晶性を改善するGaNバッファ層を導入することが一般的に行なわれてきた。しかしながら、結晶性を向上するのに必要な比較的厚いGaN層を導入すると、波長380nm未満の紫外光に対しては透明性が低く、特にGaNのバンドギャップ波長である約360nmより短い波長では、100nm程度の厚さでも全く光を透過しない問題があった。
同様に、窒化物半導体においては、p型ドーピングが困難であるので、低抵抗なp型のオーミック接触を実現するために、p型コンタクト層としてGaNを用いることが多く、p型GaNコンタクト層においても、バンドギャップ波長である約360nmより短い波長では、100nm程度の厚さでも全く光を透過しない問題があった。
また、クラッド層の光透過率を改善するために、Al組成の高いAlGaN混晶層を用いると、GaNよりも電気抵抗が高くなるために素子抵抗が増加するという問題があった。
【0004】
これまで、我々は、窒化物半導体が窒化ガリウムや窒化インジウムだけではなく、Alを含んだよりバンドギャップの大きい混晶半導体を用いた場合でも、従来の発光ダイオード(LED)用の材料に匹敵する高い電流−発光変換効率(すなわち、内部量子効率)を実現でき、発光波長が400nmを大きく下回る紫外域においても高性能な発光デバイスが実現できる可能性があることを示してきた。(Appl. Phys. Lett., vol.79(2001)p.711)
しかしながら、上述したように、基板材料やバッファ層材料が波長380nm未満で不透明であることから、折角、半導体内部で電流から変換された光が、半導体もしくは基板内部で吸収され、外部に取り出される光が高々数%に過ぎないという問題があった。
【0005】
以上述べたように、紫外発光ダイオードの効率は発光波長に対して不透明、すなわち、光吸収性の基板材料、バッファ層、もしくは発光ダイオードの素子構造により低下しており、また、光透過率を改善しようとすると素子抵抗が高くなり、投入電力に対する効率、すなわち、パワー効率が低下するという問題があった本発明の目的は、基板、バッファ層、発光ダイオード素子構造の透明性を向上することにより、半導体内部で生成された紫外光を効率よく外部に取り出すことにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明では、紫外光に対しても透明なAlNバッファ層の少なくとも一部を大気にさらすことなく、発光ダイオード構造と連続して結晶化すること、擬液相成長法による高品質のAlNバッファ層を用いること、電気抵抗が低く透明性に優れたAlを含む窒化物半導体混晶超格子を用いること、p型オーミック電極金属をAlGaN混晶からなる層に直接接触させること、p型オーミック電極としてPdとAuを積層した複合金属を用いる方法等を組み合わせること等により、光取り出し助率を向上することを特徴とする。
【0007】
すなわち、本発明においては特許請求の範囲に記載するような構成になっている。
つまり、本発明の発光ダイオードは、発光層を含む発光ダイオード構造の下層に窒化アルミニウム層を有し、前記発光ダイオード構造と前記窒化アルミニウム層の少なくとも一部との間に再成長界面を有しないことを特徴とする。
また、前記窒化アルミニウム層の少なくとも一部が、結晶表面に形成した擬液相状態のアルミニウムを窒化して得られた窒化アルミニウム層を含むことを特徴とする。
また、前記窒化アルミニウム層の少なくとも一部が、サファイア基板上に1000℃以上の高温で成長して得られた窒化アルミニウム層を含むことを特徴とする。
また、前記窒化アルミニウム層の少なくとも一部に、バルクAlN結晶を含むことを特徴とする。
また、前記発光層の下層および上層に、窒化ガリウム層、炭化ケイ素層、ケイ素結晶が存在せず、発光強度の少なくとも50%以上が375nm以下の波長であることを特徴とする。
また、前記発光層の下層および上層に、窒化ガリウム層、炭化ケイ素層、ケイ素結晶が存在せず、発光強度の少なくとも50%以上が363nm以下の波長であることを特徴とする。
また、アルミウムを含む窒化物半導体混晶の複数の層からなるn型またはp型にドーピングした超格子構造を有することを特徴とする。
また、n型不純物としてSiを用いたことを特徴とする。
また、p型不純物としてMgを用いたことを特徴とする。
また、前記超格子構造が、超格子の周期が1nm以上8nm以下の短周期混晶超格子からなることを特徴とする。
また、p型のAlを含む窒化物半導体層とp側電極を直接接触させたことを特徴とする。
また、前記p型のAlを含む窒化物半導体層として、超格子の周期が1nm以上8nm以下の短周期AlGaN混晶超格子からなることを特徴とする。
また、p側電極として、厚さ0.25以上10nm以下のPd層と、厚さ0.25以上10nm以下のAu層を少なくとも積層したことを特徴とする。
また、前記Au層の上に、少なくともAu層を含む厚さ150nm以上5000nm以下の第1の金属層を有することを特徴とする。
また、前記Au層と前記第1の金属層との間に、厚さ0.25nm以上1000nm以下のTi、Ni、Crの少なくとも1つからなる第2の金属層を有することを特徴とする。
また、前記第1の金属層と前記第2の金属層との間に厚さ50nm以上のAl層を有することを特徴とする。
また、前記発光層の発光波長のバンドギャップを有する層の厚さが5nm以下であることを特徴とする。
また、前記発光層が厚さ4nm以下の単層の量子井戸からなることを特徴とする。
また、前記量子井戸がAlを含む窒化物半導体層からなることを特徴とする。
また、p側電極として、厚さ100nm以上のPd、Pt、Niの少なくとも1つを用いて、正孔注入領域全面にわたって表面を覆ってミラーを形成し、発光を基板裏面から取り出すことを特徴とする。
【0008】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態について詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
実施の形態1
図1は本発明の実施の形態1の紫外発光ダイオードの基本的な構造を説明する断面図である。
図1に示すように、下層から、c面正方位(±2°以内)のサファイア基板1、低温成長AlN層2(厚さ約20nm)、擬液相成長(pLPE(pseudo Liquid Phase Epitaxy:擬液相エピタキシー)−)AlN層3(厚さ約300nm)、アンドープAlGaN層4(厚さ約300nm、Al組成約20%)、Siドープn型AlGaN層5(厚さ約300nm、Al組成約20%)、SiドープAlN格子緩和層6(厚さ約30nm)、Siドープn型AlGaN短周期混晶超格子(SPASL(Short Period Alloy Super Lattice))層7(厚さ約150nm、周期約3nm、平均Al組成約20%、組成変調約4%)、Siドープn型AlGaNブロッキング層8(厚さ約30nm、Al組成約30%)、AlGaN単一量子井戸(SQW(Single Quantum Well))発光層9(バリア層Al組成約8%、量子井戸Al組成約4%)、Mgドープp型AlGaNブロッキング層10(厚さ約30nm、Al組成約30%)、Mgドープp型AlGaN短周期混晶超格子層11(厚さ約90nm、周期的3nm、平均Al組成約20%、組成変調約4%)である。
【0009】
低温成長AlN層2の成長温度は400〜500℃、他の層は高温(1000〜1100℃)で、Al、Ga、Mgの有機金属、シラン、アンモニアを用いて成長している。
さらに、このようにして形成した発光ダイオード用基板を用いて発光ダイオード素子を作製した。
図1の構造では、基板としてサファイア基板1を記載しているが、AlN基板やAlNにより被覆されたサファイア基板でも、紫外域で透明であるので使用することが可能である。
発光ダイオード用基板の最終層のp型短周期混晶超格子層11は、p型コンタクト層でもあり、その上にPd(パラジウム)(厚さ約2.5nm)(下層、以下同様)/Au(厚さ約2.5nm)(上層、以下同様)からなる半透明p型オーミック電極12を設けている。さらに、その上にP型オーミック電極12の一部を被覆するTi(厚さ約40nm)/Au(厚さ約200nm)もしくはAl(厚さ約20nm)/Au(厚さ約200nm)もしくはNi(厚さ約100nm)/Au(厚さ約200nm)からなるパッド電極13を設けている。また、p型オーミック電極12の周囲は、図1に示すごとく、塩素ガスを用いた電子サイクロトロンプラズマエッチング(ECR(Electron Cycrotron Resonance)エッチング)で、n型短周期混晶超格子層7までエッチングして、露出した面にTi(厚さ約40nm)/Au(厚さ約200nm)もしくはAl(厚さ約20nm)/Au(厚さ約200nm)もしくはNi(厚さ約10nm)/Au(厚さ約200nm)からなるn型オーミック電極14を形成した。なお、アンドープAlGaN層4からMgドープp型AlGaN短周期混晶超格子層11まで、およびp型電極12、パッド電極13、n型電極14を発光ダイオード構造と称する。
【0010】
図1では、パッド電極13がp型電極12のごく一部を被覆しているだけであるが、後述するように基板1の下面(裏面)から発光を取り出す場合には、厚膜(厚さ約100nm以上)のパッド電極13をp型電極12のほぼ全面に設けるか、厚さ20nm以上のPd層を使うことが可能である。さらに、下面から発光を取り出す場合、発光ダイオード用基板側に5nm以下のPd、Au、Ti層を積層し、その上に20nm以上の厚さのAl層とAu層を設けることにより、紫外域で反射強度の高いAl層の反射を利用して、下面側からの発光を増加させることが可能である。さらに、Al層とAu層との間の相互拡散を抑制するために、Ti層やPt層等の障壁金属層を両層間に設けることも有効であると考えられる。
【0011】
図2は本発明に従って作製した発光ダイオード用基板と、pLPE−AlN層3無しで作製した発光ダイオード用瑳板の発光波長における光透過率を測定した結果を示すグラフである。
pLPE−AlN層3を用いない場合、光吸収が大きくなっており、pLPE−AlN層3を用いることにより、透明性の高い発光ダイオードを実現することができることが図2からわかる。さらに、このようなpLPE−AlN層3をバッファ層として用いない場合、均一でp型およびn型電気伝導の制御が可能なAlGaN層を得ることはできなかった。従って、AlGaN層を成長する前に、透明かつ結晶性を向上させるためにAlN層を形成し、大気中に取り出さずにAlGaN層を成長することが望ましい。
【0012】
図3は本発明に従って作製した発光ダイオードと、アンドープAlGaNバッファ層の代わりにアンドーブGaNバッファ層を用いた発光ダイオード参考素子の光出力特性を比較した結果(同じ注入電流条件における発光強度スペクトル)を示すグラフである。
ここで用いた発光ダイオードの発光波長は約350nmであり、GaNバッファ層は発光を吸収する層となっている。また、バッファ層による光吸収の効果を直接比較するために、AlGaNバッファ層のAl組成を10%とし、両者のバッファ層とn型超格子(図1のn−SPASL層7)との間に、結晶格子を緩和し、クラック発生を抑制するためのAlN層(約30nm)を導入している。ここで用いた参考素子は、GaNバッファ層を用いた場合だけでなく、SiCやSi、GaNコンタクト層等の光吸収性の基板や層を用いた場合の発光ダイオードの発光特性を代表していることになる。図3から明らかなように、本実施の形態1の発光ダイオード素子は、参考素子の約2倍の光出力を得ていることがわかる。また、本実施の形態1の発光ダイオード素子の発光スペクトルは、波長に対して強度が弱い波状に変動している。これは、発光層から下側に放出された光が下層の複数の層の界面もしくは基板裏面で反射され、発光層から直接上側に放出された光と干渉していることを示しており、透明な発光ダイオード構造により発光強度が増加したことを示している。
【0013】
さらに、本実施の形態1の発光ダイオードからの発光を下面側で測定すると、上面側の約2倍の発光強度を得た。これは、下面側は基板および結晶成長層だけで半透明電極やパッド電極により発光が遮られることが無いという理由によるものと考えられる。実際、本実施の形態1で使用した半透明電極の透過率は概ね50%である。
さらに、本実施の形態1の発光ダイオード用基板と量子井戸の層数を2層に変更した参考基板の光透過率を比較したところ、波長350nmにおける光透過率が80%から60%に減少した。従って、発光ダイオード用基板の透明性を向上する各種方策を採用する場合、量子井戸数が1〜3層程度の少ない量子井戸数を採用することが有利であり、単層であることが最も優れているということができる。また、このような少ない量子井戸数の発光ダイオード素子において、効率の良い電流注入を実現するために、n側およびp側にキャリアブロッキング層(本出願人による特開2002−280610号に記載)を組み合わることが望ましい。
さらに、上記透明化の方策は、n型クラッド層としてAlGaN混晶からなる超格子構造(本出願人による特開2000−294884号に記載)を採用することにより、透明性が高く、より低抵抗の素子を作製することができる。
また、上記透明化の方策は、p型クラッド層としてAlGaN混晶からなる超格子構造(本出願人による特開2000−294884号に記載)を採用することにより、透明性が高く、より低抵抗の素子を作製することができる。また、この構造は平均Al組成が高く、バンドギャップの大きい層においても高い正孔濃度を実現することが容易であることから、p型GaN層を介することなく直接p型オーミック接触を得るこが可能である。
また、p型オーミック接触金属として、酸化に対しても耐性の優れたPdを採用すると、表面が酸化されやすい30%以上のAl組成を有するAlGaN混晶でもオーミック接触が可能となる。
この両者のオーミック接触技術(AlGaN混晶からなる超格子構造とPdオーミック接触金属)を組み合わせることにより高Al組成でバンドギャップが広い、すなわち、紫外域でもより透明な材料で低抵抗なp型オーミック接触が可能となる。この組み合わせを上記透明化の方法と合わせることにより、発光出力が高く低抵抗の素子を作製することができる。
【0014】
以上説明したように、本実施の形態1では、発光層であるAlGaN単一量子井戸(SQW)発光層6を含む発光ダイオード構造(アンドープAlGaN層4からMgドープp型AlGaN短周期混晶超格子層11まで、およびp型電極12、パッド電極13、n型電極14)の下層に窒化アルミニウム層である低温成長AlN層2、pLPE−AlN層3を有し、発光ダイオード構造と低温成長AlN層2、pLPE−AlN層3の少なくとも一部との間に再成長界面を有しないという構成になっている。再成長界面を有しないというのは、低温成長AlN層2、pLPE−AlN層3の少なくとも一部を大気にさらすことなく、発光ダイオード構造と連続して形成するという意味である。
また、pLPE−AlN層3の少なくとも一部が、結晶表面に形成した擬液相状態のアルミニウムを窒化して得られた窒化アルミニウム層を含むという構成になっている。
また、発光層の下層および上層に、窒化ガリウム層、炭化ケイ素層、ケイ素結晶が存在せず、発光強度の少なくとも50%以上が375nm以下の波長であるという構成になっている。発光強度の少なくとも50%以上が375nm以下の波長であるという構成により、赤色の蛍光体の励起効率が高く、電球色の照明やディスプレイに有利である。
また、発光層の下層および上層に、窒化ガリウム層、炭化ケイ素層、ケイ素結晶が存在せず、発光強度の少なくとも50%以上が363nm以下の波長であるという構成になっている。発光強度の少なくとも50%以上が363nm以下の波長であるという構成により、長波長側の発光が青色まで伸びるためにディスプレイや白色光源に不向きであるという問題を解決できる。
また、アルミウムを含む窒化物半導体混晶の複数の層からなるn型またはp型にドーピングした超格子構造(n型AlGaNSPASL層7またはp型AlGaNSPASL層12)を有するという構成になっている。
また、n型不純物としてSiを用いた構成になっている。
また、p型不純物としてMgを用いた構成になっている。
また、超格子構造が、超格子の周期が1nm以上8nm以下の短周期混晶超格子からなるという構成になっている。1分子層対1分子層の超格子で、1nmより薄くするのは無意味である。また、分極効果でバンドギャップが小さくなるのが4nmの厚さより大きい場合であり、従って周期は8nm以下である。
また、p型のAlを含む窒化物半導体層(p型AlGaN短周期混晶超格子層11)とp側電極12を直接接触させたという構成になっている。
また、p型のAlを含む窒化物半導体層として、超格子の周期が1nm以上8nm以下の短周期AlGaN混晶超格子(p型AlGaN短周期混晶超格子層11)からなるという構成になっている。
また、p側電極12として、厚さ0.25以上10nm以下のPd層と、厚さ0.25以上10nm以下のAu層を少なくとも積層したという構成になっている。厚さ0.25以上10nm以下というのは、上部から光を取り出す際に約25%の透過率があるからである。
また、Au層(p側電極12の一部)の上に、少なくともAu層を含む厚さ150nm以上5000nm以下の第1の金属層(パッド電極13の一部)を有するという構成になっている。厚さ150nm以上5000nm以下というのは、ワイヤボンディングが容易にできる厚さである。
また、Au層と第1の金属層との間に、厚さ0.25nm以上1000nm以下のTi、Ni、Crの少なくとも1つからなる第2の金属層(パッド電極13の一部)を有するという構成になっている。厚さ0.25nm以上1000nm以下というのは、原子層1層以上であり、付着力が増加する。1000nm以上は、大きな変化がないので必要ない。
また、第1の金属層と第2の金属層との間に厚さ50nm以上のAl層を有するという構成になっている。
また、発光層の発光波長のバンドギャップを有する層(発光層のうち井戸層に対応)の厚さが5nm以下であるという構成になっている。4nmまでが空間的直接遷移により発光強度が高い。4〜5nmは、ドーピングにより発光強度を増強可能であり、5nm以上は過剰なドーピングが必要になり結晶性が低下する。
また、発光層が厚さ4nm以下の単層の量子井戸からなるという構成になっている。ドーピングが少なくても空間的直接遷移により発光強度が高い。
また、量子井戸がAlを含む窒化物半導体層からなるという構成になっている。
以上説明したように、本実施の形態1によれば、AlGaN混晶をベースとする紫外発光ダイオードに、連続成長したAlNバッファ層や超格子構造、Pdオーミック金属、単層量子井戸構造、ブロッキング層等を組み合わせることにより、従来発光ダイオード素子の内部に有していた発光波長において光を吸収する層を解消することが可能となり、光の取り出し効率の高い発光ダイオードを実現することが可能になる。
【0015】
実施の形態2
図4は本発明の紫外発光ダイオードの別のタイプの実施の形態2の構造を説明する図である。
C面正方位(±2°以内)のサファイア基板41上に高温成長AlN層42(厚さ約300nm。MRS Fall Meeting 2001, Vol.19, p.3に記載)を設けた基板を使用する。ドーピング専用のMOVPE(Metal Organic Vapor Phase Epitaxy:有機金属気相成長法)装置に入れ、アンドープAlN層43(厚さ約30nm)をホモエピタキシャル成長させる。さらに、下層から、アンドープAlGaN層44(厚さ約700nm、Al組成約20%)、Siドープn型AlGaN層45(厚さ約2300nm、Al組成約20%)、Siドープn型短周期混晶超格子層46(厚さ約150nm、周期約3nm、平均Al組成約20%、組成変調約4%)、Siドープn型AlGaNブロッキング層47(厚さ約30nm、Al組成約30%)、AlGaN単一量子井戸発光層48(バリア層Al組成約8%、量子井戸Al組成約4%)、Mgドープp型AlGaNブロッキング層49(厚さ約30nm、Al組成約30%)、Mgドープp型AlGaN短周期混晶超格子層50(厚さ約90nm、周期的3nm、平均Al組成約20%、組成変調約4%)である。
【0016】
ホモエピタキシャルAlN層43の成長温度は1100℃、他の層は高温(1000〜1100℃)で、Al、Ga、Mgの有機金属、シラン、アンモニアを用いて成長している。
さらに、このようにして形成した発光ダイオード用基板を用いて発光ダイオード素子を作製した。
図4の構造では、基板として高温成長AlN層42付きサファイア基板41を記載しているが、AlNバルク基板でも、紫外域で透明であるので使用することが可能である。
発光ダイオード用基板の最終層のp型短周期混晶超格子層50は、p型コンタクト層でもあり、その上にPd(厚さ約100nm)/Au(厚さ約3000nm)からなるミラー兼用p型オーミック電極51を設けている。さらに、その上にP型オーミック電極51の一部を被覆するTi(厚さ約40nm)/Au(厚さ約200nm)もしくはAl(厚さ約20nm)/Au(厚さ約200nm)もしくはNi(厚さ約20nm)/Au(厚さ約200nm)からなるパッド電極52を設けている。また、p型オーミック電極51の周囲は、図4に示すごとく、塩素ガスを用いた電子サイクロトロンプラズマエッチング(ECRエッチング)で、n型短周期混晶超格子層46までエッチングして、露出した面にTi(厚さ約0.5nm)/Al(厚さ約100nm)/Ti(厚さ約40nm)/Au(厚さ約200nm)からなるn型オーミック電極53を形成した。
【0017】
図1の実施の形態1では、パッド電極13が半透明p型電極12のごく一部を被覆しているだけであるが、図4では、基板41の下面から発光を取り出すために、p型電極51をほぼ前面に設け、電極厚さも20nm以上のPdを使うことによる反射の効果を利用している。さらに、下面から発光を取り出す場合、発光ダイオード用基板側から5nm以下のPd、Au、Ti層を積層し、その上に20nm以上の厚さのAl層とAu層を設けることにより、紫外域で反射強度の高いAl層の反射を利用してい下面側からの発光を増加させることが可能である。
さらに、Al層とAu層との間の相互拡散を抑制するために、Ti層やPt層等の障壁金属層を両層間に設けることも有効である。
【0018】
図5は本発明に従って作製した発光ダイオード用で、p型電極のミラー効果を利用して、基板側から発光させる例(図5中左下の例)を説明する図である。太い矢印は、取り出した発光を示す。
p型ミラー電極を用いた裏面発光型素子は、半透明電極を用いた素子の裏面発光に比較して約50%増加し、半透明電極を用いた素子の上面発光を用いた場合の約3倍、さらにGaNのような紫外光吸収のある層を用いた場合の約6倍の発光出力を得ることができた。さらに、本発光ダイオードをチップ化し、フリップチップボンディングしたところ、発光出力の飽和電流が40mAから70mAに増加する効果が得られた。これは厚いp型ミラー電極とボンディングに使用したバンプ金属と熱接触が優れており、素子駆動の際の発熱を効率的に拡散させたためであり、高出力動作に適している。
【0019】
上記のように、本実施の形態2では、窒化アルミニウム層(高温成長AlN層42、アンドープAlN層43)の少なくとも一部が、サファイア基板41上に1000℃以上の高温で成長して得られた窒化アルミニウム層(高温成長AlN層42(Mat. Res. Soc. Symp. Proc. Vol.693 I3.48.1参照)、アンドープAlN層43)を含むという構成になっている。1000℃以上で成長すると、らせん転位のほとんど無い結晶性に優れたAlN層が得られる。
また、窒化アルミニウム層の少なくとも一部に、バルクAlN結晶(AlNバルク基板)を含むという構成にしてもよい。
また、p側電極51として、厚さ100nm以上のPd、Pt、Niの少なくとも1つを用いて、正孔注入領域全面にわたって表面を覆ってミラーを形成し、発光を基板裏面から取り出すという構成になっている。厚さ100nm以上で、ミラー効果が得られる。
以上本発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において、In(インジウム)を導入したり、B(ホウ素)を導入した紫外発光素子にも適用することが可能である。また、発光ダイオードだけでなく、光ガイド層を有するレーザー構造にも適用可能である。さらに、基板や窒化物の組成などが種々変更可能であることは勿論である。
【0020】
【発明の効果】
以上説明したように、本発明によれば、従来発光ダイオード素子の内部に有していた発光波長において光を吸収する層を解消することが可能となり、光の取り出し効率の高い発光ダイオードを実現することが可能になる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の素子構造を説明する断面図である。
【図2】本発明の実施の形態1により透明性が向上したことを説明する図である。
【図3】本発明の実施の形態1により発光強度が増加したことを説明する図である。
【図4】本発明の実施の形態2の素子構造を説明する断面図である。
【図5】本発明の実施の形態2のp型電極のミラー効果を利用して、基板側から発光させる例を説明する図である。
【符号の説明】
1…サファイア基板
2…低温成長AlN層
3…pLPE−AlN層
4…アンドープAlGaN層
5…Siドープn型AlGaN層
6…SiドープAlN格子緩和層
7…Siドープn型AlGaN短周期混晶超格子(SPASL)層
8…Siドープn型AlGaNブロッキング層
9…AlGaN単一量子井戸(SQW)発光層
10…Mgドープp型AlGaNブロッキング層
11…Mgドープp型AlGaN短周期混晶超格子層
12…p型オーミック電極
13…パッド電極
14…n型オーミック電極
41…サファイア基板
42…高温成長AlN層
43…ホモエピタキシャル成長アンドープAlN層
44…アンドープAlGaN層
45…Siドープn型AlGaN層
46…Siドープn型AlGaN短周期混晶超格子(SPASL)層
47…Siドープn型AlGaNブロッキング層
48…AlGaN単一量子井戸(SQW)発光層
49…Mgドープp型AlGaNブロッキング層
50…Mgドープp型AlGaN短周期混晶超格子層
51…p型オーミック電極
52…パッド電極
53…n型オーミック電極

Claims (20)

  1. 発光層を含む発光ダイオード構造の下層に窒化アルミニウム層を有し、前記発光ダイオード構造と前記窒化アルミニウム層の少なくとも一部との間に再成長界面を有しないことを特徴とする発光ダイオード。
  2. 前記窒化アルミニウム層の少なくとも一部が、結晶表面に形成した擬液相状態のアルミニウムを窒化して得られた窒化アルミニウム層を含むことを特徴とする請求項1記載の発光ダイオード。
  3. 前記窒化アルミニウム層の少なくとも一部が、サファイア基板上に1000℃以上の高温で成長して得られた窒化アルミニウム層を含むことを特徴とする請求項1記載の発光ダイオード。
  4. 前記窒化アルミニウム層の少なくとも一部に、バルクAlN結晶を含むことを特徴とする請求項1乃至3のいずれか記載の発光ダイオード。
  5. 前記発光層の下層および上層に、窒化ガリウム層、炭化ケイ素層、ケイ素結晶が存在せず、発光強度の少なくとも50%以上が375nm以下の波長であることを特徴とする請求項1乃至4のいずれか記載の発光ダイオード。
  6. 前記発光層の下層および上層に、窒化ガリウム層、炭化ケイ素層、ケイ素結晶が存在せず、発光強度の少なくとも50%以上が363nm以下の波長であることを特徴とする請求項1乃至4のいずれか記載の発光ダイオード。
  7. アルミウムを含む窒化物半導体混晶の複数の層からなるn型またはp型にドーピングした超格子構造を有することを特徴とする請求項1乃至6のいずれかに記載の発光ダイオード。
  8. n型不純物としてSiを用いたことを特徴とする請求項7記載の発光ダイオード。
  9. p型不純物としてMgを用いたことを特徴とする請求項7記載の発光ダイオード。
  10. 前記超格子構造が、超格子の周期が1nm以上8nm以下の短周期混晶超格子からなることを特徴とする請求項7乃至9のいずれか記載の発光ダイオード。
  11. p型のAlを含む窒化物半導体層とp側電極を直接接触させたことを特徴とする請求項7乃至10のいずれか記載の発光ダイオード。
  12. 前記p型のAlを含む窒化物半導体層として、超格子の周期が1nm以上8nm以下の短周期AlGaN混晶超格子からなることを特徴とする請求項11記載の発光ダイオード。
  13. p側電極として、厚さ0.25以上10nm以下のPd層と、厚さ0.25以上10nm以下のAu層を少なくとも積層したことを特徴とする請求項1乃至12のいずれか記載の発光ダイオード。
  14. 前記Au層の上に、少なくともAu層を含む厚さ150nm以上5000nm以下の第1の金属層を有することを特徴とする請求項13記載の発光ダイオード。
  15. 前記Au層と前記第1の金属層との間に、厚さ0.25nm以上1000nm以下のTi、Ni、Crの少なくとも1つからなる第2の金属層を有することを特徴とする請求項14記載の発光ダイオード。
  16. 前記第1の金属層と前記第2の金属層との間に厚さ50nm以上のAl層を有することを特徴とする請求項15記載の発光ダイオード。
  17. 前記発光層の発光波長のバンドギャップを有する層の厚さが5nm以下であることを特徴とする請求項1乃至16のいずれか記載の発光ダイオード。
  18. 前記発光層が厚さ4nm以下の単層の量子井戸からなることを特徴とする請求項1乃至17のいずれか記載の発光ダイオード。
  19. 前記量子井戸がAlを含む窒化物半導体層からなることを特徴とする請求項18記載の発光ダイオード。
  20. p側電極として、厚さ100nm以上のPd、Pt、Niの少なくとも1つを用いて、正孔注入領域全面にわたって表面を覆ってミラーを形成し、発光を基板裏面から取り出すことを特徴とする請求項1乃至19のいずれか記載の発光ダイオード。
JP2003068464A 2003-03-13 2003-03-13 発光ダイオード Pending JP2004281553A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068464A JP2004281553A (ja) 2003-03-13 2003-03-13 発光ダイオード

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068464A JP2004281553A (ja) 2003-03-13 2003-03-13 発光ダイオード

Publications (1)

Publication Number Publication Date
JP2004281553A true JP2004281553A (ja) 2004-10-07

Family

ID=33285788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068464A Pending JP2004281553A (ja) 2003-03-13 2003-03-13 発光ダイオード

Country Status (1)

Country Link
JP (1) JP2004281553A (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056922A (ja) * 2003-08-06 2005-03-03 Rohm Co Ltd 半導体発光素子
JP2006108600A (ja) * 2004-10-07 2006-04-20 Lumileds Lighting Us Llc 半導体発光素子
JP2007103689A (ja) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd 半導体発光装置
JP2007115941A (ja) * 2005-10-21 2007-05-10 Kyocera Corp 窒化ガリウム系化合物半導体及び発光素子
WO2007066657A1 (ja) * 2005-12-05 2007-06-14 Meijo University 半導体発光素子による光線治療方法、及び半導体発光素子による光線治療システム
WO2007091653A1 (ja) * 2006-02-09 2007-08-16 Rohm Co., Ltd. 窒化物系半導体素子
EP2144306A1 (en) * 2008-07-09 2010-01-13 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor light-emitting device and epitaxial wafer
CN102856447A (zh) * 2012-08-02 2013-01-02 浙江优纬光电科技有限公司 一种提高AlGaN基紫外LED发光效率的方法
JP2013125968A (ja) * 2011-12-13 2013-06-24 Lg Innotek Co Ltd 紫外線発光素子
KR20140035813A (ko) * 2012-09-14 2014-03-24 팔로 알토 리서치 센터 인코포레이티드 단파장 발광체용 p-측 층들
JP2016149390A (ja) * 2015-02-10 2016-08-18 旭化成株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の駆動確認方法
KR20160102774A (ko) * 2015-02-23 2016-08-31 엘지이노텍 주식회사 발광 소자 및 이를 구비한 라이트 유닛
JP2018511945A (ja) * 2015-03-31 2018-04-26 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. 紫外線発光素子
JP2019068072A (ja) * 2017-10-02 2019-04-25 Dowaエレクトロニクス株式会社 深紫外発光素子およびその製造方法
JP2020021798A (ja) * 2018-07-31 2020-02-06 日機装株式会社 窒化物半導体発光素子及びその製造方法
CN112086542A (zh) * 2020-07-27 2020-12-15 华灿光电(苏州)有限公司 发光二极管外延片及其生长方法
CN113036013A (zh) * 2021-02-26 2021-06-25 江西乾照光电有限公司 一种深紫外led外延结构及其生长方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056922A (ja) * 2003-08-06 2005-03-03 Rohm Co Ltd 半導体発光素子
US7196347B2 (en) 2003-08-06 2007-03-27 Rohm Co., Ltd. Semiconductor light emitting device
JP2006108600A (ja) * 2004-10-07 2006-04-20 Lumileds Lighting Us Llc 半導体発光素子
JP2007103689A (ja) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd 半導体発光装置
JP2007115941A (ja) * 2005-10-21 2007-05-10 Kyocera Corp 窒化ガリウム系化合物半導体及び発光素子
WO2007066657A1 (ja) * 2005-12-05 2007-06-14 Meijo University 半導体発光素子による光線治療方法、及び半導体発光素子による光線治療システム
JP2007151807A (ja) * 2005-12-05 2007-06-21 Univ Meijo 半導体発光素子による光線治療方法、及び半導体発光素子による光線治療システム
WO2007091653A1 (ja) * 2006-02-09 2007-08-16 Rohm Co., Ltd. 窒化物系半導体素子
EP2144306A1 (en) * 2008-07-09 2010-01-13 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor light-emitting device and epitaxial wafer
JP2013125968A (ja) * 2011-12-13 2013-06-24 Lg Innotek Co Ltd 紫外線発光素子
US9786814B2 (en) 2011-12-13 2017-10-10 Lg Innotek Co., Ltd. Ultraviolet light emitting device
CN102856447A (zh) * 2012-08-02 2013-01-02 浙江优纬光电科技有限公司 一种提高AlGaN基紫外LED发光效率的方法
EP2709170A3 (en) * 2012-09-14 2015-03-04 Palo Alto Research Center Incorporated P-Side Layers for Short Wavelength Light Emitters
KR20140035813A (ko) * 2012-09-14 2014-03-24 팔로 알토 리서치 센터 인코포레이티드 단파장 발광체용 p-측 층들
KR101941296B1 (ko) 2012-09-14 2019-01-22 팔로 알토 리서치 센터 인코포레이티드 단파장 발광체용 p-측 층들
JP2016149390A (ja) * 2015-02-10 2016-08-18 旭化成株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の駆動確認方法
KR20160102774A (ko) * 2015-02-23 2016-08-31 엘지이노텍 주식회사 발광 소자 및 이를 구비한 라이트 유닛
KR102329719B1 (ko) 2015-02-23 2021-11-23 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자 및 이를 구비한 라이트 유닛
US10374123B2 (en) 2015-03-31 2019-08-06 Seoul Viosys Co., Ltd. UV light emitting device
JP2018511945A (ja) * 2015-03-31 2018-04-26 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. 紫外線発光素子
JP2019068072A (ja) * 2017-10-02 2019-04-25 Dowaエレクトロニクス株式会社 深紫外発光素子およびその製造方法
JP2020021798A (ja) * 2018-07-31 2020-02-06 日機装株式会社 窒化物半導体発光素子及びその製造方法
WO2020026567A1 (ja) * 2018-07-31 2020-02-06 日機装株式会社 窒化物半導体発光素子及びその製造方法
US20210296527A1 (en) * 2018-07-31 2021-09-23 Nikkiso Co., Ltd. Nitride semiconductor light-emitting element and method for manufacturing same
CN112086542A (zh) * 2020-07-27 2020-12-15 华灿光电(苏州)有限公司 发光二极管外延片及其生长方法
CN112086542B (zh) * 2020-07-27 2021-11-05 华灿光电(苏州)有限公司 发光二极管外延片及其生长方法
CN113036013A (zh) * 2021-02-26 2021-06-25 江西乾照光电有限公司 一种深紫外led外延结构及其生长方法

Similar Documents

Publication Publication Date Title
TWI278995B (en) Nitride semiconductor element with a supporting substrate and a method for producing a nitride semiconductor element
EP1754265B1 (en) Led with a fluorescent substance
JP3795007B2 (ja) 半導体発光素子及びその製造方法
JP4405085B2 (ja) 縦型窒化インジウムガリウムled
JP3472305B2 (ja) Iii族窒化物の能動層をもつ長寿命垂直構造発光ダイオード
TWI292629B (en) Gallium nitride-based compound semiconductor device
US8093606B2 (en) Nitride semiconductor light emitting device
JP2004281553A (ja) 発光ダイオード
Chang et al. Nitride-based flip-chip ITO LEDs
JP2018532265A (ja) 2次元正孔ガスを組み込んだ紫外線発光デバイス
Horng et al. AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding
TW201027806A (en) Method for the producing of an optoelectronic semiconductor chip and optoelectronic semiconductor chip
JP2013120829A (ja) 窒化物半導体紫外発光素子
WO2007136097A1 (ja) 半導体発光素子
US20040227144A1 (en) Novel light-emitting device
JP2009129941A (ja) 発光デバイス
JP3233139B2 (ja) 窒化物半導体発光素子及びその製造方法
JP2008098486A (ja) 発光素子
JP2010056423A (ja) 半導体発光素子用電極及び半導体発光素子
WO2004051758A1 (ja) 半導体発光素子及びその製造方法
KR20110019161A (ko) 3족 질화물 반도체 발광소자를 제조하는 방법
JP5219230B1 (ja) SiC蛍光材料及びその製造方法並びに発光素子
JP3724267B2 (ja) Iii族窒化物半導体発光素子
JP2006261358A (ja) 半導体発光素子
JP2019036629A (ja) 深紫外発光ダイオードおよびそれを備える電気機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226