JP2004280957A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2004280957A
JP2004280957A JP2003071660A JP2003071660A JP2004280957A JP 2004280957 A JP2004280957 A JP 2004280957A JP 2003071660 A JP2003071660 A JP 2003071660A JP 2003071660 A JP2003071660 A JP 2003071660A JP 2004280957 A JP2004280957 A JP 2004280957A
Authority
JP
Japan
Prior art keywords
refresh
signal
cell array
word line
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003071660A
Other languages
English (en)
Other versions
JP4381013B2 (ja
Inventor
Iku Mori
郁 森
Katsuhiro Mori
勝宏 森
Shinichi Yamada
伸一 山田
Kuninori Kawabata
邦範 川畑
Shigemasa Ito
成真 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003071660A priority Critical patent/JP4381013B2/ja
Priority to DE602004004182T priority patent/DE602004004182T2/de
Priority to EP04005805A priority patent/EP1460638B1/en
Priority to US10/800,831 priority patent/US7145825B2/en
Priority to CN2004100294355A priority patent/CN1530962B/zh
Publication of JP2004280957A publication Critical patent/JP2004280957A/ja
Priority to US11/486,002 priority patent/US7286434B2/en
Application granted granted Critical
Publication of JP4381013B2 publication Critical patent/JP4381013B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

【課題】シフトレジスタを制御する制御信号の電流消費を低減する。
【解決手段】セルアレイ1a,1b,…は、メモリセルを所定の行ごとにブロック化したセルアレイである。シフトレジスタ2a〜2n,3a〜3n,…は、セルアレイ1a,1b,…のワード線ごとに設けられ、リフレッシュするワード線を選択するための選択信号を、制御信号cntr1,cntr2,…に応じて順次入力して出力する。シフトレジスタ制御回路4a,4b,4c,…は、セルアレイ1a,1b,…ごとに設けられ、リフレッシュが終了するセルアレイ1a,1b,…のシフトレジスタ2a〜2n,3a〜3n,…に出力している制御信号cntr1,cntr2,…の出力を停止し、次にリフレッシュするセルアレイ1a,1b,…のシフトレジスタ4a,4b,4c,…に制御信号cntr1,cntr2,…を出力する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は半導体記憶装置に関し、特に記憶したデータをリフレッシュする半導体記憶装置に関する。
【0002】
【従来の技術】
DRAMなどの半導体記憶装置は、リーク電流によりデータの蓄積電荷が徐々に失われるため、一定時間ごとに同一データを繰り返し書き込むリフレッシュ動作が必要となる。
【0003】
従来、このような半導体記憶装置において、リフレッシュするアドレスを生成するアドレスカウンタは、バイナリカウンタによって2のべき乗のアドレスを生成するのが一般的である。そのため、メモリ容量が2のべき乗でない場合、アドレスカウンタは、実際に存在するメモリアドレスとの差分だけ無駄なカウントをし、非効率的な動作をしてしまう。そこで、メモリセルアレイのワード線に対応してシフトレジスタを設け、このシフトレジスタでリフレッシュするアドレスを順次出力し、効率的に動作を行う半導体記憶装置がある。(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2000−311487号公報(第4頁−第5頁、第1図−第3図)
【0005】
【発明が解決しようとする課題】
しかし、従来の半導体記憶装置では、シフトレジスタを制御する制御信号が全てのシフトレジスタで共通に入力されており、メモリ容量が大きくなるにつれ、制御信号を駆動させることによる電流消費が大きくなるという問題点があった。
【0006】
本発明はこのような点に鑑みてなされたものであり、シフトレジスタの制御信号の電流消費を低減した半導体記憶装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明では上記課題を解決するために、図1に示すような、記憶したデータをリフレッシュする半導体記憶装置において、メモリセルを所定の行ごとにブロック化したセルアレイ1a,1b,…と、セルアレイ1a,1b,…のワード線WL0〜WLnごとに設けられ、リフレッシュするワード線WL0〜WLnを選択するための選択信号を、制御信号cntr1,cntr2,…に応じて順次入力して出力するシフトレジスタ2a〜2n,3a〜3n,…と、セルアレイ1a,1b,…ごとに設けられ、リフレッシュが終了するセルアレイ1a,1b,…のシフトレジスタ2a〜2n,3a〜3n,…に出力している制御信号cntr1,2,…の出力を停止し、次にリフレッシュするセルアレイ1a,1b,…のシフトレジスタ2a〜2n,3a〜3n,…に制御信号cntr1,2,…を出力するシフトレジスタ制御回路4a,4b,4c,…と、を有することを特徴とする半導体記憶装置が提供される。
【0008】
このような半導体記憶装置によれば、シフトレジスタ制御回路4a,4b,4c,…によって、セルアレイ1a,1b,…ごとのシフトレジスタ2a〜2n,3a〜3n,…に制御信号cntr1,cntr2,…を出力し、リフレッシュするワード線を選択するための選択信号を出力させるようにした。これにより、シフトレジスタ2a〜2n,3a〜3n,…に出力する制御信号cntr1,cntr2,…の電流消費を低減する。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1は、本発明の半導体記憶装置の原理を説明する原理図である。図に示すように、半導体記憶装置は、セルアレイ1a,1b,…、シフトレジスタ2a〜2n,3a〜3n,…、及びシフトレジスタ制御回路4a,4b,4c,…を有している。
【0010】
セルアレイ1a,1b,…は、行列状に配置されたメモリセルが、所定の行ごとにブロック化されたメモリセルアレイである。セルアレイ1a,1b,…は、ワード線WL0,WL1,…,WLnを有している。
【0011】
シフトレジスタ2a〜2n,3a〜3n,…は、セルアレイ1a,1b,…のワード線WL0,WL1,…,WLnごとに設けられ、入出力において縦続接続されている。シフトレジスタ2a〜2n,3a〜3n,…は、シフトレジスタ制御回路4a,4b,4c,…から出力される制御信号cntr1,cntr2,…に応じて、リフレッシュするワード線WL0,WL1,…,WLnを選択するための選択信号を、順次前段のシフトレジスタから入力し、後段のシフトレジスタに順次出力する。
【0012】
シフトレジスタ制御回路4a,4b,4c,…は、セルアレイ1a,1b,…ごとに設けられている。シフトレジスタ制御回路4a,4b,4c,…は、セルアレイ1a,1b,…ごとのシフトレジスタ2a〜2n,3a〜3n,…に制御信号cntr1,cntr2,…を出力する。シフトレジスタ制御回路4a,4b,4c,…は、セルアレイ1a,1b,…のリフレッシュが終了すると、そのリフレッシュが終了したセルアレイ1a,1b,…のシフトレジスタ2a〜2n,3a〜3n,…への制御信号cntr1,cntr2,…の出力を停止する。そして、次のリフレッシュ対象となるセルアレイ1a,1b,…のシフトレジスタ2a〜2n,3a〜3n,…に制御信号cntr1,cntr2,…を出力する。
【0013】
以下、原理図の動作について説明する。セルアレイ1aがリフレッシュ対象になっているとする。シフトレジスタ2a〜2nは、シフトレジスタ制御回路4aから出力される制御信号cntr1に応じて、セルアレイ1aのワード線WL0,WL1,…,WLnを選択するための選択信号を順次入力し出力する。
【0014】
セルアレイ1aのリフレッシュが終了すると、シフトレジスタ制御回路4aは、シフトレジスタ2a〜2nへの制御信号cntr1の出力を停止する。そして、シフトレジスタ制御回路4bは、次にリフレッシュ対象となるセルアレイ1bのシフトレジスタ3a〜3nに制御信号cntr2を出力する。シフトレジスタ3a〜3nは、シフトレジスタ制御回路4bから出力される制御信号cntr2に応じて、セルアレイ1bのワード線WL0,WL1,…,WLnを選択するための選択信号を順次入力し出力する。
【0015】
このように、シフトレジスタ制御回路4a,4b,4c,…によって、セルアレイ1a,1b,…ごとのシフトレジスタ2a〜2n,3a〜3n,…に制御信号cntr1,cntr2,…を出力し、リフレッシュするワード線WL0,WL1,…,WLnを選択するための選択信号を順次出力させるようにした。これにより、シフトレジスタ2a〜2n,3a〜3n,…に出力する制御信号cntr1,cntr2,…の電流消費を低減することができる。
【0016】
次に、本発明の第1の実施の形態について説明する。図2は、第1の実施の形態に係る半導体記憶装置の回路図である。図に示すように、半導体記憶装置は、セルアレイ11x,11a,11b,…、S/A(センスアンプ)12a,12b,…、ワード線デコーダ(mwldec)13a〜13n,14a,14b,…、ワード線ドライバ(mwldrv)15a〜15o,16a,16b,…、冗長回路17a〜17o,18a,18b,…、シフトレジスタ19a〜19n,20a,20b,…、シフトスイッチ21a,21b,…、RBLK(ROW BLOCK)ラッチ回路22a,22b,…、シフト信号生成回路23a,23b,…、制御信号生成回路24a,24b,…を有している。
【0017】
セルアレイ11x,11a,11b,…は、行列状に配置されたメモリセルを、所定の行(ワード線)ごとにブロック化したメモリセルアレイである。セルアレイ11x,11a,11b,…は、ワード線ごとにブロック化されているので、各々共通のメインワード線アドレス及びサブワード線アドレスを有している。また、ビット線アドレスは、セルアレイ11x、セルアレイ11a、セルアレイ11b,…と続いている。
【0018】
セルアレイ11aのメインワード線は、ワード線ドライバ15a〜15oによって駆動される。セルアレイ11bのメインワード線は、ワード線ドライバ16a,16b,…によって駆動される。
【0019】
センスアンプ(S/A)12a,12b,…は、セルアレイ11x,11a,11b,…のビット線に出力される電圧を検出し増幅する。センスアンプ12a,12b,…は、シェアード方式であり、セルアレイ11x,11a,11b,…の(ビット線アドレスが続く)両隣のセルアレイで共有される。例えば、図2において、センスアンプ12bは、セルアレイ11aと(ビット線アドレスが続く)セルアレイ11bとで共有される。
【0020】
センスアンプ12a,12b,…は、外部からの要求によって、データのリード・ライトの対象となった側のセルアレイ11a,11b,…のビット線の電圧を検出し増幅する。また、センスアンプ12a,12b,…は、リフレッシュ対象となった側のセルアレイ11x,11a,11b,…のビット線の電圧を検出し増幅する。例えば、セルアレイ11aが、リフレッシュ対象となった場合、センスアンプ12aは、セルアレイ11aのビット線の電圧を検出して増幅する。センスアンプ12bは、セルアレイ11aのビット線の電圧を検出して増幅する。
【0021】
ワード線デコーダ13a〜13n,14a,14b,…は、セルアレイ11a,11b,…ごとに対応して設けられている。ワード線デコーダ13a〜13nは、セルアレイ11aに対応して設けられ、ワード線デコーダ14a,14b,…は、セルアレイ11bに対応して設けられている。
【0022】
ワード線デコーダ13a〜13nは、RBLKラッチ回路22aから出力されるアドレス切替え信号srefcx/z1が入力される。また、ワード線デコーダ13a〜13nは、外部から指定される通常アドレスraaz0〜raaz7及び通常アドレスrabz0〜rabz7が入力される。また、ワード線デコーダ13aは、シフトスイッチ21aから出力されるリフレッシュ信号refa000が入力される。ワード線デコーダ13bは、シフトレジスタ19aから出力されるリフレッシュ信号refa001が入力される。以下、同様にして、ワード線デコーダ13nは、シフトレジスタ19mから出力されるリフレッシュ信号refa063が入力される。
【0023】
アドレス切替え信号srefcx/z1,srefcx/z2は、リフレッシュ要求及び外部からデータのリード・ライト要求を示す信号である。通常アドレスraaz0〜raaz7は、外部から指定される下位のアドレスを、通常アドレスrabz0〜rabz7は、外部から指定される上位のアドレスを示している。リフレッシュ信号refa000〜refa063は、セルアレイ11aのメインワード線をリフレッシュするための信号である。リフレッシュ信号refa100,refa101,…は、セルアレイ11bのメインワード線をリフレッシュするための信号である。
【0024】
ワード線デコーダ13a〜13nは、アドレス切替え信号srefcx/z1に応じて、通常アドレスraaz0〜raaz7,rabz0〜rabz7、又は、リフレッシュ信号refa000〜refa063をデコードし、セルアレイ11aのメインワード線を駆動するための信号を冗長回路17a〜17oに出力する。具体的には、ワード線デコーダ13a〜13nは、リフレッシュ要求を示すアドレス切替え信号srefcx/z1が出力された場合(アドレス切替え信号srefcx1がL状態、アドレス切替え信号srefcz1がH状態)、リフレッシュ信号refa000〜refa063により選択され、メインワード線を駆動するための信号を冗長回路17a〜17oに出力する。ワード線デコーダ13a〜13nは、データのリード・ライト要求を示すアドレス切替え信号srefcx/z1が出力された場合(アドレス切替え信号srefcx1がH状態、アドレス切替え信号srefcz1がL状態)、通常アドレスraaz0〜raaz7,rabz0〜rabz7をデコードし、メインワード線を駆動するための信号を冗長回路17a〜17oに出力する。
【0025】
ワード線デコーダ14a,14b,…は、ワード線デコーダ13a〜13nと同様にして、RBLKラッチ回路22bから出力されるアドレス切替え信号srefcx/z2に応じて、通常アドレスraaz0〜raaz7,rabz0〜rabz7をデコードするか、又は、リフレッシュ信号refa100,refa101,…により選択される。そして、ワード線デコーダ14a,14b,…は、セルアレイ11bのメインワード線を駆動するための信号を冗長回路18a,18bに出力する。
【0026】
図3は、ワード線デコーダの回路図の一例である。図に示すように、ワード線デコーダ13aは、トランジスタM1a〜1n,M2〜M4を有している。トランジスタM1a〜1nは、pチャネル及びnチャネルのMOSトランジスタである。トランジスタM2〜M4は、nチャネルのMOSトランジスタである。
【0027】
トランジスタM1a〜M1nは、ソース、ドレインにおいて直列接続されている。トランジスタM1aのソース又はドレインは、冗長回路17a,17bと接続されている。トランジスタM1a〜M1nのゲートは、通常アドレスraaz0〜raaz7,rabz0〜rabz7が入力される。トランジスタM1a〜M1nは、ゲートに所定の通常アドレスraaz0〜raaz7,rabz0〜rabz7が入力されることによって、トランジスタM1a−トランジスタM1n間がオンする。
【0028】
トランジスタM2のゲートは、アドレス切替え信号srefcx1が入力される。トランジスタM2のソースには、通常アドレスraaz0〜raaz7,rabz0〜rabz7が確定したとき、リフレッシュ信号refa000が確定したときに出力される電圧bkexが入力される。トランジスタM2は、データのリード・ライト要求を示すH状態のアドレス切替え信号srefcx1が入力された場合、ソース−ドレイン間をオンする。このとき、相補信号のアドレス切替え信号srefcz1はL状態となり、トランジスタM4はオフする。
【0029】
すなわち、トランジスタM2にデータのリード・ライト要求を示すH状態のアドレス切替え信号srefcx1が入力され、トランジスタM1a〜M1nに所定の通常アドレスraaz0〜raaz7,rabz0〜rabz7が入力されたとき、トランジスタM1a〜Mn,M2はオンし、トランジスタM1aに電圧bkexが出力される。トランジスタM1aに出力された電圧bkexは、ワード線を選択するためのワード線ドライブ信号pmwlxとして冗長回路17a,17bに出力される。
【0030】
トランジスタM3のソースは、トランジスタM4のドレインと接続されている。トランジスタM3のゲートは、リフレッシュ信号refa000が入力される。トランジスタM3のドレインは、トランジスタM1aのドレインと接続されている。トランジスタM4のゲートは、アドレス切替え信号srefcz1が入力される。トランジスタM4のソースには、リフレッシュ信号refa000が確定したときに出力される電圧bkexが入力される。
【0031】
すなわち、トランジスタM4にリフレッシュ要求を示すH状態のアドレス切替え信号srefcz1が入力され、トランジスタM3にリフレッシュ信号refa000が入力されたとき、トランジスタM3,M4はオンし、トランジスタM3のドレインに電圧bkexが出力される。トランジスタM3のドレインに出力された電圧bkexは、ワード線ドライブ信号pmwlxとして冗長回路17a,17bに出力される。
【0032】
ワード線デコーダ13aとワード線デコーダ13b〜13nの各々は、トランジスタM1a〜1nに入力する通常アドレスが異なり、トランジスタM3にリフレッシュ信号refa001,…,refa063が入力される以外同様である。すなわち、ワード線デコーダ13a〜13nは、所定の通常アドレスraaz0〜raaz7,rabz0〜rabz7が入力されることによって、一つのみがメインワード線を駆動するための信号(ワード線ドライブ信号pmwlx)を出力する。なお、ワード線デコーダ14a,14b,…も、ワード線デコーダ13a〜13nと同様の回路構成であり、その説明を省略する。
【0033】
図2の説明に戻る。ワード線ドライバ15a〜15o,16a,16b,…は、セルアレイ11a,11b,…ごとに対応して設けられている。ワード線デコーダ13a〜13nは、セルアレイ11aに対応して設けられ、ワード線デコーダ14a,14b,…は、セルアレイ11bに対応して設けられている。
【0034】
ワード線ドライバ15a〜15oは、冗長回路17a〜17oを介して入力される、ワード線デコーダ13a〜13nからのメインワード線を駆動するための信号に応じて、セルアレイ11aのメインワード線を駆動する。同様に、ワード線ドライバ16a,16b,…は、冗長回路18a,18b,…を介して入力される、ワード線デコーダ14a,14b,…からのメインワード線を駆動するための信号に応じて、セルアレイ11bのメインワード線を駆動する。
【0035】
冗長回路17a〜17o,18a,18b,…は、不良のメモリセルを救済するための回路である。ワード線デコーダ13a〜13n,14a,14b,…の出力は、2つの冗長回路と接続されている。冗長回路17a〜17o,18a,18b,…は、セルアレイ11a,11b,…のあるメインワード線におけるメモリセルが不良だった場合、ワード線デコーダ13a〜13n,14a,14b,…から出力されるメインワード線を駆動するための信号を、良好なメモリセルと接続されているワード線ドライバ15a〜15o,16a,16b,…に出力するようにする。例えば、ワード線ドライバ15aが駆動するメインワード線のメモリセルに不良があったとする。この場合、冗長回路17aは、ワード線デコーダ13aから出力されるメインワード線を駆動するための信号をワード線ドライバ15aに出力せずワード線ドライバ15bに出力する。
【0036】
シフトレジスタ19a〜19n,20a,20b,…は、セルアレイ11a,11b,…に対応して設けられている。シフトレジスタ19a〜19nは、セルアレイ11aに対応して設けられ、シフトレジスタ20a,20b,…は、セルアレイ11bに対応して設けられている。さらに、シフトレジスタ19a〜19nは、セルアレイ11aのメインワード線ごとに対応して、シフトレジスタ20a,20b,…は、セルアレイ11bのメインワード線ごとに対応して設けられている。
【0037】
シフトレジスタ19a〜19nは、シフト信号生成回路23aから出力されるサブシフト信号ssftx/z1が入力される。シフトレジスタ19a〜19nは、サブシフト信号ssftx/z1に同期して、シフトスイッチ21aから出力されるリフレッシュ信号refa000を基に、順次リフレッシュ信号refa001〜refa064を出力する。なお、リフレッシュ信号refa001〜refa064は、1つずつ順に出力され、同時に出力されない。
【0038】
シフトレジスタ20a,20b,…もシフトレジスタ19a〜19nと同様に、シフト信号生成回路23bから出力されるサブシフト信号ssftx/z2に同期して、シフトスイッチ21bから出力されるリフレッシュ信号refa100を基に、順次リフレッシュ信号refa101…を出力する。
【0039】
図4は、シフトレジスタの回路図の一例である。図では、リフレッシュ信号refa001の初期値としてH状態を持つ場合を示しているが、ラッチ回路32の構成変更により、リフレッシュ信号refa001の初期値をL状態にした場合も、その他の構成は同様である。図に示すように、シフトレジスタ19aは、トランスファゲート31,33、ラッチ回路32,34を有している。
【0040】
トランスファゲート31は、トランジスタM5,M6から構成されている。トランジスタM5は、pチャネルのMOSトランジスタである。トランジスタM6は、nチャネルのMOSトランジスタである。トランジスタM5のゲートは、サブシフト信号ssftz1が入力されている。トランジスタM6のゲートは、サブシフト信号ssftx1が入力されている。トランスファゲート31は、サブシフト信号ssftx/z1に応じて、前段のシフトスイッチ21aから出力されるリフレッシュ信号refa000をラッチ回路32に出力する。
【0041】
ラッチ回路32は、インバータ回路Z1、NAND回路Z2から構成されている。NAMD回路Z2の一端には、初期化信号clrnxが入力される。初期化信号clrnxは、図2に示す各種制御信号csigが有している信号の1つである。ラッチ回路32は、トランスファゲート31から出力されるリフレッシュ信号refa000をラッチしてトランスファゲート33に出力する。また、初期化信号clrnxがNAND回路Z2に入力されると、ラッチ回路32は、ラッチしていたリフレッシュ信号refa000を初期化してトランスファゲート33に出力する。
【0042】
トランスファゲート33は、トランジスタM7,M8から構成されている。トランジスタM7は、nチャネルのMOSトランジスタである。トランジスタM8は、pチャネルのMOSトランジスタである。トランジスタM7のゲートは、サブシフト信号ssftz1が入力されている。トランジスタM8のゲートは、サブシフト信号ssftx1が入力されている。トランスファゲート33は、サブシフト信号ssftx/z1に応じて、ラッチ回路32によってラッチされたリフレッシュ信号をラッチ回路34に出力する。トランスファゲート33は、トランスファゲート31がオンしているときオフし、オフしているときオンする。
【0043】
ラッチ回路34は、インバータ回路Z3,Z4から構成されている。ラッチ回路34は、トランスファゲート33から出力されるリフレッシュ信号refa000をラッチして後段のシフトレジスタ19bにリフレッシュ信号refa001として出力する。なお、ラッチ回路34もラッチ回路32と同様の構成にして、初期化信号clrnxによって、ラッチしていたリフレッシュ信号を初期化してトランスファゲート33に出力するようにしてもよい。
【0044】
サブシフト信号ssftx/z1は、H状態及びL状態を交互に繰り返すクロック信号である。従って、前段のシフトスイッチ21aから出力されるリフレッシュ信号refa000は、トランスファゲート31がサブシフト信号ssftx/z1に応じてオンすることにより、ラッチ回路32にラッチされる。
【0045】
次のサブシフト信号ssftx/z1が入力されると、トランスファゲート31はオフし、トランスファゲート33がオンする。よって、ラッチ回路32によってラッチされていたリフレッシュ信号refa000は、ラッチ回路34にラッチされる。そして、後段のシフトレジスタにリフレッシュ信号refa001として出力される。
【0046】
なお、シフトレジスタ19b〜19n,20a,20b,…は、シフトレジスタ19aと同様の回路構成を有しその説明を省略する。
図2の説明に戻る。シフトフラグ信号flagは、各セルアレイ11a,11b,…のサブワード線において、リフレッシュが終了したか否かを示す信号である。例えば、メインワード線が2本のサブワード線を有しているとする。セルアレイ11aのメインワード線の、一本目のサブワード線のリフレッシュが終了したとする。この場合、各メインワード線の、2本目のサブワード線のリフレッシュが終了していないので、シフトフラグ信号flagは、リフレッシュが終了をしていないことを示す。セルアレイ11aの、2本目のサブワード線のリフレッシュが終了すると、シフトフラグ信号flagは、リフレッシュが終了したことを示す。
【0047】
シフトスイッチ21a,21b,…は、セルアレイ11a,11b,…ごとに対応して設けられている。シフトスイッチ21aは、セルアレイ11aに対応して設けられ、シフトスイッチ21b,…は、セルアレイ11bに対応して設けられている。また、シフトスイッチ21a,21b,…は、各セルアレイ11a,11b,…に対応して設けられているシフトレジスタの最終段と接続されている。
【0048】
シフトスイッチ21bは、最終段のシフトレジスタ19nから出力されるリフレッシュ信号refa064とシフトフラグ信号flagが入力される。シフトスイッチ21bは、シフトフラグ信号flagが、セルアレイ11aのリフレッシュの終了を示していない場合、最終段のシフトレジスタ19nから出力されるリフレッシュ信号を、先頭のシフトレジスタ19aにリフレッシュ信号refa000として出力する。なお、シフトレジスタ19a〜19nは、リフレッシュ信号refa000が入力されるとサブシフト信号ssftx/z1に応じて、順にリフレッシュ信号refa001〜063を出力する。
【0049】
シフトフラグ信号flagが、セルアレイ11aのリフレッシュの終了を示している場合、シフトスイッチ21bは、シフトレジスタ19a,19b,…を制御していたRBLKラッチ回路22a、次にリフレッシュ対象となるセルアレイ11bのシフトレジスタ20a、及び次にリフレッシュ対象となるセルアレイ11bのRBLKラッチ回路22bにリフレッシュ信号を出力する。
【0050】
同様にシフトスイッチ20aも、図示してないが、セルアレイに対応して設けられているシフトレジスタの最終段からリフレッシュ信号が入力される。そして、シフトスイッチ20aは、シフトフラグ信号flagに応じて、リフレッシュ信号を、当該図示してないセルアレイの先頭のシフトレジスタ、又は、そのシフトレジスタを制御していたRBLKラッチ回路、次にリフレッシュ対象となるセルアレイ11aのRBLKラッチ回路22a及びシフトレジスタ19aに出力する。
【0051】
すなわち、シフトスイッチ21a,21b,…は、各セルアレイ11a,11b,…において、サブワード線のリフレッシュが終了するまで、シフトレジスタに繰り返しリフレッシュ信号を出力させるようにする。サブワード線のリフレッシュが全部終了すると、シフトスイッチ21a,21b,…は、リフレッシュを終了するセルアレイのRBLKラッチ回路、次のリフレッシュ対象となるセルアレイ11a,11b,…のRBLKラッチ回路、及びシフトレジスタにリフレッシュ信号を出力する。
【0052】
図5は、シフトスイッチの回路図の一例である。図に示すように、シフトスイッチ21bは、トランジスタM9〜M16、インバータ回路Z5〜Z7を有している。
【0053】
トランジスタM9,M10は、pチャネルのMOSトランジスタである。トランジスタM11,M12は、nチャネルのMOSトランジスタである。
トランジスタM9のソースは、電源Viiに接続されている。トランジスタM9のドレインは、トランジスタM10のソースと接続されている。トランジスタM10のドレインは、トランジスタM11のドレインと接続されている。トランジスタM11のソースは、トランジスタM12のドレインと接続されている。トランジスタM12のソースは、Lレベルの電源と接続されている。
【0054】
トランジスタM10,M11は、インバータ回路を構成しており、ゲートには、インバータ回路Z7を介して、最終段のシフトレジスタ19nのリフレッシュ信号refa064が入力される。トランジスタM9のゲートは、インバータ回路Z5,Z6を介して、シフトフラグ信号flagが入力される。トランジスタM12のゲートは、インバータ回路Z5を介してシフトフラグ信号flagが入力される。トランジスタM10,M11のドレインは、セルアレイ11aの先頭のシフトレジスタ19aと接続されている。
【0055】
従って、トランジスタM10,M11は、トランジスタM9,M10がシフトフラグ信号flagに応じてオン・オフすることによって、インバータ回路Z7を介して出力されるリフレッシュ信号refa063を現在リフレッシュ対象となっているセルアレイ11aの先頭のシフトレジスタ19aに出力する。例えば、シフトフラグ信号flagがL状態のとき、リフレッシュが終了していないことを示しているとする。このとき、トランジスタM9,M10はオンし、トランジスタM10,M11は、インバータ回路Z7から出力されるリフレッシュ信号refa064を現在リフレッシュ対象となっているセルアレイ11aの先頭のシフトレジスタ19aに出力する。
【0056】
トランジスタM13,M14は、pチャネルのMOSトランジスタである。トランジスタM15,M16は、nチャネルのMOSトランジスタである。
トランジスタM13のソースは、電源Viiに接続されている。トランジスタM13のドレインは、トランジスタM14のソースと接続されている。トランジスタM14のドレインは、トランジスタM15のドレインと接続されている。トランジスタM15のソースは、トランジスタM16のドレインと接続されている。トランジスタM16のソースは、Lレベルの電源と接続されている。
【0057】
トランジスタM14,M15は、インバータ回路を構成している。トランジスタM14,M15のゲートには、インバータ回路Z7を介して、最終段のシフトレジスタのリフレッシュ信号refa064が入力される。トランジスタM13のゲートは、インバータ回路Z5を介してシフトフラグ信号flagが入力される。トランジスタM16のゲートは、インバータ回路Z5,Z6を介してシフトフラグ信号flagが入力される。トランジスタM14,M15のドレインは、当該セルアレイ11aのRBLKラッチ回路22a、後段のセルアレイのRBLKラッチ回路22b、シフトレジスタ20aと接続されている。
【0058】
従って、トランジスタM14,M15は、トランジスタM13,M16がシフトフラグ信号flagに応じてオン・オフすることによって、インバータ回路Z7から出力されるリフレッシュ信号refa064を、リフレッシュを終了するセルアレイ11aのRBLKラッチ回路22a、次にリフレッシュ対象となるセルアレイ11bのRBLKラッチ回路22b、及びシフトレジスタ20aに出力する。例えば、シフトフラグ信号flagがH状態のとき、リフレッシュが終了したことを示しているとする。このとき、トランジスタM13,M16はオンし、トランジスタM14,M15は、インバータ回路Z7から出力されるリフレッシュ信号refa064を、リフレッシュを終了するセルアレイ11aのRBLKラッチ回路22a、次にリフレッシュ対象となるセルアレイ11bのRBLKラッチ回路22b、及びシフトレジスタ20aに出力する。
【0059】
なお、シフトスイッチ20aは、シフトスイッチ20bと同様の回路構成を有しその説明を省略する。
図2の説明に戻る。RBLKラッチ回路22a,22b,…は、セルアレイ11a,11b,…ごとに対応して設けられ、セルアレイ11a,11b,…ごとに設けられたシフトレジスタ19a〜19n、20a、20b,…を制御する。RBLKラッチ回路22aは、セルアレイ11aのシフトレジスタ19a〜19nを制御する。RBLKラッチ回路22bは、セルアレイ11bのシフトレジスタ20a,20b,…を制御する。
【0060】
RBLKラッチ回路22aは、リフレッシュを終了するセルアレイのシフトスイッチ21aからリフレッシュ信号が出力されると、次にセルアレイ11aをリフレッシュすることを認識する。RBLKラッチ回路22aは、ワード線デコーダ13a〜13nにリフレッシュ要求を示すアドレス切替え信号srefcx/z1を出力する。また、RBLKラッチ回路22aは、セルアレイ11aがリフレッシュに選択されたことを示すロウブロック選択信号rblkez2をシフト信号生成回路23aに出力する。また、RBLKラッチ回路22aは、制御信号生成回路24aにサブリフレッシュパルスsrefpz1/srefpnz1を出力する。
【0061】
RBLKラッチ回路22aは、セルアレイ11aのリフレッシュが終了したとき、シフトスイッチ21bから出力されるリフレッシュ信号が入力される。RBLKラッチ回路22aは、シフトスイッチ21bから出力されるリフレッシュ信号によって、当該セルアレイ11aのリフレッシュが終了することを認識する。RBLKラッチ回路22aは、シフトレジスタ19a〜19nの動作を停止させるためロウブロック選択信号rblkez2の出力を停止する。
【0062】
また、RBLKラッチ回路22aは、前段のセルアレイがリフレッシュされているとき、前段のRBLKラッチ回路からロウブロック選択信号rblkez1が入力される。RBLKラッチ回路22aは、前段のRBLKラッチ回路からのロウブロック選択信号rblkez1を受けて、サブリフレッシュパルスsrefpnz1を制御信号生成回路24aに出力する。これは、上述したように、センスアンプ12a,12b,…は、(セルアレイのビット線アドレスが続く)両隣のセルアレイで共有されるため(シェアード方式)、センスアンプ12aを駆動する必要があるためである。
【0063】
すなわち、RBLKラッチ回路22a,22b,…は、前段のリフレッシュを終了するセルアレイ11x,11a,…のシフトスイッチ21a,21b,…からリフレッシュ信号を受けると、対応するセルアレイ11a,11bをリフレッシュすることを認識し制御を開始する。また、RBLKラッチ回路22a,22b,…は、対応するセルアレイ11a,11b,…のシフトスイッチ21b,…からリフレッシュ信号を受けると、リフレッシュの終了を認識し制御を停止する。また、RBLKラッチ回路22a,22b,…は、前段のリフレッシュを開始するセルアレイ11x,11a,…のRBLKラッチ回路からロウブロック選択信号rblkezを受けて、センスアンプ12a,12b,…を駆動する。
【0064】
図6は、RBLKラッチ回路の回路図の一例である。図に示すように、RBLKラッチ回路22aは、NOR回路Z8,Z9、インバータ回路Z10,Z13,Z14,Z18〜Z20,Z49、NAND回路Z11,Z12,Z15〜Z17、トランジスタM17を有している。
【0065】
NOR回路Z8,Z9は、フリップフロップ回路を構成している。NOR回路Z8は、リフレッシュが終了する前段のセルアレイ11xのシフトスイッチ21aから出力されるリフレッシュ信号が入力される。NOR回路Z9は、リフレッシュが終了する当該セルアレイのシフトスイッチ21bから出力されるリフレッシュ信号が入力される。NOR回路Z8,Z9に入力されたリフレッシュ信号は、インバータ回路Z10を介して、ロウブロック選択信号rblkez2として出力される。すなわち、リフレッシュが終了した前段のセルアレイのシフトスイッチ21aからリフレッシュ信号が出力されたとき、ロウブロック選択信号rblkez2がインバータ回路Z10から出力される。セルアレイ11aのシフトスイッチ21bからリフレッシュ信号が出力されたとき、セルアレイ11aのリフレッシュを終了するため、インバータ回路Z10からはロウブロック選択信号rblkez2の出力が停止される。
【0066】
ロウブロック選択信号rblkez2は、RBLKラッチ回路22aが対応しているセルアレイ11aに設けられているシフト生成回路23aに出力される。また、ロウブロック選択信号rblkez2は、センスアンプ12bを選択するため、後段のRBLKラッチ回路22bに出力される。
【0067】
NAND回路Z11は、メインリフレッシュパルスmrefpzと前段のRBLKラッチ回路から出力されるロウブロック選択信号rblkez1が入力される。NAND回路Z11は、前段のRBLKラッチ回路から出力されるロウブロック選択信号rblkez1に応じて、メインリフレッシュパルス信号mrefpzをインバータ回路Z13に伝達する。それに応じて、インバータ回路Z13は、サブリフレッシュパルスsrefpnz1を出力する。すなわち、センスアンプ12a,12bは、シェアード方式なので、前段のセルアレイがリフレッシュされるとき、後段となるRBLKラッチ回路22aは、サブリフレッシュパルス信号srefpnz1を出力する。
【0068】
NAND回路Z12は、メインリフレッシュパルスmrefpzとインバータ回路Z10から出力されるロウブロック選択信号rblkez1が入力される。NAND回路Z12は、インバータ回路Z10から出力されるロウブロック選択信号rblkez1に応じて、メインリフレッシュパルス信号mrefpzをインバータ回路Z14に伝達する。それに応じて、インバータ回路Z14は、サブリフレッシュパルスsrefpz1を出力する。サブリフレッシュパルスsrefpz1は、当該RBLKラッチ回路22aが設けられているセルアレイ11aの制御信号生成回路24aに出力される。
【0069】
NAND回路Z15は、ブロックリセット信号bltrzと外部/内部アドレス切替え停止信号snorstxが入力される。なお、ブロックリセット信号bltrzと外部/内部アドレス切替え停止信号snorstxは、図2に示す各種制御信号csigが有している信号の一つである。ブロックリセット信号bltrzは、活性化センスアンプと非活性化セルアレイの接続を切離すときにL状態が、接続するときにH状態が出力される。外部/内部アドレス切替え停止信号snorstxは、セルアレイ11aがリード・ライトされる場合はH状態、リフレッシュされる場合はL状態となる。外部/内部アドレス切替え停止信号snorstxは、リフレッシュが連続している間は、ワード線デコーダ13a〜13n,14a,14b,…に入力するアドレス切替え信号srefcx/z1,srefcx/z2,…の切替えを停止し、内部アドレスを選択する状態を維持させる信号である。
【0070】
NAND回路Z15は、リセットを示すブロックリセット信号bltrzが入力されても、セルアレイ11aがリフレッシュされていることを示す外部/内部アドレス切替え停止信号snorstxが出力されている間は、リセットを示すブロックリセット信号bltrzを後段に伝達しない。
【0071】
NAND回路Z16,Z17は、フリップフロップ回路を構成している。NAND回路Z16は、NAND回路Z12からの出力が入力される。NAND回路Z17は、NAND回路Z15からの出力が入力される。すなわち、NAND回路Z16,Z17は、メインリフレッシュ信号mrefpzに同期して、NAND回路Z12から出力される信号でセットされ、外部/内部アドレス切替え停止信号snorstxがH状態となっている間のリセット信号でリセットされる。NAND回路Z16,Z17により構成されるフリップフロップの出力は、インバータ回路Z18によって反転され、アドレス切替え信号srefcx/z1としてワード線ドライバ15a〜15oに出力される。
【0072】
インバータ回路Z20には、各種制御信号csigに含まれている初期化信号clrnxが入力される。トランジスタM17は、pチャネルのMOSトランジスタである。トランジスタM17のドレインはNOR回路Z8の出力と接続され、ソースはH側電源に接続されている。インバータ回路Z20に初期化信号clrnxが入力されると、トランジスタM17はオンし、NOR回路Z8の出力は初期化される(H状態となる)。
【0073】
なお、RBLKラッチ回路22bは、RBLKラッチ回路22aと同様の回路構成を有しその説明を省略する。
図2の説明に戻る。シフト信号生成回路23a,23b…は、セルアレイ11a,11b,…ごとに対応して設けられる。シフト信号生成回路23a,23b,…は、メインシフト信号msftxが入力される。メインシフト信号msftxは、H状態及びL状態を交互に繰り返すクロック信号である。
【0074】
シフト信号生成回路23a,23b,…は、RBLKラッチ回路22a,22b,…から出力されるロウブロック選択信号rblkez2,rblkez3,…に応じて、サブシフト信号ssftx/z1,ssftx/z2,…を出力する。シフト信号生成回路23a,23b,…は、ロウブロック選択信号rblkez1,rblkez2,…が出力されなくなった後も所定時間(所定クロック)サブシフト信号ssftx/z1,ssftx/z2,…を出力する。これは、図4で説明したように、シフトレジスタは、2つのラッチ回路を有しているので、最初のラッチ回路にラッチされている信号状態を出力させるためである。
【0075】
図7は、シフト信号生成回路の回路図の一例である。図に示すように、シフト信号生成回路23aは、トランスファゲート35,37、ラッチ回路36,38、NOR回路Z25,Z29,Z30、インバータ回路Z26,Z27、Z31〜Z33,Z35,Z38〜Z40、NAND回路Z28,Z34,Z36,Z37を有している。
【0076】
トランスファゲート35は、トランジスタM18,M19から構成されている。トランジスタM18は、pチャネルのMOSトランジスタである。トランジスタM19は、nチャネルのMOSトランジスタである。トランスファゲート35は、ロウブロック選択信号rblkez2が入力される。トランスファゲート35は、NOR回路30、インバータ回路Z31,Z32を介して入力されるメインシフト信号msftxに応じて、入力されるロウブロック選択信号rblkez2をラッチ回路36に出力する。
【0077】
ラッチ回路36は、NAND回路Z21、インバータ回路Z22から構成されている。ラッチ回路36は、トランスファゲート35から出力されるロウブロック選択信号をラッチしてトランスファゲート37に出力する。なお、NAND回路Z21には、サブシフト信号ssftx/z1を初期化するための初期化信号clrnxが入力される。
【0078】
トランスファゲート37は、トランジスタM20,M21から構成されている。トランジスタM21は、nチャネルのMOSトランジスタである。トランジスタM21は、pチャネルのMOSトランジスタである。トランスファゲート37は、ラッチ回路36から出力されるロウブロック選択信号rblkez2が入力される。トランスファゲート37は、NOR回路30、インバータ回路Z31,Z32を介して入力されるメインシフト信号msftxに応じて、入力されるロウブロック選択信号rblkez2をラッチ回路38に出力する。
【0079】
ラッチ回路38は、インバータ回路Z23,Z24から構成されている。ラッチ回路38は、トランスファゲート37から出力されるロウブロック選択信号rblkez2をラッチしてNOR回路Z25に出力する。なお、トランスファゲート37は、トランスファゲート35がオンしているときオフし、オフしているときオンする。
【0080】
トランスファゲート35にロウブロック選択信号rblkez2が入力されなくなった場合、ロウブロック選択信号rblkez2はラッチ回路36にラッチされている。従って、トランスファゲート37が、次のメインシフト信号msftxが入力されオンすると、ラッチ回路36にラッチされていたロウブロック選択信号rblkez2がラッチ回路38に出力される。その後、ロウブロック選択信号rblkez2が入力されない状態の信号状態がNOR回路Z25に出力される。
【0081】
NOR回路Z25は、トランスファゲート35に入力されるロウブロック選択信号rblkez2とラッチ回路38から出力されるロウブロック選択信号rblkez2が入力される。すなわち、NOR回路Z25は、トランスファゲート35に入力されるロウブロック選択信号rblkezをインバータ回路Z26に出力する。そして、NOR回路Z25は、トランスファゲート35にロウブロック選択信号rblkez2が入力されなくなっても、ラッチ回路38から出力されるロウブロック選択信号rblkez2を、メインシフト信号msftxの1パルス分インバータ回路Z26に出力する。
【0082】
インバータ回路Z26に入力されたロウブロック選択信号rblkez2は、インバータ回路Z27を介してNAND回路Z28に入力される。NAND回路Z28は、さらに初期化信号clrnxが入力される。従って、NAND回路Z28は、初期化信号clrnxが入力された場合、初期化状態の信号を出力する。
【0083】
NAND回路Z28から出力される初期化信号clrnx又はロウブロック選択信号rblkez2は、NAND回路Z34、NOR回路Z29に入力される。NOR回路Z29は、RBLKラッチ回路22aから出力されるロウブロック選択信号rblkez2と、NAND回路Z28から出力される初期化信号clrnx又はロウブロック選択信号rblkez2のNOR演算をし、NOR回路Z30に出力する。NOR回路Z30は、NOR回路Z29から初期化状態のL状態の信号が出力されれば、不図示の回路によりメインシフト信号msftxもL状態になっているので、その信号をインバータ回路Z31に出力する。NOR回路Z30は、NOR回路Z29からロウブロック選択信号rblkez2が出力されれば、メインシフト信号msftxをインバータ回路Z31に出力する。
【0084】
NAND回路Z34は、NAND回路Z28からロウブロック選択信号rblkez2が出力されている場合、メインシフト信号msftxをNAND回路Z36とインバータ回路Z35を介してNAND回路Z37に出力する。NAND回路Z36,Z37はフリップフロップ回路を構成している。
【0085】
NAND回路Z36から出力されるメインシフト信号msftxは、インバータ回路Z38,Z40を介して、サブシフト信号ssftx1としてシフトレジスタに出力される。また、NAND回路Z36から出力されるメインシフト信号msftxは、インバータ回路Z39を介して、サブシフト信号ssftz1としてシフトレジスタに出力される。
【0086】
すなわち、シフト信号生成回路23aは、ロウブロック選択信号rblkez2が入力されると、入力されているメインシフト信号msftxをサブシフト信号ssftx/z1として出力する。シフト信号生成回路23aは、ロウブロック選択信号rblkez2が入力されなくなっても、メインシフト信号msftxの1クロック分、余分にサブシフト信号ssftx/z2を出力する。これにより、最終段のシフトレジスタ19nの、最初のラッチ回路にラッチされている信号状態を出力させることができる。
【0087】
図2の説明に戻る。制御信号生成回路24a,24b,…は、RBLKラッチ回路22a,22b,…からサブリフレッシュパルスsrefpz1/srefpnz1,srefpz2/srefpnz2,…が入力される。また、制御信号生成回路24a,24b,…は、制御信号csig、RBLK選択アドレス信号seadが入力される。制御信号生成回路24a,24b,…は、セルアレイ11a,11b,…が選択されていることを示す制御信号csig、RBLK選択アドレス信号seadが入力され、サブリフレッシュパルスsrefpz1/srefpnz1,srefpz2/srefpnz2,…が入力されると、アンプ制御信号actl1,actl2,…及びメインワード線制御信号mwl1,mwl2,…を出力する。センスアンプ12a,12b,…は、アンプ制御信号actl1,actl2,…、メインワード線制御信号mwl1,mwl2,…に応じて動作する。なお、メインワード線制御信号mwl1は、図2で示した電圧bkexの基となる信号である。
【0088】
以下、図2の回路図の動作を説明する。RBLKラッチ回路22aは、シフトスイッチ21aからリフレッシュ信号が出力されると、リフレッシュ要求を示すアドレス切り切替え信号srefcx/z1をワード線デコーダ13a〜13nに出力する。ワード線デコーダ13a〜13nは、シフトレジスタ19a〜19nから順次出力されるリフレッシュ信号refa000〜063により選択され、セルアレイ11aのメインワード線を駆動するための信号を冗長回路17a〜17oに出力する。
【0089】
RBLKラッチ回路22aは、ロウブロック選択信号rblkez2をシフト信号生成回路23a、RBLKラッチ回路22bに出力する。RBLKラッチ回路22aは、制御信号生成回路24aにサブリフレッシュパルスsrefpz1を出力する。
【0090】
シフト信号生成回路23aは、RBLKラッチ回路22aからロウブロック選択信号rblkez2が出力されると、メインシフト信号msftxに応じて、サブシフト信号ssftx/z1を出力する。シフトレジスタ19a〜19nは、サブシフト信号ssftx/z1に同期して、順次リフレッシュ信号001〜063を出力する。
【0091】
RBLKラッチ回路22bは、RBLKラッチ回路22aからロウブロック選択信号rblkez2が出力されると、制御信号生成回路24bにサブリフレッシュパルスsrefpnz2を出力する。制御信号生成回路24bは、アンプ制御信号actl2、メインワード線制御信号mwl2を出力する。センスアンプ12bは、セルアレイ11aに対して動作する。
【0092】
シフトスイッチ21bは、セルアレイ11aのサブワード線においてリフレッシュが終了していないことを示すL状態のシフトフラグ信号flagが入力され、シフトレジスタ19nからリフレッシュ信号が出力されると、このリフレッシュ信号をシフトレジスタ19aに出力する。シフトレジスタ19a〜19nは、再び順次リフレッシュ信号refa001〜063を出力する。
【0093】
シフトスイッチ21bは、セルアレイ11aのサブワード線においてリフレッシュが終了したことを示すH状態のシフトフラグ信号flagが入力され、シフトレジスタ19nからリフレッシュ信号が出力されると、このリフレッシュ信号をシフトレジスタ20aに(リフレッシュ信号refa100として)出力する。また、シフトスイッチ21bは、リフレッシュ信号をRBLKラッチ回路22a,22bに出力する。
【0094】
RBLKラッチ回路22aは、シフトスイッチ21bからのリフレッシュ信号によって、ロウブロック選択信号rblkez2、サブリフレッシュパルスsrefpz1の出力を停止する。また、RBLKラッチ回路22aは、データのリード・ライト要求を示すアドレス切替え信号srefcx/z1を出力する。
【0095】
RBLKラッチ回路22bは、シフトスイッチ21bからのリフレッシュ信号によって、上記RBLKラッチ回路22aで説明したのと同様に、セルアレイ11bをリフレッシュするための動作をする。
【0096】
リフレッシュされるセルアレイが切替わるときの動作を、タイミングチャートを用いて説明する。図8は、リフレッシュされるセルアレイが切替わるときの動作を説明するタイミングチャートである。
【0097】
RBLKラッチ回路22aは、図8に示すように、メインリフレッシュパルスmrefpzから、サブリフレッシュパルスsrefpz1を出力する。シフト信号生成回路23aは、メインシフト信号msftxから、サブシフト信号ssftx1を出力する。
【0098】
シフトレジスタ19mは、サブシフト信号ssftx1の立ち上がりでリフレッシュ信号refa062をラッチし、立ち下がりでリフレッシュ信号refa063を出力する。
【0099】
リフレッシュ信号refa063の立ち下がりと同時に、シフトスイッチ21b(シフトレジスタ19n)からは、リフレッシュ信号refa100が出力される。また、ロウブロック選択信号rblkez2の出力が停止され、ロウブロック選択信号rblkez3が出力される。
【0100】
シフト信号生成回路23aは、ロウブロック選択信号rblkez2の出力が停止した後も、1パルスサブシフト信号ssftx1を出力する。これにより、シフトレジスタ19nのリフレッシュ信号refa100の出力が停止される。
【0101】
シフト信号生成回路23bは、サブシフト信号ssft2を出力し、シフトレジスタ20b,…は、リフレッシュ信号refa101,…を順次出力していく。
【0102】
また、図6で説明したように、リセットを示す(H状態の)ブロックリセット信号bltrzが入力されても、セルアレイ11aがリフレッシュされていることを示す(L状態の)外部/内部アドレス切替え停止信号snorstxが出力されている間は、リフレッシュ要求を示す(H状態の)アドレス切替え信号srefczと(L状態の)アドレス切替え信号srefcxが出力される。
【0103】
図9は、リフレッシュ動作までのクリティカルパスを説明する図である。図に示す太線は、クリティカルパスを示している。アービタは、半導体記憶装置内部に設けられており、入力される信号の処理順を検討し、信号を所定の処理回路に出力する。
【0104】
アービタには、内部動作が行われていることを示す内部動作信号icsxが入力されている。例えば、信号icsxがH状態のときアービタに入力される順に信号を出力する。信号icsxがL状態のとき、外部コマンドやリフレッシュ要求は内部動作が終了するまで待たされる。なお、ここでは、内部動作信号icsxは、H状態であるとする。
【0105】
アービタには、内部の周辺回路から送られてくるリフレッシュの要求を示す内部リフレッシュコマンドsrtzが入力される。また、アービタには、リフレッシュの停止を要求するリフレッシュマスク信号refmskzが入力される。リフレッシュマスク信号refmskzは、外部から入力されるチップイネーブル信号/CE1から生成される。チップイネーブル信号/CE1は、外部からのデータのリード・ライト要求か、あるいはアウトプットディスエーブル状態への移行を示す信号である。
【0106】
アービタにて、内部リフレッシュコマンドsrtzが受け付けられ、リフレッシュを行うと判定された場合、半導体記憶装置内の周辺回路からメインリフレッシュパルスmrefpzが出力される。メインリフレッシュパルスmrefpzは、図2に示してないバッファ回路によってバッファされ、RBLKラッチ回路22a,22b,…に出力される。図6で示したようにメインリフレッシュパルスmrefpzは、ロウブロック選択信号rblkez1,rblkez2,…と論理積(AND)が取られ、サブリフレッシュパルスsrefpz1,srefpz2,…として出力される。
【0107】
図10は、リフレッシュ動作までのクリティカルパスを説明するタイミングチャートである。図に示すように、チップイネーブル信号/CE1が入力されると、リフレッシュマスク信号refmskzが生成される。リフレッシュマスク信号refmskzより、内部リフレッシュコマンドsrtzが早くアービタに入力された場合、周辺回路からは、メインリフレッシュパルスmrefpzが出力される。メインリフレッシュパルスmrefpzは、バッファしてRBLKラッチ回路22a,22b,…に出力される。メインリフレッシュパルスmrefpzは、ロウブロック選択信号rblkezr1,blkez2,…と論理積(AND)が取られ、サブリフレッシュパルスsrefpzとして出力される。そしてリフレッシュ動作が開始される。
【0108】
メインリフレッシュパルスmrefpzは、バッファしてRBLKラッチ回路22a,22b,…に出力される。RBLKラッチ回路22a,22b,…は、サブリフレッシュパルスsrefpzを出力し、リフレッシュが行われる。リフレッシュするワード線のアドレスは、シフトレジスタ19a〜19n、20a,20b,…より順次出力される。従来のアドレスカウンタによる方法では、アドレス取りこみ・デコード動作、内部アドレス確定からセルアレイの活性化タイミング信号活性化など時間を要していたが、本発明の半導体記憶装置では、このタイミングマージンの分が削減され、アクセスタイムが高速化される。ここで、チップイネーブル信号/CE1のローレベルからのアクセス例を示したが、アドレスアクセス等、他の場合でも同様の効果が得られる。
【0109】
このように、RBLKラッチ回路22a,22b,…によって、セルアレイ11a,11b,…ごとのシフトレジスタ19a〜19n,20a,20b,…にサブシフト信号ssftx/z1,ssftx/z2,…を出力し、リフレッシュするメインワード線を選択するための選択信号を順次出力させるようにした。これにより、シフトレジスタ19a〜19n,20a,20b,…に出力するサブシフト信号ssftx/z1,ssftx/z2…の電流消費を低減することができる。
【0110】
次に、本発明の第2の実施の形態について説明する。図11は、第2の実施の形態に係る半導体記憶装置の回路図である。図11の半導体記憶装置では、図2に示すシフトスイッチ21a,21b,…がバッファ41a,41b,…となっている。図2の半導体記憶装置では、シフトスイッチ21bは、対応するセルアレイ11aのサブワード線のリフレッシュが終了するまで、シフトレジスタ19a〜19nに繰り返しリフレッシュ信号refa000〜refa063を出力させる。シフトスイッチ20aも同様である。図11では、各セルアレイ11a,11b,…のサブワード線のリフレッシュが終了しなくても、次のセルアレイのメインワード線を順次選択していき、メインワード線のアドレスが一巡したら、次のサブワード線アドレスに切り換えて、再度全セルアレイ11a,11b,…でメインワード線を順次選択していく。すべてのサブワード線のリフレッシュが終了するまでこれを繰り返す。なお、図11において、図2と同じものには同じ符号を付しその説明を省略する。
【0111】
バッファ41a,41b,…は、セルアレイ11a,11b,…ごとに対応して設けられている。
バッファ41bは、シフトレジスタ19nから出力されるリフレッシュ信号をシフトレジスタ20a、RBLKラッチ回路22a,22bに出力する。
【0112】
同様にバッファ41aも、図示してないが、前段のセルアレイに対応して設けられているシフトレジスタの最終段からリフレッシュ信号が入力される。そして、バッファ41aは、リフレッシュ信号を、当該シフトレジスタを制御していたRBLKラッチ回路、次にリフレッシュ対象となる後段のセルアレイ11aのRBLKラッチ回路22a及びシフトレジスタ19aに出力する。
【0113】
バッファ41a,41b,…には、図2で説明したようなシフトフラグ信号flagは、入力されない。そして、バッファ41a,41b,…は、前段のシフトレジスタからリフレッシュ信号が出力されると後段のシフトレジスタに出力する。すなわち、各セルアレイ11a,11b,…において、サブワード線のリフレッシュが終了しなくても、次のセルアレイのリフレッシュを順次行っていく。最後のセルアレイのリフレッシュが終了すると、再び先頭のセルアレイに戻り、次のサブワード線アドレスに切り換えて、リフレッシュを行っていく。
【0114】
このように、バッファ41a,41b,…2よって、リフレッシュ信号を順次後段のシフトレジスタに出力し、セルアレイ11a,11b,…の全体でリフレッシュを繰り返すようにした。よって、シフトフラグ信号flagを伝達するための配線、先頭のシフトレジスタにリフレッシュ信号を伝達するための配線が不要となり、回路を簡略化することができる。
【0115】
なお、第2の実施の形態における半導体記憶装置においても、RBLKラッチ回路22a,22b,…は、各セルアレイ11a,11b,…に対応するシフトレジスタ19a〜19n,20a,20b,…ごとにサブシフト信号sstfx/z1,sstfx/z1を出力するよう制御するので消費電力が低減される。
【0116】
次に、本発明の第3の実施の形態について説明する。図12は、第3の実施の形態に係る半導体記憶装置の回路図である。図12では、図2の半導体記憶装置とは視点を変え、より広い範囲を示している。図12では、セルアレイをパーシャルリフレッシュする点が異なる。図12に示すセルアレイは、図2のセルアレイ11a,11b,…に対応している。S/Aは、センスアンプ12a,12b,…に対応している。SR群は、シフトレジスタ19a〜19n、20a,20b,…に対応している。SW及びSW53は、シフトスイッチ21a,21b,…に対応している。ただし、SW53は、シフトスイッチ21a,21b,…と一部機能が異なる。制御回路群(斜線を付した四角形)は、RLBKラッチ回路22a,22b,…、シフト信号生成回路23a,23b,…、制御信号生成回路24a,24b,…に対応している。rblkezは、ロウブロック選択信号rblkez1,rblkez2,…に対応している。rblkrzは、シフトスイッチ21,21b,…と、前段のセルアレイ11a,11bに対応するRBLKラッチ回路22a,22b,…と接続される接続線に対応している。flagは、シフトフラグ信号flagに対応している。
【0117】
その他、図12の半導体記憶装置は、パーシャルリフレッシュ制御回路51、リフレッシュ周期生成回路52、リフレッシュアレイラッチ回路54、NOR回路Z41,Z43、インバータ回路Z42,Z44〜Z46を有している。
【0118】
図12では、セルアレイは、行列状に配置されたメモリセルが所定の行(ビット線)ごとにブロック化されるとともに、さらに大きく2つにブロック化される。2つにブロック化されたセルアレイの一方は、リフレッシュが途中で終了される。そして、もう一方のブロック化されたセルアレイにおいてリフレッシュが続けられる。なお、図12では、セルアレイは、左右にブロック化されている。
【0119】
パーシャルリフレッシュ制御回路51は、外部からパーシャルリフレッシュの要求を受け付けると、リフレッシュ領域切替え信号refswを出力する。なお、パーシャルリフレッシュ制御回路51は、リフレッシュがセルアレイのリフレッシュ開始点に戻ったとき、パーシャルリフレッシュの要求を受け付ける。また、パーシャルリフレッシュ制御回路51は、リフレッシュ周期生成回路52が出力する周期に応じてパーシャルリフレッシュを行う。さらに、パーシャルリフレッシュ制御回路51は、パーシャルリフレッシュが終了するとき、リフレッシュする領域を全セルアレイの領域に戻してから、リフレッシュを行う周期に戻す。
【0120】
リフレッシュ周期生成回路52は、パーシャルリフレッシュのリフレッシュ周期を生成する。リフレッシュ周期生成回路52は、パーシャルリフレッシュする場合、全領域をリフレッシュする周期を、全領域に対するパーシャルリフレッシュする領域の比に分周する。
【0121】
SW53は、パーシャルリフレッシュ制御回路51からリフレッシュ領域切替え信号refswが出力されると、SR群から出力されるリフレッシュ信号を後段のSR群に出力しないで、もう一方のブロック化されたセルアレイ(右側のセルアレイ)の制御回路群に出力する。SW53は、パーシャルリフレッシュ制御回路51からリフレッシュ領域切替え信号refswが出力されない場合は、後段nのSR群にリフレッシュ信号を出力する。
【0122】
NOR回路Z41は、SW53がリフレッシュ信号を、右側のセルアレイの制御回路群に出力する場合、又は後段のSR群に出力する場合においても、SR群に対応して設けられている制御回路群にインバータ回路Z42を介して出力する。
【0123】
NOR回路Z43,インバータ回路Z44、及びインバータ回路Z45,Z46は、リフレッシュ信号が一方のブロックから他方のブロックに移ったこと検出し、リフレッシュアレイラッチ回路54に出力する。
【0124】
リフレッシュアレイラッチ回路54は、一方のブロックから他方のブロックに移るリフレッシュ信号から、現在どちらの(右又は左)ブロックのセルアレイがリフレッシュされているか認識し、リフレッシュ領域信号reflz/refrzを出力する。例えば、図12において、リフレッシュが左から右に移るとリフレッシュ領域信号reflzがローレベル、リフレッシュ領域信号refrzがハイレベルになり、右から左に移るとそれぞれハイレベル、ローレベルに遷移する。
【0125】
図13は、パーシャルリフレッシュのエントリ・イクジットとリフレッシュ周期を説明する図である。図に示すセルアレイブロック61は、図12に示す左側のセルアレイに対応している。セルアレイブロック62は、図12に示す右側のセルアレイに対応している。また、図に示す番号と矢印は、セルアレイブロック61,62がリフレッシュされる経路を示している。セルアレイブロック61,62の斜線部は、パーシャルリフレッシュモード時にリフレッシュされる領域を示している。
【0126】
図14は、図13のリフレッシュ領域と分周の関係を示した図である。図に示すCE2は、外部から入力されるパーシャルモードを選択するための信号を示している。CE2がH状態のときは、通常(全領域)のリフレッシュが行われる。CE2がL状態のときは、パーシャルリフレッシュが行われる。図のコアの欄に示す1/2は、全セルアレイ領域に対するパーシャルリフレッシュされる領域の割合を示している。ここでは、パーシャルリフレッシュは、セルアレイの全領域の、半分(1/2)の領域で行われるとする。
【0127】
CE2がL状態となったとき、すぐにパーシャルリフレッシュモードにエントリし、リフレッシュ領域やリフレッシュ周期を変えてしまうと、例えば、2から5の間をリフレッシュしている場合、リフレッシュ信号は、3から4へ伝達されなくなる。従って、リフレッシュ信号が1に戻ってからパーシャルリフレッシュにエントリする必要がある。1にリフレッシュ信号が戻ったことは、リフレッシュ領域信号reflzがH状態になることでわかる(H状態になったとき、左の領域リのリフレッシュが開始されるため)。このとき、セルアレイ領域は1/2となり、リフレッシュ周期生成回路52は、リフレッシュする周期を2分周する。
【0128】
また、分岐点である2にいるときにパーシャルリフレッシュモードをイグジットすると、5に向かうのと3から始まる2つのリフレッシュ動作が起こってしまう。また、2の直前でイグジットしたとき、データ保持に必要なリフレッシュの周期trefをTとすると、3のデータを再びリフレッシュするまでに、3→4→1→2でT、2→5→6→3で6/8Tの合計14/8Tかかってしまい、これを補償するためにリフレッシュ周期を14/8にしなければならない。このため、CE2がL状態からH状態に変化し、リフレッシュ領域信号reflzが1回H状態になったときは、領域の変更だけ行う。すなわち、イグジット時には、周期を通常のリフレッシュ周期の1/2に分周して、セルアレイの全領域リフレッシュする。リフレッシュ領域信号reflzの2度目のH状態で、通常のリフレッシュ時の周期に戻す。
【0129】
なお、CE2がH状態で周期を1/2にする理由は、1でイグジットしたとすると1→2→3→4で1/4T、1→5→6→4→1でTの合計5/4Tかかってしまい、それを補償するためリフレッシュ周期を4/5にしなければならず、スタンバイ時のデータ保持電流が増加してしまうためである。
【0130】
なお、図12では、チップの左右にセルアレイを構成し、リフレッシュアレイが右から左に移るときを基準点として領域や周期の制御を行う例を示したが、リフレッシュ領域や分周の制御を、リフレッシュアドレスに基準点を設けそこで行うようにしてもよい。
【0131】
このように、SW53は、パーシャルリフレッシュの要求を示すリフレッシュ領域切替え信号refswに応じて、大きく2つにブロック化されたセルアレイブロックの一方のリフレッシュを途中で終了する。そして、もう一方のブロック化されたセルアレイブロックにおいてリフレッシュを続けるようにした。これにより、リフレッシュの必要なセルアレイのみリフレッシュすることができ、消費電力を低減することができる。
【0132】
次に、本発明の第4の実施の形態について説明する。図15は、第4の実施の形態に係る半導体記憶装置の回路図である。図15では、図11の半導体記憶装置とは視点を変え、より広い範囲を示している。図15では、セルアレイをパーシャルリフレッシュする点が異なる。図15に示すセルアレイは、図11のセルアレイ11a,11b,…に対応している。S/Aは、センスアンプ12a,12b,…に対応している。SR群は、シフトレジスタ19a〜19n、20a,20b,…に対応している。buffは、バッファ41a,41b,…に対応している。制御回路群(斜線を付した四角形)は、RLBKラッチ回路22a,22b,…、シフト信号生成回路23a,23b,…、制御信号生成回路24a,24b,…に対応している。rblkezは、ロウブロック選択信号rblkezに対応している。rblkrzは、シフトスイッチ21,21b,…と、前段のRBLKラッチ回路22a,22b,…と接続される接続線に対応している。
【0133】
その他、図15の半導体記憶装置は、パーシャルリフレッシュ制御回路71、リフレッシュ周期生成回路72、サブワード線アドレス生成回路73、リフレッシュアレイラッチ回路74,インバータ回路Z47,Z48を有している。
【0134】
図15では、セルアレイは、行列状に配置されたメモリセルが所定の行(ビット線)ごとにブロック化されるとともに、さらに大きく2つにブロック化される。なお、図15では、セルアレイは、左右にブロック化されている。
【0135】
パーシャルリフレッシュ制御回路71は、外部からパーシャルリフレッシュの要求を受け付けると、リフレッシュ領域切替え信号refswをサブワード線アドレス生成回路73に出力する。パーシャルリフレッシュ制御回路71は、リフレッシュがセルアレイのリフレッシュ開始点に戻ったとき、パーシャルリフレッシュの要求を受け付ける。また、パーシャルリフレッシュ制御回路71は、リフレッシュ周期生成回路72が生成する周期に応じてパーシャルリフレッシュを行う。
【0136】
リフレッシュ周期生成回路72は、パーシャルリフレッシュのリフレッシュ周期を生成する。リフレッシュ周期生成回路72は、パーシャルリフレッシュする場合、全領域をリフレッシュする周期を、全領域に対するパーシャルリフレッシュする領域の比に分周する。
【0137】
インバータ回路Z47,Z48は、リフレッシュ信号が一方のブロックから他方のブロックに移ったこと検出し、リフレッシュアレイラッチ回路74に出力する。
【0138】
サブワード線アドレス生成回路73は、パーシャルリフレッシュ制御回路71からリフレッシュ領域切替え信号refswを受け付けると、SR群のメインワード線のリフレッシュが1週すると、サブワード線のアドレスをカウントアップしていく。このとき、サブワード線アドレス生成回路73は、サブワード線のアドレスを間引いてカウントアップする。なお、サブワード線のアドレスは、全アドレスの最上位アドレスから、必要なメモリ容量になるよう割り当てられる。従って、サブワード線アドレス生成回路73は、サブワード線に割り当てられた上位アドレスを間引いてカウントアップする。
【0139】
リフレッシュアレイラッチ回路54は、一方のブロックから他方のブロックに移るリフレッシュ信号から、現在どちらの(右又は左)ブロックのセルアレイがリフレッシュされているか認識し、リフレッシュ領域信号reflz/refrzを出力する。例えば、図15において、リフレッシュが左から右に移るとリフレッシュ領域信号reflzがローレベル、リフレッシュ領域信号refrzがハイレベルになり、右から左に移るとそれぞれハイレベル、ローレベルに遷移する。
【0140】
図16は、パーシャルリフレッシュのエントリ・イクジットとリフレッシュ周期を説明する図である。図に示すセルアレイブロック81は、図12に示す左側のセルアレイに対応している。セルアレイブロック82は、図12に示す右側のセルアレイに対応している。また、図に示す番号と矢印は、セルアレイブロック81,82,…がリフレッシュされる経路を示している。セルアレイブロック81,82の斜線部は、パーシャルリフレッシュモード時にリフレッシュされる領域を示している。
【0141】
図17は、図16のリフレッシュ領域と分周の関係を示した図である。図に示すCE2は、外部から入力されるパーシャルモードを選択するための信号を示している。CE2がH状態のときは、通常(全領域)のリフレッシュが行われる。CE2がL状態のときは、パーシャルリフレッシュが行われる。図のコアの欄に示す1/2は、全セルアレイ領域に対するパーシャルリフレッシュされる領域の割合を示している。ここでは、パーシャルリフレッシュは、セルアレイの全領域の、半分の領域で行われるとする。
【0142】
CE2がL状態となり、1回目のリフレッシュ領域信号reflzのH状態でリフレッシュする領域を1/2にする。このとき周期を2分周する。これは、図15に示すように、リフレッシュする経路が常に1→2→3→4であるため、リフレッシュする領域が1/2となれば、リフレッシュ周期も1/2倍にする。
【0143】
CE2がH状態となり、パーシャルリフレッシュモードをイグジットする場合、リフレッシュする領域は全領域とし、分周も1倍する。図15の半導体記憶装置では、図12の半導体記憶装置に対し、イグジットの際の分周制御が不要である。これは、パーシャルリフレッシュモードになっても、常にリフレッシュする経路が常に1→2→3→4であるためである。よって、イグジットの際の制御が簡単となる。
【0144】
このように、セルアレイの全体でリフレッシュを繰り返すとともに、サブワード線のアドレスを間引いてカウントアップするようにした。これにより、リフレッシュの必要なセルアレイのみリフレッシュすることができ、消費電力を低減することができる。
【0145】
(付記1) 記憶したデータをリフレッシュする半導体記憶装置において、
メモリセルを所定の行ごとにブロック化したセルアレイと、
前記セルアレイのワード線ごとに設けられ、リフレッシュする前記ワード線を選択するための選択信号を、制御信号に応じて順次入力して出力するシフトレジスタと、
前記セルアレイごとに設けられ、前記リフレッシュが終了する前記セルアレイの前記シフトレジスタに出力している前記制御信号の出力を停止し、次にリフレッシュする前記セルアレイの前記シフトレジスタに前記制御信号を出力するシフトレジスタ制御回路と、
を有することを特徴とする半導体記憶装置。
【0146】
(付記2) 前記シフトレジスタ制御回路は、前記リフレッシュが終了する前記セルアレイの前記シフトレジスタが出力する最後のワード線の前記選択信号を、次にリフレッシュする前記セルアレイの前記シフトレジスタに出力することを特徴とする付記1記載の半導体記憶装置。
【0147】
(付記3) 前記ワード線は、メインワード線とサブワード線とに階層化されており、
前記シフトレジスタ制御回路は、前記リフレッシュ対象となっているメモリセルアレイにおける前記サブワード線の全てのリフレッシュが終了したとき、次のリフレッシュ対象となる前記メモリセルアレイのシフトレジスタに前記制御信号を出力することを特徴とする付記1記載の半導体記憶装置。
【0148】
(付記4) 前記ワード線は、メインワード線とサブワード線とに階層化されており、前記メインワード線のアドレスが前記セルアレイにおいて一巡したとき、前記サブワード線のアドレスが進められることを特徴とする付記1記載の半導体記憶装置。
【0149】
(付記5) 前記セルアレイは、複数にブロック化され、前記ブロック化された一部のセルアレイ間においてパーシャルリフレッシュを行うパーシャルリフレッシュ制御回路を有することを特徴とする付記1記載の半導体記憶装置。
【0150】
(付記6) 前記パーシャルリフレッシュ制御回路は、前記リフレッシュが前記セルアレイのリフレッシュ開始点に戻ったとき、パーシャルリフレッシュの要求を受け付けることを特徴とする付記5記載の半導体記憶装置。
【0151】
(付記7) 前記パーシャルリフレッシュ制御回路は、前記リフレッシュを行っていた周期を、前記セルアレイの全領域に対する前記パーシャルリフレッシュが行われる領域の比に分周することを特徴とする付記5記載の半導体記憶装置。
【0152】
(付記8) 前記パーシャルリフレッシュ制御回路は、前記パーシャルリフレッシュが終了するとき、前記リフレッシュする領域を全セルアレイの領域に戻してから、前記リフレッシュを行う周期に戻すことを特徴とする付記7記載の半導体記憶装置。
【0153】
(付記9) 前記サブワード線のアドレスは、間引いて進められることを特徴とする付記4記載の半導体記憶装置。
(付記10) 前記セルアレイがリフレッシュされている間は、前記セルアレイの外部/内部アドレス切替え信号を、内部アドレスを参照するように維持することを特徴とする付記1記載の半導体記憶装置。
【0154】
(付記11) 前記ワード線ごとに、前記メモリセルの不良を救済する冗長回路を有することを特徴とする付記1記載の半導体記憶装置。
(付記12) 前記セルアレイは、シェアードセンスアンプによってデータがセンスされることを特徴とする付記1記載の半導体記憶装置。
【0155】
【発明の効果】
以上説明したように本発明では、シフトレジスタ制御回路によって、セルアレイごとのシフトレジスタに制御信号を出力してリフレッシュするワード線を選択するための選択信号を出力させるようにした。これにより、シフトレジスタに出力する制御信号の電流消費を低減することができる。
【図面の簡単な説明】
【図1】本発明の半導体記憶装置の原理を説明する原理図である。
【図2】第1の実施の形態に係る半導体記憶装置の回路図である。
【図3】ワード線デコーダの回路図の一例である。
【図4】シフトレジスタの回路図の一例である。
【図5】シフトスイッチの回路図の一例である。
【図6】RBLKラッチ回路の回路図の一例である。
【図7】シフト信号生成回路の回路図の一例である。
【図8】リフレッシュされるセルアレイが切替わるときの動作を説明するタイミングチャートである。
【図9】リフレッシュ動作までのクリティカルパスを説明する図である。
【図10】リフレッシュ動作までのクリティカルパスを説明するタイミングチャートである。
【図11】第2の実施の形態に係る半導体記憶装置の回路図である。
【図12】第3の実施の形態に係る半導体記憶装置の回路図である。
【図13】パーシャルリフレッシュのエントリ・イクジットとリフレッシュ周期を説明する図である。
【図14】図13のリフレッシュ領域と分周の関係を示した図である。
【図15】第4の実施の形態に係る半導体記憶装置の回路図である。
【図16】パーシャルリフレッシュのエントリ・イクジットとリフレッシュ周期を説明する図である。
【図17】図16のリフレッシュ領域と分周の関係を示した図である。
【符号の説明】
1a,1b,11a,11b,11x セルアレイ
2a〜2n,3a〜3n,19a〜19n,20a,20b シフトレジスタ
4a〜4c シフトレジスタ制御回路
21a,21b シフトスイッチ
22a,22b RBLKラッチ回路
23a,23b シフト信号生成回路
24a,24b 制御信号生成回路
41a,41b バッファ
51,71 パーシャルリフレッシュ制御回路
52,72 リフレッシュ周期生成回路
54,74 リフレッシュアレイラッチ回路

Claims (10)

  1. 記憶したデータをリフレッシュする半導体記憶装置において、
    メモリセルを所定の行ごとにブロック化したセルアレイと、
    前記セルアレイのワード線ごとに設けられ、リフレッシュする前記ワード線を選択するための選択信号を、制御信号に応じて順次入力して出力するシフトレジスタと、
    前記セルアレイごとに設けられ、前記リフレッシュが終了する前記セルアレイの前記シフトレジスタに出力している前記制御信号の出力を停止し、次にリフレッシュする前記セルアレイの前記シフトレジスタに前記制御信号を出力するシフトレジスタ制御回路と、
    を有することを特徴とする半導体記憶装置。
  2. 前記シフトレジスタ制御回路は、前記リフレッシュが終了する前記セルアレイの前記シフトレジスタが出力する最後のワード線の前記選択信号を、次にリフレッシュする前記セルアレイの前記シフトレジスタに出力することを特徴とする請求項1記載の半導体記憶装置。
  3. 前記ワード線は、メインワード線とサブワード線とに階層化されており、
    前記シフトレジスタ制御回路は、前記リフレッシュ対象となっているメモリセルアレイにおける前記サブワード線の全てのリフレッシュが終了したとき、次のリフレッシュ対象となる前記メモリセルアレイのシフトレジスタに前記制御信号を出力することを特徴とする請求項1記載の半導体記憶装置。
  4. 前記ワード線は、メインワード線とサブワード線とに階層化されており、前記メインワード線のアドレスが前記セルアレイにおいて一巡したとき、前記サブワード線のアドレスが進められることを特徴とする請求項1記載の半導体記憶装置。
  5. 前記セルアレイは、複数にブロック化され、前記ブロック化された一部のセルアレイ間においてパーシャルリフレッシュを行うパーシャルリフレッシュ制御回路を有することを特徴とする請求項1記載の半導体記憶装置。
  6. 前記パーシャルリフレッシュ制御回路は、前記リフレッシュが前記セルアレイのリフレッシュ開始点に戻ったとき、パーシャルリフレッシュの要求を受け付けることを特徴とする請求項5記載の半導体記憶装置。
  7. 前記パーシャルリフレッシュ制御回路は、前記リフレッシュを行っていた周期を、前記セルアレイの全領域に対する前記パーシャルリフレッシュが行われる領域の比に分周することを特徴とする請求項5記載の半導体記憶装置。
  8. 前記パーシャルリフレッシュ制御回路は、前記パーシャルリフレッシュが終了するとき、前記リフレッシュする領域を全セルアレイの領域に戻してから、前記リフレッシュを行う周期に戻すことを特徴とする請求項7記載の半導体記憶装置。
  9. 前記サブワード線のアドレスは、間引いて進められることを特徴とする請求項4記載の半導体記憶装置。
  10. 前記セルアレイがリフレッシュされている間は、前記セルアレイの外部/内部アドレス切替え信号を、内部アドレスを参照するように維持することを特徴とする請求項1記載の半導体記憶装置。
JP2003071660A 2003-03-17 2003-03-17 半導体記憶装置 Expired - Fee Related JP4381013B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003071660A JP4381013B2 (ja) 2003-03-17 2003-03-17 半導体記憶装置
DE602004004182T DE602004004182T2 (de) 2003-03-17 2004-03-11 Halbleiterspeichervorrichtung mit Schieberegister als Auffrischadressgenerator
EP04005805A EP1460638B1 (en) 2003-03-17 2004-03-11 Semiconductor memory device with shift register-based refresh address generation circuit
US10/800,831 US7145825B2 (en) 2003-03-17 2004-03-16 Semiconductor memory device with shift register-based refresh address generation circuit
CN2004100294355A CN1530962B (zh) 2003-03-17 2004-03-17 具有刷新所存储数据的功能的半导体存储器件
US11/486,002 US7286434B2 (en) 2003-03-17 2006-07-14 Semiconductor memory device with shift register-based refresh address generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071660A JP4381013B2 (ja) 2003-03-17 2003-03-17 半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2004280957A true JP2004280957A (ja) 2004-10-07
JP4381013B2 JP4381013B2 (ja) 2009-12-09

Family

ID=32821283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071660A Expired - Fee Related JP4381013B2 (ja) 2003-03-17 2003-03-17 半導体記憶装置

Country Status (5)

Country Link
US (2) US7145825B2 (ja)
EP (1) EP1460638B1 (ja)
JP (1) JP4381013B2 (ja)
CN (1) CN1530962B (ja)
DE (1) DE602004004182T2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004095466A1 (ja) * 2003-04-23 2006-07-13 富士通株式会社 半導体記憶装置

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI269166B (en) * 2005-04-22 2006-12-21 Via Tech Inc Automatic memory-updating method
US8327104B2 (en) 2006-07-31 2012-12-04 Google Inc. Adjusting the timing of signals associated with a memory system
US7643430B2 (en) * 2005-11-30 2010-01-05 Cisco Technology, Inc. Methods and apparatus for determining reverse path delay
KR101096255B1 (ko) * 2009-06-26 2011-12-22 주식회사 하이닉스반도체 카운터 제어신호 생성회로 및 리프레쉬회로
US8045401B2 (en) * 2009-09-18 2011-10-25 Arm Limited Supporting scan functions within memories
US8310893B2 (en) * 2009-12-16 2012-11-13 Micron Technology, Inc. Techniques for reducing impact of array disturbs in a semiconductor memory device
US8774010B2 (en) 2010-11-02 2014-07-08 Cisco Technology, Inc. System and method for providing proactive fault monitoring in a network environment
US8559341B2 (en) 2010-11-08 2013-10-15 Cisco Technology, Inc. System and method for providing a loop free topology in a network environment
US8982733B2 (en) 2011-03-04 2015-03-17 Cisco Technology, Inc. System and method for managing topology changes in a network environment
US8670326B1 (en) 2011-03-31 2014-03-11 Cisco Technology, Inc. System and method for probing multiple paths in a network environment
US8724517B1 (en) 2011-06-02 2014-05-13 Cisco Technology, Inc. System and method for managing network traffic disruption
US8830875B1 (en) 2011-06-15 2014-09-09 Cisco Technology, Inc. System and method for providing a loop free topology in a network environment
KR20130117424A (ko) * 2012-04-17 2013-10-28 삼성전자주식회사 반도체 메모리 장치의 리프레쉬 회로
KR20130129786A (ko) * 2012-05-21 2013-11-29 에스케이하이닉스 주식회사 리프래쉬 방법과 이를 이용한 반도체 메모리 장치
US9450846B1 (en) 2012-10-17 2016-09-20 Cisco Technology, Inc. System and method for tracking packets in a network environment
US9324398B2 (en) 2013-02-04 2016-04-26 Micron Technology, Inc. Apparatuses and methods for targeted refreshing of memory
CN110069420A (zh) * 2013-04-02 2019-07-30 太阳诱电株式会社 半导体装置
US9047978B2 (en) 2013-08-26 2015-06-02 Micron Technology, Inc. Apparatuses and methods for selective row refreshes
JP2015219938A (ja) 2014-05-21 2015-12-07 マイクロン テクノロジー, インク. 半導体装置
JP2017182854A (ja) 2016-03-31 2017-10-05 マイクロン テクノロジー, インク. 半導体装置
US9576637B1 (en) 2016-05-25 2017-02-21 Advanced Micro Devices, Inc. Fine granularity refresh
US10490251B2 (en) 2017-01-30 2019-11-26 Micron Technology, Inc. Apparatuses and methods for distributing row hammer refresh events across a memory device
US10192608B2 (en) * 2017-05-23 2019-01-29 Micron Technology, Inc. Apparatuses and methods for detection refresh starvation of a memory
US10580475B2 (en) 2018-01-22 2020-03-03 Micron Technology, Inc. Apparatuses and methods for calculating row hammer refresh addresses in a semiconductor device
WO2019222960A1 (en) 2018-05-24 2019-11-28 Micron Technology, Inc. Apparatuses and methods for pure-time, self adopt sampling for row hammer refresh sampling
US11152050B2 (en) 2018-06-19 2021-10-19 Micron Technology, Inc. Apparatuses and methods for multiple row hammer refresh address sequences
US10685696B2 (en) 2018-10-31 2020-06-16 Micron Technology, Inc. Apparatuses and methods for access based refresh timing
WO2020117686A1 (en) 2018-12-03 2020-06-11 Micron Technology, Inc. Semiconductor device performing row hammer refresh operation
CN111354393B (zh) 2018-12-21 2023-10-20 美光科技公司 用于目标刷新操作的时序交错的设备和方法
US10957377B2 (en) 2018-12-26 2021-03-23 Micron Technology, Inc. Apparatuses and methods for distributed targeted refresh operations
US10770127B2 (en) 2019-02-06 2020-09-08 Micron Technology, Inc. Apparatuses and methods for managing row access counts
US11043254B2 (en) 2019-03-19 2021-06-22 Micron Technology, Inc. Semiconductor device having cam that stores address signals
US11227649B2 (en) 2019-04-04 2022-01-18 Micron Technology, Inc. Apparatuses and methods for staggered timing of targeted refresh operations
US11264096B2 (en) 2019-05-14 2022-03-01 Micron Technology, Inc. Apparatuses, systems, and methods for a content addressable memory cell with latch and comparator circuits
US11158364B2 (en) 2019-05-31 2021-10-26 Micron Technology, Inc. Apparatuses and methods for tracking victim rows
US11069393B2 (en) 2019-06-04 2021-07-20 Micron Technology, Inc. Apparatuses and methods for controlling steal rates
US11158373B2 (en) 2019-06-11 2021-10-26 Micron Technology, Inc. Apparatuses, systems, and methods for determining extremum numerical values
US10832792B1 (en) 2019-07-01 2020-11-10 Micron Technology, Inc. Apparatuses and methods for adjusting victim data
US11139015B2 (en) 2019-07-01 2021-10-05 Micron Technology, Inc. Apparatuses and methods for monitoring word line accesses
US11386946B2 (en) 2019-07-16 2022-07-12 Micron Technology, Inc. Apparatuses and methods for tracking row accesses
US10943636B1 (en) 2019-08-20 2021-03-09 Micron Technology, Inc. Apparatuses and methods for analog row access tracking
US10964378B2 (en) 2019-08-22 2021-03-30 Micron Technology, Inc. Apparatus and method including analog accumulator for determining row access rate and target row address used for refresh operation
US11200942B2 (en) 2019-08-23 2021-12-14 Micron Technology, Inc. Apparatuses and methods for lossy row access counting
US11302374B2 (en) 2019-08-23 2022-04-12 Micron Technology, Inc. Apparatuses and methods for dynamic refresh allocation
US11302377B2 (en) 2019-10-16 2022-04-12 Micron Technology, Inc. Apparatuses and methods for dynamic targeted refresh steals
US11309010B2 (en) 2020-08-14 2022-04-19 Micron Technology, Inc. Apparatuses, systems, and methods for memory directed access pause
US11348631B2 (en) 2020-08-19 2022-05-31 Micron Technology, Inc. Apparatuses, systems, and methods for identifying victim rows in a memory device which cannot be simultaneously refreshed
US11380382B2 (en) 2020-08-19 2022-07-05 Micron Technology, Inc. Refresh logic circuit layout having aggressor detector circuit sampling circuit and row hammer refresh control circuit
US11222682B1 (en) 2020-08-31 2022-01-11 Micron Technology, Inc. Apparatuses and methods for providing refresh addresses
US11557331B2 (en) 2020-09-23 2023-01-17 Micron Technology, Inc. Apparatuses and methods for controlling refresh operations
US11222686B1 (en) 2020-11-12 2022-01-11 Micron Technology, Inc. Apparatuses and methods for controlling refresh timing
US11462291B2 (en) 2020-11-23 2022-10-04 Micron Technology, Inc. Apparatuses and methods for tracking word line accesses
US11264079B1 (en) 2020-12-18 2022-03-01 Micron Technology, Inc. Apparatuses and methods for row hammer based cache lockdown
US11482275B2 (en) 2021-01-20 2022-10-25 Micron Technology, Inc. Apparatuses and methods for dynamically allocated aggressor detection
US11600314B2 (en) 2021-03-15 2023-03-07 Micron Technology, Inc. Apparatuses and methods for sketch circuits for refresh binning
US11664063B2 (en) 2021-08-12 2023-05-30 Micron Technology, Inc. Apparatuses and methods for countering memory attacks
US11790974B2 (en) 2021-11-17 2023-10-17 Micron Technology, Inc. Apparatuses and methods for refresh compliance
US11688451B2 (en) 2021-11-29 2023-06-27 Micron Technology, Inc. Apparatuses, systems, and methods for main sketch and slim sketch circuit for row address tracking

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150189A (ja) * 1984-12-25 1986-07-08 Fujitsu Ltd ダイナミツク型半導体記憶装置
JPH09161478A (ja) * 1995-12-12 1997-06-20 Mitsubishi Electric Corp 半導体記憶装置
JP2000311487A (ja) 1999-04-27 2000-11-07 Mitsubishi Electric Corp 半導体記憶装置
US6633952B2 (en) * 2000-10-03 2003-10-14 Broadcom Corporation Programmable refresh scheduler for embedded DRAMs
JP3737437B2 (ja) * 2001-02-01 2006-01-18 Necエレクトロニクス株式会社 半導体メモリ及びその動作モードのエントリー方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004095466A1 (ja) * 2003-04-23 2006-07-13 富士通株式会社 半導体記憶装置
JP4576237B2 (ja) * 2003-04-23 2010-11-04 富士通セミコンダクター株式会社 半導体記憶装置

Also Published As

Publication number Publication date
CN1530962A (zh) 2004-09-22
US20040184323A1 (en) 2004-09-23
DE602004004182D1 (de) 2007-02-22
DE602004004182T2 (de) 2007-10-25
US20060256638A1 (en) 2006-11-16
CN1530962B (zh) 2010-06-02
US7145825B2 (en) 2006-12-05
US7286434B2 (en) 2007-10-23
EP1460638A3 (en) 2005-04-27
EP1460638B1 (en) 2007-01-10
JP4381013B2 (ja) 2009-12-09
EP1460638A2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP4381013B2 (ja) 半導体記憶装置
US9368184B2 (en) Memory refresh methods, memory section control circuits, and apparatuses
US6545931B2 (en) Semiconductor memory device with improved flexible redundancy scheme
JP4157730B2 (ja) スタック・バンク・アーキテクチャのためのデコード方式
US6504783B2 (en) Semiconductor device having early operation high voltage generator and high voltage supplying method therefor
US7379370B2 (en) Semiconductor memory
US6421294B2 (en) Semiconductor memory device having large data I/O width and capable of speeding up data input/output and reducing power consumption
US7394711B2 (en) Multi-port semiconductor memory device and method for accessing and refreshing the same
KR100203724B1 (ko) 계층승압 전원선 구성을 갖는 반도체 기억장치
JP2001023373A (ja) 半導体メモリ装置及びそれに適した駆動信号発生器
JPH11250664A (ja) 同期形半導体メモリ装置のためのカラム選択ライン制御回路
US6795372B2 (en) Bit line sense amplifier driving control circuits and methods for synchronous drams that selectively supply and suspend supply of operating voltages
KR100372249B1 (ko) 분할 워드라인 액티베이션을 갖는 리프레쉬 타입 반도체메모리 장치
JP3751740B2 (ja) 半導体メモリ装置の隔離ゲート制御方法及び回路
US5369620A (en) Dynamic random access memory device having column selector for selecting data lines connectable with bit lines
US7426151B2 (en) Device and method for performing a partial array refresh operation
US7327627B2 (en) Semiconductor memory
US7149133B2 (en) Semiconductor storage device
US4932000A (en) Semiconductor memory device having pseudo row decoder
JP4338418B2 (ja) 半導体記憶装置
KR100237050B1 (ko) 반도체 메모리 소자의 비트라인과 워드라인간 커플링 노이즈 감소회로
JP3297393B2 (ja) 半導体記憶装置および半導体記憶装置の制御方法
KR100474550B1 (ko) 차아지리싸이클방식을이용한디램장치
US20030026151A1 (en) Semiconductor memory
JP2004046936A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4381013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees